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Abstract

Summary: Regulatory elements regulate gene transcription, and their location and accessibility is cell-type
specific, particularly for enhancers. Mapping and comparing chromatin accessibility between different cell
types may identify mechanisms involved in cellular development and disease progression. To streamline
and simplify differential analysis of regulatory elements genome-wide using chromatin accessibility data,
such as DNase-seq, ATAC-seq, we developed ALTRE (ALTered Regulatory Elements), an R package and
associated R Shiny web app. ALTRE makes such analysis accessible to a wide range of users - from
novice to practiced computational biologists.
Availability: https://github.com/Mathelab/ALTRE
Contact: ewy.mathe@osumc.edu

1 Introduction
Assays that measure chromatin accessibility genome-wide, such as
FAIRE-seq (Giresi et al., 2007), DNase-seq (Crawford et al., 2006; John
et al., 2013; Thurman et al., 2012), and ATAC-seq (Buenrostro et al., 2013),
enable global mapping of regulatory elements (REs), including promoters
and enhancers. Organization of these REs, particularly enhancers, is cell-
type specific (Kieffer-Kwon et al., 2013; Rendeiro et al., 2016; Stergachis
et al., 2013) and is a strong determinant of disease mutational landscapes,
including those of cancer (Polak et al., 2015). Thus, identifying REs that
differ in accessibility between cell types, such as cancerous and non-
cancerous cell lines and tissues, holds promise for pinpointing mechanisms
involved in disease progression. Furthermore, REs that control disease-
related genes and pathways can be investigated as putative therapeutic
targets, or may even be such targets themselves (Heinz et al., 2015; Lam
et al., 2013).

To the best of our knowledge, no comprehensive and user-friendly
workflow for downstream analysis of chromatin accessibility data is
available. Downstream analysis includes guiding chromatin accessibility
alignment and peak data to interpretable results of REs and pathways of
interest. However, there are no standardized approaches or guidelines.
Typically, individual data analyses pipelines must be created from scratch
in-house, thereby making reproducible, shareable data-analysis difficult.
ALTRE provides a workflow so users can identify altered REs between
two different cell types or conditions, and includes a Shiny (RStudio shiny:
Easy web applications in R. 2014) web interface for those not as fluent in
the R statistical language.

2 Implementation

2.1 Data preparation and set-up

Typical of high-throughput sequencing data, chromatin accessibility data
are delivered in FASTQ files. Quality control, alignment, and peak calling
of the FASTQ file reads, described in detail elsewhere (Baek et al., 2012;
Boyle et al., 2008; Jalili et al., 2016; Rashid et al., 2011; Zhang et al., 2008),
must be performed before using ALTRE. To start the ALTRE workflow,

users need to generate a comma-separated-values CSV file with 4 columns
for each sample to be analyzed: 1) name of alignment (BAM) files; 2) name
of peak (BED) files; 3) sample name; 4) replicate number. All files should
be placed in the same folder and the software will detect the location of
the files when reading in the CSV. A minimum of 2 replicates per sample
is required to run the workflow. To get started with ALTRE, users need to
have R (≥ 3.2.0) installed.

2.2 General aspects and design

ALTRE was designed to be user-friendly and to streamline differential
analysis of REs genome-wide. The steps of the workflow analysis are
delineated in Figure 1 and include loading data, defining consensus peaks
(found in multiple replicates), annotating (e.g. Transcription Start Site
(TSS)-distal and TSS-proximal) and optionally merging peaks, identifying
significantly altered REs based on quantitative data using DESeq2 (Love,
et al., 2014), creating tracks for visualizing categorized REs in a genome
browser, comparing altered REs with those defined based on binary (peak
present/absent) data only, and finally, defining pathways that are enriched
in cell- or condition-type specific or shared REs using GREAT (McLean
et al., 2010).

Fig. 1. Front page of ALTRE Shiny web application showing workflow steps.
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ALTRE’s embedded Shiny app takes alignment files (BAM format)
and hotspot/peak files (BED format) as input. The workflow guides users
through the steps described above and delineated in Figure 1. At each
step, users can define thresholds, such as number of replicate samples
required to define a peak as consensus, and fold changes and p-value cutoffs
for definition of cell type specific or shared REs. Users can then quickly
retrieve summary statistics and visualization plots (heatmaps, barplots) to
ensure the appropriateness of their parameters. For ease of use, default
options are provided at each step for guidance. Of note, while tools for
differential binding and annotation of sequencing data exist (Bailey et al.,
2013; Chabbert et al., 2016; Ross-innes et al., 2012; Yu et al., 2015; Zhu,
2013; Zhu et al., 2010)(Stark and Brown, ’DiffBind: differential binding
analysis of ChIP-Seq peak data’ 2011), ALTRE supports peak merging
and annotation, differential analysis, and pathway enrichment analysis in
one streamlined tool.

3 Results and Discussion
Users can install ALTRE with the function install_github() from the
devtools R package (Wickham H and Chang, W. 2016. devtools: Tools
to Make Developing R Packages Easier). Full installation instructions
are found at https://github.com/Mathelab/ALTRE. Users can then run
the workflow either in the R console or by launching the embedded
web application by typing "runShinyApp()" in the R console. A detailed
vignette (https://mathelab.github.io/ALTRE/vignette.html) walks users
through an example workflow analysis step-by-step.

A sample dataset is provided on GitHub and can be accessed
at https://mathelab.github.io/ALTREsampledata/. This sample dataset
includes ENCODE data for cancerous and associated non-cancer lung cell
lines, A549 and SAEC, respectively. On a machine with 16 GB memory
and a 2.5 GHz Intel Core i7 processor, the workflow takes ∼ 334 seconds
to complete for the example dataset using all chromosomes.

For real-time analysis of results, the ALTRE Shiny app enables users to
change their parameters and directly visualize the effect of those changes
through summary statistics tables and plots. For example, users can readily
visualize the number of REs that are sample-type specific or shared based
on their input fold change and adjusted p-value thresholds through a
volcano plot and an associated statistics table. In addition, processed data
can be saved after key steps in the analysis and all plots can be modified
(e.g. colors) and saved as high resolution images.

With the increasing interest in researching REs to better understand
transcriptional regulation and diseases, and improvements in techniques
to assess these regions (Buenrostro et al., 2013), chromatin accessibility
assays are being increasingly generated. With this in mind, ALTRE
provides a user-friendly workflow that guides the analysis and
interpretation of these data.
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Abstract

Summary: Regulatory elements regulate gene transcription, and their location and accessibility is cell-type
specific, particularly for enhancers. Mapping and comparing chromatin accessibility between different cell
types may identify mechanisms involved in cellular development and disease progression. To streamline
and simplify differential analysis of regulatory elements genome-wide using chromatin accessibility data,
such as DNase-seq, ATAC-seq, we developed ALTRE (ALTered Regulatory Elements), an R package and
associated R Shiny web app. ALTRE makes such analysis accessible to a wide range of users - from
novice to practiced computational biologists.
Availability: https://github.com/Mathelab/ALTRE
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Genome-wide (re)programming in cell
differentiation and disease
Genome-wide programming of the chromatin landscape is a mechanism
by which cells are differentiated into a variety of cell types that make up the
human body. Changes in the chromatin structure enable accessibility and
activation of regulatory regions, upon which transcription factors bind,
leading to the activation of genes and associated molecular functions.
Many diseases of cellular dysfunction, such as cancer, are accompanied
by a similar transcriptional reprogramming, but with much less favorable
consequences. Useful functions of the cell are lost and damaging functions,
such as increased cellular proliferation, are gained. Recently, strong ties
between the distribution of cancer-causing mutations and the regulatory
landscape of the cancer’s tissue of origin have been uncovered (Polak
et al., 2015), a finding which positions the regulatory landscape as a prime
suspect in cancer progression. Assays such as FAIRE-seq (Giresi et al.,
2007), DNase-seq (Crawford et al., 2006; John et al., 2013; Thurman
et al., 2012), and ATAC-seq (Buenrostro et al., 2013) can investigate these
changes in chromatin structure genome-wide by capturing the location of
open, or transcriptionally active, chromatin (Kieffer-Kwon et al., 2013;
Stergachis et al., 2013). With these assays, peaks signal the presence of
open chromatin regions, which mark the location of regulatory elements
(REs), such as promoters and enhancers, that control gene expression.
Identifying REs that differ in accessibility between cell types, such as
cancerous and noncancerous cell lines and tissues, holds promise for
identifying new mechanisms involved in cancer progression. These regions
control the genes and pathways that can be investigated as putative
therapeutic targets, or may even be such targets themselves.

The problems in data analysis ALTRE solves
Currently, no comprehensive and user-friendly workflow for downstream
analysis of chromatin accessibility data, from aligned reads and peaks
to meaningful results of genes and pathways of interest, exists. Instead,

individual data analyses pipelines must be created from scratch in-house,
making reproducible, shareable data-analysis difficult, as there are no
standardized approaches. Additionally, the burden of both time investment
and programming skill is a deterrent to individuals new to the field,
especially those with little computer programming background. Thus, the
scientific community will benefit from a user-friendly software tool that
1) guides newcomers to an understanding of the analysis process, 2) offers
a streamlined, tested tool for the analysis of chromatin accessibility data,
and 3) delivers meaningful results, including pathway enrichment analysis,
that can be leveraged for further studies.

General aspects and design
ALTRE is a workflow package that takes alignment (BAM format) and
peak (BED format) files as input. The workflow guides users through
visualizing areas of open chromatin as peaks in a genome browser, defining
consensus peaks (found in multiple replicates), annotating peaks into
candidate TSS-proximal and TSS-distal regions (based on their proximity
to known Transcription Start Sites), identifying significantly altered TSS-
proximal and TSS-distal regions based on accessibility, and identifying
enriched pathways in cell-type specific or shared REs using GREAT
(McLean et al., 2010). The dysfunction of these pathways may play a
role in cell type specificity or disease progression, if diseased cells are
compared to normal cells. Of note, the location of REs relies on peak
caller algorithms, which differ in their sensitivity of peak calls (e.g. due
to different peak shapes or signal to noise ratios), even between replicate
samples (Koohy et al., 2014). While one can use biological replicates
to call consensus (e.g. reproducible) peaks (Jalili et al., 2016), ALTRE
will identify consensus peaks after peak calling that are defined among
multiple replicate samples. In addition, ALTRE defines altered peaks
using both binary data (e.g. presence/absence of peaks) and quantitative
data (e.g. peak intensity) and enables the comparison of results from
both methods. For quantitative analysis, counts in REs and the DESeq2
algorithm (Love et al., 2014) are leveraged. While tools for differential
binding and annotation of sequencing data exist (Bailey et al., 2013;
Chabbert et al., 2016; Ross-innes et al., 2012; Yu et al., 2015; Zhu,
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2013; Zhu et al., 2010), ALTRE supports peak merging and annotation,
differential analysis, and pathway enrichment analysis in one streamlined
analysis tool.

Software access and installation instructions
ALTRE is hosted on GitHub (http://mathelab.github.io/ALTRE), allowing
developers and users to readily see, use, and modify the code. The vignette
for the software is available at https://mathelab.github.io/ALTRE/vignette.
html, and the code that generates the vignette is accessible at
https://github.com/Mathelab/ALTRE/tree/gh-pages. Users can install the
package with the function install_github() in the devtools package
(Wickham H.; Chang, W., devtools: Tools to Make Developing R Packages
Easier. 2016), thereby greatly simplifying the R package set-up. The
following lines of code will install the package and all its dependencies:

source("http://bioconductor.org/biocLite.R")

BiocInstaller::biocLite(c(’org.Hs.eg.db’,

’EnsDb.Hsapiens.v75’,

’GO.db’))

install.packages("devtools")

devtools::install_github("mathelab/ALTRE")

The project’s GitHub page (https://github.com/Mathelab/ALTRE)
contains detailed information on installation and on troubleshooting
installation errors (e.g. XML package installation error on Linux systems).
If errors occur (as could happen with older systems), users can submit a bug
report on the issues page of the project’s GitHub site and we will promptly
respond to the issues. Finally, we incorporated Travis-CI, a continuous
integration service used to build and test software projects so that we
can automatically test if ALTRE successfully builds and installs after any
modification to the code.

Example data
Our example data includes processed sequencing reads from ENCODE
DNase-seq experiments. This data was measured in lung cancer cell line,
A549, as one group, and the corresponding normal cell line, SAEC, as
"reference". A restricted subset of this data, comprising only chromosome
21, can be found at http://mathelab.github.io/ALTREsampledata/. The
CSV file that is input into the first step of ALTRE, function loadCSVFile(),
can be downloaded separately at https://raw.githubusercontent.com/mathe
lab/ALTREsampledata/master/DNaseEncodeExample.csv. All downloaded
files (alignment files, peak files, and CSV) should be placed in the same
folder before using ALTRE.The corresponding entire datasets can be
downloaded directly from the ENCODE project. The links for the sample
datasets are are provided on the website as well.

Workflow
The workflow comprises 8 steps, where the first step processes the CSV
sample information file. The folder with the CSV file must also contain
all analysis files, including alignment (BAM format) and peak files (BED
format). The outputs of the major functions (Steps 2-7) applied to our
sample data are shown and discussed below. Of note, if the Shiny web
application is used by running runShinyApp() in the R console), then users
can save data at the major steps (Steps 3, 6, 7, and 8 in the web interface). In
the R console and web application, all plots can be modified (e.g. colors,
main title and axis text) and saved as high resolution images. In the R
console, the size of the main title and axis text can also be modified.

Fig. 1. Consensus peaks boxplot (Step 2)

Defining consensus peaks (Step 2)
ALTRE analysis requires two different types of samples and at least two
biological replicates of each cell type. Consensus peaks are those present
in at least N replicates, where N is input by the user. The first step in the
worflow takes an input of two or more peak files per sample and returns
a genomic ranges object representing consensus peaks. Additionally, the
function will output metrics summarizing how many peaks were present in
each replicate for each sample type, and how many peaks are "consensus",
or present in at least N replicates (Figure 1).

The function plotConsensusPeaks() produces the plot in Figure 1.

Annotation of Regulatory Elements (Step 3)
Consensus REs are categorized as either candidate TSS-proximal or TSS-
distal. By default, REs within 1,500 bp of a Transcription Start Site (TSS)
are considered TSS-proximal, while those beyond 1,500 bp of a TSS are
considered TSS-distal. This distance can be modified by user input. Also
by default, the location of the TSS are derived from Ensembl, through the R
package org.Hs.eg.db, Carlson M. org.Hs.eg.db: Genome wide annotation
for Human. R package version 3.2.3.

Fig. 2. Number of candidate TSS-proximal or TSS-distal REs after annotation (Step 3)

It is reasonable to think that REs within a small arbitrary distance
(e.g. 1000-1500 bp) belong to the same region and should be merged (the
accuracy of peak boundaries is questionable). This merging option can
be implemented by setting the "merge" argument to TRUE. Furthermore,
the merging can be implemented within RE type (i.e. only TSS-distal
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Fig. 3. Distirubtion of intensities for altered REs (left) and volcano plot (right) (Steps 4-6)

regions will be merged with other TSS-distal regions, and likewise,
TSS-proximal only with TSS-proximal), or without regard to RE type
by setting the arguments "regionspecific", "distancefromTSSdist", and
"distancefromTSSprox" accordingly.

The function plotCombineAnnotatePeaks() produces the plot in
Figure 2. Users can also download the annotated regions by calling the
function writeConsensusRE().

Identification of altered REs (Steps 4-6)
With consensus REs identified and categorized for each cell type,
the most integral aspect of the pipeline can be started: identification
of cell-type specific and shared REs based on peak intensity, which
measures the extent of chromatin accessibility. First, the number of
reads, which approximates the accessibility, in each RE must be
retrieved with the function getCounts(). Second, the DESeq2 algorithm
for count-based differential analysis is implemented by calling the
function countanalysis(), which takes the log2 fold change and p-value
cut-off parameters used by the DESeq2 results() function to optimize
hypothesis testing and calculation of adjusted p-values, respectively. See
https://www.bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst
/doc/DESeq2.pdf for more details.

Fig. 4. Comparing categorization based on binary or quantitative data (Step 7)

The third function, categAltrePeaks() applies user input criteria to
categorize REs as experiment-specific (higher accessibility in experiment

Fig. 5. Pathway enrichment (Step 8)

sample), reference-specific (higher accessibility in reference sample), or
shared. Input criteria include: 1) lfctypespecific, pvaltypespecific: log2
fold change and p-value cutoff for categorizing experiment- or reference-
specific REs; and 2) lfcshared, pvalshared: log2 fold change and p-value
cutoff for categorizing shared REs (those with log2 fold changes within
lfcshared and with adjusted p-values > pvalshared).

The functions plotCountAnalysis() and plotDistCountAnalysis()
produce the plots in Figure 3.

Additionally, the function writeBedFile() generates BED files to
display peaks that are color-coded by cell type specificity according to
the categAltrePeaks() output. Viewing these track files along with the raw
data allows visual inspection of regions for consistency. For example, a
red, type-specific region should have a tall peak in one cell type and little to
no peak in the other, while a purple, shared region should have comparable
peaks in both cell types.

Comparing REs defined from binary vs quantitative data (Step 7)
ALTRE uses peak intensity as a proxy for the amount of chromatin
accessibility, to categorize REs as cell type specific or shared. Another
method for defining cell type specificity of REs is to use peak/binary
information (whether or not the RE location has a peak).

The function comparePeaksAltre() compares results obtained when
the quantitative/peak intensity data is used, and when the peak/binary
information is used. The plotCompareMethodsAll() function displays the
results in Figure 4. As expected, leveraging the peak intensity reduces the
number of REs categorized, mainly because "ambiguous" peaks that do
not meet the shared or cell-type specific criteria are no longer categorized.

Users can write the results of CompareMethodsAll() with the function
writeCompareRE(). The function will create a CSV file that denotes the
number of peaks called as experiment - or reference-specific and shared
using the quantitative/peak intensity or peak/binary approach.
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Pathway enrichment of genes closest to altered REs (Step 8)
The runGREAT() and processPathways() functions perform pathway
enrichment analysis on REs categorized as experiment-specific, reference-
specific, and shared. These functions rely on the GREAT algorithm
(McLean, et al., 2010), which incorporates distal sites when mapping
REs to genes, and calculates pathway enrichment using binomial testing,
which controls false positives based on the annotation of genes that are
nearby REs of interest. An R interface to the GREAT algorithm (Gu, Z,
2016. rGREAT: Client for GREAT Analysis) is embedded into ALTRE. By
default, the Gene Ontology (Gene Ontology, 2015) pathway (annotations
include molecular functions, biological processes, and cell components)
annotation is used. The function returns a list of enriched pathways for each
type of RE (e.g. experiment- and reference-specific, shared), according to
user-input p-value and fold change cutoff.

The function plotGREATenrich() produces the plot in (Figure 5). Note
that this plotting function will only plot the top 10 pathways for each
category by default. To view all the results, change the default (numshow
category) or write all the results by calling the function writeGREATpath().
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