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Abstract 

The relation between DNA methylation and chromatin structure is still largely unknown. By 

analyzing a large set of sequencing data, we observed a long-range power law correlation of 

DNA methylation with cell-class-specific scaling exponents in the range of thousands to millions 

of base pairs. We showed such cell-class-specific scaling exponents are caused by different 

patchiness of DNA methylation in different cells. By modeling the chromatin structure using Hi-

C data and mapping the methylation level onto the modeled structure, we demonstrated the 

patchiness of DNA methylation is related to chromatin structure. The scaling exponents of the 

power law correlation is thus a display of the spatial organization of chromatin. Besides, the 

local correlation of DNA methylation is associated with nucleosome positioning and different 

between partially-methylated-domain and non-partially-methylated-domain, suggesting their 

different chromatin structures at several nucleosomes level. Our study provides a novel view of 

the spatial organization of chromatin structure from a perspective of DNA methylation, in which 

both long-range and local correlations of DNA methylation along the genome reflect the spatial 

organization of chromatin. 
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Introduction 

Composed of DNA and histone proteins, chromatin has a three-dimensional (3D) structure at 

different hierarchical levels (Gibcus & Dekker, 2013). The spatial organization of chromatin 

plays an essential role in many genomic functions, including gene expression, DNA replication 

and cell mitosis (Dekker, 2008; Galupa & Heard, 2015; Levine et al, 2014; Naumova et al, 2013; 

Pombo & Dillon, 2015). Several lines of evidence show that epigenetics can remodel chromatin 

structure at different levels (Aranda et al, 2015; Bell & Felsenfeld, 2000; Boettiger et al, 2016; 

Cedar & Bergman, 2009; Chodavarapu et al, 2010; Jenuwein & Allis, 2001). Super-resolution 

imaging recently showed that chromatin folding varies for different epigenetic states (Boettiger 

et al, 2016). 

DNA methylation, as the most abundant epigenetic modification in eukaryotic 

chromosomes, is also thought to influence chromatin structure (Cedar & Bergman, 2009). DNA 

methylation has a close relationship with nucleosome positioning (Chodavarapu et al, 2010), 

and the binding of CTCF can be partly influenced by DNA methylation and thus changes 

chromatin structure (Bell & Felsenfeld, 2000). Recently, DNA methylation was also used to 

reconstruct A/B compartments of chromatin revealed by Hi-C experiments (Fortin & Hansen, 

2015). Nevertheless, how DNA methylation relates with chromatin structure remains largely 

unknown. 

On the other hand, the distribution of DNA methylation in chromatin, and thus the 

correlation of DNA methylation levels between different genomic segments, may provide hints 

on the spatial organization of chromatin. Here we investigate the long-range and local 

correlations in DNA methylation landscape, which we expect to reflect the packing of DNA in 

the 3D space, and try to obtain information on the underlying chromatin structure. DNA 

methylation possesses long-range power law correlation with cell-class-specific scaling 

exponent. In addition, the scaling exponent can be used to discern cell classes. We find that 

the degree of DNA methylation patchiness is cell-specific and this patched methylation pattern 

contributes to the different scaling exponents in different cells. Using polymer modeling with Hi-

C data, we show that the partially-methylated-domains (PMDs) spatially segregate from the 

non-PMDs (genomic regions that aren’t classified as PMD) in IMR90 cell line, leading to its 

patchiness of DNA methylation different from h1 cell line. In this way, the cell-class-specific 
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exponents for the long-range DNA methylation correlation reflect the spatial organization of 

chromatin. We also demonstrate that the local DNA methylation correlation is related with 

chromatin structure at several nucleosomes level, and suggests the different chromatin 

structure of PMD and non-PMD. Therefore, both long-range and local DNA methylation 

correlations can reflect the spatial organization of chromatin. 

 

Results 

DNA methylation shows long-range power law correlation 

We compared the Pearson correlation coefficients of DNA methylation levels (beta values) 

within the methylome across a wide-range of human cells, including normal somatic cells, 

cancer cells, brain cells, gland cells and stem cells. In calculating the long-range correlation, 

the methylation level was first averaged using a 200-bp window. The sources of relative whole-

genome bisulfite sequencing data were summarized in Appendix Data (Appendix Table S1-S5). 

Taking chromosome 1 as representative, all the methylation correlations strikingly present 

a long-range power law decay as the genomic distance increases (Fig 1). The power law 

correlation implies a scale-free property of DNA methylation and the scale-invariant genomic 

segment lies in the kilobase-to-megabase scale. Power law scaling is of general interest 

(Clauset et al, 2009) and often noticed in evolving systems that may be produced by 

hierarchical structure of several length-scales (Eugene et al, 2006). The scale-invariant 

genomic scale (kilobase-to-megabase) is also the sizes of genes and chromatin domains, and 

can be important for a variety of genomic functions (Rao et al, 2014; Schneider & Grosschedl, 

2007). 

The correlation coefficients still have finite values in the order of 0.01-0.1 even for the 1 

Mb genomic separation (Fig 1). To verify the statistical significance of the power law decay 

found here, we also calculated the correlation of a randomly methylated DNA sequence for 

comparison. Specifically, we generated a randomized methylation pattern by randomly 

assigning the methylation level of each CpG following the overall distribution of the original 

sample. The correlation coefficient for the random sample immediately drops to zero and the 

power law decay disappears (Appendix Fig S1). This comparison clearly shows that the non-

random nature of DNA methylation in the cells and that the methylation level of CpGs separated 
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by a very long genomic distance is indeed significantly correlated.  

Interestingly, the scaling exponents of long-range DNA methylation differ substantially 

between normal somatic cells and cancer cells, and the respective values are -0.26±0.02 and 

-0.06±0.02. The value for cancer cells is significantly smaller than that for normal somatic cells. 

Small standard deviations show that the scaling exponents are conserved among either normal 

somatic cells or cancer cells (Figs 1A and 1B), although the methylation levels of individual 

CpGs (and even the average values among all CpGs) vary greatly (Schultz et al, 2015). 

Similarly, the differences between normal somatic cells and brain cells or gland cells are 

substantial but consistent within each cell class (Figs 1C and 1D), suggesting that cellular 

differentiation causes systematic variations of DNA methylation landscape. It was found that 

the scaling exponents for chromosome 1 of normal somatic cells in three different individuals 

are conserved (Fig 2A, Appendix Figs S2A and S3B) and the power law scaling is also present 

in mouse brain cells (Appendix Fig S2B). 

In addition, detrended fluctuation analyses (Peng et al, 1992) were also performed which 

again show the long-range correlation in DNA methylome (Appendix Fig S4). Detrended 

fluctuation analysis was used previously to describe the long range correlation in DNA 

sequences (Peng et al, 1992), which is more robust than direct correlation calculation when 

determining the average behavior of a long range effect. 

The significant difference between different cell classes demonstrates that the long-range 

correlations in DNA methylome cannot be simply originated from DNA sequence (Arneodo et 

al, 2011; Peng et al, 1992). DNA methylation was previously demonstrated to have long-range 

correlations by establishing a firm link with A/B compartment (Fortin & Hansen, 2015), 

suggesting the scale-free property found here for DNA methylation to be originated from 

chromatin structure, which is discussed later in more detail. 

 

Clustering on the scaling exponents of chromosomes can be used to discern different 

cell types 

The power law scaling behavior is observed in almost all chromosomes across a large variety 

of samples (Appendix Fig S2C). Hierarchical clustering for scaling exponents on all autosomal 

chromosomes demonstrates that most chromosomes behave similarly within each cell class, 
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while chromosome 14 and 21 tend to always have a higher scaling exponent (Fig 2). When all 

chromosomes are compared, it can be clearly seen that cancer cells are distinguished from 

normal somatic cells (Fig 2B), consistent with the clustering on cell types (Appendix Fig S3A). 

Systematic differences are also clearly seen among normal brain cells, glioblastoma (GBM) 

and neurodegenerative diseases (NDD) (Fig 2C). Different types of neurodegenerative 

diseases have similar scaling exponents while behaving significantly differently from 

glioblastoma, possibly highlighting their different pathogenesis (Fig 2C). In addition, the scaling 

exponent also clearly distinguishes embryonic stem cells (ESCs) and induced pluripotent stem 

cells (iPSCs) from somatic cell lines and adult stem cell lines (Fig 2D). 

When compared to the normal brain cells, all neurodegenerative disease samples 

analyzed here possess more negative scaling exponents for chromosome 2, 3, 5, and 15, 

suggesting their common roles associated with the neural diseases. In contrast, chromosome 

19 shows little variation among all samples. 

A small number of chromosomes possess correlations that deviates from a simple power-

law scaling (Appendix Fig S2D). We systematically identify such chromosomes (see Materials 

and Methods) which are, interestingly, mainly found in certain cells and particular chromosomes, 

namely the chromosome 22 of the brain samples and chromosomes 4 and 10 of ES cells and 

iPSCs. Although the atypical power-law behavior of these chromosomes may reflect the large 

fluctuation of the original methylation data, the clustered behavior could also suggest that these 

particular chromosomes have peculiar structures and functions which call for further studies. 

For example, it is known that genes in chromosome 22 are dense and genetic disorder in 

chromosome 22 is associated with brain abnormalities (McDermid & Morrow, 2002). 

 

Patchiness of DNA methylation is found along the genome and contributes to the power 

law scaling 

Extensive changes in DNA methylation take place during tumourgenesis (Berman et al, 2012; 

Hon et al, 2012). In cancer cells, a large amount of long-range DNA hypomethylation was 

identified, distinct from the DNA methylation of normal cells (Berman et al, 2012). The domain 

with long-range DNA hypomethylation is termed as partially-methylated-domain (PMD) (Lister 

et al, 2009). The IMR90 cell line also has such DNA hypomethylation character (Berman et al, 
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2012; Lister et al, 2009; Lister et al, 2011).  

For cancer cells or IMR90 cell line, the whole chromosome can be viewed as composed 

of alternating low-methylation-level domain (i.e. PMD) and high-methylation-level domain (i.e. 

non-PMD) in contrast to other cells. That is, the patchiness of DNA methylation for cancer cells 

or IMR90 cell line is more apparent than normal somatic and stem cells. The scaling exponents 

for IMR90 and cancer cells are similar to each other (Fig 2). Such a coincidence promoted us 

to investigate whether the patchiness of DNA methylation contributes to the different scaling 

exponents of long-range DNA methylation in different cell classes. 

Chromosome 1 in IMR90 and h1 cell line are taken for example. There are 34% PMD in 

IMR90, while h1 lacks PMDs. Namely, IMR90 and h1 have different degrees of DNA methylation 

patchiness. To understand how such patchiness is generated in IMR90 but not h1 cell, their Hi-

C data which are available are used in the next section for structural modeling (Dixon et al, 

2012; Rao et al, 2014). 

Here we show that the high-low alternative pattern of DNA methylation is enough to 

mathematically reproduce the slow-decaying correlation in IMR90. we discretized the DNA 

methylation level of IMR90 and h1 into 1 and 0 with the methylation average as reference value. 

Specifically, for chromosome 1 of each cell type, we assign a value of 1 to every 200-bp unit 

with methylation level greater than chromosome average, and 0 to that with methylation level 

smaller than average. The correlations of the two discrete model series were calculated and 

shown in Fig 3B. The corresponding correlations of experimental DNA methylation level are 

also plotted in Fig 3A for comparison. The discrete model series also possess the power law 

scaling behavior at the kilobase-to-megabase scale (Fig 3B). The comparison between Fig 3A 

and 3B shows that the discrete model is able to reproduce the different scaling exponents in 

IMR90 and h1 cell lines, proofing the difference mainly come from the different patchiness of 

their DNA methylation pattern. That is, the alternation of low and high methylation alternation 

along the genome in IMR90 results in the lower power law scaling exponent compared to h1 

cell line. 

 

Patchiness of DNA methylation is related to chromatin structure 

Next we show the patchiness of DNA methylation reflects the packing of DNA in the 3D 
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chromatin structure by mapping methylation level onto the modeled chromatin structure using 

Hi-C data. 

We have developed a polymer modeling strategy using Hi-C data to construct the 

chromatin structure (see Materials and Methods and preprint: Xie et al, 2016). Hi-C data provide 

the frequency of physical interactions between any different genomic loci (Lieberman-Aiden et 

al, 2009), and the frequencies can be further related with spatial distances (Serra et al, 2015). 

We use structural optimization to obtain the coarse-grained chromatin conformations meeting 

the distance constraints derived from Hi-C data. 

We modeled structures of chromosome 1 from IMR90 and h1, and mapped their DNA 

methylation levels onto the structures, which are respectively shown in Figs 4A and 4B. The 

two chromatin structures have obviously different organizations. Chromosome 1 of IMR90 

shows a somewhat spherical appearance (Fig 4A), while h1 chromosome adopts a scissor-like 

conformation (Fig 4B), suggesting structural changes during cellular differentiation. The 

mapping of DNA methylation level might provide a clue of how the different patchiness of DNA 

methylation in the two cell lines happen. In IMR90, genomic regions with low methylation levels 

(colored blue in Fig 4A) segregate from high methylation regions. In contrast, the segregation 

is not obvious in h1 cell line (Fig 4B).  

In our previous work, we have shown that the segregated low methylation regions (PMDs) 

in IMR90 are related to lamina-associated-domains as well as other genome features (preprint: 

Xie et al, 2016), showing the origin of different patchiness in IMR90 from h1. These results 

suggest that the different patchiness of DNA methylation in different cells are related to their 

different chromatin structures. Thus, the long-range power law correlation for DNA methylation 

can reflect the spatial organization of chromatin, which in itself is hierarchical. 

 

Local methylation correlations suggest the different chromatin structure in PMD and 

non-PMD 

In the previous section, we have shown that the long-range correlation of DNA methylation 

reflects the global packing of DNA in chromatin. Next, we show that the local methylation 

correlations in PMD and non-PMD reflect their different structures. Breast cancer is used as an 

example because of the availability of extensive amount of data. 
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We compared the local correlation of CpG methylation in PMDs and non-PMDs in breast 

cells (Fig 5A). Consistent with previous studies on IMR90 cell line (Gaidatzis et al, 2014), the 

decay of PMD correlation clearly shows an obvious periodic behavior at base-resolution, again 

showing the similarity of the PMD regions in different cells. The non-PMD regions, in contrast, 

do not show any apparent periodic behavior. The corresponding genomic regions of cancer 

PMDs in normal cells are defined as PMD-like regions. We found that PMD-like regions have 

an average methylation level higher than PMD and lower than non-PMD (Fig 6B), and a less 

obvious methylation correlation periodicity (Fig 5A). 

The periodicities in different genomic regions were then quantified using fast Fourier 

transform (FFTs) of their local correlations. For PMD, the FFT of its local correlation shows a 

strong peak at 181 bp. At the similar position, a weaker peak was found for PMD-like regions 

(Fig 5B). The period of 181 bp is consistent with the nucleosome repeat length, suggesting that 

this periodicity may come from the regular organization of nucleosomes in PMD. In contrast, 

the absence of periodicity for non-PMD local correlation indicates the nucleosomes in non-PMD 

are irregularly spaced. 

The regularity of nucleosome arrangement can be weakened by nucleosome depletion or 

different nucleosome repeat length (NRL). Both the two factors severely affect chromatin 

organization and compaction. Nucleosome depletion massively influence chromatin flexibility 

(Arneodo et al, 2011; Diesinger & Heermann, 2009; Ricci et al, 2015). With different 

nucleosome repeat lengths, the nucleosomes can form 30-nm higher-order chromatin structure 

or other chromatin fibers (Grigoryev, 2012; Routh et al, 2008). Therefore, the local correlation 

of DNA methylation suggests that the chromatin structure of PMD and non-PMD is different at 

kb genomic scale.  

Such a conclusion is consistent with our previous analysis of Hi-C data (preprint: Xie et al, 

2016). We found the Hi-C pattern for PMD and non-PMD are obviously different which again 

shows these two domains have different spatial organization. From Hi-C data, it is easy to see 

that all the PMDs have uniform physical contact within its interior, while the majority of non-

PMD contains localized interaction domains. 

 

Gene expression in PMDs and PMD-like regions are repressed 
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To understand how the patchiness of DNA methylation is related to biological functions, we 

analyze the gene expression in PMDs and non-PMDs. As explained in Materials and Methods, 

we analyzed the 4 tumor-normal sample pairs in TCGA. It was previously found that the PMDs 

in IMR90 correlate with repressive and anti-correlate with active histone marks (Berman et al, 

2012). Consistent with earlier studies (Lister et al, 2011; Schroeder et al, 2013; Schultz et al, 

2015), we find that genes within PMDs in cancer samples tend to be transcriptionally repressed 

(Appendix Tables S6 and S7, Appendix Fig S5) and, interestingly, these genes are related to 

specific functions. Genes within cancer PMDs mainly relate to GO terms such as cell membrane, 

glycoprotein, disulfide bond, olfaction, cadherin and receptor (Appendix Table S8), which 

suggests that some intra-PMD genes regulating cell communication tend to be repressed. 

Besides, almost all housekeeping genes (3794 of 3796) are located outside PMDs, consistent 

with their essential role in the fundamental cellular function (Appendix Table S8).  

Taking the brca_t5 tumor sample as an example, there are 473 genes intersecting with 

PMDs, of which 305 are located within the PMD body and especially, 156 are in the PMD center 

(defined as the central 60% of PMD), indicating that most genes embed in the PMD body. 

Besides, among the 473 genes intersecting with PMDs, 57.7% of them have non-CGI 

promoters (the definition of non-CGI and CGI promoter is from (Saxonov et al, 2006)) and this 

ratio is significantly higher than that of all genes (34.2%, 8420 of total 24630 genes) which 

indicates that genes with non-CGI promoters are enriched in PMDs (Appendix Table S8).  

Besides the repressed gene expression level, we also find the repression degree 

correlates with the PMDs length in the 4 tumor-normal sample pairs. Fig 6A shows the 

correlation between gene repression levels and PMD lengths in brca and the results in other 3 

tumor-normal sample pairs (coad, luad, ucec) are presented in Appendix Fig S6. With the 

increasing length of PMDs or PMD-like regions, the percentage of repressed gene increases, 

which may result from these genomic regions being buried in the compact chromatin regions 

in 3D space and probably also impedes the binding with TFs, RNA polymerase or other 

regulators. The gene density of PMDs (2.737 in brca_t5 sample) is also much lower than that 

of non-PMDs (6.526 in brca_t5 sample), indicating the gene sparsity in PMDs. 

Furthermore, the average expression level of genes in PMD-like regions is lower than that 

in non-PMDs and higher than that in PMDs which is consistent with PMD-like regions’ 
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intermediate behavior in the DNA methylation level (Fig 6B) and the periodicity of local 

methylation correlation (Fig 5). The intermediate properties and the similar genomic locations 

of PMD-like regions to the PMDs imply the role of PMD-like regions in the tumor development. 

PMD-like regions may be the precursor of tumor PMDs in which the genes regulating cell 

communications are further repressed. Interestingly, PMD or PMD-like domains tend to lie in 

genomic regions with lower CpG density (Fig 6C), suggesting their belonging to different 

isochores (Costantini et al, 2006). In this analysis, the Fisher’s exact test between the 

expression level of PMDs and PMD-like regions and that between PMDs and non-PMDs is 

shown in Appendix Table S7. The average expression level in PMDs, PMD-like regions and 

non-PMDs is shown in Appendix Table S6. The comparison of expression level in PMD and 

PMD-like regions in the 4 tumor-normal sample pairs is shown in Appendix Fig S6. 

 

Discussion 

Power law scaling in cancer cells is not caused by the lower average methylation level 

or copy number variation 

One difference between cancer and normal somatic cells in DNA methylation is that the former 

appears to be demethylated in PMDs compared to the latter. To show that the more sustained 

correlation of cancer cell DNA methylation is not caused by this overall demethylation, we 

checked the scaling exponents of methylation correlations among cells with large variations in 

methylation levels. We calculated the methylation correlations of human inner cell mass (ICM) 

(Guo et al, 2014) and primordial germ cells (PGCs) (Guo et al, 2015). The average methylation 

level of these cells are both significantly lower than normal as well as cancer cells (Appendix 

Fig S7A). However, the scaling exponents for ICM and PGC are nearly the same as normal 

cells and much lower than cancer cells (Appendix Fig S7B). Thus it can be concluded that 

average methylation level does not determine the different scaling exponents across cell 

classes. 

Since tumor samples are enriched in copy number variations (CNVs), we showed that the 

DNA methylation correlation is affected little by CNVs in cancer cells. For example, the long-

range methylation correlation for chromosome 1 behaves similarly whether the CpG sites within 
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CNVs of brca_t5 tumor sample are included or excluded (Appendix Fig S7C) in the correlation 

calculations.  

Through exploiting the chromatin structure modeled based on Hi-C data and the underlying 

long-range and local correlations of DNA methylome, our study provides a comprehensive view 

of the flow of genetic information, connecting DNA sequence, CpG methylation, local and long-

range chromatin structure, and gene expression. In normal somatic cells, DNA sequences with 

low CpG density correlate with low methylation levels and low expression levels (PMD-like). 

The development of cancers is associated with further decrease of the average methylation 

level in PMD-like regions, some of which turn into PMDs containing further suppressed genes. 

The correlation of methylation shows consistent differences among different classes of cells, 

including normal somatic cells, cancer cells, brain cells, gland cells and stem cells, but are 

highly conserved within each class. The clear cell class dependence of the long-range power 

law scaling in methylation correlation shows that it can serve as a simple measure to 

discriminate cells at normal and pathological states. Such a finding points to a new direction in 

the analysis of development of different diseases, for example, cancers and neurodegenerative 

diseases at the chromatin level. 

 

Materials and Methods 

Sources of whole-genome bisulfite sequencing data 

In this work, we used the whole genome bisulfite sequencing (WGBS) data for different cells, 

including 36 somatic cells, 42 cancer cells and the corresponding normal cells, 8 human brain 

cells, 1 mouse brain cells, 12 stem cells and related cells, 6 cells with neurodegenerative 

diseases (105 in total). All the methylomes were summarized in Appendix Data, Appendix 

Tables S1-S5, including the references, URLs, sample details. The methylomes of cancer 

samples were downloaded from the The Cancer Genome Atlas (TCGA) project. Of all the 

samples in TCGA, 9 types of cancer samples have WGBS data and these 9 samples were 

used.  

Hg18 reference genome was used for human brain cells and human ESCs. The other cells 

used Hg19 as reference genome. We examined that reference genome has little effect on the 

methylation correlation found here (Appendix Fig S7D). 
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Identification of PMDs, non-PMDs and PMD-like regions 

PMDs were identified genome-wide in tumor samples using a sliding window approach and the 

parameters in (Lister et al, 2009) were adopted in this work. The window size was set as 10 kb. 

A region was identified as a PMD if there were at least 10 methylated (beta value greater than 

0) CpG dinucleotide within, of which the average methylation level was less than 0.7. The 

contiguous PMD windows were then merged into a longer PMD. Only PMDs with lengths longer 

than 100 kb are used in the following analysis. Non-PMDs are identified as the complementary 

set of the PMDs and only non-PMDs whose lengths are greater than 100 kb are used. PMD-

like regions were defined in non-cancer samples as the corresponding genomic regions of 

cancer PMDs. Thus, PMD-like regions are defined only for the non-cancer samples which have 

corresponding cancer samples. 

 

Calculation of scaling exponents 

The scaling exponents of the long-range power law correlations were calculated as the 

maximum slope of the fitted double-log correlation data in the genomic region of kilobase to 

megabase. To systematically identify those chromosomes whose slope of double-log plot of 

methylation correlation is not well-defined in the concerned (kilobase to megabase) region, we 

calculated the standard deviation of the first order derivatives for each fitted double-log plot. 

Low standard deviations indicate linear behavior with small slope fluctuation for methylation 

correlation, while high standard deviations indicate large fluctuation. 

 

Fast Fourier Transform of the local correlation 

Fast Fourier transform was performed on the local correlation of the 3 genomic regions (PMDs, 

PMD-like regions and non-PMDs) respectively. To avoid the finite length effect and influences 

of length distribution of genomic regions, we chose PMDs with a genomic length of 1 to 2 Mb 

from all breast cancer samples, corresponding PMD-like regions from the breast normal sample, 

and non-PMDs with a genomic length of 1 to 2 Mb from the brca_t1 sample to calculate PMD, 

PMD-like and non-PMD Fourier transform, respectively. 
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Gene expression analysis 

The level3 RSEM data from TCGA RNAseq version2 was downloaded from 

https://portal.gdc.cancer.gov. The RSEM data were then converted to Transcripts Per Million 

(TPM) by multiplying by 106. To compare the differentially expressed genes between tumor 

and normal samples, we chose the tumor-normal sample pairs that were taken from the same 

patient and gene expression data of both tumor and normal samples were available. We finally 

obtained 4 tumor-normal pairs, namely, brca_t5-brca_n5, coad_t2-coad_n2, luad_t5-luad_n5 

and ucec_t5-ucec_n5. We compared gene expression for these 4 tumor-normal pairs. 

Genes with intragenic regions intersecting with tumor PMDs (or PMD-like regions in 

corresponding normal samples) were identified. Then gene expression change was calculated 

as TPM𝑡𝑢𝑚𝑜𝑟/TPM𝑛𝑜𝑟𝑚𝑎𝑙  for each gene. These genes were divided into four categories: 

activated genes (fold change ≥  2), repressed genes (fold change ≤  0.5), specifically 

expressed in tumor sample(TPM𝑛𝑜𝑟𝑚𝑎𝑙 = 0 and TPM𝑡𝑢𝑚𝑜𝑟 ≠ 0 ) and specifically expressed in 

normal sample(TPM𝑛𝑜𝑟𝑚𝑎𝑙 ≠ 0 and TPM𝑡𝑢𝑚𝑜𝑟 = 0 ). We also defined the gene density of the 

genome and the specific genomic regions like PMDs as the number of genes per million base 

pairs. Gene functional classification was carried out using DAVID (The Database 

for Annotation, Visualization and Integrated Discovery)(Huang et al, 2009a) (Huang et al, 

2009b). Housekeeping genes list is downloaded from https://www.tau.ac.il/~elieis/HKG/ 

(Eisenberg & Levanon, 2013). 

 

Structural modeling using Hi-C data 

We developed a restraint-based method to construct an ensemble of 3D chromosome models 

(preprint: Xie et al, 2016). The method was verified by the reproduction of experimental Hi-C 

contact frequencies. In our method, chromosome was coarse-grained as a polymer chain 

consisting of a string of beads. The Hi-C data for IMR90 and h1 cell line were obtained from 

Rao et al (Rao et al, 2014) and Dixon et al (Dixon et al, 2012), respectively. According to the 

resolution of Hi-C data, in our modeling for IMR90 and h1, each bead respectively represents 

a 50 kb or 40 kb genomic region. The polymer structure was optimized according to distance 

restraints derived from Hi-C data. To achieve this, we first converted the contact frequency 

matrix measured by the Hi-C experiment to a distance matrix which provides the spatial 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 3, 2017. ; https://doi.org/10.1101/080531doi: bioRxiv preprint 

https://doi.org/10.1101/080531


14 

 

restraints for the coarse-grained beads. Then we performed molecular dynamics simulations 

starting from randomly generated initial conformations using biased potentials to generate an 

ensemble of conformations based on the restraint distance matrix. Further modeling details and 

validation were presented in Xie et al (preprint: Xie et al, 2016). 
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Table and figures 

 

 

Figure 1. Long-range correlations in DNA methylation are distinct among different cell 

classes. The Pearson correlation coefficients for chromosome 1 of different cells are shown in 

log-log plots. The average scaling exponents are annotated in the figure. A, 8 different 

somatic cells: aorta, esophagus, fat, gastric, lung, psoas, small bowel and spleen. B, 9 

different cancer cells: brca, coad, colon, gbm, luad, lusc, read, stad and ucec. The cells are 

labelled following TCGA except for colon cancer (colon). C, Normal brain cells of different 

ages (fetal, 35 days old, 2-64 years old). D, 3 different gland cells (adrenal, ovary, pancreas). 

Correlation for normal aorta cells (normal) is also plotted for comparison in B, C and D. 
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Figure 2. Heatmap clustering for the scaling exponents of all autosomal chromosomes shows 

differences between different cell classes. Sample labels are summarized in Appendix Data. 

A, The scaling exponents of normal somatic cells are robust among 3 different individuals and 

the gland cells segregate from other cells. B, Normal somatic cells (left to right: aorta to 

ucec_n5) segregate from cancer cells (brca_t1 to ucec_t5). luad_t5 and stad_n4 are further 

analyzed in Appendix Data. C, Normal brain cells (fetal to 64yr) segregate from glioblastoma 

(GBM, gbm_t1 to gbm_t6) or neurodegenerative diseases (NDD, 31_08 to w145). Normal 

somatic cells (aorta to spleen) were shown again for comparison. D, ESCs and iPSCs (h1 to 

imr90_ipsc) segregate from cell lines including adult stem cell line (ads) and somatic cell lines 

(ads_adipose, ff, imr90). The chromosomes with correlations deviate from power-law 

distributions are labeled with white forks (see Appendix Data for more analyses). 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 3, 2017. ; https://doi.org/10.1101/080531doi: bioRxiv preprint 

https://doi.org/10.1101/080531


20 

 

 

Figure 3. The comparison between the experimental and discrete model DNA methylation 

correlation indicates that the power law scaling mainly originate from the patchiness of DNA 

methylation. The long-range correlation of DNA methylation for chromosome 1 in IMR90 and 

h1 cell line from: A, Experimental methylation data; B, Discrete model. 

 

 

Figure 4. Patchiness of DNA methylation is related to chromatin structure. Modeled chromatin 

structures of chromosome 1 with mapped methylation level in A, IMR90 and (B) h1. Blue (red) 

color represents low (high) DNA methylation level. 
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Figure 5. The local correlations of DNA methylation in PMD, non-PMD and PMD-like genomic 

regions in breast cells. A, Local correlations of DNA methylation. B, FFT is used to 

deconstruct inherent frequencies of the local correlations. 

 

 

Figure 6. Gene expression and sequence property of PMD and non-PMD. A, Percentage of 

genes that are transcriptionally repressed or activated in oncogenesis as a function of PMD 

length in brca_t5-brca_n5 sample pair. The comparisons in coad_t2-coad_n2 and ucec_t5-

ucec_n5 sample pairs are shown in Appendix Fig S6. B, Distribution of methylation level of 

PMD, non-PMD and PMD-like regions in brca samples. C, Plot of a representative region 

showing the relation among CpG density, methylation levels before and after oncogenesis, 
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PMD, and repressed and activated genes in oncogenesis. In A, B and C, the data of brca 

were used. 
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