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Abstract 

It has been thought that DNA methylation can remodel chromatin structure, and 

modulate the transcriptional level of genes by altering chromatin density and 

accessibility of DNA to cellular machinery, which is still largely unknown. Here we 

report that both the long-range and local correlations in DNA methylation reflect the 

spatial organization of chromatin. We discover a long-range power law correlation that 

implies a scale-free property of DNA methylation and the cell-class-specific scaling 

exponents reflect the global change of DNA methylation landscape during cellular 

differentiation or oncogenesis which can be further related with chromatin structure. 

By analyzing on the local correlation which correlates with nucleosome positioning, 

Hi-C data and molecular modeling, we show that partially methylated domain (PMD) 

prefers a compact structure. We further demonstrate that chromatin structures reflect 

the DNA sequence property and are intimately related to gene expression. Our study 

therefore provides a novel view of the spatial organization of chromatin structure from 

a perspective of DNA methylation. 
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Introduction 

The spatial organization of chromatin plays an essential role in many genomic 

functions, including gene expression, DNA replication and cell mitosis (Naumova et al. 

2013; Levine et al. 2014; Galupa and Heard 2015; Pombo and Dillon 2015). 

Composed of DNA and histone proteins, chromatin has a three-dimensional structure 

with different hierarchical levels (Gibcus and Dekker 2013). Several lines of evidence 

show that epigenetics can remodel chromatin structure at different levels (Bell and 

Felsenfeld 2000; Jenuwein and Allis 2001; Cedar and Bergman 2009; Chodavarapu 

et al. 2010; Aranda et al. 2015; Boettiger et al. 2016). A variety of histone 

modifications are involved in chromatin remodeling which result in the histone code 

hypothesis of gene regulation (Jenuwein and Allis 2001). The different histone tail 

modifications can change chromatin structure by recruiting other proteins (Aranda et 

al. 2015). Super-resolution imaging also recently showed that chromatin folding varies 

for different epigenetic states (Boettiger et al. 2016). 

As the most abundant epigenetic modification in eukaryotic chromosomes, DNA 

methylation is also thought to influence chromatin structure (Cedar and Bergman 

2009). DNA methylation has a close relationship with nucleosome positioning 

(Chodavarapu et al. 2010), and the binding of CTCF can be partly influenced by DNA 

methylation and thus changes chromatin structure (Bell and Felsenfeld 2000). 

Recently, DNA methylation was also used to reconstruct A/B compartments of 

chromatin revealed by Hi-C experiments (Fortin and Hansen 2015). Nevertheless, 

how DNA methylation influences chromatin structure remains largely unexplored. 
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Here we investigate the long-range and local correlations in DNA methylation 

landscape which are shown to be informative of the underlying chromatin structure. 

 

Results 

DNA methylation shows long-range power law correlation 

We compared the Pearson correlation coefficients of DNA methylation levels (beta 

values) within the methylome across a wide-range of human cells, including normal 

somatic cells, cancer cells, brain cells, gland cells and stem cells. The sources of 

relative whole-genome bisulfite sequencing data were summarized in Supplementary 

Information. In these human cells, DNA methylation occurs mainly in the CpG context.  

Taking chromosome 1 as representative, all the methylation correlations strikingly 

present a long-range power law decay as the genomic distance increases (Fig. 1). 

The scale-invariant genomic segment lies in the kilobase-to-megabase scale that can 

be important for a variety of genomic functions, which is also the sizes of genes and 

chromatin domains (Schneider and Grosschedl 2007; Rao et al. 2014).  

Power law scaling is of general interest (Clauset et al. 2009) and often noticed in 

evolving systems that may be produced by hierarchical structure of several 

length-scales (Eugene et al. 2006). Such a general phenomenon across different cells 

indicates that our findings here could have important biological meanings. 
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Figure 1. Long-range correlations in DNA methylation are distinctly different 

among different cell classes. The Pearson correlation coefficients for chromosome 

1 of different cells are shown in log-log plots. The average scaling exponents are 

annotated in the figure. A, 8 different somatic cells: aorta, esophagus, fat, gastric, lung, 

psoas, small bowel and spleen. B, 9 different cancer cells: brca, coad, colon, gbm, 

luad, lusc, read, stad and ucec. The cells are labelled following TCGA except for colon 

cancer (colon). C, Normal brain cells of different ages (fetal, 35 days old, 2-64 years 

old). D, 3 different gland cells (adrenal, ovary, pancreas). Correlation for normal aorta 

cells (normal) is also plotted for comparison in B, C and D. 
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Cell-class-specific scaling exponents reflect the global change of chromatin 

during cellular differentiation 

The scaling exponents differ substantially between normal somatic cells and 

cancer cells, and the respective values are -0.26±0.02 and -0.06±0.02, which is 

obviously smaller for cancer cells than normal somatic cells as a result of more 

pronounced and clearer differences in the methylation level of different domains in the 

former.  

The smaller power law scaling in cancer cells is not caused by the lower average 

methylation level which has been subtracted in the calculation of the methylation level 

correlation. In fact, although cells like human inner cell mass and primordial germ 

cells have methylation levels that are even much lower than cancer cells, they 

possess power law correlation decays very similar to the normal but not cancer cells 

(Supplemental Fig. S1).  

On the other hand, small standard deviations show that the scaling exponents are 

conserved among either normal somatic cells or cancer cells (Fig. 1A and B), 

although the methylation levels of individual CpGs vary greatly (Schultz et al. 2015). 

Such a result indicates that the locally averaged methylation level and its correlation 

reflect the large scale structural property of the chromatin. 

Similarly, the differences between normal somatic cells and brain cells or gland 

cells but consistency within each class suggest that cellular differentiation causes 

systematic variations of DNA methylation landscape (Fig. 1C and D). These 

properties are robust among individuals (Supplemental Fig. S2). Detrended 
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fluctuation analyses (Peng et al. 1992) were also used which again show the 

long-range correlation in DNA methylome (Supplemental Figs. S5-S9).  

The significant difference between different cell classes demonstrates that the 

long-range correlations in DNA methylome can-not be simply originated from DNA 

sequence (Peng et al. 1992; Arneodo et al. 2011). We also checked that the scaling 

exponents of methylation correlations are not affected by copy number variations in 

cancer cells (Supplemental Fig. S10).  

DNA methylation was previously demonstrated to have long-range correlations by 

establishing a firm link with A/B compartment (Fortin and Hansen 2015), suggesting 

the scale-free property found here for DNA methylation to be originated from 

chromatin structure. 

 

Long-range methylation correlations suggest the different chromatin structure 

in PMD and non-PMD 

The CpG sites are overall highly methylated in human somatic cells (Meissner et 

al. 2008). Extensive changes in DNA methylation take place during tumourgenesis 

and genome-scale studies have shown that PMDs may serve to silence 

tumor-suppressor genes (Berman et al. 2012; Hon et al. 2012). These PMDs were 

identified as regions of long-range DNA hypomethylation which can cover almost half 

of the genome and the widespread PMDs were previously suggested to change the 

chromatin structure (Berman et al. 2012). 

We compared DNA methylation in cancer PMD and non-PMD (genomic region 
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that isn’t classified as PMD) to establish a possible relation between methylation and 

chromatin structure. Breast cancer was used as an example because of its extensive 

available data. 

The long-range correlations inside cancer PMDs or non-PMDs again show power 

law decays at the kilobase-to-megabase scale (Fig. 2A). The scaling exponents for 

PMD and non-PMD are -0.23 and -0.43, respectively.  

 

Figure 2. DNA methylation correlations and methylation levels of different 

genomic regions in breast cells. A, DNA methylation for PMD and non-PMD exhibit 

distinct scaling behavior. B, C and D, Methylation properties of PMD, non-PMD and 

PMD-like genomic regions. B, Local correlations of DNA methylation. C, The 

distribution of methylation levels. D, FFT is used to deconstruct inherent frequencies 

of the local correlations. 
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Interestingly, these values match well with the exponents of power law scaling 

between the radius of gyration (Rg) and genomic distance for different epigenetic 

states partly defined by the enrichment of histone modifications in fluorescence in situ 

hybridization (FISH) experiment, which are 0.22±0.02 for repressed domains, 

0.30±0.02 for inactive domains and 0.37±0.02 for active domains (Boettiger et al. 

2016). Such an observation suggests that the spatial organization of PMD is more 

compact than other genomic regions. 

The coincidence also indicates that genes in PMDs are more repressive while 

those in non-PMDs are more active, resulted from the possible crosstalk between 

DNA methylation and histone modifications (Cedar and Bergman 2009). It was 

previously found that the PMDs in IMR90 correlate with repressive and anti-correlate 

with active histone marks (Berman et al. 2012). Consistent with earlier studies, we 

also find that genes within PMDs are transcriptionally repressed (Schultz et al. 2015), 

and discover that these genes relate with membrane, glycoprotein, disulfide bond and 

receptor instead of housekeeping genes (Supplemental Table S6). Furthermore, the 

average gene expression level of non-PMDs is much higher than that of cancer PMDs 

and corresponding genomic regions of cancer PMDs in normal cells (defined as 

“PMD-like” regions here, Supplemental Table S7). The binding proportion of all the 

transcription factors to PMDs is only 20%, in accordance with gene sparsity in PMD 

regions. 

 

Local methylation correlations suggest the different chromatin structure in 
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PMD and non-PMD 

Next, we compared the base-resolution correlation of CpG methylation in PMDs 

and non-PMDs in breast cells (Fig. 2B). Consistent with previous studies on IMR90 

cell line (Gaidatzis et al. 2014), the decay of PMD correlation clearly shows an 

obvious periodic behavior at a base-resolution. The non-PMD regions, in contrast, do 

not show any apparent periodic behavior. PMD-like regions have an average 

methylation level higher than PMD and lower than non-PMD (Fig. 2C and 3E), and a 

less obvious methylation correlation periodicity (Fig. 2B).  

Fast Fourier transforms (FFTs) of these correlation functions are used to 

characterize the periodicities which show at 181 bp a strong peak for PMD (Fig. 2D) 

and at the similar position a weaker one for PMD-like regions. The periodicity is 

consistent with the nucleosome repeat length, which suggests that the periodicity may 

come from the regular organization of nucleosomes. The different organization or 

depletion of nucleosomes that wrap DNA influence chromatin structure (Diesinger and 

Heermann 2009; Arneodo et al. 2011; Ricci et al. 2015), which imply the different 

chromatin structures in PMD and non-PMD. 

 

Hi-C data confirm the different chromatin structure in PMD and non-PMD 

In recent years, molecular methods based on chromosome conformation capture 

techniques, combined with molecular modeling, have dramatically expanded our 

understanding of chromatin structures (Dekker et al. 2002; Dostie et al. 2006; 

Lieberman-Aiden et al. 2009; Giorgetti et al. 2014; Zhang and Wolynes 2015; Dixon et 
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al. 2016). By measuring the frequency of physical interactions between any different 

genomic loci, 3C-based approaches including Hi-C technique have identified many 

evolutionary conserved topologically associating domains (TADs) and chromatin 

loops in mammalian genomes, which enable the distal cis-regulatory elements such 

as promoters and enhancers to interact with a specific gene (Dixon et al. 2012; Rao et 

al. 2014). 

Considering that IMR90 has a high fraction of PMDs and its high-resolution Hi-C 

data are available (Lister et al. 2009; Rao et al. 2014), this cell line was used to check 

the difference of spatial organization between PMD and non-PMD. We first 

demonstrated that the majority of PMDs coincide with TADs (Supplemental Figs. S11 

and S12).  

We then examined how the contact probability derived from Hi-C experiments 

depends on genomic distance (Fig. 3A). This dependence is significantly different 

between PMD and non-PMD. In contrast to non-PMD, PMD chromosomes display a 

much slower decrease in contact probability which means that PMDs are more 

compact than non-PMDs in kilobase-megabase scale. We also showed that our 

conclusion is robust using Hi-C data from separate sources (Supplemental Fig. S13).  

The Hi-C data analysis highlights the necessity of considering the heterogeneous 

character of chromatin in Hi-C based polymer modeling.  
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Figure 3. Relation between structure, gene expression and sequence property 

of different genomic regions. A, Contact probability derived from the Hi-C data as a 

function of genomic distance in IMR90. B, Representative conformation of the 

simulated chromatin structure for PMD. Green and gray spheres represent 

nucleosomes and the linker DNA chain, respectively. C, Percentage of genes that are 

transcriptionally repressed or activated in oncogenesis as a function of PMD length. D, 

The CpG density correlates with the formation of PMD. E, Plot of a representative 

region showing the relation among CpG density, methylation levels before and after 

oncogenesis, PMD, and repressed and activated genes in oncogenesis. In C, D and 
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E, the data of breast cells were used. 

 

Molecular modeling confirms the different chromatin structure in PMD and 

non-PMD 

To further contrast the molecular structure of PMD and non-PMD, we 

reconstructed the spatial organization of PMD chromatin using molecular modeling 

(see Methods).  

In light of the periodicity in PMD, we infer that chromatin in PMD prefer 

nucleosomes with similar repeat length, at least more so than non-PMD. We sampled 

the conformation of chromatin composed of 300 nucleosomes with uniform repeat 

length using self-avoiding random walk simulation. The analysis of the sampled 

structure ensemble shows that PMD has a structure resembling a 30 nm chromatin 

fiber (Fig. 3B and Supplemental Fig. S15).  

We removed nucleosomes randomly from the above models to undermine the 

periodic behavior of chromatin organization to model chromatin structure of non-PMD. 

It can be clearly seen that PMD has a more compact structure than non-PMD 

(Supplemental Fig. S16).  

 

Discussion 

Under the notion that the correlations of DNA methylation are affected by the 

spatial organization of the chromatin, one would expect that the spatial organization of 

PMD is more ordered and compact than non-PMD. Such a conjecture is tested using 
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Hi-C data and molecular modeling.  

Therefore, the methylation correlation power law scaling and periodicity, gene 

expression levels, Hi-C data and molecular modeling all suggest that PMD has a 

more regular and compact structure than non-PMD. Since the periodic behavior of 

PMD-like region lies between PMD and non-PMD, one would expect that it has a 

medium compactness.  

Consistent to its resemblance to PMD, it was noted before that PMD-like domains 

tend to contain genes with repressed expression levels compared to non-PMDs 

(Schultz et al. 2015). Here we found that genes are more likely to be repressed in long 

PMD regions after oncogenesis (Fig. 3C). Regulation of gene activity involves a wide 

range of mechanisms, including the interplay between transcription factors, chromatin 

structures and regulatory RNA (Carlberg and Molnár 2014).  

Our results suggest that with the increasing of PMD or PMD-like length, the 

middle genomic regions are buried to result in gene repression (which probably also 

impedes the binding with TFs, RNA polymerase or other regulators). Interestingly, 

PMD or PMD-like domains tend to lie in genomic regions with lower CpG density (Fig. 

3D and E). 

The above analyses show that the DNA methylome can be used to infer the 

chromatin structure of different cell classes, which shows clear differences among 

them. We thus propose a simple method to discern cell classes by clustering on the 

different scaling exponents of chromosomes.  

Hierarchical clustering for scaling exponents on all autosomal chromosomes 
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demonstrates that most chromosomes behave similarly within each cell class, while 

chromosome 14 and 21 tend to always have a higher scaling exponent (Fig. 4). It can 

be clearly seen that cancer cells segregate from normal somatic cells (Fig. 4A). 

Systematic differences are also clearly seen among normal brain cells, glioblastoma 

and neurodegenerative diseases (Fig. 4B).  

The observation that different types of neurodegenerative diseases behave 

similarly points to similarities in their chromatin structure changes. On the other hand, 

the neurodegenerative diseases behave significantly different from glioblastoma, 

highlighting their different pathogenesis.  

More detailed analyses of the structure change of each individual chromatin is 

expected to provide more information on the pathological changes at the gene levels. 

In addition, the scaling exponent also clearly distinguishes embryonic stem (ES) cells 

and induced pluripotent stem cells (iPSCs) from somatic cell lines and adult stem cell 

lines (Fig. 4C), suggesting a large chromatin structure difference between them. 
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Figure 4. Heatmap clustering for the scaling exponents of all autosomal 

chromosomes shows differences between different cell classes. Sample labels 

are summarized in Supplementary Information. A, Normal somatic cells (left to right: 

aorta to ucec_n5) segregate from cancer cells (brca_t1 to ucec_t5). luad_t5 and 

stad_n4 are further analyzed in Supplementary Information. B, Normal brain cells 

(fetal to 64yr) segregate from glioblastoma (gbm_t1 to gbm_t6) or neurodegenerative 

diseases (31_08 to w145). C, ES cells and iPSCs (h1 to imr90_ipsc) segregate from 

adult stem cell line (ads) and somatic cell lines (ads_adipose, ff, imr90). Normal 

somatic cells (aorta to spleen) were shown again for comparison. 
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In summary, through exploiting the chromatin structure underlying the long-range 

and local correlations of DNA methylome, our study provides a comprehensive view of 

the flow of genetic information, connecting DNA sequence, CpG methylation, local 

and long-range chromatin structure, and gene expression. In normal somatic cells, 

DNA sequences with high CpG content correlate with compact chromatin structures 

with low methylation levels and low expression levels (PMD-like). The development of 

cancers is associated with further decrease of the average methylation level in 

PMD-like regions, some of which turn into PMDs containing further suppressed genes. 

The correlation of methylation shows consistent differences among different classes 

of cells, including normal somatic cells, cancer cells, brain cells, gland cells and stem 

cells, but are highly conserved within each class. The clear cell class dependence of 

the long-range power law scaling in methylation correlation shows that it can serve as 

a simple measure to discriminate between cells at normal and pathological states. 

Such a finding points to a new direction in the analysis of development of different 

diseases, for example, cancers and neurodegenerative diseases at the chromatin 

level.  

 

Methods 

Sources of Whole-genome Bisulfite Sequencing Data 

All the methylomes used in this study were summarized in Supplementary Information, 

including the references, URLs, sample details. Hg18 reference genome was used for 

human brain cells and human ESCs. The other cells used Hg19 as reference 
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genome. 

Calculation of DNA Methylation Correlation 

Pearson correlation was used to describe the correlations in DNA methylation. In 

calculating the long-range correlation, the methylation level was first averaged using a 

200-bp window. 

Identification of PMDs 

PMDs were identified genome-wide in tumor samples using a sliding window 

approach (Lister et al. 2009). The window size was set as 10 kb. A region was 

identified as a PMD if there were at least 10 methylated (beta value greater than 0) 

CpG dinucleotide within, of which the average methylation level was less than 0.7. 

The contiguous PMD windows were then merged into a longer PMD. Only PMDs with 

lengths longer than 100-kb are used in the following analysis. 

Identification of PMD-like Regions 

PMD-like regions were identified in corresponding adjacent non-tumor samples as the 

corresponding genomic regions of tumor PMDs. 

Identification of non-PMD Regions 

Non-PMD regions were identified based on the differences of the methylation level 

between tumor samples and corresponding adjacent non-tumor samples. Only the 

CpG sites that were detected in both tumor and non-tumor samples were taken into 

consideration. The genome was divided into 10-kb windows. If the window contains 

more than 40 CpG sites with methylation level differences smaller than 0.05, the 

window is identified as non-PMD. The contiguous non-PMD windows were then 
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merged into a longer non-PMD. 

Calculation of Scaling Exponents 

The scaling exponents of the long-range power law correlations were calculated as 

the maximum slope of the fitted double-log correlation data in the genomic region of 2 

kb to 0.2 Mb. 

Fast Fourier Transform of the Local Correlation 

Fast Fourier transform was performed on the local correlation averaged over all 

selected regions. To avoid the finite length effect and influences of length distribution 

of genomic regions, we chose PMDs with a genomic length of 1 to 2 Mb from all 

breast cancer samples, corresponding PMD-like regions from the breast normal 

sample, and non-PMDs with a genomic length of 1 to 2 Mb from the brca_t1 sample to 

calculate PMD, PMD-like and non-PMD Fourier transform, respectively. 

Gene Expression Analysis 

Gene expression of cancer samples was analyzed. Genes of which the promoter and 

gene body intersects with tumor PMDs were identified and then the TPM (transcripts 

per million) differences in expression level between normal and tumor samples were 

calculated for each gene selected. These genes were divided into three categories: 

activated (difference > 0.005), repressed (difference < -0.005) and the rest, 

unchanged. We also defined the gene density of the genome and the specific 

genomic regions like PMDs as the number of genes per million base pairs. Gene 

functional classification was carried out using DAVID Functional Annotation 

Bioinformatics Microarray Analysis (Huang et al. 2009). Housekeeping genes list is 
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downloaded from https://www.tau.ac.il/~elieis/HKG/ (Eisenberg and Levanon 2013).  

Molecular Modeling of Chromatin Structure 

Nucleosomes and linker DNA chains were described by Four-Sphere model and 

Worm-Like-Chain model, respectively. See more details in Supplementary 

Information. 

Hi-C data Analysis 

The Hi-C data for IMR90 (10-kb resolution) was used under the GEO accession 

number GSE63525 (Rao et al. 2014). See more details in Supplementary Information. 

 

Supplementary Information is available in the online version of the paper. 
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