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Abstract

A viral quasispecies, the ensemble of viral strains populating an infected person, can be highly
diverse. For optimal assessment of virulence, pathogenesis and therapy selection, determining the hap-
lotypes of the individual strains can play a key role. As many viruses are subject to high mutation and
recombination rates, high-quality reference genomes are often not available at the time of a new disease
outbreak. We present SAVAGE, a computational tool for reconstructing individual haplotypes of intra-
host virus strains without the need for a high-quality reference genome. SAVAGE makes use of either
FM-index based data structures or ad-hoc consensus reference sequence for constructing overlap graphs
from patient sample data. In this overlap graph, nodes represent reads and/or contigs, while edges reflect
that two reads/contigs, based on sound statistical considerations, represent identical haplotypic sequence.
Following an iterative scheme, a new overlap assembly algorithm that is based on the enumeration of sta-
tistically well-calibrated groups of reads/contigs then efficiently reconstructs the individual haplotypes
from this overlap graph. In benchmark experiments on simulated and on real deep coverage data, SAV-
AGE drastically outperforms the only de novo viral quasispecies assembler available so far. When run
on ad-hoc consensus reference sequence, SAVAGE performs very favorably in comparison with state-
of-the-art reference genome guided tools. We also apply SAVAGE on a deep coverage (30 000x) sample
of a patient infected by the Zika virus, which sheds light on the genetic structure of the respective viral
quasispecies.
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Introduction

Viruses such as HIV, the Zika and the Ebola virus, populate their hosts as an ensemble of genetically related
but different mutant strains, commonly referred to as viral quasispecies. These strains, each characterized
by its own haplotypic sequence are subject to high mutation and recombination rates (Domingo et al. 2012;
Duffy et al. 2008). Sequencing methods aim at capturing the genetic diversity of viral quasispecies present
in infected samples; the promise is that next-generation sequencing (NGS) based methods will, as soon as
possible, assist clinicians in selecting treatment options and other clinically relevant decisions.

Ideally, a viral quasispecies assembly characterizes the genetic diversity of an infection by presenting
all of the viral haplotypes, together with their abundance rates. There are two major challenges in this.

(1) The number of different strains is usually unknown. Further complicating factors are that two differ-
ent strains can differ by only minor amounts of distinguishing mutations in certain regions of the genome
and that abundance rates can be as low as the sequencing error rates, which hampers the detection of true
low-frequent mutations.

(2) Due to the great diversity and the high mutation rates, reference genomes representing high-quality
consensus genome sequence can be obsolete at the time of the outbreak of the disease. Of course, the lack
of a suitable reference genome can be a major hindrance.

It is important to understand that all existing assembly methods fail to address either the first or the
second point. While several reference-guided approaches (see below for related work) specialize in viral
quasispecies assembly and soundly address point (1), the vast majority of them depends on high-quality
reference sequence as a backbone to their approaches. Hence, when confronted with hitherto unknown,
significantly deviating mutation patterns, these approaches fail to perform sufficiently well. On the other
hand, de novo assembly approaches (see again below for related work) do not depend on reference genomes.
These approaches however aim at assembling consensus genomes rather than strain-specific sequences. A
further issue is that nearly all of the NGS based genome assemblers rely on the de Bruijn graph as assembly
paradigm. Thereby, reads are decomposed into k-mers, where k is usually considerably smaller than the read
length. As above mentioned, it is imperative in viral quasispecies assembly to distinguish low-frequency
mutations from sequencing errors. While lowly frequent mutations are genetically linked, hence co-occur
within different reads, sequencing errors do not exhibit patterns of co-occurrence. The detection of patterns
of co-occurrence is decisively supported by examining reads at their full length. However, only rarely, NGS
de novo assembly approaches are based on overlap graphs, which make use of full-length reads and do not
decompose them into smaller parts.

There are two exit strategies to this twofold dilemma behind the possible lack of a reference genome.
To the best of our knowledge, none of them have been sucessfully explored so far; we would like to explore
both of them here.

The first strategy is to construct an overlap graph directly from the patient sample reads. Subsequently,
one employs a ploidy-aware assembly algorithm that can extract strain-specific sequences from overlap
graphs. The challenge is that constructing overlap graphs requires a pairwise comparison of all reads,
which, for deep coverage data sets, requires sophisticated indexing techniques to be feasible. Here, we show
how to make efficient use of FM-index based techniques (Välimäki et al. 2012) to construct overlap graphs
without any need for a reference genome. As such, we provide the first approach for de novo assembly of
viral quasispecies based on overlap graphs.

The second strategy is to construct consensus genome sequence from scratch (a.k.a. the patient samples
themselves), using one of the available de novo consensus genome assemblers (among which, the most
popular tool is VICUNA (Yang et al. 2012)), and to subsequently run one of the reference-guided approaches
using this ad-hoc consensus as a reference. Rather surprisingly, we found none of the extant state-of-the-art
reference-guided approaches (Zagordi et al. 2011; Prabhakaran et al. 2014) to work sufficiently well under
these circumstances. However, the algorithm used in HaploClique (Töpfer et al. 2014) provided a source of
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inspiration. This method is also reference guided, but uses the reference solely for providing anchor points
for constructing an overlap graph (Töpfer et al. 2014). Unlike in many other approaches, the exact sequence
of the haplotypes is then assembled from the reads, and not from the reference.

The fact that HaploClique, as the only approach providing inspiration for the latter idea, is overlap graph
based unifies the two apparently different looking strategies: for both of them the construction of an overlap
graph is required in the first place. After construction, there is no need for a particular choice of an overlap
graph based assembly algorithm—any good such algorithm will apply in both cases.

While providing inspiration in general, the overlap graph assembly algorithm presented in (Töpfer et al.
2014) has proven too expensive—already data sets of about 1000x coverage require excessive computational
resources. The reason is that it is based on the enumeration of maximal cliques, which is exponential in the
read coverage, both in terms of runtime and space. We therefore present a novel algorithm for this part
of overlap graph based viral quasispecies assembly. We show that this algorithm, while being similar in
spirit to enumerating maximal cliques, is two orders of magnitude faster and also decisively more efficient
in terms of space consumption. At the same time, this algorithm achieves performance rates in terms of
common assembly quality measures (Mikheenko et al. 2016, MetaQUAST) near-identical to maximal clique
enumeration and superior to all other reference-guided approaches on ad-hoc consensus reference.

In summary, we make relevant contributions for
(i) the construction of overlap graphs from deep coverage read data and
(ii) viral quasispecies assembly using the overlap graph assembly paradigm.
In combination, we present SAVAGE (Strain Aware VirAl GEnome assembly), a method that allows for

reference-free assembly of viral quasispecies from sequencing data sets of truly deep coverage. In this, we
do not only provide the first genuine de novo viral quasispecies assembly approach based on overlap graphs,
but we also provide the first method that can exploit ad-hoc consensus sequence generated from patient
samples, as computed by (Yang et al. 2012, VICUNA) for example, for high-performance viral quasispecies
assembly.

Related Works Several recent reference-guided approaches suggested statistical frameworks modeling
the driving forces underlying the evolution of viral quasispecies. While previous approaches focused mostly
on local reconstruction of haplotypes (Huang et al. 2012; Quince et al. 2011; Zagordi et al. 2011; 2010),
more advanced approaches aimed at global reconstruction of haplotypes, for example, by making use of
Dirichlet process mixture models (Prabhakaran et al. 2014), hidden Markov models (Töpfer et al. 2013),
or sampling schemes (Prosperi and Salemi 2012). There are also recent combinatorial approaches which
computed paths in overlap graphs (Astrovskaya et al. 2011), enumerated maximal cliques in overlap graphs
(Töpfer et al. 2014), and computed maximal independent sets in conflict graphs (Mangul et al. 2014).

Numerous de novo assembly approaches aim at reconstructing a consensus genome sequence from NGS
data – (Bankevich et al. 2012; Gnerre et al. 2011; Luo et al. 2012; Simpson et al. 2009; Zerbino and Birney
2008) to list a few. For a clear exposure of their merits, we refer the readers to papers presenting comparative
evaluations (Bradnam et al. 2013; Gurevich et al. 2013; Salzberg et al. 2011) to references therein. The only
de novo assembly approach for NGS data based on a derivative of overlap graphs is SGA (Simpson and
Durbin 2012), which efficiently builds a string graph using a FM-index of the reads (Ferragina and Manzini
2000), certainly a source of inspiration for our work. Last but not least, of course, the spectrum of methods
include de novo assemblers dedicated for computing a single consensus sequence for viral quasispecies
patient samples (Hunt et al. 2015; Yang et al. 2012). Since VICUNA (Yang et al. 2012) is the most popular
tool in this category, we will use it to get a reference sequence that serves as starting point for reference
based methods.

There are a few exceptions from the above cited work. MLEHaplo (Malhotra et al. 2016b) is, to the best
of our knowldege, the only existing de novo approach for haplotype-resolved viral quasispecies assembly.
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MLEHaplo is based on a de Bruijn graph, and we indeed found it to suffer from certain limitations in
our evaluation. VGA (Mangul et al. 2014) addresses to make use of ad-hoc consensus sequence for viral
quasispecies assembly. There are also de novo metagenome assembly approaches (Laserson et al. 2011;
Nurk et al. 2016) which expect collections of genomes from different species as input, and gene assembly
methods (Gregor et al. 2016; Zhang et al. 2014b), which operate reference-free by aligning reads to gene
template sequence as provided by suitable databases.

Results

We have designed and implemented SAVAGE (Strain Aware VirAl GEnome assembly), a method for de novo
viral quasispecies assembly based on overlap graphs. In this section, we provide a high-level description
of the algorithmic approach and analyze its performance, also in comparison to state-of-the-art approaches.
Finally, we present assembly results using SAVAGE on a sample from a patient infected by the Zika virus.
We refer to the Methods section for any methodical details.

Approach

Our algorithm proceeds in three stages (panel A of Figure 1), each of which iteratively clusters the input
sequences and extends them to unique haplotypes. While Stage a has the original reads as input and contigs
as output, Stage b has these contigs as input and maximally extended contigs as output. Contigs are supposed
to reflect individual haplotype sequences. Finally, the optional Stage c merges maximized contigs into
master strain sequences. This reflects the existence of master strains in many viruses, where each individual
haplotype deviates from one of the master strains by only a relatively minor amount of mutations. Each
stage is divided into overlap graph construction (upper part of panel C in Figure 1) and overlap graph
based assembly (lower part of panel C in Figure 1). Between the stages, this generic structure only differs
in the details.

The strength of overlap graphs for viral quasispecies assembly is that we can distinguish sequencing
errors from true mutations by posing very strong constraints on the overlaps in terms of minimal overlap
length and of sequence similarity. In addition, we also employ paired-end read information. This results in
a very conservative overlap graph, where an edge indicates that two sequences are very likely to originate
from the same virus strain. Therefore, by enumerating cliques in the overlap graph we cluster the reads per
strain, thus reconstructing the individual haplotypes of the viral quasispecies.

We construct overlap graphs in two steps: first, pairs of reads are determined that share sufficiently long
and well-matching overlaps, followed by a statistical evaluation of the quality of each of the overlaps. We
explore two options for finding all such overlap candidates. The first option is to apply a completely de novo
procedure using FM-index based techniques (Välimäki et al. 2012). The second option is to align all reads
against a reference genome, such that read-to-read alignments can be induced from the read-to-reference
alignments. However, in case of a viral outbreak there may not be a suitable reference genome available; we
target such cases by constructing an ad-hoc consensus sequence from the patient samples, as computed by
(Yang et al. 2012, VICUNA).

SAVAGE offers three different modes, corresponding to the different approaches to overlap graph con-
struction described above: SAVAGE-de-novo uses the first option and is therefore completely reference-
free, while SAVAGE-ref-bg uses the second option and thus relies on a bootstrap reference sequence. For
benchmarking purposes we also consider SAVAGE-ref-hg, which takes as input a high quality reference
sequence.

3

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2016. ; https://doi.org/10.1101/080341doi: bioRxiv preprint 

https://doi.org/10.1101/080341
http://creativecommons.org/licenses/by-nd/4.0/


Illumina reads

Undirected overlap graph

1. Pairwise overlaps

2. Overlap quality check

Directed overlap graph

Simplified overlap graph

Super-reads
& overlaps

Contigs

O
v
e
rl

a
p

 g
ra

p
h
 c

o
n

st
ru

ct
io

n
O

v
e
rl

a
p

 g
ra

p
h
-b

a
se

d
 a

ss
e
m

b
ly

3. Read orientations

4. Transitive edge
     removal

5. Read clustering

6. Graph updating 
    until convergence;

New nodes: super-reads
Stage a iteration 1:
             error correction 
New edges:
Stage a: common sub-reads
Stages b, c: old edges
all stages: quality check

7. Output
    contigs

Reads

Contigs

Maximized contigs

Master strains

Global assembly

Master strain 
assembly

Stage a

Stage b

Stage c

Local assembly

true mutation
sequencing error

A

B

C

Stage a: FM-index or
read-to-reference alignment
Stages b, c: Blast

Stages a, b: overlap score
Stage c: mismatch rate

Stage a: double transitive
Stages b, c: single transitive

Stage a: cliques
Stages b, c: pairs

Contigs

Overlap graph

Sequencing reads

Figure 1: An overview of the workflow and algorithms of SAVAGE. A. The three stages of SAVAGE. Each
assembles sequences into longer sequences. For clarity, we assign different names to the sequences output
by each stage: contigs, maximized contigs, and master strains, respectively. B. Principle of overlap graph
construction and distinction among the reads between errors and shared mutations. C. Each stage has two
steps: first, the overlap graph construction, second, assembly. This panel summarizes the differences in each
step between the three stages.
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Benchmarking data

For benchmarking experiments and performance analysis, we considered several data sets.
Simulated mix. We created a simulated data set from a mixture of five HIV-1 strains (HXB2, JRCSF,

89.6, NL43, and YU2). These strains are of length 9478–9719 bp and pairwise sequence identity varies
between 93.6–98.6%. Our first benchmarking data set, referred to as the simulated mix, consists of simulated
Illumina MiSeq reads (2x250 bp) from a homogeneous mixture with total coverage of 600x (i.e., 120x per
strain), obtained using the simulation software SimSeq (see Methods).

Lab mix. Our second benchmarking data set consists of real Illumina MiSeq reads (2x250 bp) with
20000x coverage, obtained from a lab mix of the same five HIV-1 strains as described above, which was
recently presented as a gold standard benchmark (Di Giallonardo et al. 2014). We will refer to this data set
as the lab mix.

Divergence-vs-ratio. To analyze the combined effect of the levels of divergence and of their relative
abundance of the strains, we constructed 36 additional data sets as follows. Starting from the HIV-1 89.6
haplotype, we created six alternative haplotypes by introducing, respectively, 0.5%, 0.75%, 1%, 2.5%, 5%,
and 10% random mutations. For each of those six alternative strains, we created six data sets by simulating
reads (2x250 bp Illumina MiSeq) from the mutated strain and the original at a ratio of 1:1, 1:2, 1:5, 1:10,
1:50, and 1:100, respectively, with a total coverage of 500x per data set.

Zika virus sample. We applied SAVAGE to a sample of Asian-lineage Zika virus (ZIKV) consisting
of Illumina MiSeq 2x300 bp sequencing reads (∼30,000x coverage) obtained from a rhesus macaque after
four days of infection (Dudley et al. 2016, animal 393422).

Evaluation preliminaries

In the case of a viral outbreak, the agent and its genome may be unknown (or may have significantly di-
verged from closely related strains such that available reference sequences are potentially inadequate for
analysis), and the samples taken from infected patients contain an unknown number of divergent strains.
Here, we target such cases where no reference genome is available. Of course, a sample sequenced with
Next Generation Sequencing delivers enough reads and sufficient coverage to allow a de novo assembly of
a viral genome (here, we mean a single genome assembly, not a quasispecies assembly). However, such
genome sequences may not represent well any of the true viral haplotypes present in the sample.

In the sequel, all assembly algorithms were run using default settings. Evaluations of assemblies were
performed with MetaQUAST (Mikheenko et al. 2016), which computes the usual statistics – number of
contigs, largest contigs, N50, misassembled contig length, target genome(s) covered, and error rates – and
we accounted only for contigs larger than a threshold of 500 bp. A contig is called misassembled if it
contains at least one misassembly, i.e., a position where the left and right flanking sequences align to the
true genomes with a gap or overlap of more than 1 kbp, or align to different strands, or even align to different
strains.

Dependence of reference based approaches on reference genome quality

Reference based quasispecies assembly tools proved to perform adequately when a high quality reference
genome is available (Zagordi et al. 2011; Prabhakaran et al. 2014). We question whether reference based ap-
proaches could generate appropriate quasispecies assemblies if provided with a de novo assembled genome
sequence obtained from the sample reads, rather than a high quality reference genome. In other words,
can one bootstrap a reference based quasispecies assembly with a reference genome assembled from the
sample reads? To address this question, we compared state-of-the-art methods PredictHaplo (Prabhakaran
et al. 2014) and ShoRAH (Zagordi et al. 2011) on both simulated and real HIV-1 datasets in two conditions:
either with the high quality HIV-1 reference genome, or with a genome sequence obtained by running the
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VICUNA assembler on the sample reads. For simplicity, we distinguish both cases, we term the former a
high quality reference genome (denoted hg; here the HIV-1 reference genome) and the latter a bootstrap
reference genome (denoted bg). The quality of the output assemblies, as evaluated with MetaQUAST, are
described in Table 1.

PredictHaplo and ShoRAH yield a set of sequences, each of which is supposed to be a strain present
in the sample. Each output sequence is somehow derived by altering the reference sequence; this is why
all of their output sequences have the same length. In comparison, MLEHaplo (Malhotra et al. 2016b) and
SAVAGE proceed by assembling reads and output sequences that are of different lengths (hence, the N50
provides an indication of the contig length distribution).

PredictHaplo yields 4 or 3 sequences which logically cover 75% and 60% of the five strains of the mix.
However, when using VICUNA reference, PredictHaplo produces sequences that are 100% misassembled.
So providing it with a bootstrap reference hinders PredictHaplo to correctly assemble the strains. The same
situation occurs with real data (lab mix): it provides exactly 5 sequences, thus covering nearly 100% of the
expected five strains, but again all sequences are misassembled when using a bootstrap reference.

ShoRAH outputs a much larger number of strains (39/63) on simulated data, (160/169) on real data,
which induces a high target genome coverage. When ShoRAH is given the bootstrap reference, on simulated
data, 1.6% of these strains are misassembled, while with real data 89% are misassembled. At least on
real data, ShoRAH suffers from the same failure as PredictHaplo: the quality of their assembly is highly
dependent on that of the reference genome sequence. PredictHaplo and ShoRAH are valuable tools when
the reference genome is closely related to sample strains, but seem inadequate to handle cases where a
good reference genome is unavailable. This emphasizes the need for new assembly approaches that are
independent of a reference genome.

SAVAGE evaluation

For the sake of comparison, we ran SAVAGE on the same HIV-1 benchmarks as above (simulated mix
and lab mix) in both de novo mode and reference mode, both with default parameters. The lab mix of
20 000x coverage was split into patches of 500x each, on which we applied SAVAGE Stage a (Supplemental
Figure S1). Subsequently, all Stage a contigs were unified and used as input for Stage b. Table 1 presents the
evaluation results of the Stage b maximized contigs for each of the three modes: SAVAGE-ref-hg with HIV-
1 genome as reference, SAVAGE-ref-bg with the genome assembled by VICUNA, and SAVAGE-de-novo
(without reference). For completeness, we also ran MLEHaplo, another de novo approach (Malhotra et al.
2016b). Unfortunately, MLEHaplo could only process the simulated data, but not the real HIV-1 benchmark.
Remember that SAVAGE and MLEHaplo proceed by progressively assembling longer and longer contigs
starting from the raw reads, until finally, each output contig may cover partially the target genomes. Hence,
unlike for PredictHaplo and ShoRAH, the number of contigs shall not be interpreted directly as a number of
strains.

On the simulated mix, MLEHaplo outputs a set of contigs that cover 56% of the five true genomes and
its largest contig is almost equal to the expected genome length (≈ 10 Kbp). However, the overall mismatch
rate equals 3.4%, greatly exceeding the error rate of the sequencing reads ( 1%). With a reference, the results
of SAVAGE-ref-hg and SAVAGE-ref-bg, are very similar: the contigs cover from 94% to 99 % of the five
genome strains, with an N50 above 5000 bp, and largest contigs above 8.5 Kbp. The mismatch, indel, and N
rates are globally better than those offered by PredictHaplo and ShoRAH: the indel and N rates are respec-
tively one or two orders of magnitude lower. Above all, the contigs are free of misassemblies (MAC length
is 0%). Strikingly, providing a high quality reference genome or a bootstrap genome makes little difference,
and on some statistics SAVAGE with a bootstrap genome achieves better results (less contigs, largest longest
contig, higher N50, lower mismatch rate). These observations on the comparison of SAVAGE-ref-hg and
SAVAGE-ref-bg are also true on the real HIV-1 benchmark, where the results are even closer. On simulated
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MAC genomes
# contigs largest length covered N-rate mismatches indels
≥ 500bp contig N50 (%) (%) (%) (%) (%)

Simulated mix

PredictHaplo
HIV-1 ref 4 9710 9710 0 79.5 0.659 1.374 0.091

VICUNA ref 3 9800 9800 100 59.1 0.289 1.628 0.175

ShoRAH
HIV-1 ref 39 9526 9526 0 98.0 0.318 0.394 0.087

VICUNA ref 63 9657 9657 1.6 97.2 0.307 1.356 0.151

MLEHaplo 185 9104 6960 0 56.0 0 3.396 0.078

SAVAGE
de novo 23 9626 5369 0 90.5 0.001 0.724 0.018

HIV-1 ref 23 8517 5148 0 99.0 0.003 0.402 0.004

VICUNA ref 19 9470 6315 0 94.2 0.002 0.270 0.002

Lab mix

PredictHaplo
HIV-1 ref 5 9642 9642 0 99.2 0.259 0.615 0.104

VICUNA ref 5 11000 11000 100 94.5 0.425 0.011 0.136

ShoRAH
HIV-1 ref 160 9581 9581 0 98.9 0.378 3.203 0.113

VICUNA ref 169 10854 10854 89.3 99.0 0.770 0.911 0.165

SAVAGE
de novo 482 4256 1062 0 90.5 0.015 0.147 0.048

HIV-1 ref 1003 2560 786 0.3 93.2 0.198 0.182 0.040

VICUNA ref 901 2533 775 0 93.0 0.125 0.283 0.047

Table 1: Assembly results per method (PredictHaplo, ShoRAH, MLEHaplo, and SAVAGE), only taking
contigs of at least 500bp into account. The upper part of the table presents results on a collection of simulated
Illumina reads from a mixture of five HIV-1 strains. The lower part shows similar results for a real Illumina
MiSeq data set, obtained from a mixture of the same five HIV-1 strains. Unfortunately, MLEHaplo failed to
run on this data set.
The N50 score gives the maximal length for which the collection of all contigs of that length or longer covers
at least half of the total assembly length. The MAC length statistic reflects the proportion of misassembled
contig length compared to the total assembly length. After aligning the contigs to the true haplotypes, we
obtain the fraction of the target genomes that is covered by the contigs. Finally, we give the N-rate, which is
the fraction of uncalled bases in the assembly, along with the mismatch and indel rates. For these measures
an uncalled base does not count as a mismatch and the length of an indel is not taken into account.
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data, SAVAGE-de-novo delivers an assembly that is qualitatively equivalent to the SAVAGE-ref-hg and -bg
assemblies: its coverage reaches only 90% but it has the longest contig of all, and still no misassemblies. On
real HIV-1 data, all SAVAGE modes yield assemblies that are more fragmented (larger number of contigs,
smaller N50) than for simulated data. However, SAVAGE-de-novo performs better than the versions with
a reference: it yields less contigs, a larger N50 value, no misassemblies, and lower N and mismatch rates.
Compared to PredictHaplo and ShoRAH, SAVAGE-de-novo offers contigs with improved mismatch and
indel rates, hence of higher sequence quality.

Overall, SAVAGE can process samples containing a mixture of 5 strains and recover most of the target
genomes with high level of sequence quality. It performs slightly better in de novo mode than with a refer-
ence sequence on real data. Moreover, compared to existing methods, it does not suffer from misassemblies
and it can take advantage of a bootstrap reference sequence built by an single genome assembler.

In terms of CPU time, SAVAGE-ref-bg was faster than SAVAGE-de-novo, with 24 versus 91 minutes
on the simulated mix and 171 versus 1331 minutes on the lab mix (Supplemental Table S2). This was
to be expected, since de novo overlap graph construction requires enumeration of all approximate suffix-
prefix overlaps among the reads. In comparison, PredictHaplo was faster on the simulated data (7 min) but
comparable to SAVAGE-de-novo on the real data (158 min). ShoRAH was also faster on simulated mix
(12 min) but very slow on the lab mix (22256 min). Finally, with 54 minutes MLEHaplo was in between
SAVAGE-de-novo and SAVAGE-ref-bg. Peak memory usage varied between 0.04 GB (PredictHaplo) and
2.2 GB (MLEHaplo) for the simulated data, and between 0.5 GB (SAVAGE-de-novo/SAVAGE-ref-bg) and
12 GB (ShoRAH) for the real data. A complete comparison is presented in Supplemental Table S2.

Effect of strain divergence and relative abundance

Assembling the sequences of several master strains from a viral sample may turn out more difficult de-
pending on both the level of strain divergence and on their relative abundance. After comparing SAVAGE
to state-of-the-art methods, we investigate the ranges of divergence levels and of relative abundance that
SAVAGE can properly handle, and examine the combined effect of these two parameters on the assembly
quality. We use a series of 36 benchmark datasets simulated from two HIV-1 strains: a combination of six
divergence levels (from .5 % until 10% of nucleotidic divergence) with six ratios of abundance (from 1:1
until 1:100). We run SAVAGE-de-novo and SAVAGE-ref-bg (i.e., with VICUNA assembled genome). All
assemblies were evaluated with MetaQUAST, and Figure 2 reports the heatmaps of (A) the coverage fraction
of the two genomes, (B) the mismatch rate, and (C) the absolute error on the frequency estimates of each
strain.

Comparing the two modes of SAVAGE, de novo or with a bootstrap reference, we observe similar
results and a slight advantage to SAVAGE-de-novo in terms of genomes coverage. Altogether, SAVAGE
obtains quasispecies assemblies of good coverage and low mismatch rates for all divergence levels and all
relative abundance ratios starting from 1:1 until 1:50, proving its ability to distinguish sequencing errors
from true mutations. A very low divergence level of 0.5% hinders SAVAGE-de-novo from distinguishing
the two strains for a ratio of 1:10. Similarly, an extreme relative abundance of 1:100 hinders SAVAGE to
reconstruct both strains (genome coverage values around 50% meaning that only one of the two strains has
been assembled).

Capacity to estimate the frequency of each strain SAVAGE also computes an estimate of each strain
frequency in the sample. For these synthetic benchmarks, we compared the estimated frequency of the major
strain in the sample with the real frequencies. The rightmost panel of Figure 2 shows the absolute difference
between the estimated frequency and the true frequency. This comparison was performed only when the
strains were almost fully assembled (exactly two strains of length ≥ 5000 bp), hence abundance ratios of
1:50 and 1:100 were excluded. Of the remaining 24 datasets, 4-6 samples did not satisfy these criteria; the
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Figure 2: Performance of SAVAGE-de-novo and SAVAGE-ref-bg, depending on pairwise distance and mix-
ture ratio. A. Target genome fraction recovered (%) considering all contigs ≥ 500 bp. B. Overall mismatch
rate (%) considering all contigs≥ 500 bp. C. Absolute error of estimated frequency for the major strain (%).
A positive error indicates overestimation, while a negative error indicates underestimation. Only frequency
estimates for assemblies containing exactly two strains longer than 5000 bp were evaluated.
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corresponding entries are marked ‘-’ in the heatmaps. In general, the estimated frequencies are close to
the real ones provided the divergence level lies strictly above 0.75% (an average difference of less than one
point). The estimates are less accurate for smaller divergence levels (up to 33% for SAVAGE-de-novo and
20% for SAVAGE-ref-bg). A majority of negative values indicates a tendency to underestimate the major
strain. Hence, SAVAGE provides reasonable frequency estimates of the strains in a wide range of divergence
levels (from 1% to 10%), but additional work is needed to explore complex mixtures of more strains.

Zika virus sample

To test SAVAGE-de-novo on real conditions, we ran it on a sample taken from a resus macaque infected by
Zika virus (ZIKV) (Dudley et al. 2016). Using a similar procedure as for the real HIV data, we split the reads
into patches of 500x each and proceeded with Stage a assembly on each patch (Supplemental Figure S1).
Subsequently, the whole collection of Stage a contigs was used together as input for Stage b, which yielded
92 contigs (≥ 500 bp), six of which were longer that 2500 bp. The N50 measure was 1579 bp, the largest
contig being 4153 bp long. Aligning the contigs to the established ZIKV reference genome1 reveals that the
10767 bp reference genome was covered between positions 225–10767, the greatest divergence occurring
between positions 1700 and 4200 with circa 20 to 30 different haplotypes. In Stage c, we merged the strains
of less than 1% divergence, thus reducing the number of output sequences (now called master strains)
to 9 (two of which being ≥ 2500 bp) and increasing the N50 measure to 5082. The two largest master
strains counted 5082 bp and 8311 bp, together covering the ZIKV reference genome between positions
444 and 10387. The resulting virus strains diverge by more than 10% from the reference genome, but
only 0.8% from a complete ZIKV genome of the Asian lineage (GenBank sequence KU681081.3). The
major difference between the two strains was a one nucleotide deletion at position 4088, followed by two
SNPs at positions 4090 and 4093, respectively. Our frequency estimation procedure predicted the haplotype
harboring the deletion to be the minor haplotype with a frequency of 38.7%, compared to 61.3% for the
major haplotype. We expect that in the future, novel external data obtained by different means will become
available for this sample, allowing an in-depth validation of our two-strain quasispecies assembly.

Discussion

Recent outbreaks of viral diseases, such as the Ebola or the Zika virus, have pointed out a pressing need
for methods to assess the genetic diversity of viral infections in a flexible manner and without depending
strongly on the quality of a reference genome. Here, we have presented SAVAGE, the first method for de
novo assembly of viral quasispecies based on overlap graphs. Our evaluations have shown that SAVAGE
clearly outperforms the only other existing de novo approach for viral quasispecies assembly. SAVAGE
can also be run in reference guided mode. In this mode, it performs very favorably in comparison with
reference guided tools when using an ad-hoc consensus reference of possibly low quality instead of well
curated, high-quality reference sequence. While previous tools tend to become confused by the low quality
of the reference, SAVAGE behaves in a robust manner with respect to reference quality. Since reference
independent tools are desirable, when confronted with a rapidly spreading outbreak of a highly diverse virus,
SAVAGE has proven to bridge a significant gap in the spectrum of viral quasispecies assembly approaches.

We believe that the central reason explaining the benefits of our approach is the use of overlap graphs as
the underlying assembly paradigm. While assembling genomes of low ploidy usually works favorably based
on de Bruijn graphs, we have pointed out that using reads at their full length obviously is key in assembling
viral quasispecies, where distinguishing between low-frequency mutations and sequencing errors is imper-
ative. Using overlap graphs does not only improve the detection of low-frequency strains, but also of true,

1http://www.ncbi.nlm.nih.gov/genome/viruses/variation/Zika/
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and hence co-occurring, mutations. This allows correction of sequencing errors in novel ways, by making
integrative use of sound statistical sequence models in combination with an iterative algorithmic scheme for
extending reads into contigs of gradually increasing length. In summary, SAVAGE is also amenable to the
assembly of low-frequency strain sequences.

Here, key to reference free construction of overlap graphs is the use of FM-index based techniques in a
way that is novel in the context of the analysis of viral data. Moreover, we have demonstrated that overlap
graphs also seem to be the approach of choice when aiming to make use of ad-hoc consensus reference
genomes, such as provided by specialized tools that construct a single consensus sequence from patient
sample read data. Often, the resulting consensus sequence is of worse quality than a well-curated reference
sequence. This can substantially disturb approaches that rely on the underlying reference as a sequence
template (e.g. PredictHaplo, ShoRAH). Overlap graphs constructed by making use of reference sequence
coordinates prove to provide a robust alternative, since they use the reference sequence only as a coordinate
system for the determination of overlaps.

A few more things are noteworthy. First, the bootstrap reference approach SAVAGE-ref-bg has proven
to outperform reference guided approaches in terms of the error rates of the contigs, even when they make
use of high-quality reference sequence. On the lab mix benchmark, consisting of real sequencing data, the
fully de novo approach SAVAGE-de-novo produced contigs of even higher quality, proving its ability to
distinguish sequencing errors from true mutations. Second, although being superior, we have also found our
approach to depend on the quality of the reference sequence in case of real sequencing data: for SAVAGE-
ref-hg we obtained slightly longer contigs with lower mismatch rates compared to SAVAGE-ref-bg (see
Table 1). This, of course, had to be expected: if reference coordinates are too mistaken, overlaps cannot
be detected. Together, these two points underline the general benefits of a full de novo viral quasispecies
assembly approach.

Of course, there is still room for improvements. Our algorithm, while substantially faster and more space
efficient than previous overlap graph based viral quasispecies assembly algorithms, has been particularly
tailored towards dividing deep coverage datasets into chunks of 500 to 1000x, and merging the contigs of
the chunks in subsequent steps, because this reflects its statistical calibration. While this works perfectly
well, it sets certain limits on the frequency of strains we can recover—haplotypes of frequencies below 1%
remain difficult to reconstruct. In future work, we will seek to lower these limits further by considering
novel strategies for computing cliques in overlap graphs. Last but not least, we will also explore alternative
indexing techniques that allow for more relaxed definitions of overlaps and faster computation.

Methods

Overlap graph construction

We first provide a brief definition of an overlap graph and then sketch how to construct such graphs from
patient sample read data using indexes or reference genomes as two options.

Overlap graphs. For a collection R of sequencing reads (Stage a) or contigs (Stages b,c), both of
which are sequences over the alphabet of nucleotides {A,C,G, T,N} (which includes N as a common
placeholder for unknown nucleotides), the overlap graph G = (V,E) is a directed graph, where vertices
v ∈ V correspond to reads/contigs R ∈ R and directed edges connect reads/contigs Rj , Rj ∈ R whenever
a suffix of Ri of sufficient length matches a prefix of Rj and QS(Ri, Rj) ≥ δ where QS : V × V → R is a
quality score that has to exceed a certain threshold δ. For Stages a, b we make use of the statistical model
presented in (Töpfer et al. 2014), where QS(Ri, Rj) ≥ δ reflects that the overlapping parts of reads Ri and
Rj statistically highly likely present a locally identical haplotypic sequence (see Supplemental Methods).
In Stage c, QS(Ri, Rj) reflects the fact that the two contigs share only a limited amount of mismatches in
their overlaps, meaning that they did likely emerge from identical master strain sequences.
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Figure 3: Edge criteria. For an overlap to become an edge in the overlap graph, it must satisfy three criteria.
First, the overlap length l must be at least the minimal overlap length L. Second, the overlap quality score
QS(R1, R2) must be at least the minimal score δ. For overlaps involving paired-end reads, we require
both l1 ≥ L and l2 ≥ L, and, analogously, QS(R1a , R2a) ≥ δ and QS(R1b , R2b) ≥ δ. Finally, we only
accept overlaps where the sequence orientations of a paired-end read agree: either both sequences in forward
orientation, or both sequences in reverse orientation.

Paired-end reads. SAVAGE was designed for Illumina MiSeq paired-end reads; after merging self-
overlapping pairs, the input in Stage a may contain paired-end reads as well as single-end reads. To make
use of the pairing information, we add another edge restriction by allowing only the overlap cases shown
in Figure 3. For overlaps involving a paired-end read, we require both read ends to have a sufficiently long
overlap and a high enough quality score.

Construction. Construction of overlap graphs always proceeds in two steps. First, pairs of reads
(Ri, Rj) are determined that have a sufficiently long and well-matching overlap. Subsequently, QS is
evaluated on all pairs (Ri, Rj). For Stages b and c, where the input is sufficiently small, the first step is
implemented by pairwise comparison of all contigs using BLAST (Altschul et al. 1990). The only difficulty
is the first step in Stage a, where the input is very large (the original deep coverage data). This requires some
sophistication; we explore two options:

1. With a read index: We determine all sufficiently long overlaps between sequencing reads using
FM-index based techniques (Välimäki et al. 2012, SFO) such that overlaps contain at most 2% mismatches
(accounting for 1% sequencing errors in each of the reads). This method, however, only works on single-end
reads, so we first ignore the paired-end relations and consider each of the sequences as a single-end read.
Then, after listing all pairwise overlaps with SFO, we reconsider the pairing information, outputting only
overlaps that are supported by both read ends as described above.

2. With a Reference Genome: We align all reads against a reference genome; here we may use an ad-hoc
consensus genome obtained by running an assembly software on the sample reads. With all read align-
ments in hands, it is then computationally straightforward to determine all sufficiently long and sufficiently
matching overlaps pairs.

Read orientations. When merging multiple reads into one consensus sequence, it is important that
the reads agree on their respective orientations. Therefore, we apply a read orientation routine that assigns
a label (+/−) to every read, indicating the orientation in which its sequence should be considered. This
routine starts by setting the orientation of a node of minimal in-degree to +, then recursively labels all
out-neighbors as defined by the corresponding edges (Figure 4, panel A). When there is no perfect labeling
possible, meaning that there are conflicts among the read orientations due to inversions, we heuristically
search for an orientation that leads to a minimal amount of conflicts among the reads.

Overlap graph based assembly

In all stages, our algorithm proceeds as an iterative procedure where contigs grow with the iterations. The
final contigs (in particular the output of Stage b, or, optionally, Stage c) can substantially exceed the length
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of the original reads. As our analyses demonstrate, these contigs present haplotype specific sequences with
high accuracy.

Cliques and super-reads. The main idea of our algorithm is to compute cliques in the overlap graph. A
clique is a subset of the nodes such that each pair of nodes is linked by an edge. By definition of the edges,
a clique groups reads that stem from identical haplotypes. Within a clique, reads/contigs share (possibly
low-frequency) true mutations while sequencing errors are not shared by the majority of reads (Figure 1,
Panel B). Hence, cliques can be used to clearly distinguish between true mutations and sequencing errors.
This further allows to correct these errors by transforming cliques into super-reads that represent an error-
corrected consensus sequence of the reads in the clique.

Transitive edge removal. In graph-based assembly algorithms it is common to remove transitive edges.
An edge u→ w is called transitive if there exist a vertex v and edges u→ v, v → w, illustrated in Figure 4,
panel B. In de Bruijn graph-based approaches, genomes are reconstructed from paths in the graph, hence
transitive edges should be removed before starting the assembly process. The first stage of our method,
however, is essentially based on transitive edges: using such edges we find collections of overlapping reads,
allowing us to correct errors in the sequencing reads.

But as coverage increases, the overlap graph G becomes more complicated and the number of maximal
cliques grows rapidly. Therefore, we apply a procedure to remove double transitive edges. We call an edge
u→ w double transitive if there exists a vertex v and transitive edges u→ v, v → w, illustrated in Figure 4,
panel B. Note that, by definition, any double transitive edge is also single transitive. To find such edges, we
first remove all non-transitive edges from the overlap graph to obtain the transitive graph G′. This can be
done efficiently by computing the inner product of a−u and a+v for all pairs (u, v) ∈ V × V , where a−u (resp.
a+v ) is the adjacency vector of outgoing (resp. incoming) edges of u (resp. v). Applying this procedure to G
we obtain G′, and to find all double transitive edges we apply the same procedure to G′.

In each iteration of Stage a, we remove all double transitive edges from the overlap graph. This reduces
the number of super-reads obtained in the first iteration by an order of magnitude, leading to a decrease in
CPU time and memory usage of even two orders of magnitude (Supplemental Table S1). In Stages b and c
the reads (contigs) are assumed to be already of high quality, so we remove not only double but also single
transitive edges.

Read clustering. In Stage a, we cluster reads by enumerating maximal cliques in the overlap graph.
After transitive edge removal the maximal clique size is 4 and the total number of cliques is polynomial in
the number of nodes, so we can efficiently enumerate all maximal cliques. Here, we use of the degeneracy
algorithm presented in (Eppstein et al. 2010). The first iteration of Stage a solely considers cliques of size
of 4 to enable error correction, while subsequent iterations also consider maximal cliques of size 2 and 3.

In Stages b and c, after removing all (single and double) transitive edges, we merge pairs of contigs into
new (extended) contigs. This does not require clique enumeration of any kind. See Figure 4, panel C for an
illustration of the two read clustering techniques.

Super-read formation and error correction. As outlined above, we transform all reads/contigs within
a clique (Stages b, c: pair of contigs) into a consensus sequence. The consensus base is determined by a
position-wise weighted majority vote, where the weights correspond to the respective base quality scores,
as described in (Töpfer et al. 2014) and Supplemental Methods. This procedure was designed to correct for
all putative errors showing among members of a clique, which is especially relevant in the first iteration of
stage a. In this specific iteration, therefore, we require cliques of size 4 and we remove the extremities of
the resulting super-read (Figure 4, panel D). Reads that are not contained in any super-read are discarded
after this iteration.

Graph updating. After constructing super-reads, we update the edges in the overlap graph on the super-
reads. In Stage a, we do so by searching for common sub-reads among the super-reads. This approach is
very efficient, but risks ignoring overlaps of super-reads that do not have an original read in common as
a sub-read. In Stages b and c the graph is much sparser, so we then update the edges by considering all
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Figure 4: Algorithmic details. A. Read orientations: Given an edge u → v with orientations (−,+). Then
if u is labelled +, the induced label for v is −, while if u is labelled − the induced label for v is +. This
procedure leads to a vertex labeling in O(V ) time. B. Transitive edges: An edge u → w is called single
transitive (resp. double transitive), shown in green (resp. red), if there exists a vertex v and edges (resp.
transitive edges) u → v, v → w. C. Read clustering by cliques (top) or by pairs (bottom). D. Error
correction: when a consensus sequence is constructed from a cluster of reads, the extremities are removed.

induced overlaps. This means that for every edge u → v in the original graph, we consider every overlap
u′ → v′ for all u′ ∈ Su, v′ ∈ Sv, where Su, Sv consist of all super-reads containing u, v, respectively. In
addition, we also reconsider all overlaps that did not make an edge in the original graph.

Iteration. The key idea of the SAVAGE assembly algorithm now is to repeatedly apply this twofold
procedure of clique enumeration (Stage a) or merging pairs (Stages b and c) and super-read formation.
Thereby, all super-reads of iteration i ≥ 1 become nodes in the overlap graph of iteration i + 1, which
results in an overlap graph to be processed in iteration i + 1. Key to succes of this idea is that super-reads
(a.k.a. contigs) are constantly growing along the iterations, and, upon convergence, greatly exceed the length
of the original reads. An example of the progression of contig lengths at the three stages of the algorithm is
given in Supplemental Table S3.

Parameter settings

There are three parameters to be set, namely, the overlap score threshold δ, the mismatch rate mr allowed
in the overlaps, and the minimal overlap length L. To analyze the behaviour of the overlap score function,
we simulated 2x250 bp Illumina MiSeq reads from different genomes, diverging between 1% and 10%.
We computed all overlaps among those reads and classified them by the number of true mutations in the
overlap (not counting mismatches that are due to sequencing errors). This resulted in distributions Pi, i ≥ 0,
representing the overlap scores found in case of i true mutations (Supplemental Figure S2), from which we
concluded that δ = 0.97 is the optimal choice. To be more conservative, this threshold can be raised, but
this comes at the cost of a decrease in the target genome coverage.

The mismatch rate parameter allows overlaps having a sufficiently high overlap score to become edges
in the overlap graph if the mismatch rate is sufficiently low. By default, this parameter is set to 0, meaning
that we only rely on the overlap score for constructing the overlap graph. However, when assembling master
strains, the allowed mismatch rate was set to 0.01 such that strains diverging by less than 1% were merged
into a consensus sequence.

Finally, the minimal overlap length was set to 60% of the average read length in Stage a. For Stages
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b and c, we started at a rather high threshold of 500 bp, then reduced this to 150 bp, and eventually even
lowered the threshold to 50 bp overlaps.

Frequency estimation

By keeping track of the original reads that are involved in a superread, we calculate the expected frequency
of each haplotype constructed as the fraction of original reads contributing to this haplotype. Original reads
that come from a conserved region of the viral quasispecies may contribute to multiple haplotypes; in this
case the reads are weighted accordingly.

Given a contig C in the assembly A, let len(C) denote its length and let sub(C) be the set of original
reads that contributed to this contig. Furthermore, for each original read R, let αR be the number of contigs
that it is involved in. We define the weighted contributing read count of C as w(C) =

∑
R ∈ sub(C) 1/αR.

Let T (A) denote the total number of original reads contributing to the assembly, then we define the raw
frequency as f̃C = w(C)/(T (A) · len(C)). Here, the factor len(C) in the denominator compensates for
differences in contig lengths. Finally, we get the estimated frequency fC of the contig by normalizing over
all estimated frequencies: fC = f̃C/

∑
C∈A f̃C .

Other methods used for evaluation

For benchmarking, we compared SAVAGE against the state-of-the-art approaches ShoRAH (Zagordi et al.
2011) and PredictHaplo (Prabhakaran et al. 2014). Both methods were run with default parameter settings,
after aligning the reads to the reference genome using BWA-MEM (Li 2013). The de novo assembler
MLEHaplo (Malhotra et al. 2016b) required the reads to be error corrected first, for which we used MultiRes
(Malhotra et al. 2016a) with default settings (recommended by the authors). Unfortunately, we could not
compare against VGA (Mangul et al. 2014) and HaploClique (Töpfer et al. 2014) because these software
packages were no longer maintained.

Data simulations

To evaluate performance of SAVAGE, we designed several simulated data sets. We used the software SimSeq
(https://github.com/jstjohn/SimSeq) to simulate Illumina MiSeq reads from the genome of
interest. In order to obtain reads similar to the real 5-virus-mix data, we simulated 2x250 bp paired-end
reads, with a fragment size of 450 bp and the MiSeq error profile provided with the software.

Read trimming and merging

Before running any of the methods, the raw Illumina reads were trimmed using CutAdapt (Martin 2011).
Next, we applied PEAR (Zhang et al. 2014a) for merging self-overlapping read pairs. This resulted in a final
read set containing both single-end and paired-end reads, on which we ran SAVAGE. For the other methods
(MLEHaplo, PredictHaplo, ShoRAH, and VICUNA) we used the trimmed reads without merging, since
neither of these methods accepts a combination of single- and paired-end reads. In addition, MLEHaplo
required an error correction step on the input reads which was performed using MultiRes (Malhotra et al.
2016a).

MetaQUAST evaluation

We use MetaQUAST (Mikheenko et al. 2016) for quality evaluation of the assembled contigs, which
evaluates the contigs against each of the true viral genomes. By default, MetaQUAST uses the option
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--ambiguity-usage all, which means that all possible alignments of a contig are taken into ac-
count. However, the genomes in a viral quasispecies can be so close together that a contig may align to
multiple strains, even though it only matches one haplotype. Therefore, we manually changed this option to
--ambiguity-usage one, such that for every contig only the best alignment is used. Contigs shorter
than 500 bp were ignored during evaluation.

Data and software availability

All simulated data and a C++ implementation of SAVAGE are available for public use at https://
bitbucket.org/jbaaijens/savage. The lab mix used for experiments can be downloaded from
https://github.com/cbg-ethz/5-virus-mix and the ZIKV data are available in the NCBI
Sequence Read Archive, experiment SRX1678783, run SRR3332513.

ACKNOWLEDGEMENTS

AS acknowledges funding through Vidi grant 639.072.309, provided by the Netherlands Organisation for
Scientific Research (NWO). ER, AZ are supported by ANR Colib’read (ANR-12-BS02-0008), the Institut
de Biologie Computationnelle (ANR-11-BINF-0002), and France Génomique.

DISCLOSURE DECLARATION

The authors declare that they have no conflict of interest.

16

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2016. ; https://doi.org/10.1101/080341doi: bioRxiv preprint 

https://bitbucket.org/jbaaijens/savage
https://bitbucket.org/jbaaijens/savage
https://github.com/cbg-ethz/5-virus-mix
https://doi.org/10.1101/080341
http://creativecommons.org/licenses/by-nd/4.0/


References
Altschul S, Gish W, Miller W, Myers E, and Lipman D. 1990. Basic local alignment search tool. J Mol Biol 215: 403–410.

Astrovskaya I, Tork B, Mangul S, Westbrooks K, Mandoiu I, Balfe P, and Zelikovsky A. 2011. Inferring viral quasispecies from 454 pyrosequencing reads. BMC Bioinf
12: S1.

Bankevich A, Nurk S, Antipov D, Gurevich A, Dvorkin M, Kulikov A, Lesin V, Nikolenko S, Pham S, Prijbelski A, et al.. 2012. SPAdes: A new genome assembly
algorithm and its applications to single-cell sequencing. J Comp Biol 19: 455–477.

Bradnam K et al.. 2013. Assemblathon 2: evaluating de novo method of genome assembly in three vertebrate species. GigaScience 2: 10.
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