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ABSTRACT 

The overall goal of this work was to measure the efficacy of fMRI for predicting whether a dog would be 

a successful service dog. The training and imaging were performed in 50 dogs entering advanced 

training at 17-21 months of age. FMRI responses were measured while each dog observed hand signals 

indicating either reward or no reward and given by both a familiar handler and a stranger. 49 dogs 

successfully completed fMRI training and scanning. Of these, 33 eventually completed service training 

and were matched with a person, while 10 were released for behavioral reasons. Using anatomically 

defined regions-of-interest in the ventral caudate, amygdala, and visual cortex, we developed a classifier 

based on the dogs’ outcomes. We found that responses in the stranger condition were sufficient to 

develop an accurate brain-based classifier. On all data, the classifier had a positive predictive value of 

96% with 10% false positives. The area under the receiver operating characteristic curve was 0.90 (0.79 

with 4-fold cross-validation, P=0.02), indicating a significant diagnostic capability. Within the stranger 

condition, the differential response to [reward – no reward] in ventral caudate was positively correlated 

with a successful outcome, while the differential response in the amygdala was negatively correlated to 

outcome. These results show that successful service dogs transfer knowledge to strangers as indexed by 

ventral caudate activity without excessive arousal as measured in the amygdala. 
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INTRODUCTION 

The advent of awake fMRI in dogs has opened up numerous possibilities for decoding how the 

dog’s brain is organized (Berns et al., 2012; Andics et al., 2014; Jia et al., 2014). But like many of the early 

human fMRI studies, these nascent efforts have been plagued by small sample sizes. Some results have 

been replicated, increasing confidence in the technique (Berns et al., 2013; Dilks et al., 2015; Cuaya et 

al., 2016). At the same time, there have also been hints of substantial individual differences between 

dogs’ brain responses that, like humans, relate to important aspects of behavior, temperament, and 

personality (Cook et al., 2014; Cook et al., 2016). 

We have previously observed a temperament-dependent increase in neural activity in the 

ventral caudate when dogs are presented with a hand-signal associated with incipient receipt of food 

reward (Cook et al., 2014). Dogs who came from a service-dog training program were more likely to 

show a ventral caudate response to a hand signal when interacting with their owner/handler, while 

other dogs (e.g. from shelters and pets with no service-training) were more likely to show a caudate 

response to the signal when interacting with an unfamiliar person. 

Are these differences a result of service-training, or might there be a neurobiological phenotype 

that predisposes a dog to becoming a good service-dog? If the latter, then it should be possible to 

identify good service-dogs before they complete service-training. Most dogs are not destined to be 

service dogs. Even with well-managed breeding programs, the success rate in training is typically 30-

40%. By many estimates, the cost of training a service dog is $20,000 to $50,000. If dogs that are 

destined to fail training could be identified earlier, the average cost would decline. Thus, there is both a 

need to increase the number of service dogs and decrease the average cost by early identification. 

There have been several studies of juvenile dogs, using behavioral tests and questionnaire 

ratings, that have examined the possibility of identifying high-potential working dogs. The earliest 

studies of puppy temperament indicated some trait consistency, but not to the extent of a diagnostic 

test (Scott and Fuller, 1965). Later studies showed that working dogs, on average, had different 

behavioral traits but these were not consistent enough to predict individual performance as adults 

(Goddard and Beilharz, 1986; Wilsson and Sundgren, 1997; Riemer et al., 2014). As dogs get older, their 

behavior becomes more consistent, achieving some level of stability between 6 and 12 months of age to 

the point where temperament questions and behavioral tests become modestly predictive of suitability 

for service work (Duffy and Serpell, 2012; Harvey et al., 2016). However, the variability of inter-rater 

agreement and test-retest reliability has raised questions about the utility of these approaches (Jones 

and Gosling, 2005; Fratkin et al., 2013). 

To determine if a pattern of brain responses can predict completion of training and placement in 

a service job, we performed a prospective fMRI study of 50 dogs at the beginning of their service-

training. We focused on three brain as potential biomarkers of success or failure: 1) ventral striatum for 

reward sensitivity (Schultz et al., 1997; Berns et al., 2013); 2) amygdala for arousal (Phelps, 2006); and 3) 

a region of temporal cortex previously shown to be responsive to faces (Dilks et al., 2015). 

 

METHODS 

Participants 

All dogs participating in the study came from Canine Companions for Independence (CCI, Santa 

Rosa, CA). CCI-dogs undergo a rigorously controlled socialization process. After they are weaned, 
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puppies are raised by a volunteer puppy-raiser until 17-21 months of age. Then, the dogs are returned 

to one of CCI’s training facilities for advanced training, which can take 6-9 months. Dogs that complete 

the training “graduate” into one of four roles: 1) service dog; 2) skilled companion; 3) facility dog; 4) 

hearing dog. Those who are unable to complete training, for either medical or behavioral reasons, are 

“released” and adopted, often by the puppy-raiser. The study was approved by both the Emory IACUC 

and UC Berkeley ACUC. 

Between 11/2014 and 11/2015, 

54 dogs were selected for participation 

in the MRI training program. The 

selection occurred within two weeks of 

beginning advanced training. Dogs 

were first assessed for absence of noise 

reactivity and then 2-3 dogs were 

randomly picked from each trainer’s 

string for participation in additional 

MRI training. Cohorts of 6-12 dogs were 

selected every 3 months, until the 

target of 50 was reached (5 dogs did not complete the training). One dog completed training, but did 

not successfully complete the MRI session. Four females were selected for breeding, and thus, no 

training outcome was obtained.  Two dogs were released for medical reasons. This left a total of 43 dogs 

for which both MRI data and outcomes were 

obtained (Table 1). The dogs were 

predominately crosses of Labrador retrievers 

and golden retrievers, with a few purebred labs 

and goldens (Table 1).  

 

Training 

MRI-training took place on the CCI 

campus. A mock-MRI was constructed on site 

from discarded parts of a Siemens Trio. The 

mock-MRI included a patient table, bore, 

replicas of head and neck coils, and 

loudspeakers to play the noises from the scan 

sequences (Fig. 1). The training took 

approximately 10-15 minutes per dog, three 

days a week. All dogs were judged MRI-ready 

after two months. 

The training program teaches the dogs 

to cooperatively enter the MRI scanner.  The 

program is based on acclimatization to the MRI 

scanner noise, tight scanner enclosure, scanner 

steps, and operating vibrations and the shaping 

and ultimate chaining of several requisite 

behaviors. We also constructed a customized 

Table 1. Demographics of dogs with both MRI data and 

outcomes. GLD=golden retriever; LAB=Labrador 

retriever; LGX=lab/golden cross. 

  Breed  

  GLD LAB LGX Total 

Female 0 6 13 19 

Male 1 2 21 24 

Total 1 8 34 43 
 

 

Fig. 1. Mock scanner. 
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chin rest that facilitated comfort and proper positioning for the dogs and that adapted the apparatus for 

the uniqueness of the canine anatomy.  Once the animals became confident and competent regarding 

all the preparatory steps – proven by completing a simulated MRI in the replica apparatus – we then 

performed live scans in the actual MRI.   

We compiled digitized audio recordings of the various scanner sequences.  To aid in the 

necessary desensitization and acclimation to the scanner noises, when training, we played the 

recordings through a portable speaker placed inside the simulator. 

Only positive reinforcement, in combination with behavioral shaping, conditioning and chaining, 

were used in the training process.  First, dogs were trained to place their head and paws in the head coil.  

Next, they were trained to place their chin on a chin rest placed horizontally across the head coil and 

hold this position until a release signal. The length of the hold was gradually increased up to 30 s. When 

the dogs were able to do this consistently with no discernible head motion, they were next trained to do 

this wearing ear plugs and vet wrap, which were initially introduced to the animals apart from the coil 

simulator. Concurrent with the initial sequences of the training, recordings of the scanner noise were 

introduced at low volume. Once the animal became conditioned at a low volume, the volume was 

gradually increased. Recordings of the scanner noise were introduced at low volume while the dog 

remained stationary in the coil. Once the dog demonstrated relaxed behavior, the volume was gradually 

increased. When the dogs were comfortable wearing the ear plugs in the head coil with the scanner 

noise of approximately 90 dB, they were then trained to go into the MRI tube. Subsequently, the 

simulated head coil was placed inside the tube.  After the dog was consistently holding her head still in 

this configuration, the entire apparatus was raised on a table to the height of the actual scanner patient 

table. The dogs were trained to walk up steps into the mock-MRI.   

 

Imaging 

The MRI protocol is similar to that previously described (Berns et al., 2012; Berns et al., 2013). 

We have found that the neck coil that is standard on a Siemens Trio is ideally suited to scanning dogs’ 

brains while in a crouch position. The chin rest is constructed from firm foam, and semicircles are cutout 

to match the shape of the dog’s muzzle from just the nose to the ramus of the mandible. We insert the 

dog’s custom chin rest within the inner diameter of the coil. 

When performing an actual scan, immediately prior to the scan, we play audio recordings of the 

pertinent scan sequence through the scanner room speaker.  As the dog settles in the scanner, we 

increase the recorded volume to match the decibel level of the actual scanner noise.  While playing a 

continuous loop of the recording, once the sound level match we then begin the actual scan.  The 

recordings are effective at minimizing the startle response that would otherwise result from the sudden 

onset of the real scan. Once the scan actual begins, we turn off the scanner recording. 

First, a single sagittal plane image is acquired as a localizer, which lasts 3 s (SPGR sequence, slice 

thickness=4 mm , TR=9.2 ms, TE=4.16 ms, flip angle=40°, 256x256 matrix, FOV=220 mm).  The localizer 

sound tends to be the most startling and unpleasant for the dogs.  This is minimized by acquiring a single 

plane, but repeating it 3 times in case the dog startles at the onset.  Because the chin rest centers the 

dog in the left-right direction, a single sagittal image is all that is necessary for planning the field-of-view 

for the subsequent scans.  

After the localizer, a T2-weighted structural image is acquired with a turbo spin-echo sequence 

(28 2 mm slices, TR=3500 ms, TE=11 ms, flip angle = 131°, turbo factor =15, 128x128 matrix, 1.5 x 1.5 

mm in-plane resolution), which lasts ~30 s. We use low-SAR and whisper mode to minimize acoustic 
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noise.  This sequence was optimized to yield good contrast between gray and white matter in the fastest 

time possible. 

For functional scans, we use single-shot echo-planar imaging (EPI) to acquire volumes of 21 

sequential 2.5 mm slices with a 20% gap (TE=25 ms, TR=1200 ms, flip angle=70°, 70x70 matrix, FOV=208 

mm, 3 x 3 mm in-plane resolution). Slices are oriented transversely to the dog’s brain (coronal to the 

magnet because the dog is positioned 90° from the usual human orientation) with the phase-encoding 

direction right-to-left. Sequential scans are preferred to minimize between-plane offsets when the dog 

moves. The 20% slice gap minimizes crosstalk for sequential acquisitions. The right-left phase encoding 

minimizes ghost images from the neck that would otherwise overlap into the dog’s brain. TE is 

decreased slightly to minimize distortion. TR is as short as possible to acquire enough slices to cover the 

entire brain of most dogs while not so short as to significantly decrease signal. 

 

Experimental Design 

The imaging protocol is an adaption of a previous experiment (Cook et al., 2014). During 

training, dogs are taught two hand signals: one representing a food treat (reward) and one representing 

no treat (no reward) (Fig. 2). Each hand signal is shown for 10 s, allowing enough time for the HRF to 

reach a peak before the dog moves to eat the treat. The key manipulation is who gives the signal: 

handler with whom the dog has been training or a stranger. There are four functional runs (each with 15 

reward trials and 15 no-reward trials): 1) handler; 2) stranger; 3) stranger; 4) handler. The order of runs 

is counterbalanced in time to avoid confounding nonspecific effects due to repetition. Depending on the 

speed of the human, each run lasts 5-7 minutes, yielding 250-350 volumes/run, for a total 1000-1500 

volumes. With time for acclimation and breaks between scans, the entire session lasts about 1 hour for 

each dog. 

 

Data Analysis 

Preprocessing. Functional data was preprocessed using AFNI and its associated functions. 

DICOM files of the EPI runs were first converted to AFNI BRIK format using the to3d command. The EPI 

runs were then subjected to motion correction using 3dvolreg’s 6-parameter affine transformation, 

employing a two-pass method, where the first pass results in a crude alignment and the second pass a 

 

Fig. 2. “Reward” hand signal (left) and “no reward” signal (right). 
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fine alignment. All volumes were aligned to a reference volume, which was manually chosen volume 

from the first run based on a visual inspection. 

Because of the dog’s intermittent motion, censoring (removal) of volumes with artifacts is 

crucial. We used three separate methods to censor volumes with motion artifacts. First, 3dToutcount 

was used to output the fraction of outlier voxels for each volume. 3dToutcount defines outliers as those 

voxels whose signal intensity deviates from the median absolute deviation of the time series. Volumes 

with a fraction larger than 0.01 were censored from the statistical analysis. Second, 1d_tool.py was used 

to censor volumes based on the amount of estimated motion outputted from 3dvolreg. 1d_tool.py 

computes the Euclidean norm of the derivative of the rotation and translation parameters outputted 

from 3dvolreg. We then used a Euclidean norm cut-off of 1 to generate the censor file. Finally, we 

visually inspected the resulting time series with the censored volumes from 3dToutcount and 

1d_tool.py, and censored any volumes that still showed obvious artifact. The majority of the censored 

volumes followed the consumption of the food reward. 

The EPI images were then smoothed and normalized to %-signal change. Smoothing was applied 

using 3dmerge, with a 6 mm kernel at Full-Width Half-Maximum (FWHM). To convert signal intensity 

values to %-signal change, 3dcalc was used to subtract and then divide by the mean EPI image. These 

values were then converted to percentages by multiplying by 100.  

General Linear Model (GLM). For each subject, a GLM was estimated for each voxel using 

3dDeconvolve. The task-related regressors included: 1) handler reward hand signal; 2) handler no-

reward hand signal; 3) stranger reward hand signal; and 4) stranger no-reward hand signal. All events 

were specified as variable duration events using the dmUBLOCK function. To control for subject 

movement, the 6 motion regressors output from 3dvolreg were also included in the model. To account 

for differences between runs, a constant and linear drift term were included for each run. We generated 

2 contrasts that depended on the source of the hand signals: 1) Handler: [reward – no reward]; and 2) 

Stranger: [reward – no reward]. 

Spatial Normalization. For each dog, three spatial transformations were computed: 1) rigid-body 

mean EPI to structural (6 dof); 2) affine structural to template (12 dof); and 3) diffeomorphic structural 

to template (Datta et al., 2012). These transformations were concatenated together and applied to 

individual contrasts obtained from the statistical model described above. The end result was a contrast 

image for each dog transformed into template space, allowing the computation of a group level statistic 

across all dogs. The transformations were computed using the software package, Advanced 

Normalization Tools (ANTs) (Avants et al., 2011).  

Regions-of-interest (ROIs). Based on previous experience, we defined 3 ROIs (Fig. 3): 1) bilateral 

ventral striatum (VS) at the location of maximal activation in previous studies with this paradigm in a 

different group of dogs   (Berns et al., 2012; Berns et al., 2013; Cook et al., 2014); 2) bilateral amygdala 

(AMY); and 3) a region of visual cortex/temporal lobe previously identified to be face-selective in dogs, 

called dog face area (DFA) (Dilks et al., 2015). The amygdala ROI was based on the assumption that 

activity there would be related to arousal and could be relevant for predicting service dog success. The 

DFA was based on the possibility that differences in face-processing might also be relevant. The striatum 

and amygdala ROIs were spheres of 3 mm radius centered on these structures in template space. The 

DFA ROI was oblong and based on the location previously observed. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 12, 2016. ; https://doi.org/10.1101/080325doi: bioRxiv preprint 

https://doi.org/10.1101/080325


7 
 

Classifier. The primary goal of the project was to develop and test a brain-based classification 

algorithm that would predict successful graduation of service dogs. We used both the scikit-learn 

(http://scikit-learn.org) package in Python and glmfit function in Matlab to perform model-fitting, 

feature selection, and cross-validation. First, we performed feature selection by fitting both the ROI data 

and two demographic parameters: sex and responsiveness. The responsiveness score was assigned by 

the dogs’ trainers mid-way through formal training based on the dog’s overall temperament, around the 

time of MRI-scanning. Values ranged from 1-6, with a higher score being more likely to succeed in the 

program and indicated a dog that is focused on and responsive to its handler. Responsiveness scores 

were assigned by handlers unaffiliated with the actual MRI training. 

We tested several kernels including logistic, naïve Bayes, and linear support vector machine 

(SVM). We found that logistic regression consistently performed the best and so used that for feature 

selection. Because of the imbalance in dog outcomes, failures were weighted three times successes in 

the regression. First, we evaluated a behavioral-only model that consisted of sex and responsiveness 

score. This model is important because it provides a metric of performance that could be obtained 

without the need for brain-imaging. To be of practical use, a brain-based model should perform at least 

as well as behavior, and ideally, improve the performance of the classifier when combined with 

conventional behavioral measures like the responsiveness score. For feature selection, we tested the 

following models: 1) responsiveness; 2) sex + responsiveness; 3) 7 ROIs; 4) 4 ROIs; 5) sex + 4 ROIs; 6) 

responsiveness + 4 ROIs; 7) sex + responsiveness + 4 ROIs; 8) sex + responsiveness + 3 ROIs. The 7-ROI 

model consisted of the extracted contrast for [reward – no reward] from the VS, AMY, and DFA in both 

the handler and stranger runs. It additionally included the interaction between AMYxDFA for the 

stranger run on the possibility that there was an important interaction between face processing and 

amygdala activation. The 4-ROI models retained the terms for VS, AMY, DFA, and AMYxDFA from the 

stranger run only. And the 3-ROI model dropped the interaction term, retaining just VS, AMY, and DFA 

from the stranger run. 

We calculated confusion matrices for each model with a threshold of 0.5, but for overall 

comparisons, we used the area-under-the curve (AUC) for the receiver operating characteristic (ROC), 

which plots true positive rate (TPR) vs. false positive rate (FPR) and thus does not depend on a particular 

threshold. 

 

Fig 3. ROIs in: 1) ventral striatum; 2) amygdala; 3) dog face area of visual cortex. 
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RESULTS 

The MRI-dogs had a high proportion of successes with 

77% being placed in one of the assistance-dog categories (Table 

2). Only 10 dogs were released for behavioral reasons. Although 

males slightly predominated in the failures, this was not 

statistically significant (Table 3).  

As a check that the experiment was broadly consistent 

with previous imaging results, we first examined the whole-brain 

contrast for [reward – no reward] hand signals, averaged across 

all runs (both handler and stranger). This resulted in robust 

activation of the ventral striatum (Fig. 4), confirming the validity of the paradigm. 

Both the behavior-only classifiers performed above 

chance. The sex+responsiveness model did very well, achieving 

an AUC=0.85 (Fig. 5, blue). The 7-ROI model achieved similar 

performance with an AUC=0.88.  However, only the 

coefficients from the stranger run were significant, and so we 

dropped the features from the handler run, giving the sex+4-

ROI model, which had an AUC=0.90 (Fig. 5, green). We then 

combined the sex+responsiveness features with the 4 ROIS 

(VS, AMY, DFA, AMYxDFA), which performed near perfectly 

with an AUC=0.96. Concerned that this model might overfit 

the data, the interaction term was dropped, giving the model of sex + responsiveness + 3 ROIs (from the 

stranger run) (Fig 5, red). This model had an AUC=0.95. The confusion matrices show the power of 

combining behavioral and brain measures (Table 4). 

Table 2. Outcomes of the dogs. 

Outcomes   

Service Dog 21 

Skilled Companion 5 

Facility Dog 4 

Hearing Dog 1 

PTSD Dog 2 

Behavioral Release 10 

TOTAL 43 
 

Table 3. Distribution of successes 

and failures by sex. Sex was not a 

significant effect (Fisher’s exact 

test, P=0.47). 

  Male Female  

Fail 7 3  

Pass 17 16  

    
 

 

Fig. 4. Average activation of [reward – no reward] hand signals, averaged across all conditions. 

Contrast is thresholded at p<10-4. Robust bilateral activation of ventral striatum is seen. 
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Importantly, even in the combined model, the 

coefficients for the VS and AMY were statistically 

significant (Table 5). This indicates that the brain data 

added significant explanatory power even after 

accounting for sex and responsiveness. Moreover, the 

signs of the coefficients are interpretable. Because 

female was coded as 1, and male as 0, the positive 

coefficient indicates that females had a higher chance 

of success, but only after accounting for the 

responsiveness score, which, as expected was also 

 

Fig. 5. ROC plot of 3 classifier models. The combination of sex, behavior 

and 3 ROIs in the stranger-run performed the best. 

Table 5. Results of the full logistic model. 

 coefficient p 

intercept -13.42 0.0025 

sex 3.12 0.0285 

responsiveness 2.81 0.0029 

VS str 8.88 0.0034 

AMY str -7.11 0.0032 

DFA str -1.70 0.2222 
 

Table 4. Confusion matrices for different models. Threshold for predicted pass/fail=0.5. 

 Behavior Only Brain Only Behavior + Brain 

 

Sex+Resp 
Sex+VS+AMY+DFA+ 

AMYxDFA 
Sex+Resp+VS+AMY+

DFA  

 Pred Fail Pred Pass Pred Fail Pred Pass Pred Fail Pred Pass 

True Fail 8 2 9 1 9 1 

True Pass 9 24 7 26 3 30 

NPV PPV 47% 92% 56% 96% 75% 97% 
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positively correlated with success. The 

differential response to [reward – no reward] 

was positively correlated in the ventral 

striatum and negatively correlated in the 

amygdala.  

 Because these models were fit to all 

of the data, the performance represents a 

best-case scenario and would not be 

expected to do this well with new data (Fig. 

6). To get a closer estimate of real-world 

performance, we performed the same 

classification of the final model using 10 

iterations of stratified random shuffling, with 

a test size of 25%. Stratified random shuffling 

balances successes and failures for each split, 

which is important given our high class 

imbalance. We chose a 75/25 train/test split 

on each iteration due to the small sample 

size that would lead to high variance in accuracy estimates if smaller training sizes were used. As 

expected, the performance was not as good as the models fit to all of the data, but the AUC=0.79, which 

is still considered moderately good (Fig. 7). 

 

DISCUSSION 

The primary goal of this study was 

to determine the efficacy of awake dog 

fMRI in predicting a dog’s suitability for 

assistance work. Using a paradigm in 

which the dog passively responded to 

hand signals indicating either incipient 

food reward or nothing, we found that the 

person giving the signals affected the 

dogs’ brain responses. In particular, when 

a stranger gave the signals, instead of a 

familiar handler, we could use the 

differential activation in three regions-of-

interest to predict the likelihood of a dog 

succeeding in assistance training. 

By itself, the brain-imaging model 

performed about the same as the 

sex+behavior model, with both achieving 

an AUC of 0.85-0.90. This alone may not warrant the use of brain imaging as a screening assessment for 

potential service dogs when common demographics and behavior tests do just as well. This level of 

predictive value is comparable to that reported in previous studies of behavioral tests of juvenile dogs 

(Harvey et al., 2016). However, combining brain activation with sex and behavior resulted in a significant 

 

Fig. 6. Performance of the sex+brain model vs. actual 

outcome. 0=fail; 1=success. 

 

Fig. 7. Estimate of real-world performance of the sex+ 

brain model using stratified random shuffling (P=0.02). 
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improvement in predictive power, increasing the AUC to 0.95. Depending on the threshold chosen, this 

resulted in a PPV of up to 97% (Table 4). The brain data seems to be particularly valuable in decreasing 

the false negatives at any given threshold. 

Although the results reported here represent the largest single fMRI study of dogs, the sample 

size is still considered small for predictive modeling. When the study was designed, we anticipated a 

60% failure rate. Instead, we observed a 25% failure rate, which limits the generalizability of the model 

results. To mitigate the possibility of overfitting the model to the data, we performed cross-validation 

using stratified random shuffling. Stratification preserves the ratio of outcomes in each train/test 

iteration. With such a small sample size, we run the risk of noise dominating any individual iteration and 

so this type of validation is likely overly conservative, but this may counteract the optimistic 

performance obtained from the full dataset. The cross-validation suggested an AUC of 0.79 under real-

world conditions, which is considered moderately good in terms of a diagnostic test. 

Would such a procedure be worth the added cost of training and scanning dogs? The answer 

depends on the total cost to successfully place an assistance dog. Depending upon the vendor and the 

intended working role (e.g., psychiatric, mobility, hearing assistance), the cost to train a service dog may 

range from $20,000 to $50,000. The typical capital outlay for a nonprofit service dog organization that 

uses volunteer puppy raisers for the initial 12 to 18 months of the dog’s life is anywhere from $20,000 to 

$35,000. Thus, we can estimate the cost to raise and train a dog that does not get placed is still 

approximately $25,000. Conversely, there is also a cost for releasing a dog that might have become a 

service dog, but this may be relatively less if resources aren’t expended to train her. Therefore, any cost 

savings would come from identifying dogs unlikely to succeed and releasing them from training as soon 

as possible. 

Therefore, one should focus on the neuroimaging to identify dogs likely to fail. In a best case 

scenario, Table 4 suggests that 9 out of 10 dogs were correctly identified as failures (true negatives), and 

7 were flagged incorrectly (false negatives). Clearly there is some cost to false negatives, but this is hard 

to estimate. Early identification of the 9 dogs could have saved approximately $225,000. If the cost of 

the MRI was $2000, then $86,000 would have been expended on all 43 dogs, for a net savings of 

$139,000. Would those dogs have been identified anyway? The sex+responsiveness model shows that 8 

of them could have been, but at the cost of 2 more false negatives. However, the responsiveness score 

is assessed after the dogs are well into advanced training, after which they have already incurred costs. 

The true value of neuroimaging, then, can be realized primarily as an early screening tool, before dogs 

are selected for advanced training. For this to occur, dogs would need to begin MRI training at 12 

months of age, and scanned at 15 months, when they would normally enter advanced training. 

The higher than anticipated success rate of the dogs could be due to chance, although it is also 

possible that the MRI-training had a positive effect on the dogs. The training teaches self-control in the 

form of a highly disciplined ‘down-stay’ for minutes at a time in a noisy environment. It may be that this 

training generalizes to other skills necessary for an assistance dog. 

Beyond the predictive value of the model, the relationship of brain activation in specific regions 

to outcome gives new insights into why some individuals are better assistance dogs. Even after 

controlling for sex and responsiveness, we found a significant relationship of outcome to activity in the 

ventral striatum and amygdala. We had hypothesized such relationships based on our previous findings 

that related striatal activity to cues signaling rewards like food and praise (Berns et al., 2012; Berns et 

al., 2013; Cook et al., 2014; Cook et al., 2016). Consequently, we designed the current experiment to 

measure the interaction between signals that designated reward and the source of the signal (familiar 
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handler or a stranger). We found that the relative responses in striatum and amygdala in the handler 

conditions were not a significant predictor of outcome, but the responses in the stranger condition 

were. This was a surprise because we had hypothesized that the interaction would be the significant 

effect. Instead, the relevant responses could be isolated to the stranger condition. 

Within the stranger condition, the differential response to [reward – no reward] in ventral 

striatum was positively correlated with a successful outcome, while the differential response in 

amygdala was negatively correlated to outcome. Considering first the striatal response, there is a vast 

literature linking ventral striatum, including nucleus accumbens, to positive expectation of reward 

(Schultz et al., 1997; Knutson et al., 2001; Montague and Berns, 2002; Berridge and Robinson, 2003; 

Ariely and Berns, 2010). It would seem that future assistance dogs can generalize the hand signals 

learned from their handler to a stranger. This ability to transfer knowledge learned from one person to 

another may be a key attribute of a good service dog.  

The negative correlation with amygdala activation further clarifies the interpretation. Because 

amygdala activation can be seen in response to both positively and negatively valenced stimuli, its 

presence can be interpreted broadly as a measure of arousal. Here, arousal could occur due to either 

excitement or anxiety. But neither would be good for a service dog. Our results suggest that dogs who 

were more aroused by the stranger signals, as measured by the amygdala activation, were less likely to 

be placed as service dogs. Together, the results show that dogs successfully placed as service dogs 

transfer knowledge to strangers without excessive arousal. 
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