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Abstract

In the early visual system, cells of the same type perform the same computation in di↵erent

places of the visual field. How these cells code together a complex visual scene is unclear. A

common assumption is that cells of the same type will extract a single stimulus feature to form

a feature map, but this has rarely been observed directly. Using large-scale recordings in the

rat retina, we show that a homogeneous population of fast OFF ganglion cells simultaneously

encodes two radically di↵erent features of a visual scene. Cells close to a moving object code

linearly for its position, while distant cells remain largely invariant to the object’s position and,

instead, respond non-linearly to changes in the object’s speed. Cells switch between these two

computations depending on the stimulus. We developed a quantitative model that accounts for

this e↵ect and identified a likely disinhibitory circuit that mediates it. Ganglion cells of a single

type thus do not code for one, but two features simultaneously. This richer, flexible neural map

might also be present in other sensory systems.
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Introduction

A major challenge of the visual system is to extract meaningful representations from complex

visual scenes. Feature maps, where the same computation is applied repeatedly across di↵erent

sub-regions of the entire visual scene, are essential building blocks for this task, for both sen-

sory networks (Fitzpatrick and Ulanovsky, 2014; Ohki et al, 2005) and artificial vision systems

(LeCun et al, 2015). Ganglion cells, which form the retinal output, can be divided into di↵erent

types (Wassle and Boycott, 1992; Devries et al, 1997; Field et al, 2010; Baden et al, 2016). In

the classical view of retinal function, cells of the same type extract a single feature from the

visual scene and generate a feature map that is then sent to the brain (Azeredo da Silveira R

and Roska, 2011). This “one type = one feature” view is well illustrated in the retina when

objects move across the visual field at constant speed. In this case, previous work has shown

that a single type indeed represents a single feature of the scene (Berry et al, 1999; Vaney et al,

2012; Leonardo and Meister, 2013; Trenholm et al, 2013).

However, processing by ganglion cells also depends on the visual context (Shapley and

Enroth-Cugell, 1984; Smirnakis et al, 1997; Ge↵en et al, 2007; Farrow et al, 2013; Tikidji-

Hamburyan et al, 2015), so that feature extraction will be influenced by the global parameters

of the visual scene, e.g., by its luminance and contrast. Furthermore, ganglion cell activity can

be modulated by stimulation outside of the cells’ classically-defined receptive fields (McIlwain,

1964; Roska and Werblin, 2003; Passaglia et al, 2001, 2009; Marre et al, 2015), implying that

feature extraction may not be entirely local, especially when presented with complex, dynami-

cal stimuli. As a result, it is not clear how irregular trajectories of moving objects, which are

ubiquitous in natural scenes (Eizenman et al, 1985; Branson et al, 2009), are represented by

ganglion cells of the same type.

Here we show that a single ganglion cell type extracts simultaneously two very di↵erent

features from a visual scene composed of irregularly moving bars. Within a homogeneous pop-

ulation of fast OFF ganglion cells recorded simultaneously, cells whose receptive field center

overlapped with an object performed a linear computation that was highly sensitive to the posi-

tion of the object. In contrast, cells of the same cell type that were far from any moving object

responded nonlinearly to fast motion, and were largely invariant to the exact position of distant

objects. Individual cells switched from one computation to the other when their receptive field

center was stimulated. We constructed a model that quantitatively accounted for these findings,

and determined that the observed scheme of distal activation is implemented by a disinhibition

circuit of amacrine cells.
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Results

Cells of a single cell type respond to very distant moving objects

We recorded large ensembles of ganglion cells from the rat retina using a micro-electrode array

of 252 electrodes (Marre et al, 2012; Yger et al, 2016). We measured the receptive field center

of each cell with binary checkerboard noise. To separate ganglion cells into di↵erent types, we

displayed several stimuli (full field flicker, drifting textures) and grouped together cells with

similar responses (see Methods). In the following, we focus on a single group composed of well-

isolated fast OFF cells. Their responses to spatially uniform stimuli were nearly identical (fig.

1A), and their receptive fields clearly tiled the visual space (fig. 1B).

We then displayed a bar moving randomly over the visual field. This dark bar over a gray

background was animated by a Brownian motion with a feedback force to keep the bar positioned

over the array. As expected, ganglion cells whose receptive field center overlapped with the bar

position responded reliably to a repeated trajectory, as shown by their PSTHs in fig. 1C. More

surprisingly, reliable responses were also elicited in cells whose receptive field centers were far

away from the bar. The receptive field center diameter was on average 287 ± 23 µm (mean ±

SD, n=25), and cells as far as 670µm from the closest bar position responded to the moving

bar.

These distant cells fired synchronously to the moving bar, largely independently of the

location of their receptive field, while central cells did not. Central cells were only synchronous

when they were very close to each other. The mean cross-correlation between the responses of

pairs of central cells was 0.02 ± 0.04 (mean ± SEM, n = 20 pairs) for cells separated by more

than 200 µm along the axis perpendicular to the bar. In comparison, distant cells remained

synchronous over large distances (fig. 1D). The mean cross correlation was 0.53 ± 0.03 (mean

± SEM, n = 35 pairs, Pearson correlation r) for distant cells separated by more than 200 µm.

This distant activation had a profound e↵ect on the structure of the retinal activity: while

the bar covered a region 0.4 mm wide, ganglion cells were activated over an area wider than 1.4

mm (fig. 1E).

Linear computation inside and non-linear computation outside of the

receptive field center

We asked if the observed ganglion cell responses to motion outside their receptive field centers

could be explained by standard models of the retina. We fitted a Linear-Non-linear-Poisson

(LN) model (fig. 2A) to the response of each cell to non-repeated trajectories of the moving bar.
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Figure 1: A single cell type responds synchronously to distant moving objects. A: Raster of
25 cells of the same type responding to a full field uniform flicker. Each line corresponds to a repeat of
the stimulus, and each cell is indicated by a di↵erent color (alternating pink and blue). The black curve
indicates the light intensity of the flicker over time. B: Receptive fields of a population of ganglion cells of
the same type. Each ellipse represents the position and shape of the spatial receptive field associated with
one cell (1-SD contour of the 2D Gaussian fit to the spatial profile of the RF). Inset: temporal profiles of the
receptive fields of the same cells. C: PSTHs of multiple ganglion cells responding to repeated presentations
of a randomly moving bar. Gray shade: position of the bar as a function of time (shade width corresponds
to the bar width). Blue traces: PSTHs of individual ganglion cells, with baselines positioned to scale relative
to the bar. Blue and red vertical rectangles indicate central and distant cells, respectively. Black ellipse
shows an example synchronous firing event of the distant cells. D: Average ± SE cross-correlation between
PSTHs of pairs of cells, as a function of their pairwise distance measured along the bar motion axis. Curves
shown separately for cells whose receptive field center either was (blue) or was not (red) stimulated by the
bar. E: Schematic diagram shows central cells (blue) and distant cells (red) that respond synchronously.
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To test it, we repeated the same bar trajectory 54 times and compared predictions of the model

with the measured PSTH for each cell. When the bar was moving close to or inside the receptive

field center of the cell, the LN model predicted very well the response to the repeated sequence

(r = 0.79 ± 0.02, n = 25, fig. 2B). However, for cells that were distant from the bar, the same

LN model failed at predicting their responses (fig. 2C, r = 0.12 ± 0.02, n = 19). Performance

was much lower (p  10�25, two-sample t-test), and could not be explained by a decrease in

the reliability of the response (the ratio of explainable variability predicted by the model was

13% ± 2% , n = 19, see methods). This low performance was obtained despite the fact that we

fitted the LN model directly on the responses to the distant bar. The low performance was also

not due to any intrinsic property of these cells, but was related to the distance between the bar

and the receptive field. When we displayed the moving bar in di↵erent locations, the same cells

that were previously not predicted by the LN model (r = 0.12 ± 0.02, n = 19), with RFs far

from the bar, were predicted very well by a LN model when the bar was displayed inside their

receptive field center (r = 0.79 ± 0.02, n = 19 ; p  10�13, paired-sample t-test). In summary,

the LN model was a good model for stimuli inside the receptive field center, but not outside.

To improve the prediction, we considered a model with two stages of processing that im-

plements a non-linear summation within its receptive field (Victor, 1988; Gollisch and Meister,

2008; McFarland et al, 2013; Freeman et al, 2015; Vintch et al, 2015). The first stage was

composed of many stereotyped subunits that convolved the stimulus with a linear filter and

rectified the output to eliminate negative values. There were two types of subunits, ON and

OFF, designed to mimic bipolar cell processing. The subunits of the same type were identical

except that the linear filters were centered at di↵erent locations, such that they tiled the visual

field. In the second stage, the outputs of the subunits was pooled together linearly in a weighted

sum and then rectified to predict the firing rate (fig. 2D). To fit the model to data, we kept the

first stage fixed and fitted the subunit weights in the second stage of the model (see methods

for details).

This model predicted very well the responses of distant ganglion cells to a repeated random

trajectory (r = 0.73 ± 0.02, n = 19 fig. 2E). Performance was high for all distances of the

receptive field to the bar (fig. 2F), demonstrating that the subunit model robustly captured

responses that were not predicted by the LN model. Since the subunit model is a generalization

of the LN model, it performed also well for center stimulation: in this case, rectified subunits

were summed in the second stage of the model such that the net e↵ect of a stimulus in the

center was linearized (Werblin, 2010).

Our results showed that a population of cells of the same type extracted simultaneously two
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features from a single moving object. Cells whose receptive field centers overlapped with the

object performed a linear computation on the stimulus, well recapitulated by an LN model.

Distant cells performed a non-linear computation that was captured by a more complex subunit

model described above. Therefore responses to a distant moving bar could not be simply ex-

plained by using a broader linear filter within the LN model framework. Taken together, these

findings show that two radically di↵erent computations, performed on the same stimulus, can

coexist within a population of ganglion cells of a single type (fig 2G).

Switching between two modes of computation

Since the cells perform distinct computations in their center and in their distant surround, we

studied how these computations interact when both center and surround are stimulated at the

same time. What happens to distant cells if another bar is simultaneously shown inside their

receptive field center? One possibility is that center and distant responses are simply added, so

that the response to two moving bars would be the sum of the responses to each bar presented

separately.

To test this, we displayed two bars moving randomly, with distinct trajectories, in two

di↵erent locations. The distance between the bars’ average positions was 600 µm. We also

displayed each bar in isolation, at the same location and animated by the same trajectory as

in the combined bar stimulus. We found that the response to the two bars was not equal to

the sum of the individual responses to each bar presented separately (fig. 3A). Instead, if a

bar was moving inside the receptive field center of the cell, the response to the distant bar

was suppressed, while the distant bar exerted a negligible e↵ect on the response to the central

bar. Specifically, when one of the bars was moving inside the receptive field of a cell, the

response to the combined bar stimulus was highly similar to the response to the single central

bar (r = 0.91 ± 0.01, n = 13). The residual response to the distant bar in the presence of

simultaneously presented central motion correlated poorly with the response to the distant bar

alone, and this discrepancy could not be explained by noise (fig. 3B, see methods for details).

To quantify further the observed suppression, we fitted the subunit model for the three stimuli

separately (bar 1, bar 2, two bars). We averaged the inferred subunit weights for all distant

cells to obtain an “average cell” and understand better how this cell type pools stimulation from

the far surround (see methods). The subunit weights inside the receptive field center, which

implement the linear computation, did not change in the combined bar condition relative to the

single distant bar condition (fig. 3C and supp. fig. 1 for OFF subunits). In contrast, the subunit

weights pooling the output of distant ON subunits were strongly decreased in the combined bar
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Figure 2: OFF ganglion cells perform a linear computation in their receptive field center, and
a non-linear computation in the surround. A: Schematic of the LN model, composed of a linear
filter and static non-linearity. B: Response (PSTH, gray) of a ganglion cell whose receptive field center is
stimulated by the bar, is predicted by the LN model (blue). r = 0.89. C: Response (PSTH, gray) of the same
ganglion cell when the bar is far from the receptive field center, is not predicted well by the LN model (blue).
r = 0.02. D: Schematic of the subunit model, composed of a first stage (each subunit linearly filters the
stimulus and applies a static nonlinearity), followed by weighted linear pooling and a second non-linearity.
E: Response (PSTH, gray) of the same ganglion cell (as in A and B) to distant stimulation is predicted
well by the subunit model (red). r = 0.83 F: Performance of the LN (blue) and subunit (red) models in
predicting ganglion cell responses, as a function of the distance of the cell to the bar. Blue shade: position
distribution of the bar. G: Schematic showing that cells whose receptive field center is on top of the moving
bar perform a linear computation while distant cells perform a non-linear computation.
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condition relative to single distant bar condition (fig. 3D). Consequently, stimulation in the

receptive field center suppresses the contributions of distant subunits which implement the non-

linear computation. In summary, we observed a switch between two very di↵erent computations:

cells changed from performing a non-linear computation on distant stimuli to performing a linear

computation on the stimuli inside their receptive field centers (fig. 3E).

Global gain control explains the gradual suppression of distant re-

sponses

Our previous results indicated that the influence of distant inputs is suppressed when the re-

ceptive field center is stimulated. To elucidate further how central inputs suppress distant ones,

we asked if the suppression increases gradually as central inputs become progressively stronger,

or if the suppression is only activated once the strength of central inputs exceeds a threshold.

To test this we displayed a series of stimuli where two bars were oscillating over the visual

field at incommensurable frequencies (see methods). By averaging over the oscillation period of

each bar, we could isolate the responses due to each bar. Our analysis focused on neurons for

which one of the bars was within the receptive field center, while the other bar was outside. The

central bar was displayed at several luminances, ranging from zero contrast (i.e., at background

gray level) to maximally dark bar. We observed that responses to the distant bar decreased

gradually as the luminance of the central bar went from gray to full dark, implying that the

suppression of distant inputs was gradual (fig. 4A and B). Next, we looked for a general model

that could explain center-strength-dependent suppression of responses to distal stimulation.

We hypothesized that the observed suppression is due to a gain control acting on the ganglion

cell. In this view, distant inputs originating in the far surround are much weaker than the inputs

originating in the center, and a gain control mechanism normalizes the cell’s firing rate by the

total overall input. Specifically, our model sums the inputs coming from central and distant

stimulation, averages the result over a long (1 s) temporal window to get the normalization

signal, and finally divides the instantaneous input by this normalization to get the final firing

rate prediction (see methods). When the center is stimulated, the gain control will thus divide

the output by a large normalization factor, which will suppress weak inputs from the surround

(fig. 4C). However, when the surround is stimulated alone, the gain control will act as an

amplifier, allowing the cell to respond to the distant bar (see fig. 4D for an illustration).

We fitted such a gain control model, inspired by (Shapley and Victor, 1979; Berry et al,

1999), to neurons stimulated by two bars with di↵erent luminances (see methods). The model

predicted very well the responses to the di↵erent stimuli (fig. 4A): it explained 84%± 3% (n =
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Figure 3: Suppression of distant responses by a bar moving inside the receptive field center.
A: Response raster of a single cell to a moving bar presented in and/or outside of its receptive field center.
Each dot is a single spike from the recorded cell. Each line corresponds to a di↵erent repetition of the same
stimulus. i: bar moving inside the receptive field center. ii: bar moving outside the receptive field center.
iii: both bars displayed together. Black ellipses indicate examples where the response to the distant bar is
strongly suppressed by the stimulus inside the receptive field center. B: Suppression index for real cells (data,
blue) and for the additive model (control, gray); see text and methods for details. C, D: Spatio-temporal
distribution of the ON-subunit weights for the second stage of the subunit model, averaged over all cells. C:
combined bar stimulus. D: a single distant bar stimulus. Blue and red ellipses show the reduction of the
weights in the surround in the presence of central bar motion. E: ON-subunit weights summed over all times
lags and averaged over all cells, as a function of distance to the receptive field center. Blue: combined bar
stimulus, red: a single distant bar stimulus. F: Schematic showing how cells switch the mode of computation
when a bar is displayed within their receptive field center.
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168, see methods) of the variance in responses to the distant bar across all contrast conditions.

Note that an additive model, where the responses to isolated distant and central bars are simply

summed, could not explain any modulation of the distant response by the central bar contrast

(fig. 4B).

The subunit model equipped with gain control thus represents a complete functional model

able to quantitatively explain the responses of ganglion cells to randomly moving bars. It not

only accounts phenomenologically for the suppression of responses to the distant bar due to

central motion, but also predicts how such suppression depends on the luminance of the central

bar.

Center computation is position sensitive, while position-independent

distant computation codes for large stimulus changes

Our model showed that fast OFF ganglion cells performed two very di↵erent computations on

the stimulus: a linear one inside their receptive field center and a non-linear one outside. But

what visual feature is extracted by each of these computations? To address this question, we

first plotted the distribution of bar positions 100 ms before a spike. For an example central cell

(fig. 5A), this distribution was narrow and had a cell-dependent preferred location, indicating

the ability of central cells to code for the position of the bar. In contrast, for a distant cell

the same distribution remained broad and largely overlapping with prior distribution of bar

positions (fig. 5A), suggesting that distant cells were largely insensitive to the exact position of

the stimulus.

Distant cells nevertheless were selective for the stimulus. The average speed (absolute ve-

locity) preceding the spike of a distant cell showed a preference for fast bar motions (fig. 5C).

By quantifying the information carried by each cell about bar position and speed (see methods,

n = 25 cells), we confirmed that distant cell responses encoded substantially more informa-

tion about speed than about position, whereas central cells coded primarily for position (fig.

5D). The observation of highly synchronous responses of distant cells to a random repeated bar

trajectory (fig 1) further supports our interpretation that the distant computation is largely

invariant to the exact bar position. We also analyzed the subunit model fitted to cell responses

in the previous section and found that cells close the bar were much more sensitive to the bar

position than distant cells, confirming these results (supp. fig. 2).

Cells close to the bar thus computed a feature strongly related to the exact position of the bar,

while distant cells were largely invariant to the bar position (fig. 5E). How can we interpret this

invariance to position and simultaneous sensitivity for high-speed motion? Fig 3 shows that cells
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Figure 4: A global gain control model explains gradual suppression of distant responses. A:
Gradual suppression of the response to the distant bar as central bar contrast increases. Left: schematic
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pooled the output of distant subunits over a large spatial region of the surround. This pooling

was largely unselective for position and thus explained how the observed distant responses could

remain nearly invariant to the position of the bar. To trigger a response in distant cells, the bar

had to sweep across a large region of space: this would lead to an activation of a large number

of subunits in a short amount of time, that are summed together to result in the activation of a

ganglion cell. This activation should only occur when the bar moves at su�ciently high speed,

explaining the preference for high speed motion.

However, our model further predicted that flashing a large object in the cell’s surround

should also activate many subunits at the same time and trigger a response. We confirmed this

was indeed the case (fig. 6B ; note that distant responses are ON responses, consistent with

our model, where surround is dominated by ON subunits). This result suggests that distant

cells should not be viewed narrowly as encoding “high speed” (an interpretation that is natural

for the moving bar stimulus); rather, a generic interpretation is that distant cells code for any

“large change” in the stimulus. In summary, central cells are position sensitive, while distant

cells are largely insensitive to the exact position of the stimulus and behave like generic “change

detectors”.

A disinhibitory circuit of amacrine cells relays distant inputs

We next examined how the computations required by our phenomenological model could be

implemented by the retinal network. The subunits of our model most likely correspond to bipolar

cells (Demb et al, 2001; Baccus et al, 2008; Gollisch and Meister, 2010). For subunits in close

physical proximity to the ganglion cell, the weights can result from direct synaptic connections

between bipolar cells and the ganglion cell. In addition to these proximal connections, however,

our model suggested that the ganglion cell also integrated the outputs of distant subunits, albeit

with a smaller weight. What could be the circuit basis of such distal integration?

One possible mechanism explaining the activation of ganglion cells by distant stimuli would

involve amacrine cells: they could propagate the activity of bipolar cells laterally to distant

ganglion cells (Ge↵en et al, 2007). To test if glycinergic amacrine cells are involved in the

distant activation of ganglion cells, we blocked their synaptic transmission with strychnine (see

methods). This blocker suppressed distant responses to a flashed bar (fig. 6B, C), while leaving

central responses mostly una↵ected (fig. 6A, C). Washing out the drug restored the distant

responses (fig. 6B, C). Glycinergic amacrine cells therefore constitute a necessary component of

the observed distant responses.

Suppression of distant responses by strychnine showed that the weights assigned to distant

12

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 10, 2016. ; https://doi.org/10.1101/080135doi: bioRxiv preprint 

https://doi.org/10.1101/080135
http://creativecommons.org/licenses/by-nc/4.0/


Speed (in Pm/sec)
0 500 1000 1500 2000

Pr
ob

ab
ili

ty

Average distance to bar �Pm)
0 100 200 300 400 500 600 700

I sp
ee

d
 / 

I po
sit

io
n

0

2

4

6

8

10
Time to spike (s)

-1 0 1

In
fo

 (b
its

/s
)

0

1

2
Position
Speed

Time to spike (s)
-1 0 1

Time to spike (s)
-1 0 1

Position 
-500 0 500

Pr
ob

ab
ili

ty

 prior
 spike -100ms

200 400 600 800 1000
Pr

ob
ab

ili
ty

A B C

D
EƉŽƐŝƟŽŶ

speed

Position
coding

Position
invariant
coding

 prior
 spike -100ms

 prior
 spike -100ms

�Pm) Position �Pm)

Figure 5: Central computation codes for position, while distant computation is invariant to
position and codes for stimulus change. A: Distribution of the bar positions for the complete stimulus
trajectory (“prior distribution”, gray) and 100 ms before the spike of a central cell (blue). Zero corresponds
to the location of the cell’s receptive field (RF) center. B: Same as A for a distant cell with its receptive
field center far from the bar. C: Distribution of the absolute speed of the bar for the complete stimulus
trajectory (gray) and 100 ms before the spike of a distant cell (red). D: Ratio between the information
individual cells carry about bar speed vs about bar position, as a function of the average distance to the
bar. Distribution of bar positions is shown as a blue shade. For selected cells, the insets indicate the mutual
information between the spiking response and the position (blue) or the speed (red) at di↵erent time delays.
E: Schematic showing that central cells code for bar position while distant cells are nearly invariant to it.
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subunits in our model are mediated by glycinergic amacrine cells. How could these weights be

positive, while glycinergic amacrine cells have an inhibitory e↵ect on their post-synaptic tar-

gets? One explanation is a disinhibitory loop, where one amacrine cell inhibits its post-synaptic

amacrine cell target, which in turn disinhibits the ganglion cell (directly or through bipolar cell)

(see also (Manu and Baccus, 2012)). Such a disinhibitory circuit could involve serial connections

between GABAergic and glycinergic amacrine cells (Eggers and Lukasiewicz, 2010), or, alter-

natively, serial connections between di↵erent types of glycinergic cells. Glycinergic amacrine

cells can ultimately inhibit OFF bipolar cells (Eggers and Lukasiewicz, 2011) or ganglion cells

(O’Brien et al, 2003). The net e↵ect of such a disinhibitory circuit is a distant excitation of

ganglion cells (fig. 6D).

Discussion

We have shown that two representations of a stimulus coexist, at the same time, within a neural

population formed by ganglion cells of a single type. We constructed a mathematical model

that recapitulated the multiplexing of the two relevant computations. To that end, the model

required nonlinear summation within the receptive field as well as a gain control mechanism. The

model predicted precisely the responses of the fast OFF ganglion cells to a bank of dynamical

stimuli which included complex, spatio-temporal stimulation in the far surround. Finally, our

experiments suggested that a disinhibitory retinal circuit composed of two amacrine cells could

mediate the distant computation.

When an object is moving randomly, neurons whose receptive field centers overlap with the

object code for its position, while distant neurons code for general, large-scale changes in the

stimulus. Each neuron can switch from one computation to the other depending on the visual

context. Recent works have shown that the feature extracted by a cell can change when the

average luminance changes (Smirnakis et al, 1997; Tikidji-Hamburyan et al, 2015), or during

saccadic exploration of the visual scene (Ge↵en et al, 2007). Here we show that, in a single visual

scene, the same cell type can be used to extract two features simultaneously. Feature extraction

does not change only with the average luminance of the visual scene. Rather, two features can be

extracted at the same time by a single cell type in a single visual scene. These findings expand

the traditional view of a “neural map” where there is a one-to-one correspondence between one

cell type and one visual feature: here we show that a “neural map” can contain more than

one “feature map” at the same time. Multiplexing two computations in a single neural type

could enable optimal use of coding resources: if ganglion cells don’t have an object inside their

receptive field center, rather than staying silent, they are put to use to code for a di↵erent
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Figure 6: A disinhibitory circuit of amacrine cells is responsible for distant activation. A:
Response to a bar flashed inside the receptive field center is not altered by the addition of strychnine. Single-
cell responses to repeated presentations of the dark bar (shaded gray indicates the time window where the
bar was presented); each dot is a spike, each row corresponds to a stimulus repeat. Black raster: control. Red
raster: after addition of 1 µM strychnine to the bath. Green raster: after washing out strychnine. Bottom:
PSTHs computed from the rasters with the same color code. B: Same as A for a bar flashed far from the
receptive field center. C: Percentage of cells responding to a central flash (left) and to a distant flash (right)
before and after strychnine application, and after the drug wash-out. Same colors as A and B. D: Schematic
showing a putative circuit for distant activation. When a distant stimulus is present, excitation of amacrine
cells inhibits subsequent glycinergic amacrine cells (red), which, in turn, dishinibit bipolar cells and ganglion
cells. ONL: outer nuclear layer. INL: inner nuclear layer. GCL: ganglion cell layer.
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Figure 7: Cells of a single type switch between two di↵erent computations. A: Schematic of how
cells of the fast OFF type code for a moving stimulus (here an eagle depicted in black). Each circle represents
a fast OFF cell. Empty circles correspond to inactive cells, red circles to cells acting as change detectors,
while blue cells are sensitive to the exact position of the stimulus. B: Reorganization in the population code
following the simultaneous display of two stimuli. Same legend as A.

feature of the stimulus.

Having coexistent stimulus representations present in the same neural map may appear prob-

lematic for subsequent stages of processing: how can downstream neurons tease apart spikes

corresponding to one or the other computation? Our study shows that a large ensemble of gan-

glion cells will respond synchronously and sparsely to distant objects. While such responses could

appear negligible or ambiguous when observed at the single cell level, access to the complete

population would enable downstream processing to unambiguously recognize distant responses

by detecting synchronous ganglion cell activity. Thus, synchrony could serve as a signature in

the spike trains to separate position signals from change signals.

Previous works have shown that ganglion cells can be activated by fast motion in their far

surround (“shift-e↵ect”: (McIlwain, 1964; Cleland et al, 1971; Ikeda and Wright, 1972; Fischer

et al, 1975; Barlow et al, 1977)). Here we constructed a model that can accurately predict
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how fast OFF ganglion cells would respond to distant, complex stimuli, and how these distant

stimuli would be integrated with other stimuli simultaneously displayed inside the receptive field

center. Previous models mostly focused on how the surround modulates responses to central

stimuli. However, how responses to distant stimuli can modulate ganglion cells themselves,

and how they could be a↵ected by center stimulation, has received less attention (Shapley and

Victor, 1979). Demb et al (1999) found that inputs from center and surround stimulation were

summed linearly, while we found a non-linear suppression of distant inputs. This discrepancy

could be due to a di↵erence of species, cell type, or recording technique. Passaglia et al (2001)

showed that distant stimulation could be suppressed by center stimulation, but the timescale of

the modulation was much longer than in our work. Interestingly, Jadzinsky and Baccus (2015)

suggested a model to predict how stimulation of the surround can a↵ect the selectivity to the

center stimulation that bears some similarity with our model. In most studies, the stimulus

employed to modulate activity from the surround was very large. In our study, we showed that

the same stimulus triggered two di↵erent types of responses, a central one and a distant one,

within the same type of ganglion cell, demonstrating the coexistence of the two representations.

Our results suggest that the retinal network implements the activation of ganglion cells by

distant stimuli through a disinhibitory circuit in which intermediary amacrine cells are activated

by bipolar cells and subsequently inhibit glycinergic amacrine cells. This release of glycinergic

inhibition can a↵ect both OFF bipolar cells (Eggers and Lukasiewicz, 2010) and OFF ganglion

cells (O’Brien et al, 2003), and results in OFF ganglion cell activation. It is unclear if this

disinhibitory relay is composed of GABAergic and glycinergic cells, or only of glycinergic cells.

Attempts to disentangle the two hypotheses by blocking GABAergic transmission triggered large

oscillations in the retina, making the results di�cult to interpret (Demb et al, 1999). A similar

disinhibitory circuit might also be involved in other kinds of complex processing taking place in

the ganglion cell surround. When large visual features stimulate distant regions of the surround,

the inhibitory input to bipolar cells (Eggers and Lukasiewicz, 2010) and ganglion cells (O’Brien

et al, 2003) was reduced. This reduction of surround inhibition was mediated by a disinhibitory

circuit similar to the one we uncovered.

We have shown that a single cell type mosaic can simultaneously multiplex several funda-

mentally distinct computations. Our findings considerably enrich the classical view of ganglion

cell types as being tightly linked to their corresponding feature maps, and uncover the flexibility

of the retinal code when stimulated with complex, dynamical stimuli. The notion of a feature

map is central to most sensory structures. Flexible computations, where several features are

represented by a cell type simultaneously in response to complex stimuli, might also be imple-
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mented in other sensory areas. It remains to be understood whether this flexibility can be seen

as arising from some e�cient coding principle (Tkačik and Bialek, 2016), and how such flexible

coding schemes can be interpreted by the downstream areas (Botella-Soler et al, 2016).

Material and methods

Unless stated otherwise, all error bars in figures and text are standard error of the mean (SEM).

SD stands for standard deviation.

Retinal recordings

Recordings were performed on the Long-Evans adult rat. Animals were euthanized according to

institutional animal care standards. The retina was isolated from the eye under dim illumination

and transferred as quickly as possible into oxygenated AMES medium. The retina was then

lowered with the ganglion cell side against a multi-electrode array whose electrodes were spaced

by 60 µm, as previously described (Marre et al, 2012; Yger et al, 2016). Raw voltage traces

were digitized and stored for o↵-line analysis using a 252-channel preamplifier (MultiChannel

Systems, Germany). The recordings were sorted using custom spike sorting software developed

specifically for these arrays (Marre et al, 2012; Yger et al, 2016). We extracted the activity of

a total of 810 neurons over 5 experiments with satisfying standard tests of stability and limited

number of refractory period violations.

Visual stimulation

Our stimulus was composed of one or two black bars moving randomly on a gray background.

Each bar was animated by a Brownian motion, with additional feedback force to stay above the

array, and repulsive forces so that they do not overlap. The bars stayed within an area that

covers the whole recording array. The amplitude of the bar trajectories allowed them to sweep

the whole recording zone. The trajectories of the bars x
1

and x
2

are described by the following

equations (Mora et al, 2015):
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where W
1

(t) and W
2

(t) are two Gaussian white noises of unit amplitude, µ
2

� µ
1

= 600µm is

the shift between the means, !
0

= 1.04Hz, ⌧ = 16.7ms, R = 655µm and � = 21.2µm · s�3/2.

The width of one bar is 100µm. The stimulus was displayed using a Digital Mirror Device

and focused on the photoreceptor plane using standard optics. For receptive field mapping, a

random binary checkerboard was displayed for 1 hour at 50 Hz (check size: 60 µm).

All the other stimuli used (for classification of cells, fitting the gain control model and pharma-

cological study) are described in the corresponding method section. For all stimuli, the level of

light of the gray background was between 1012 and 1013 photons.cm�2.s�1.

Typing

We performed cell classification based on the response of the cells to a set of stimuli and on

their temporal receptive field.

Full field flicker : this stimulus consisted of a 15-seconds sequence of a full-field stimulus, re-

peated 100 times. The stimulus was generated by selecting a random row of pixels from a

natural image and displaying subsequently at 40Hz the intensity of these pixels uniformly on

the entire screen.

Shifting barcode: this stimulus consisted of an alternation of white and black stripes of width

70 µm chosen randomly, moving at a constant speed of 1000 µm/s in the 4 cardinal directions.

For each direction, the 17-seconds sequence was repeated 30 times.

For each cell, we created a vector by concatenating the PSTH in response to the full field

flicker stimulus, the 4 PSTHs in response to the shifting barcode stimulus corresponding to the 4

cardinal directions, the temporal receptive field and the auto-correlogram of the cell in response

to the checkerboard stimulus. The PSTHs of the shifting barcode were temporally realigned

beforehand according to the receptive field location of each cell. PSTH for each stimulus was

normalized such that they all had a mean of 0 and a variance of 1.

We then performed PCA on this collection of vectors. We kept the projections on the first

eigenvectors in order to explain 95% of the total variance. We then performed clustering on

these vectors using the peak density algorithm (Rodriguez and Laio, 2014). The threshold

parameters of the algorithm were manually adjusted in order to select the outliers as centroids

of the clusters. This method allowed us to identify reliably an OFF type of ganglion cells across

all experiments. The receptive fields (RF) were regularly tiling the visual field, with little overlap

between them. This mosaic property, often observed in the retina, was used here as a validation

of our typing procedure, as we did not use the position of the RFs in the clustering procedure.
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Synchrony between cells

To quantify the synchrony between cells, we displayed a 10-second bar movie to the retina,

repeated 54 times. A maximum of 25 cells of the same type recorded simultaneously were

subdivided in two groups, the distant cells, that were more than 200 µm away from the central

bar position, and the central cells, that were less than 200 µm away from the central bar

position. For all cells we computed the PSTH with a time bin of 20 ms. We computed the

Pearson coe�cient between all pairs of PSTHs of distant cells, and all pairs of PSTHs of central

cells respectively. We grouped the pairs based on the distance between their receptive field

centres along the bar motion axis.

Linear model and subunit model

Subunit model

The subunit model is a two-layer model that predicts the response of a ganglion cell to the

moving bar. Each layer performs a linear combination of its inputs followed by a non-linear

transformation. The first layer is a collection of identical and translated Linear-Non-Linear

(LN) units. The second layer is a unique LN unit taking the output of the first layer as an

input.

In the first layer, we tiled the space with 200 bipolar-like ON and OFF subunits on a one-

dimensional lattice, with subunits equally spaced at 20µm interval. Each unit had a receptive

field with a Gaussian spatial profile of the right polarity and a biphasic temporal profile, modelled

by a sinusoid. All units of a same polarity are identical up to a translation. The non-linearity

was a rectified square function, h. The output of the first layer was therefore:

F (x, t) = h(

Z
t

t�Tsubunit

Z 1

�1
sin(2⇡!(t� t0))e

�
(x� x0)2

2�2 s(x0, t0)dx0dt0) (3)

where h(x) = x2 if x � 0, and 0 otherwise. T
subunit

= 0.3 s, ! = 1/T
subunit

, � = 30 µm

The stimulus movie s(x, t) was one-dimensional in space because the stimulus was a long bar,

whose length can be considered infinite. We used a temporal binning of 17ms, corresponding to
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the refresh rate (60Hz) of the screen used to project the movie on the retina.

The second layer consisted of a single Linear-Non-Linear Poisson unit. The unit pooled linearly

its inputs from all the subunits of the first layer according to a kernel K, with an extension

in time of 0.5 seconds. To obtain the firing rate r(t) of the cell, the weighted sum was passed

through a non-linearity of the form f(x) = log(1 + exp(x)). The spikes were then generated

according to a Poisson process.

r(t) = ↵ log(1 + exp(�G(t) + ✓)) (4)

where

G(t) =

Z
Tfilter

0

Z

x

K(x, t0)F (x, t� t0)dxdt0 (5)

with T
filter

= 0.5 s, and ↵, �, ✓ are parameters of the non-linearity that are fitted to the data.

The linear model (LN) was built using the same architecture as the subunit model, except that

the rectified square non-linearities in the subunits were replaced by the identity.

Fitting

For both models we used the same fitting procedure. The parameters of the kernel K and the

parameters of the spiking non-linearity ↵, �, ✓ were the only parameters fitted to the data. The

kernel parameters and the spiking non-linearity parameters were fitted alternatively using block

gradient descent (McFarland et al, 2013) across 6 iterations. The repeated parts of the stimulus

were held back during fitting and were used to cross-validate the model.

The parameters of the kernel were optimized to maximize the log-likelihood function of the

spike train under Poisson assumption (McFarland et al, 2013). For this optimization we per-

formed Limited-memory BFGS gradient descent on the parameters of the kernel (McFarland

et al, 2013). In order to avoid overfitting, we imposed two regularisation constraints: spatio-

temporal smoothness and sparseness of the kernel. The cost function C was of the form:

C =
X

t

�LL(s
obs

(t)|s
pred

(t)) + �
XT

kL
Kron

Kk
2

+ �
1

kKk
1

(6)
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where LL is the loglikelihood of the observed spike train s
obs

(under Poisson assumption), K

is the kernel defined above, �
XT

= 300 is the penalty term enforcing smoothness of the kernel,

L
Kron

is the Kronecker sum of discrete Laplacians, �
1

= 400 is the L1 penalty term enforcing

sparseness of the filter coe�cients.

The penalty terms were chosen to minimize overfitting. To fit the linear model (LN), we divided

by 10 these two penalty terms as it slightly improved the performance of the model for distant

cells. The parameters of the non-linearity were fitted by minimizing the cost function with the

active-set method. The following constraints were enforced: ↵ > 0, � > 0, ✓ has an upper

bound. � and ✓ were redundant with the kernel parameters but adding them accelerated the

convergence of the optimization (McFarland et al, 2013).

Quantification of the performance of the LN model and of the subunit model

We fitted the model on the unrepeated part of the stimulus and we tested the performance of

the model on the repeated part of the stimulus (54 repetitions of a 10 second sequence). For

each cell we then computed the Pearson coe�cient r between the real PSTH and the predicted

PSTH (time bin: 17 ms). Population averages are indicated in the text as mean ± standard

error of the mean. In figure 2F, we set to zeros all negative Pearson coe�cients for readability.

In order to show that the LN model was performing significantly better for central stimulation

than for distant stimulation, we selected only the cells that were less than 300 µm away from

the bar in one condition and more than 400 µm away from the bar in the other condition. We

then performed a paired t-test comparing the performance of the LN model in both conditions

for each cell.

A possible explanation for why the linear model performed poorly for distant cells could be

that distant stimulation evoked less reliable responses. In order to exclude this possibility,

we computed the ratio of explainable variability predicted by the model. The explainable

variability was defined as the average Pearson coe�cient between pairs of PSTHs generated by

instantiations of a Poisson process with mean firing rate equal to the real firing rate of the cell

estimated from the PSTH. We divided the performance of our model (defined as the Pearson

coe�cient between real and predicted PSTH) by this explainable variability to obtain the ratio

of explainable variability predicted by our model.
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Calculation of the average linear filters in the subunit model.

To compute the average filter in the one-bar condition (fig 3D), we selected only the cells

stimulated outside of their receptive field (RF) center. Our criterion was that the bar central

position should be more than 200 µm away from the RF center.

To compute the average filter in the two-bar condition (fig 3C), we selected only the cells that

were stimulated inside their receptive field centers by at least one of the bars. Our criterion was

that the bar central position should be less than 200 µm away from the RF center.

For all cells and in both bar conditions, only a portion of the extended receptive field center was

visited by the bars, therefore inducing a bias in the filters fitted on these movies. To compute

the weights of the average filter without bias, we first realigned the filter of each cell relative to

the center of its receptive field. Then for each coordinate (x, t) of the average filter we averaged

the corresponding subunit weights for the subset of cells for which the coordinate was visited

more 200 times/hour by the bar.

Suppression index

In figure 3B, we quantified the suppression of the response to the distant bar when there was

another bar moving inside its receptive field center. For this we defined the residual response

to the distant bar in case of a central bar as:

PSTH
residual

= PSTH
both bars

� PSTH
central bar

(7)

We then computed the suppression index, defined as:

I
supp

= 1� r(PSTH
distant bar

, PSTH
residual

) (8)

where r is the Pearson coe�cient. If the suppression of the distant bar response is complete,

the index should be equal to one. If there is no suppression, and the responses to each bar are

summed, then the index should be equal to 0 in the absence of noise. However, since noise is

present, we defined a suppression index for the linear model, which reflects the index value that

should be expected purely from noise, without suppression of the distant response:

I linear
supp

= 1� r(PSTH1

distant bar

, PSTH2

distant bar

) (9)

where PSTH1

distant bar

and PSTH2

distant bar

were computed on two di↵erent sets of trials. We

performed this quantification on the 25 cells recorded and plotted the mean and SEM of the
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suppression index for the real data and for the equivalent linear model. A suppression index

higher than I linear
supp

indicates a true suppression that cannot be explained by noise.

Gain control model

We displayed two bars of width 300 µm and separated by 800 µm, oscillating with a sine wave

trajectory at slightly di↵erent frequencies: the central bar was oscillating at 2 Hz and the dis-

tant bar at 1.98 Hz. The central bar was played at 8 di↵erent contrasts interleaved randomly

and ranging linearly from 0 to 1. For each contrast, the two bars were oscillating during an

uninterrupted sequence of 50 seconds, so that the central bar had traveled exactly 100 periods

and the distant bar exactly 99 periods during a sequence. At the end of a sequence, all pos-

sible phase shifts between the two bars had been visited exactly once. This trick allowed us

to average out the influence of one bar when computing the PSTH on the period of the other bar.

To show the gradual suppression of the distant response in fig. 4B, we normalized the

amplitude of the response to the distant bar by the amplitude of the response to the distant bar

alone (i.e. zero contrast for the central bar).

We then fitted a single model on all contrast conditions. The model was of the form:

R
gain

(t) =
R(t)

1 +H
R
t

0

t�⌧

R(t0)dt0
(10)

where ⌧ = 1 s is the time constant of integration of the gain control and H is the gain. R(t) is

the total response before application of the gain control, given by the equation:

R(t) = ↵
0

· c · r
c

(t) + ↵
1

(c · r
c

(t))2 + �
0

· r
d

(t) + �
1

· r
d

(t)2 (11)

where r
c

is the response to the central bar alone at full contrast, r
d

the response to the distant

bar alone, c is the contrast. r
c

and r
d

were estimated from the PSTHs in response to the central

bar and to the distant bar played alone respectively. We needed to introduce quadratic terms

because the PSTH for the central bar condition depended quadratically on the contrast of the

central bar. This is consistent with our subunit model, where the first layer contained a rectified

quadratic function h.

We fitted the parameters ↵
0

, ↵
1

, �
0

and �
1

and H so as to maximise the log-likelihood of

the spike train under Poisson assumption (bin size: 17 ms). To adjust the parameters we used

the active set method. However, we fixed the parameter ⌧ to 1 second because the periodicity of
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the stimulus did not allow us to explore thoroughly the time constant of integration of the gain.

To test our model, we measured for each cell (n=21) and each contrast the amplitude of the

response to the distant bar (defined as max(PSTH)-min(PSTH), bin: 100 ms) and compared

it to the amplitude predicted by our model. We then estimated the percentage of variance

explained by our model across all cells and conditions using bootstrapping.

Information estimation

The information conveyed by the cell response R about the stimulus X (i.e. mutual information

between R and X) is equal to the reduction in entropy of the distribution of X provided by the

knowledge of R.

I(R,X) = H(X)�H(X|R) (12)

In our case we first defined the stimulus as the position P (t+ �t) of the moving bar for di↵erent

lags �t relative to the cell response R(t) (in fig. 4C, �t is the x-axis of the insets). The lags

were introduced to account for the delay in the neural response. We discretized linearly the

space of P in 10 bins in order to have a well-sampled distribution with our finite dataset. We

discretized the spike train in 10 ms bins and we binarized it by setting to 1 all the bins where

there was at least one spike and to 0 the other bins. Changing the discretization steps used

to bin P and the spike train did not change qualitatively our results. Then we computed the

mutual information between the cell response and the instantaneous position of the bar with a

lag �t ranging from -1 second (information about the past stimulus) to 1 second (information

about the future stimulus):

I(R(t), P (t+ �t)) = H(P (t))� [p(R(t) = 1)H(P (t+ �t)|R(t) = 1)

+ p(R(t) = 0)H(P (t+ �t)|R(t) = 0)] (13)

Note that the information about the future of the stimulus was not always zero. This is because

the successive positions of the bar are correlated in time, so that part of the information conveyed

by the cell response about the past position of the bar is also informative about the future

position of the bar. We then defined the stimulus as the speed of the bar S with di↵erent lags

�t relative to the cell response. The speed was defined as:

S(t) =
|P (t)� P (t� ⌧)|

⌧
(14)
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where ⌧ = 100 ms. We discretized linearly the space of S in 10 bins and we computed mutual

information between R(t) and S(t+ �t). To estimate the information rate in the insets of figure

5D, we divided the mutual information by the bin size (10 ms). For each cell, we finally computed

the ratio between the maximum of I(R(t), S(t + �t)) and the maximum of I(R(t), P (t + �t))

over all time lags tested.

Pharmacology

To block glycinergic transmission, we added 1 microMol strychnine (Sigma-Aldrich ref. S8753)

to the bath (Curtis et al, 1971; Schae↵er and Anderson, 1981; Lee et al, 2016; Menger and

Wassle, 2000). To generate the rasters and PSTHs in response to the central bar, we flashed

a dark bar of width 100 µm in the center of the receptive field of the cell for 0.5 s 40 times,

separated by 0.5 s of gray screen. For the distant responses, we used 230 µm wide bars flashed for

1 s, in a region 0.5 to 1 mm away of the cell’s receptive field center. For the population analysis,

we flashed a bar 100 µm wide in random locations relative to the receptive fields of the cells,

20 times at each location. For each cell recorded of the type under study (17 cells), we selected

the flashes that were less than 80 µm away from the receptive field center to study the e↵ect

of central stimulation. To study the e↵ect of distant stimulation, we selected the flashes that

were between 200 µm and 500 µm away from the cell receptive field center. For each stimulus

and each cell, significant responses were determined based on a z-score analysis. We estimated

the mean and standard deviation (SD) of the activity prior to stimulus and considered that a

response was detected if the activity exceeded the mean by more than five times the SD in the

second following the onset of the stimulus (for a bin size of 40 ms). To estimate the percentage of

responding cells in fig. 6, we estimated means and standard errors of mean by pooling together

all stimulus conditions across all the cells. We performed a one-tailed two-sample t-test to assess

the reduction of responses to the distant flash after drug was added to the bath. The p-value

was less than 10�3.
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Supplementary Figure 1: OFF subunit weights
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Supplementary Figure 1: A, B: Spatio-temporal distribution of the OFF-subunit weights for the second
stage of the subunit model, averaged over all cells. A: combined bar stimulus. B: a single distant bar
stimulus.

Supplementary Figure 2: Sensitivity of the model to changes in the
absolute position

Our results show that cells close to the bar were much more sensitive to the bar position than distant cells.
Here we show that the subunit model fitted on the cell responses also had this property. For this we directly
used our model to estimate the amount of information about a change in the absolute position of the bar
trajectory.

To determine the sensitivity of each cell to a change in the absolute position we estimated the Kullback-
Leibler divergence dKL(�x)between the cell response to an initial trajectory x(t), and the response to the
same trajectory displaced by a small constant shift �x. We picked randomly a time T in the stimulus
trajectory, and extracted the trajectory x(t) of the bar for t between T and T + DT (in the following
DT = 16 s but the exact value did not change significantly the results). For each cell we then estimated
dKL(�x) between the model response to x(t) and the model response to x(t)+�x(t), where�x(t) = constant
is a uniform perturbation of the trajectory, for t 2 [T, T +DT ]. We repeated this estimation many times for
di↵erent times T (each point in the scatter plots of supp. fig. 2 corresponds to one cell and one choice of T ).

To estimate dKL(�x) we assumed that�x is small, so that we can expand the Kullback-Leibler divergence
up to the second order to obtain:

dKL(�x) ⇡ 1

2

X

t,t02[T,T+DT ]

�x(t)It,t0�x(t0) (1)

where the matrix It,t0 is the Fisher Information Matrix of the response distribution conditioned to the
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Supplementary Figure 2: A: Sensitivity (see text for definition) of cells to a change in the absolute
position of the stimulus as a function of the distance of the cell to the bar. Each point corresponds to one
cell and one choice of T (see text). B: Normalized sensitivity (see text for definition) of cells to a change in
the absolute position of the stimulus as a function of the distance of the cell to the bar.

stimulus:

It,t0 =
X

⌧=T..T+DT+L

1

r(⌧)

@r(⌧)

@x(t)

@r(⌧)

@x(t0)
(2)

where x(t) is the position at time t and r(⌧) is the firing rate at time ⌧ predicted by the subunit model in
response to the stimulus. L = 0.5 s corresponds to the maximal latency of the response to the stimulus.
We then defined the sensitivity as dKL(�x) for a normalized perturbation such that

P
t �x(t)2 = 1. We

estimated this quantity for all the cells where the model had a very good prediction performance (r � 0.7 in
fig. 2F).

For cells close to the bar, sensitivity to changes in the absolute position of the bar was high and strongly
decreased for distant cells (supp. fig. 2A). We then asked if this decrease is specific to this uniform perturba-
tion, or if it is a global decrease of sensitivity of distant cells to any perturbation. To test this we estimated
the maximal sensitivity of each cell, which is the largest eigenvalue of the Fisher information matrix It,t0 . We
normalized the previous sensitivity values by this maximal sensitivity to obtain a “normalized sensitivity”.
Even after this, we observed a decrease of this normalized sensitivity with distance (supp. fig. 2B). These
results show that the model fitted on the cells has the same property than found on the data previously:
central cells were much more sensitive to stimulus position than distant cells.
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