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Abstract	

While	red-shifted	channelrhodopsin	has	been	shown	to	be	highly	effective	in	activating	

CNS	neurons	in	freely	moving	Drosophila,	there	were	no	existing	high-throughput	tools	for	

closed-loop,	behavior-dependent	optogenetic	stimulation	of	Drosophila.		Here,	we	present	

SkinnerTrax	to	fill	this	void.		SkinnerTrax	stimulates	individual	flies	promptly	in	response	to	their	

being	at	specific	positions	or	performing	specific	actions.		Importantly,	SkinnerTrax	was	

designed	for	and	achieves	significant	throughput	with	simple	and	inexpensive	components.	
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Main	text	

Artificially	stimulating	or	inhibiting	neurons	is	an	important	tool	for	unraveling	the	

neural	mechanisms	that	control	animal	behavior.		A	widely	used	method	of	stimulation	is	

optogenetics,	where	channelrhodopsin	is	expressed	in	the	neurons	of	interest,	allowing	them	

to	be	activated	with	high	temporal	resolution	using	light	pulses.		In	Drosophila,	targeted	

expression	of	channelrhodopsin	is	made	easy	by	techniques	like	the	Gal4-UAS	system,	and	no	

surgery	is	needed	to	enable	light	delivery	when	using	red-shifted	channelrhodopsin1,	2	as	red	

light	penetrates	Drosophila	sufficiently	well.		Several	recent	reports3-6	have	demonstrated	the	

effectiveness	of	this	approach	in	assessing	whether	activating	specific	neurons	is	sufficient	to	

drive	specific	behaviors.		A	more	sophisticated	application	of	optogenetics,	however,	is	to	

stimulate	neurons	of	interest	with	a	closed-loop	system	in	real-time	response	to	the	fly’s	

positions	and	actions.		Such	application	is	critical	for	elucidating	the	roles	of	specific	neurons	in	

several	important	behavioral	tasks	such	as	operant	learning.	

Existing	systems	that	allow	such	behavior-dependent	stimulation	have	not	been	

designed	for	high	throughput.		Two	recent	advanced	systems,	FlyMAD7	and	ALTOMS8,	9,	target	a	

laser	to	flies	in	real-time	using	mirror	galvanometers,	which	in	principle	allows	sharing	the	laser	

between	several	flies,	as	suggested	in	the	discussion	section	of	Bath	et	al.7		But	the	scalability	of	

sharing	the	laser	is	limited	(Supplementary	Note	1),	and	laser-targeting	systems	require	

expensive	components	and	complex	setups.		Thus,	for	a	typical	lab	laser-targeting	systems	likely	

make	achieving	high	throughput	prohibitively	difficult.	

Here,	we	present	SkinnerTrax,	a	system	for	high-throughput	behavior-dependent	

optogenetic	stimulation	of	Drosophila.		Importantly,	SkinnerTrax	was	designed	for	and	achieves	
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significant	throughput	with	simple	and	inexpensive	components.		SkinnerTrax	can	deliver	red	

light	of	different	intensities	and	durations	to	individual	flies	promptly	in	response	to	their	being	

at	specific	positions	or	performing	specific	actions.		Instead	of	targeting	a	laser	onto	a	fly	that	is	

to	be	stimulated,	SkinnerTrax	uses	regular	LEDs	to	illuminate	the	whole	arena	for	such	fly,	

greatly	simplifying	light	delivery.		For	our	setup,	SkinnerTrax	could	handle	32	arenas	(flies)	

simultaneously	utilizing	only	9%	CPU	of	an	Intel	i7	machine	and	using	a	simple	multi-channel	

LED	controller.		To	scale	up	further,	the	number	of	arenas	per	machine	or	the	numbers	of	

machines	and	LED	controllers	can	be	increased	easily.	

Conceptually,	SkinnerTrax	has	three	custom-built	core	components:	(1)	an	efficient	real-

time	tracker	that	processes	the	videos	from	multiple	cameras	and	detects	the	positions	of	the	

flies,	 (2)	software	that	 implements	the	stimulation	rule,	 i.e.,	which	positions	or	actions	are	to	

result	in	stimulation,	and	(3)	a	multi-channel	LED	controller	to	deliver	light	pulses	according	to	

the	stimulation	rule	component’s	instructions	(Fig.	1a).	

Both	the	real-time	tracker	and	stimulation	rule	components	of	SkinnerTrax	are	written	

in	pure	Python	to	make	the	code	more	accessible,	while	care	was	taken	to	perform	all	compute-

intensive	processing	 in	 fast	 libraries	 (primarily	OpenCV)	and	to	select	efficient	data	structures	

and	 algorithms,	 allowing	 our	 Python	 code	 to	 run	 at	 essentially	 the	 speed	 of	 efficient	 native	

code.		As	a	result,	SkinnerTrax	can	easily	handle	16	cameras	at	320x240	pixels	and	7.5	fps	(our	

default)	 on	 a	 single	 Intel	 i7-4930K	machine	 using	 only	 about	 9%	 CPU.	 	 Compared	 to	 Ctrax10	

0.5.6,	 a	 popular	 non-real-time	 tracker	which	 is	 also	 Python-	 and	OpenCV-based,	 SkinnerTrax	

was	about	8	times	faster	on	one	of	our	sample	videos.		(While	designed	for	real-time	tracking	

and	 capturing	 from	cameras,	 SkinnerTrax	 can	 also	be	used	on	prerecorded	 videos.)	 	Most	of	
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SkinnerTrax	is	operating	system	independent,	but	it	was	developed	and	is	partly	dependent	on	

Linux.		While	Linux	is	not	a	real-time	operating	system,	we	analyzed	several	of	our	experimental	

videos,	and	in	each	and	every	case	when	the	stimulation	rule	determined	that	the	LEDs	should	

be	turned	on,	the	next	frame	showed	the	LEDs	to	be	on.		For	details	on	our	multi-channel	LED	

controller	and	additional	details	on	the	real-time	tracker	and	stimulation	rule	components,	see	

Online	 Methods.	 	 The	 code	 for	 all	 three	 components	 will	 be	 freely	 available	 at	

https://github.com/ulrichstern/SkinnerTrax.	

In	addition	to	the	three	core	components,	we	used	custom	chambers	to	hold	the	flies.		

SkinnerTrax	places	few	restrictions	on	the	chamber	design;	in	fact,	the	chambers	we	used	were	

originally	 designed	 for	 high-throughput	 egg-laying	 experiments11-13	 and	 worked	 well	 for	

SkinnerTrax,	also.	 	Each	individual	chamber	held	a	single	fly	and	was	illuminated	with	two	red	

LEDs	for	channelrhodopsin	activation	(Fig.	1b	and	Supplementary	Fig.	1).	 	 (We	generally	used	

CsChrimson1	(CsC)	for	neuronal	activation.)		We	captured	two	of	the	chambers	per	camera	(Fig.	

1c),	 for	which	we	used	 inexpensive	webcams.	 	To	simultaneously	 record	many	chambers,	we	

used	 16	 webcams	 with	 each	 Intel	 i7	 machine	 running	 SkinnerTrax	 (Supplementary	 Fig.	 2,	

Supplementary	Video	1,	and	Online	Methods).	

To	illustrate	that	the	stimulation	rules	in	SkinnerTrax	are	highly	flexible	and	can	support	

a	wide	range	of	experimental	designs,	we	next	used	it	to	implement	three	different	behavior-

dependent	 light	 stimulations.	 	 First,	 for	 our	 differing-rate	 assay,	 we	 made	 the	 stimulation	

dependent	on	the	fly’s	position.		Specifically,	the	fly	received	red	light	pulses	at	different	rates	

depending	on	where	it	was	in	the	behavioral	chamber	(Fig.	1d).	 	Second,	for	our	speed	assay,	

we	made	the	stimulation	dependent	on	the	fly’s	action.		Specifically,	the	fly	received	red	light	
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continuously	 for	 as	 long	 as	 its	 speed	 of	 movement	 was	 below	 a	 user-defined	 threshold	

(Supplementary	Fig.	3a).		Third,	for	our	enter	circle	assay,	we	made	the	stimulation	dependent	

on	both	position	and	action.		Specifically,	the	fly	received	a	250-ms	pulse	of	red	light	whenever	

it	performed	the	action	of	entering	a	circular	area	 (i.e.,	 crossed	 from	outside	 to	 inside	of	 the	

circle)	 (Fig.	 1e).	 	 It	 is	 worth	 pointing	 out	 that	 since	 stimulation	 rules	 are	 implemented	 in	

software,	once	a	SkinnerTrax	setup	is	built,	developing	a	new	assay	often	requires	no	hardware	

development	and	is	hence	very	fast.	

Finally,	we	used	our	differing-rate	assay	to	ask	whether	position-dependent	stimulation	

of	 the	 bitter-sensing	 Gr66a	 neurons,	 whose	 activation	 has	 been	 shown	 to	 elicit	 avoidance	

behavior6,	14,	can	cause	flies	to	exhibit	active	or	memory-induced	place	avoidance.		Using	a	16-

camera	SkinnerTrax	setup	enabled	us	to	examine	32	flies	at	a	time.		For	details	of	the	assay,	see	

Online	Methods.		The	experimental	Gr66a>CsC	flies	showed	clear	positional	preference	for	the	

less	 “punished”	 bottom	 half	 of	 the	 chamber	 during	 training	 sessions,	 while	 yoked	 controls	

showed	 no	 such	 preference	 (Fig.	 2a-b	 and	 Supplementary	 Fig.	 3b).	 	 In	 addition,	 the	

experimental	flies	showed	positional	preference	for	the	bottom	half	during	post-training	breaks	

(Fig.	 2b).	 	 We	 do	 not	 interpret	 the	 post-training	 preference	 as	 “learned	 place	 avoidance,”	

however,	as	the	flies	tended	to	move	very	little	 in	the	absence	of	stimulation	and	were	much	

more	likely	on	the	bottom	halves	at	the	moments	the	training	sessions	ended.		See	Figure	2c	for	

a	 typical	 trajectory	 of	 an	 experimental	 fly	 during	 training	 1	 and	 the	 post-training	 break.		

Interestingly,	 flies	 did	 increase	 their	 positional	 preference	 for	 the	 less	 punished	 half	 during	

training	 sessions	 as	 the	 number	 of	 session	 went	 up,	 suggesting	 their	 avoidance	 of	 light	

stimulation	increased	over	time	(Fig.	2d).		Taken	together,	our	results	confirm	that	activation	of	
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Gr66a	 neurons	 elicits	 avoidance	 behavior	 and	 show	 that	 the	 avoidance	 behavior	 exhibits	

experience-dependent	plasticity.	

In	 conclusion,	 the	 efficiency	 of	 the	 SkinnerTrax	 code	 combined	 with	 the	 use	 of	

inexpensive	 components	 for	 video	 acquisition	 and	 light	 delivery	 makes	 achieving	 high	

throughput	 easy,	 speeding	 up	 experiments	 and	 even	 enabling	 previously	 impractical	 genetic	

screens.	 	 In	 addition,	 the	 flexibility	 SkinnerTrax	 provides	 for	 implementing	 stimulation	 rules	

allows	for	a	wide	range	of	different	assays.		The	stimulation	rule	component	currently	has	built-

in	support	for	recognizing	only	simple	behaviors,	but	we	plan	to	extend	the	range	of	behaviors	

by	incorporating	machine	learning-based	behavior	recognition	techniques	similar	to	those	that	

have	recently	been	used	for	non-real-time	video	analysis15,	16.	

Methods	

See	Online	Methods.		(Below.)	
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Online	Methods	

Camera-related	hardware.		We	used	Microsoft	LifeCam	Cinema	webcams	and	two	

Lagoon	Blue	(#172)	filters	from	LEE	Filters	(Andover,	UK)	in	front	of	each	webcam	to	reduce	red	

light	intensity	(Supplementary	Fig.	1).		We	connected	each	set	of	four	webcams	to	a	plugable	

USB	2.0	4-Port	Hub	(model	USB2-HUB4BC,	Plugable	Technologies,	Redmond,	WA).		Note	that	a	

powered	hub	is	required	since	four	webcams	typically	require	more	power	than	what	a	single	

USB	port	can	provide.		Each	hub	was	connected	to	our	Linux	i7	machine,	an	Intel	i7-4930K	

machine	put	together	from	individual	components	and	running	Ubuntu	14.04.		Since	

SkinnerTrax	with	16	cameras	(at	320x240	pixels	and	7.5	fps)	used	only	about	9%	CPU	on	this	

machine,	a	much	less	powerful	machine	would	likely	have	been	sufficient.	

For	background	lighting,	we	placed	light	pads	(model	LightPad	920,	Artograph,	Inc.,	

Delano,	MN)	that	were	dimmed	with	1.47	kΩ	serial	resistors	to	just	1%	of	their	normal	intensity	

under	each	apparatus	(Supplementary	Fig.	1	and	2a).		We	found	the	resulting	white	LED	

illumination	of	about	0.05	μW/mm2	in	the	chambers	weak	enough	to	not	activate	CsChrimson	

but	strong	enough	as	background	light	for	tracking	even	with	two	Lagoon	Blue	filters.		An	

alternative	would	have	been	to	use	infrared	(IR)	background	lighting.		In	this	case	we	would	

have	had	to	remove	the	LifeCams’	factory-installed	IR	filters.		Most	non-night-vision	webcams	

have	such	IR	filters.	

Real-time	tracker.		The	tracking	algorithm	used	is	based	on	calculating	the	difference	

between	the	current	frame	and	the	background	image	–	an	estimate	of	the	frame	without	flies	

–	and	using	a	detection	threshold	on	the	difference	image.		To	calculate	the	background	image	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 1, 2017. ; https://doi.org/10.1101/080614doi: bioRxiv preprint 

https://doi.org/10.1101/080614


11	
	

in	real-time,	we	used	OpenCV’s	accumulateWeighted()	with	some	custom	techniques	to	

improve	background	image	quality;	e.g.,	we	used	a	form	of	selective	background	update17	

where	pixels	that	are	in	the	foreground	according	to	a	threshold	less	than	the	detection	

threshold	are	excluded	from	the	background	update,	which	reliably	prevented	resting	flies	from	

making	it	into	the	background.		If	more	than	one	object	that	may	be	a	fly	is	detected	in	a	

chamber	(e.g.,	due	to	shadows),	the	tracker	picks	only	the	largest	one	and	ignores	the	others,	

which	relies	on	our	“only	one	fly	per	chamber”	setup	and	is	similar	to	the	shadow	detection	

technique	we	used	previously	in	non-real-time	tracking18.	

Despite	the	filters	in	front	of	the	LifeCams	to	reduce	red	light	intensity,	the	frames	fell	

into	two	distinct	lighting	states	depending	on	whether	the	red	LEDs	were	on	or	off,	which	we	

previously	addressed	by	calculating	a	separate	background	for	each	state18.		For	SkinnerTrax,	

we	attempted	to	eliminate	the	need	to	calculate	two	separate	backgrounds.		We	further	

reduced	the	difference	between	the	two	states	by	using	only	the	blue	channel	of	the	video	for	

tracking.		To	our	initial	surprise,	however,	the	red	LEDs	typically	appeared	darker	in	the	blue	

channel	when	they	were	on	compared	to	when	they	were	off,	which	was	likely	due	to	hue-

preserving	clipping	by	the	webcam	when	the	red	or	green	channels	would	otherwise	have	

exceeded	their	maximum	value	(255?)	in	areas	of	the	frame	showing	the	lit-up	LEDs.		By	

adjusting	the	saturation	setting	for	each	camera	individually,	we	could	make	the	red	LEDs	

appear	essentially	identical	in	“on”	and	“off”	states	in	the	blue	channel.		(Adjusting,	say,	the	

brightness	setting	instead	may	have	worked,	also.)		Combining	blue	channel	tracking	and	

saturation	adjustment	eliminated	the	need	to	calculate	two	separate	backgrounds.	
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To	make	running	experiments	with	many	cameras	easy,	SkinnerTrax	includes	code	that,	

for	each	camera	when	the	experiment	is	started,	automatically	sets	the	camera	settings	(e.g.,	

focal	plane,	exposure,	and	saturation)	to	saved	good	values	and	detects	the	precise	position	of	

the	chambers	in	the	video	frame	using	template	matching.		The	code	to	set	the	camera	settings	

is	LifeCam	specific	but	should	work	with	relatively	minor	changes	for	other	webcams	that	are	

UVC	(USB	Video	Class)	compliant,	which	seems	to	typically	be	the	case	for	recent	webcams.		For	

details	of	the	template	matching	method,	see	our	previous	work	in	non-real-time	tracking18.	

Stimulation	rules.		Stimulation	rules	are	implemented	by	directly	writing	Python	code,	

which	allows	maximum	flexibility	in	experimental	design.		SkinnerTrax	uses	threads	and	

provides	various	utility	functions	to	make	implementing	stimulation	rules	easier.		Often	an	

experiment	consists	of	multiple	sessions,	each	with	an	independent	stimulation	rule	and	with	

breaks	in-between	sessions,	and	one	can	readily	implement	the	execution	of	a	sequence	of	

sessions	(a	“stimulation	protocol”)	in	SkinnerTrax,	fully	automating	the	experiment.		The	

execution	of	the	stimulation	protocol	starts	only	once	the	fly	has	been	detected	by	the	real-

time	tracker,	which	requires	some	movement	of	the	fly.		If	experimental	flies	are	paired	with	

yoked	controls,	protocol	execution	starts	only	once	each	fly	has	shown	some	movement.	

Multi-channel	LED	controller.		Our	multi-channel	LED	controller	(Supplementary	Fig.	2a	

and	4)	is	Arduino	Uno-based	and	uses	two	Texas	Instruments	TLC59711	LED	driver	chips,	

providing	a	total	of	24	independently	controllable	LED	channels.		It	is	worth	noting	that	the	

number	of	channels	can	be	increased	readily	by	“chaining”	additional	TLC59711s.		The	

TLC59711	uses	pulse	width	modulation	(PWM)	to	control	LED	intensity	and	an	effective	PWM	

frequency	of	about	19.5	kHz	due	to	its	“enhanced	spectrum”	feature.		Note	that	the	effective	
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PWM	period	(~51	µs)	was	only	a	tiny	fraction	of	CsChrimson’s	off	decay	time	(~20	ms)1,	and	the	

PWM	should	have	no	side	effects	in	this	application.		For	each	channel	used,	we	connected	an	

LED	cable	with	four	Cree	624-nm	5-mm	15°	LEDs	(kit	number	C503B-RAN-CA0B0AA1)	in	series	

(Supplementary	Fig.	4a).		We	used	the	lower	Typical	Application	Circuit	Example	on	page	2	of	

the	TLC59711	datasheet	with	minimal	changes	for	connecting	the	Arduino	Uno	and	the	

TLC59711s	(Supplementary	Fig.	4b).		To	simplify	soldering,	we	used	Adafruit’s	TLC59711	boards	

(product	id	1455,	Adafruit	Industries,	New	York	City,	NY).		We	also	wrote	a	new	Arduino	library	

for	controlling	the	TLC59711	(https://github.com/ulrichstern/Tlc59711)	to	fix	problems	with	the	

library	provided	by	Adafruit	Industries.	

On	the	Linux	i7	machine,	a	single	“LedController”	process	is	in	charge	of	communicating	

with	the	Arduino	via	serial	port	(over	USB).		We	measured	a	roundtrip	delay	of	about	4	ms,	

which	matches	the	lowest	numbers	reported	online.		(If	a	reduction	is	required,	a	relatively	

simple	switch	from	Arduino	to	Teensy	would	reduce	the	delay	to	about	1	ms.)		Each	of	the	real-

time	tracking	processes	communicates	with	the	LedController	process	via	TCP	over	a	socket	

that	is	kept	open	throughout	the	run	of	the	real-time	tracker	process	to	avoid	connection	

establishment	delays.		The	commands	used	are	“set	channel	x	to	intensity	y,”	which	work	well	

for	the	continuous	illumination	(e.g.,	a	250-ms	pulse)	we	used	in	our	experiments.		If	pulse	train	

illumination	(e.g.,	ten	4-ms	pulses	at	40	Hz)	is	required,	the	Arduino	code	could	be	extended	to	

support	pulse	trains.	

Handling	many	webcams.		The	Microsoft	LifeCam	Cinema	reserves	about	48%	of	USB	

2.0	bandwidth	independent	of	the	resolution	and	frame	rate	used,	which	typically	limits	the	

number	of	LifeCams	to	just	one	or	two	per	USB	controller.		The	problem	is	not	limited	to	the	
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LifeCam	Cinema	or	Microsoft;	several	other	webcams	also	reserve	more	bandwidth	than	they	

need.		In	theory,	for	the	resolution	and	frame	rate	we	used	(320x240	pixels,	3	bytes	per	pixel,	

7.5	fps),	the	USB	2.0	bandwidth	of	480	Mbit/s	allows	up	to	34	webcams.		Fortunately,	the	Linux	

UVC	driver	includes	a	so-called	“quirk”	to	ignore	the	bandwidth	reservation	from	the	camera	

(UVC_QUIRK_FIX_BANDWIDTH),	allowing	more	than	two	LifeCams	to	be	used	per	USB	

controller	(http://stackoverflow.com/q/25619309/1628638).		Even	using	the	quirk,	the	actual	

number	of	supported	cameras	per	USB	controller	can	still	be	much	smaller	than	the	theoretical	

maximum,	and	adding	additional	USB	controllers	via	USB	cards	can	also	increase	the	number	of	

cameras	supported;	we	added	one	ANKER	USB	3.0	card	(model	68UPPCIE-4SU,	Anker	

Technology	Co.,	Limited,	Hong	Kong;	we	had	good	experiences	with	the	VIA	VL805	USB	

controller	it	uses)	to	our	i7	machine.	

In	addition,	current	versions	of	OpenCV	(both	2.4.13	and	3.1.0)	by	default	support	at	

most	eight	webcams	on	Linux.		But	this	can	be	increased	easily	by	changing	constant	

MAX_CAMERAS	in	the	OpenCV	source	code	and	rebuilding	OpenCV	

(http://stackoverflow.com/q/38619801/1628638).	

Note	that	the	requirement	to	handle	many	webcams	was	partly	due	to	the	high	

sidewalls	of	our	chambers.		With	low-sidewall	chambers,	the	number	of	chambers	per	camera	

could	be	increased,	reducing	the	number	of	cameras	required	for	high	throughput.	

Differing-rate	assay.		For	our	differing-rate	assay,	we	programmed	SkinnerTrax	to	

administer	three	10-min	training	sessions,	each	followed	by	a	10-min	“break”	without	light	

pulses,	and	an	initial	5-min	break	before	the	first	session.		During	training	sessions,	flies	

received	250-ms	red	light	pulses	of	about	11	μW/mm2	(25%	LED	intensity)	at	a	rate	of	1	Hz	
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when	they	were	in	the	top	half	of	the	chamber	and	at	a	lower	rate	of	0.2	Hz	when	they	were	in	

the	bottom	half	(Fig.	1d	and	2c).		We	chose	a	low	stimulation	rate	of	0.2	Hz	over	“no	

stimulation”	for	the	bottom	half	since	Gr66a>CsC	flies	tended	to	move	very	little	during	periods	

without	stimulation	that	followed	a	period	where	they	had	been	stimulated	multiple	times.	

Statistics	notes.		We	used	GraphPad	Prism	6	to	perform	statistical	tests	and	significance	

level	α	=	0.05.		In	the	figures,	bars	show	mean	PIs	(see	legend	for	Fig.	2b)	with	95%	confidence	

intervals,	which	can	be	used	to	assess	how	different	the	mean	PIs	are	from	zero	(no	

preference).		We	used	**	for	p	<	0.01	and	“ns”	for	not	significant.	
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Figure	1.		Overview	of	SkinnerTrax.	

(a)	Overview	of	the	SkinnerTrax	components,	with	arrows	indicating	direction	of	information	or	

control	flow.	

(b)	Schematic	of	the	cross	section	of	one	chamber.		We	recorded	through	the	lid	with	a	camera	

above	the	chamber.	

(c)	Sample	frame	from	one	of	our	videos.		The	frame	shows	two	chambers,	each	holding	one	fly	

outlined	by	a	yellow	ellipse.		Chambers	are	illuminated	by	white	background	light	but	appear	

blue	due	to	filters	placed	in	front	of	the	camera	(Supplementary	Fig.	1	and	Online	Methods).		

Arrows	point	to	two	of	the	red	LEDs	(in	off	state).	

(d)	Sample	frame	during	training	in	our	differing-rate	assay	at	a	moment	when	the	LEDs	are	off.		

The	stimulation	rate	depends	on	whether	the	experimental	fly	is	above	or	below	the	white	line.		
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The	white	line	here	and	the	white	circle	in	the	next	panel	were	drawn	by	SkinnerTrax	to	

visualize	the	stimulation	rules	for	the	users	and	were	not	visible	to	the	flies.		Note	that	we	

consistently	paired	each	experimental	fly	with	a	so-called	yoked	control	that	receives	

stimulation	simultaneously	with	the	experimental	fly,	while	when	stimulation	happens	is	

controlled	solely	by	the	experimental	fly’s	behavior.		Due	to	the	simultaneous	stimulation,	a	

single	channel	(driving	four	LEDs)	of	our	LED	controller	was	sufficient	per	pair.	

(e)	Sample	frame	during	training	in	our	enter	circle	assay	with	red	LEDs	in	on	state	(arrow).		The	

experimental	fly	just	entered	the	white	circle,	causing	stimulation	of	both	flies.	
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Figure	2.		Gr66a>CsC	flies	in	our	differing-rate	assay.	

(a)	Sample	positional	heat	map	of	one	pair	of	Gr66a>CsC	flies	at	the	end	of	training	session	1.		

For	details	of	the	assay,	see	Online	Methods.		Warmer	colors	indicate	more	time	spent	at	the	

position.	

(b)	Positional	PI	(preference	index)	of	Gr66a>CsC	flies.		Positional	PI	=	(NT	-	NB)	/	(NT	+	NB),	

with	NT	and	NB	denoting	the	numbers	of	frames	the	fly	was	in	the	top	or	bottom	halves	of	the	

chamber,	respectively.		The	bars	show	means	with	95%	confidence	intervals.		See	also	Statistics	

notes	in	Online	Methods.		N	=	39	flies.	
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(c)	Sample	trajectory	of	a	Gr66a>CsC	fly	during	training	session	1	and	the	following	post-

training	break.		Red	lines	indicate	red	LED	pulses,	which	occur	at	a	higher	frequency	when	the	

fly	is	in	the	top	half	of	the	chamber.	

(d)	Positional	PI	of	Gr66a>CsC	flies	during	the	last	eight	minutes	of	each	ten-minute	training	

session,	with	sessions	excluded	where	the	fly	did	not	visit	both	chamber	halves	during	the	first	

two	minutes	of	the	session.		The	session	exclusion	combined	with	using	only	the	last	eight	

minutes	of	the	session	for	the	PI	calculation	avoids	that	the	position	of	the	fly	at	the	moment	

the	session	started	(which	is	non-random	for	later	sessions)	influences	the	calculated	PI.		Paired	

t-test,	two-tailed,	p	=	0.34	(ns)	and	p	=	0.0013	(**).		The	PI	difference	between	trainings	1	and	3	

passed	normality.		Using	the	Bonferroni	correction	to	adjust	for	multiple	comparisons	does	not	

change	significance.		N	=	39,	39,	and	38	sessions.	
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