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ABSTRACT  

Gene set analysis, which translates gene lists into enriched functions, is among the most common 

bioinformatic methods. Yet few would advocate taking the results at face value. Not only is there no 

agreement on the algorithms themselves, there is no agreement on how to benchmark them. In this 

paper, we evaluate the robustness and uniqueness of enrichment results as a means of assessing 

methods even where correctness is unknown. We show that heavily annotated (“multifunctional”) 

genes are likely to appear in genomics study results and drive the generation of biologically non-

specific enrichment results as well as highly fragile significances. By providing a means of 

determining where enrichment analyses report non-specific and non-robust findings, we are able to 

assess where we can be confident in their use. We find significant progress in recent bias correction 

methods for enrichment and provide our own software implementation. Our approach can be readily 

adapted to any pre-existing package. 

INTRODUCTION 

As originally conceived, gene set analysis is a way to summarize rankings or groups of genes 

obtained from high-throughput experiments and as a tool for discovery (1-4). Broadly speaking, these 

methods look for statistical similarity between an experimentally derived gene set (or a ranked list of 

genes) and previously characterized gene sets (e.g., Gene Ontology GO (5), KEGG (6) or OMIM (7)). 

Running enrichment analysis on such data sets is now standard practice. Given the heavy reliance on 

these methods for hypothesis generation and experimental validation checks, it is important to 

improve our understanding of their benefits and limitations. As we will highlight, the central challenge 

in this analysis is how to manage and interpret results in light of gene set independence, or lack 

thereof. 

One of the key insights into the challenge of gene set analysis is that some genes are simply 

generally more likely to be annotated to any sets. Such genes will appear in many sets. In the gene 

set analysis literature this property is often described in terms of overlap or annotation bias. In earlier 

work, we showed that the tendency for some genes to be frequently represented in GO is a critical 
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confound in gene network analysis (8). A useful element of our approach in that work was to define 

redundancy within GO in terms of the ability of a single list of gene to predict the membership of each 

gene set derived from GO and its annotation. The degree to which a single list predicts all GO terms 

says how redundant GO is, which sets look to be most generic, and which genes contribute to those 

tendencies. Trivially, genes with many annotations would appear at the top of such a list because 

predicting them frequently will be correct across more GO groups. Thus, there is a strong overlap with 

“annotation” bias, but the two do have critical differences, as will be particularly evident when we 

assess approaches which correct for or minimize annotation bias. For simplicity, we refer to our 

calculation of the maximally predictive single list as estimating the gene’s “multifunctionality”, although 

the extent to which this form of multifunctionality represents a technical or true biological property will 

remain an open question. 

 In the gene set analysis context, because the redundancy and overlap in GO is often apparent 

when inspecting results, there have been a range of efforts to improve the situation (we use GO as 

our motivating example of an annotation scheme without loss of generality to alternatives). Many 

approaches attempt to reduce the redundancy in GO either by trimming it down up front (9-13), or 

adjusting the results of an analysis (14-16). An implicit understanding of the undesirability of overlaps 

of gene sets is also present when analyses are limited to a single branch of the GO hierarchy (e.g., 

only using Biological Process) or by using gene sets of a particular size range (e.g., less than 500 

genes). Such approaches serve the dual purposes of simplifying interpretation of enrichment results 

and diminishing multiple test correction penalties, thereby improving p-values. However, attempts to 

reduce redundancy inevitably involve a loss of information, especially in schemes like GO where the 

extent of overlaps is extreme (8). Another approach to correct for redundancy is through improving 

the statistical machinery underlying gene set analysis, for example, by assuming that the underlying 

annotations are true enough to reconstruct the gene sets contributing to enrichment results by 

modelling their combined effects (17). More commonly, enrichment approaches make post-hoc 

adjustments, following a basic strategy of reducing the impact of multifunctional genes. Some 

approaches take the view that differential annotation for genes reflects a bias in the annotations that 

needs to be corrected, but that the correction needn’t depend on the experimental data on which gene 

set analysis is to be applied (18,19).  

The commonality we point to in the various approaches is that it is hard to know if they improve 

upon what is already done. There is no strongly generalizable way to test the efficacy of these 

methods, as there are no gold standards. This is a problem likewise faced by any biologist in reading 

about and interpreting any results using any of these methods. But we take the stance that fixing the 

gene set analysis method or the gene set annotations is fraught with difficulties. Instead, our 

approach is akin to methods intended to test robustness (e.g., jackknifing) or overfitting (cross-

validation), and is not a new form of enrichment analysis and thus can be applied to any gene set 

analysis method.  

We rely on two central heuristics, uniqueness and robustness, which relate multifunctionality to 

the properties possessed by well-conditioned problems. Traditionally, well-conditioned problems are 

those that possess solutions unique and robust to minor data variation. For example, if enrichment 
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output were identical to that produced by sets of genes that are present in many functions (i.e., 

multifunctional), then the results will not be at all uniquely characteristic. In such cases it will be hard 

to distinguish among the enriched functions which are returned; many functions will be returned and 

the distinction between the 100th function at p~1E-10 and the top function at p~1E-100 is not itself 

robust. Likewise, an enrichment result should not hinge on the presence or absence of any given 

single gene. Because we argue uniqueness and robustness are fundamental properties for the 

analysis to be meaningful, they will provide strong heuristic value to the interpretation of what would 

otherwise be a black box. 

In this paper, we further develop and explore our model for enrichment and particularly the 

problem of multifunctionality, focusing both on detailed examples and a large corpus of studies. We 

derive ways to integratively assess multifunctionality as a confound that is applicable to multiple gene 

set analysis methods, including ones based on fixed thresholds (“hit lists”, e.g., (20)) and those which 

use complete rankings of all genes (e.g., GSEA (21)). We show that our approach improves the 

specificity of interpretation in enrichment analyses through an analysis across 17 commonly used 

enrichment methods. We propose that measurements of the effects of multifunctionality should be 

routinely incorporated in such analyses. To this end, we provide user-friendly implementations of the 

methods in a graphical user interface as part of the ErmineJ software package (22,23). 

MATERIAL AND METHODS 

Datasets 

Except where noted, our analysis focuses on 20710 human genes, obtained using the UCSC 

GoldenPath (24) and NCBI databases (25). We downloaded the “C2” curated gene signatures from 

MolSigDB ([date: April 2013]) (26). We limited our analysis to 1800 lists of size 11-1000, which come 

from 659 different publications, and often form pairs (e.g., “up” and “down” regulated for the same 

experiment). Importantly, these lists are the type of “hit list” from genomics studies that typically forms 

the grist for performing GO enrichment analysis. In this paper we reserve the term “hit list” for such 

experimentally derived groups of genes to be analyzed, using “gene set” to refer to Gene Ontology 

GO groups. 

Gene Ontology and its derivatives  

For the ErmineJ analyses, gene annotations were obtained via the NCBI Gene database (gene2go 

file [date: April 2013]), and the structure of GO was extracted from the XML files provided by the GO 

Consortium. As entailed by the semantics of GO, gene annotations were propagated to ancestors in 

the GO hierarchy based on is_a and part_of relations, excluding the roots (semantic closure 

expansion). We did not filter based on evidence codes and used all three domains of GO (similar 

results were obtained using just biological process or molecular function). Except where noted, we 

considered GO groups that had between 10 and 300 genes. There were 3172 GO terms meeting this 

criterion.  
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For subsequent enrichment analyses, we used the human gene association file 

(gene_association.goa_human, [date:12/12/2014]) downloaded from GO and the mouse version 

(gene_association.mgi [date:12/12/2014]). GO was constructed as above, using the OBO file (go.obo 

format-version: 1.2 [date:12/12/2014]).  

We also constructed additional versions of GO using variations of the species (mouse and 

human), annotations (14 evidence codes), domains (cellular component, molecular function and 

biological process), and relations (only direct [omitting propagation], is_a, and part_of), each of which 

can be used to provide gene sets for gene set analysis. Using every pairwise combination of a single 

choice of each property, including “all” and “none”, over all genes or only those jointly present, yields 

512 GO and annotation combinations. For each of these derivative GOs, we calculated the gene 

multifunctionality scores (see below) and assessed the fraction of GO terms enriched on this list at an 

FDR<0.05 and FDR<1E-10. 

Further to parsing the role of properties within the existing GO and its annotations, we generated 

four novel versions of GO (alto-GOs), encompassing an alternate conceptualization of how an 

ontology, annotations to it, and methods exploiting the two, interact. We labelled these Shadow-GO, 

Ortho-GO, Weigh-GO and Local-GO (see Supplement for more details), collectively termed “alt-GOs”. 

For Shadow-GO, each GO term brings into existence its complement to which genes would be 

annotated as “not” being members. This additional “Shadow” of the original GO would follow valid 

rules of inference defined by GO through modus tollens, and all genes have an identically equivalent 

number of annotations. In this alt-GO, the annotations are changed, but the ontology is the same. 

Ortho-GO alters GO by performing dimension reduction on the original matrix of propagated GO 

annotations, yielding new genes sets which are closer to independent but retain the original 

tendencies of pairs of genes to be co-annotated. Weigh-GO discards binary membership, such that 

each gene is weighted based on set annotation specificity. Local-GO is more targeted version of GO, 

where we select a function of interest, and pick non-overlapping GO terms to also test. In this case, 

the annotation sets are held constant, but the ontology is tweaked to only include a subset of groups. 

To generate and assess this, we pick a random function within GO to be of interest and then 

iteratively pick new functions based on the minimum Jaccard overlap with the remainder, stopping at 

either 200 or 1000 local functions (200-local-GO and 1000-local-GO, respectively). 

Multifunctionality of genes  

We describe multifunctionality in terms of the number of annotated GO terms for the gene our case 

studies but use the analytic calculation from (8) throughout: 

��� � � 1
�� � ���

�

����

  

where i are the GO groups that gene g is a member of, ni the number of genes in that group (in the 

universe of all genes), and n’i those not in the group (the complement). The final score is then ranked 

and standardized. The equation takes this form as it is the ranking that maximizes the area under the 

receiver operating characteristic curve (AUROC) for each gene set under consideration, averaged 
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across all gene sets (8). In the real GO it is highly correlated (r>0.95) with the number of gene terms a 

GO group has (being a version of this weighted by specificity), and our results are generally robust to 

either choice, except where methods attempt to specifically correct away annotation bias, as in the 

hypothetical ontologies. 

Enrichment analysis  

We considered two basic types of algorithms. First is a “basic” enrichment analysis based on the 

hypergeometric distribution, and which requires defining a “hit list”. The second is based on ranks 

without setting a threshold. For this purpose we used a method based on the AUROC (27), the same 

as the method mentioned above to measure multifunctionality of a GO group but using the 

experimentally-derived ranking. ErmineJ implements several additional methods, including the 

resampling methods described by (2) and a GSEA-inspired method that uses precision-recall 

analyses rather than modified Kolmogorov-Smirnov statistics, in which the mean average precision 

(similar to the area under the precision-recall curve) is calibrated by random sampling to obtain a null 

distribution. The false discovery rate (FDR) was controlled using the method of Benjamini and 

Hochberg (28). 

Multifunctionality analysis of enrichment 

For the hypergeometric method, we take the approach of testing the effect of iteratively removing 

genes from the “hit list” in order of multifunctionality. The challenge is identifying an appropriate 

stopping point. Our algorithm is motivated by finding a point at which the enrichment results are 

maximally sensitive to the removal of the most multifunctional gene. Intuitively, if some gene sets are 

only enriched due to overlaps, as we remove overlapping genes, those gene sets will eventually fall 

away. This transition point will be reflected by a rapid alteration in the most significantly related gene 

sets, similar to the phenomenon shown in Figure 3C. We found this is effective in finding the optimum 

stopping point in model data, and is also of value as a test for “robustness” in enrichment. A formal 

description of the gene removal algorithm and a schematic is given in the supplement 

(Supplementary Figure 1). If the hit list is not significantly multifunctionality-biased (based on the 

Mann-Whitney U test as described for GO groups above, p<0.05), or if no gene sets are significantly 

enriched at a pre-set FDR q (we used q=0.05), no correction is performed. If the algorithm iterates 

such that more than ½ of the genes in the ‘”hit list” are removed, the algorithm terminates.  

For methods that use a full ranking of genes, we developed an approach using regression. For 

the ROC-based method (27), the appropriate regression was unweighted linear regression of the 

genes scores against the gene multifunctionality scores; the original gene scores are replaced by the 

Studentized residuals of this regression. Thus genes which are highly ranked, but also highly 

multifunctional, will tend to be “bumped down” in the ranking. We note that some methods, such as 

GSEA, use the full ranking but behave more like precision-recall curves than ROCs, in that they put 

much more emphasis on highly ranked genes. In this situation unweighted regression is inappropriate. 

While not investigated as part of our analysis reported here, a regression-based correction for the 
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precision-recall method is implemented in ErmineJ 3.0. The regression is weighted by 1/√N where N 

is the rank. This can be motivated by observing that under the null distribution of random rankings, the 

standard error of the precision is higher at low recall, and this is expected to vary as 1/√N (making the 

simplifying assumption of independence of the genes). This variability is what determines the 

expected contribution of a hit to the aggregate variability in the area under the precision-recall curve.  

Disease association analysis 

Disease-gene relationships, organized by disease ontology (DO) terms, were obtained from 

Phenocarta (29) [date: April 2013]. Enrichment of MolSigDB hit lists for these disease gene groups 

were performed using ErmineJ 3.0. MolSigDB hit lists were associated with DO terms using the 

National Center for Biomedical Ontology (NCBO) Annotator (30), applied to the title, abstract and 

Medical Subject Headings (MeSH) associated with the linked PubMed record for the MolSigDB list.  

ErmineJ implementation and analysis of case studies 

ErmineJ implements multifunctionality analysis as well as the unweighted and weighted regression 

correction algorithms. ErmineJ implements gene multifunctionality as defined by (8), as well as 

reporting the simpler “number of annotations” measure. For the case studies reported here, ErmineJ 

analyses were limited to the biological process GO aspect, for terms containing 20-200 genes. Gene 

lists for case studies were extracted from data presented in the original reports or supplementary 

tables. The gene lists we discuss are based on the identifiers we could match to official gene symbols 

in our database, so may not exactly match the lists reported by the authors. The data files used for 

the case studies are available in the online supplement 

(http://ErmineJ.chibi.ubc.ca/multifuncsupplement/). 

Analysis of alternate enrichment methods 

We selected 17 common methods that perform varying forms of gene set enrichment and correction 

procedures (accessed between Dec 2014 and April 2015). For the most part, these methods rely on a 

statistical test to determine which gene sets are significant and some method of enrichment correction. 

Here we focus on methods specifically designed for GO. We ran each method with the same default 

parameters, and when we could, used the same background input. The GO annotations file also 

varied as some methods had set their annotation file, and others allowed the user to specify it. For 

consistency, we attempted to use the same GO version when possible. Because we could not directly 

control for the number of GO terms used, we attempted to control for this by comparing the fraction of 

GO terms returned, instead of totals. However, we did not wish to penalize methods, so we continued 

to compare all results, even if some GO terms were missing between methods. The total set of GO 

terms with gene annotations was then almost 16K, and for each case study methods reported 

between 2000 and 6000 terms. We did not limit the results to a particular GO category and excluded 

IEA annotations as is commonly done for purely algorithmic assessments, since IEA annotations are 

themselves algorithmically determined. 
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To calculate the functions different methods are likely to return for most hit lists, we performed GO 

enrichment analysis, using a list of the top 100 multifunctional genes derived from human GO 

annotations as of Dec 2014, for the 17 different methods, and variations of a few of these methods, 

including ErmineJ and a basic gene set enrichment implementation (hypergeometric test). We 

calculated the number of GO terms returned as significant for this list of 100 genes and how these 

terms and their p-values correlated between methods. We chose a p-value threshold of 0.05 to 

compare the number of results returned by each method. Some methods return all tested values, 

while others only the significant terms they found enriched. Most methods perform their own multiple 

hypothesis test corrections, and when able, we specified for Benjamini-Hochberg. All these analyses 

were similarly repeated for mouse GO annotations.  

 For the uniqueness assessment, we took each case study and compared the enrichment results 

to the multifunctionality results, first by calculating the average multifunctionality of the GO terms 

returned as enriched, and also comparing the overlap of results from the previous multifunctionality 

enrichment, species specific. We then performed a robustness analysis using those same case 

studies. For this, we removed 5% and then 10% of the most multifunctional genes from the list, and 

re-ran the individual enrichment methods. We then calculated the overlap between the enrichment 

results returned for each method, as a measure of stability. We also then once again compared how 

multifunctional the results were once we removed the most multifunctional genes.  

Additional information including data files for many of the analyses and scripts are available online 

at http://ErmineJ.chibi.ubc.ca/multifuncsupplement/.  

RESULTS 

In this paper, we evaluate the effect of multifunctional genes on enrichment results. We start by 

outlining our motivation and illustrating the impact of multifunctional genes in our model of uniqueness 

and robustness. We move on to providing specific examples in four case studies. We next perform an 

assessment of multifunctional genes in globally used gene lists using our standard algorithm. We then 

demonstrate the impact of multifunctionality bias across multiple algorithms and extend our 

multifunctionality analysis to alternate versions of GO. We conclude with a demonstration of the 

ErmineJ software where we have implemented the multifunctionality bias assessment.  

The multifunctionality problem in gene set analysis 

To illustrate our work’s motivation, we outline a conceptual model for gene set analysis that 

characterizes a specific experimental outcome (Figure 1). In the model, the system being studied is 

presumed to involve several gene-based “functions”, which together contribute to the observed 

cellular or physiological state (e.g., disease or phenotype.). With some probability, genes in those 

functions will be detected in the study (depending on the type of assay, the strength of the signal, etc.). 

The more multifunctional a gene is, the higher the prior probability of it possessing any given function. 

If existing gene annotations (e.g., GO (5) with its annotations (31)) capture the relationships of the 

detected genes to those functions, we would expect an enrichment analysis to rank those functions 
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highly. We note this model uses the “competitive” null hypothesis in the framework of (32), in which 

genes with an annotation are contrasted with those that do not.  

Ideally the enrichment results will reconstruct the underlying functions. Because genes commonly 

have more than one function (i.e., are annotated to more than one GO group, pathway etc.), it is 

possible that the group which is most enriched is not actually one of the functions that is truly involved 

in the process or phenotype. This can occur if a group preferentially contains these “multifunctional” 

genes which overlap with the genes annotated to the true functions. Since many statistical analyses 

assume all genes are equally likely to be perturbed in the experiment, enrichment analysis here could 

be highly misleading. For example, if we truly believed two functions were involved in some 

experiment, then we would predict the experimental outcome (gene sets enriched) to most closely 

resemble not the “input functions” individually, but whichever third function is best characterized by 

their overlap. The situation, which we have summarized in Figure 1, is extremely simplified, as real 

data is far more complex, with hundreds or thousands of groups and many opportunities for such 

overlaps to occur. And, of course, when the multifunctional genes at the intersect are enriched, many 

functions will appear as ‘significant’ without being meaningful. 

Tests for multifunctional effects in gene set enrichment  

To interpret gene set enrichment results in the light of multifunctional genes, we suggest a series of 

tests that can be applied to the output of any analysis. As previously mentioned, well-conditioned 

problems are those that possess unique solutions and are robust to data variation. We demonstrate 

the effects of multifunctionality on these uniqueness and robustness heuristics in Figure 2. As a 

demonstration of the first test, imagine the input to a gene set analysis was the genes ranked by the 

number of GO functions they possess (we use this list repeatedly in this paper, referring to it as the 

“gene multifunctionality ranking”, with the most heavily-annotated gene at the top). Applying a simple 

enrichment test to this ranking (Mann-Whitney) we find 92% of GO groups (with at least 5 genes) are 

significantly enriched (FDR<0.05), and 36% at FDR<1E-10. When we use the multifunctionality 

ranking as described in previous work that takes into account GO set sizes along with number of GO 

terms (8), we find even greater enrichments, with 98% at 0.05 and 36% at 1E-10. The degree to 

which the actual input to a gene set analysis has any resemblance to the multifunctionality ranking will 

result in a concomitant similarity to the biologically non-specific (non-unique) results of enrichment 

analysis of the multifunctionality ranking. Thus, using the multifunctionality ranking as a comparator to 

the actual ranking provided as input will demonstrate the uniqueness of the output. To further 

elaborate, in the case of experiments that return multifunctional genes in their hit lists, it is possible to 

get similar if not identical results from an enrichment analysis (Figure 2A). Genes in the hit lists may 

not be identical between the two experiments, but they share common functions, and the resulting 

enrichment will therefore be non-specific and non-unique.  

Multifunctional effects are critical to the assessment of robustness as well. For an experiment that 

perturbs genes with many functions, the results will be robust to variation – removing multifunctional 

genes will likely keep these non-unique results. In the case of an experiment with fewer overlapping 

perturbed functions, removing the multifunctional genes will remove results that are due to the 
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multifunctional effects, leaving behind a more robust set of functions (Figure 2B). Removing the most 

multifunctional genes will impact the overall output, and thus the stability of the enrichment can be 

used as gauge. If removing a single gene can disrupt the results, the point at which doing so has little 

effect, is the point where we can be more confident in a biological interpretation of the output. This 

idea is the basis of the multifunctionality correction we suggest in our algorithm (detailed in the 

supplement). We go into more detail in the following sections on these points, applying these tests to 

specific case studies and global gene lists.  

Characterizing multifunctionality effects in case studies 

Before presenting the details of the algorithm we developed for multifunctionality assessment, we first 

describe the results the assessment of multifunctional genes provides for four motivating case studies. 

While these case studies were selected because they show interesting effects of multifunctionality, 

they are far from being unusual, as we describe in later sections. Each case study is based on the list 

of genes identified by the investigators as being of interest. We refer to these as “hit lists” to 

differentiate them from the gene sets which are tested for enrichment. We used ErmineJ as the 

algorithm for gene set enrichment. We refer to multifunctionality-corrected results as those obtained 

by removing the most multifunctional genes in the hit list, which serves as the basis of the robustness 

tests in our algorithm. More details are included in the Methods section and data and full results files 

for each case study are presented in the online supplement.  

Genomic copy number variants in autism.  

Based in part on GO enrichment analysis, Gilman et al. (33) hypothesized that synaptic development 

and function is at the heart of the autistic phenotype. Repeating their analysis using ErmineJ on their 

hit list of 70 genes, we arrive at a list of 30 GO gene sets (FDR 0.05) similar but not identical to those 

reported. Assessing the multifunctionality of these 70 genes, we see that the list is quite strongly 

biased towards multifunctional genes (MF score=0.86, p<1E-8). Removing the 11 most multifunctional 

genes (FLNA, NRXN1, DLG1, MAPK3, CRHR1, DLG4, DKK1, AXIN1, WNT3, NLGN3, STUB1) has 

an important influence on the results and their subsequent interpretation. Firstly, the heavy down-

weighting of the “learning or memory” GO gene set provides a good illustration of the benefit of 

considering multifunctionality (Supplementary Table 1, Supplementary Figure 7). Of the six genes 

in the cluster that have this annotation, four are among those 11 reported as highly multifunctional 

(NRXN1, NLGN3, DLG4, CRHR1); they have between 186 and 289 GO annotations each. By down-

weighting such genes, weaker signals were allowed to be more prominent. For example, the term 

“neuron migration” (supported by four genes among the 70), was originally ranked 28th in our analysis 

but is unaffected by multifunctionality correction and thus rises in the ranks. From a biological 

perspective, neuron migration might be even more relevant to ASD than learning and memory. 

However, we stress that the enrichment of “learning and memory” in the first place is not a statistical 

false positive; we prefer to think of it as non-robust and, most importantly, non-specific. The 

importance of NRXN1 and NLGN3 to ASD was already bolstered by a simple analysis of the genes 

contained in the CNVs studied by Gilman et al. (34), and their heavy annotation helps ensure that 

they drive the enrichment results. 
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Genome-wide association studies of schizophrenia. 

Schmidt-Kastner et al. (35) identified 77 schizophrenia (SZ) candidate genes from a review of the 

genetic association literature, and used enrichment analysis and manual annotation to gain support 

for their hypothesis on vascular stress responses. Our re-analysis of this list shows it is also strongly 

multifunctionality-biased (p<1E-14), with GO enrichment results related to stress and inflammation. 

However, a multifunctionality-corrected analysis results in no gene sets meeting the significance 

criterion, yet those at top of the list now involving synaptic transmission. The two points illustrated by 

this case are the dependency of significance on the multifunctionality of genes as none pass multiple 

test correction, and it is often possible to construct a variety of narratives when faced with a 

multifunctional gene list. In this case, the same list of genes could be treated as having something to 

do with synaptic transmission, while from another point of view it has something to do with stress 

responses.  

Gene expression changes in response to hypoxia.  

Manalo et al. (36) identified genes which were changed in RNA expression in response to hypoxia, 

and intersected with genes which were induced by a constitutively active form of the HIF-1 

transcription factor. As for the other case studies, their list of 202 genes was biased towards 

multifunctional genes (p<1E-10). Unsurprisingly, the enrichment results were also highly sensitive to 

removal of multifunctional genes, as after multifunctionality correction, only four groups would be 

significant at an FDR of 0.05 (70 originally). These include “peptidyl-proline modification”, “cellular 

response to hypoxia”, “collagen fibril organization” and “cellular response to oxygen levels“, which 

strongly align with the themes the authors chose to focus upon. We argue that this “cleaning up” of 

the results increased their relevance to the study while not precluding the investigation of less specific 

terms. 

Protein interactions of Oct4. 

Pardo et al. (37) studied mouse genes whose products were found to physically interact with the 

Pou5f1 transcription factor (more commonly known as Oct4), a crucial protein in the regulation of 

cellular differentiation and thus in embryonic development. In ErmineJ, the list of Oct4 interactors 

yields enrichment of many GO gene sets related to DNA and chromatin function, spanning 

recombination, replication and histone acetylation, but also a variety of other processes such as 

“modification of symbiont morphology or physiology” and “ATP metabolic process” as well as terms 

relating to embryonic development. A multifunctionality-corrected analysis yields a shorter and more 

focused set of gene sets which emphasize chromatin remodeling and histone acetylation. Importantly, 

removing Oct4 from the list of interactors dramatically reduces the number of GO gene sets 

considered significant after multifunctionality correction, leaving just one, “chromatin remodeling”. This 

illustrates the impact even a single highly multifunctional gene can have on an enrichment analysis 

and reiterates how protein interactions are highly biased towards multifunctional genes (8,38).  
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Enrichment results are sensitive to gene multifunctionality  

Having characterized the effects of multifunctional genes in the individual case studies, we wished to 

obtain more insight into whether multifunctionality might affect enrichment analyses globally. We next 

examined a large set of experimentally-derived gene lists, primarily from transcriptome profiling 

studies (MolSigDb, (26)). We evaluated the multifunctionality of genes within these hit lists, and their 

impacts through simulation studies and the robustness and uniqueness tests.  

Multifunctional genes are overrepresented in genomics results 

Figure 3A shows that genes which show up on multiple MolSigDb lists tend to be multifunctional 

(Spearman’s rank correlation rs= 0.48). This suggests that multifunctionality defined by GO is reflected 

in the responses of genes to experimental manipulations. In other words, genes which are highly 

annotated tend to turn up more often in genomics studies. Whether this is a cause or an effect of the 

annotations, is not entirely clear (8). For example the trend in Figure 3A is likely confounded by 

biases in the choice of which genes are analyzed in each study; most studies in MolSigDb used 

microarrays that contain probes corresponding to many but not necessarily all known protein coding 

genes, and genes which are “popular” are more likely to be tested. Regardless, this analysis supports 

the view that multifunctionality measured by GO is relevant to the analysis of genomics studies. 

Given the trend in Figure 3A, it is not surprising that we observe a similar phenomenon for GO 

term enrichment, in which gene sets found to be enriched in multiple MolSigDb lists tend to be 

enriched for multifunctional genes (Figure 3B; Spearman’s rank correlation rs= -0.67; distributions of 

multifunctionality scores for GO and other gene set schemes are shown in Supplementary Figure 2). 

That is, gene sets defined by GO which contain genes which are multifunctional (have many GO 

terms) are more likely to be enriched in the MolSigDb lists. Such gene sets, by virtue of their highly 

annotated members, will tend to be less biologically specific. A related evaluation using MeSH terms 

is shown in the supplement (Supplementary Figure 3).  

We next performed a type of sensitivity analysis, where we tested the impact of each gene in a 

hit-list on the results of the enrichment analysis. We find that for many MolSigDb lists, the enrichment 

results are highly dependent on the presence of one gene (right-hand peak in Figure 3C). The gene 

which causes the largest shift in the results was preferentially the most multifunctional gene (r=0.35). 

In another group of lists, the results were insensitive to the removal of any one gene (left-hand peak in 

Figure 3C). These hit lists are found to be the ones which had multiple multifunctional genes, 

rendering the removal of any one gene ineffective.  

Taken together, these results suggest that the outcome of a gene set enrichment analysis can be 

highly dependent on the presence or absence of multifunctional genes in the “hit list”. Further, the 

gene sets that are found by enrichment analysis tend to be multifunctional, thus having less specific 

interpretations. This strongly suggests that the presence or absence of multifunctional genes will be 

informative in determining whether results from an enrichment analysis can be trusted.  
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Exploring multifunctionality through simulation studies 

Our first model, designed to test the effect of multifunctionality in a relatively simple case, examines a 

hypothetical experiment that yields a “hit list” of 100 genes, to which we wish to apply a 

hypergeometric test to evaluate enrichment. Ten of the genes in the list come from one target GO 

gene set (that is, annotated with a particular GO term). The other 90 are assumed to be irrelevant 

noise. Ideally the target GO gene set should rank very highly, if not first, in the enrichment analysis. 

Indeed this will usually happen if the 90 other genes are chosen completely randomly. However, if we 

add an additional constraint that the 90 genes must have a minimum degree of multifunctionality (but 

still selected at random), the situation changes dramatically (Figure 4A). If the “background” genes 

are too multifunctional, the target GO gene set is no longer successfully retrieved. This is a direct 

demonstration of the Figure 1 scenario. 

We next explored a more complex model, where ten GO gene sets were randomly selected as 

targets, and ten genes randomly selected from each (because a gene could appear in more than one 

GO gene set, this sometimes resulted in slightly fewer than 100 genes in total). The ideal enrichment 

analysis result would be that the top 10 GO terms would, on average, be the ones which were used to 

construct the hit list, yielding a mean rank of 5.5. Simulating this situation 1000 times, the mean rank 

of the ten target GO gene sets was 20.7. We then removed a single gene from the hit list and 

repeated the analysis, doing this for each gene in turn, for each simulated set (1000 x ~100 

simulations). As shown in Figure 4B, the improvement in the result is proportional to the 

multifunctionality of the removed gene. That is, removing the most multifunctional gene has the 

tendency to “clean up” the enrichment results so the truly underlying functions are closer to the top of 

the ranking (the theoretical optimum of 5.5 is not attainable in this simulation due to overlaps among 

GO groups). An interesting aspect of this result is that the gene being removed is a “true positive”, in 

the sense that it belongs to at least one of the 10 target gene sets. Thus even though the enrichment 

signal for groups it belongs to is necessarily weakened by its removal, the cost incurred by including it 

is even worse, owing to its multifunctionality. However, this improvement in specificity comes with a 

cost in the form of far higher variation in correct rankings when the multifunctional gene is removed 

(Figure 4B, grey). This suggests that removal of multifunctional genes will both improve specificity 

and reveal underlying fragility in results by determining the potentially erroneous feature on which 

they most critically depend. Further simulations and results are shown in Supplementary Figure 4 

and 5 and the comparable results for continuous corrections are shown in Supplementary Figure 6.  

Field-wide evaluations for the impact of multifunctionality 

While our simulations were useful in framing the problem with multifunctionality, it is obviously crucial 

that the approach (i.e., evaluating and/or removing multifunctional genes) has desirable effects on 

real data overall. This is difficult to evaluate because in real data there is no established gold standard 

for enrichment results. This has been a consistent challenge for all such evaluations in the literature. 

As we will not know what the functions a hit list should be enriched for, we perform our next analysis 

once again on the standard MolSigDB hit lists, and identify the impact of multifunctional genes on 

what would be reported.  
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We wish to detect the point at which reported results are both robust and unique to removing 

multifunctional genes; in other words, the point at which overlaps have decreased and the influence of 

individual genes is small. Since we found that multifunctional genes most contribute to large swings in 

enrichment, this argues in favor of removing multifunctional genes in descending order until reported 

results are no longer sensitive to their removal. If we remove multifunctional genes in descending 

order, we also slowly remove functions from the reported enriched results. In our case, this resulted in 

8% of genes being removed on average, with 52% fewer GO gene sets being significant (at an FDR 

0.05). Note that this does not yield additional enriched functions, but merely argues that a subset of 

apparently significant results were not robust (and primarily due to high prevalence genes). More 

importantly, there is a decrease in the occurrence of enrichment of highly multifunctional GO gene 

sets. The correlation between occurrence and multifunctionality goes from r=-0.67 (as in Figure 3B; 

Pearson correlation) to r=-0.51. Further, previously rare gene sets became more common, leading to 

a more even spread of occurrence of GO gene sets across the MolSigDB results (the standard 

deviation of times a term occurs in the results goes from 24 to 13.3 after this ‘correction’). The 

agreement of these results with the expectations under the model (Figure 1) supports the hypothesis 

that over-occurrence of multifunctional groups is an artifact, not a meaningful biological phenomenon. 

More importantly, it suggests that multifunctional genes are a good place to look to for irreproducible 

results. If removing a single gene – and particularly the gene which was likeliest to arise by chance 

anyway - removes most of your enrichment, the enrichment results were probably not reliable in the 

first place. 

Characterizing algorithms using the robustness and uniqueness heuristic  

Having assessed the impact of multifunctionality in a baseline algorithm, we now look to see if the 

same ideas apply to other methods. Our focus here is on demonstrating that simple assessments of 

multifunctionality reveal more clearly what pre-existing methods are doing. We once again consider 

the four case studies previously described, but now consider a corpus of 17 pre-existing enrichment 

analysis methods (including our own ErmineJ). We use all the methods as black boxes, using their 

default settings but standardizing so that the inputs and outputs are comparable.  

Recall that using the gene multifunctionality ranking as input to a simple Mann-Whitney 

enrichment test yields over 90% of gene groups enriched. The extent to which the results of an actual 

analysis resemble this result is a measure of interest in the uniqueness analysis (Figure 5A), which is 

naturally customized to each algorithm since the exact functional outputs in response to this generic 

input will vary. In response to an input of the top 100 multifunctional genes as an input (see methods), 

the methods returned an average of 22.38% (0.12%-77.44%, SD 22.25%) of all GO functions as 

significant, indicating the functionally promiscuous effect even this small set of genes can have in 

some methods. The wide range indicates that methods vary strongly but a substantial fraction of that 

variance may be enforced by direct filtering (GO groups which can’t be returned). This highlights the 

importance of having a way of benchmarking the outputs of real enrichment gene lists since variation 

in output for a given method will reflect the same filtering. The precise p-values for GO terms differ 
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from method to method, with correlations of p-values across significantly enriched terms averaging 

rs=0.30 (Spearman’s rank correlation, SD 0.21, Figure 5B).  

We now apply our criteria of uniqueness and robustness to the output of the 17 algorithms for our 

four case study data sets. First, to assess uniqueness, we compared the output of each algorithm 

when given the experimental input hit lists to that of the algorithm when the top 100 multifunctional 

genes was the input (Figure 5A). Recall that the multifunctional hit lists just input genes with as many 

functions as possible, so output enriched functions may be significant but appear only to the extent 

they overlap with other functions, and are therefore non-specific (as illustrated earlier in Figure 2A). 

Because we know the four case study data sets have a substantial multifunctionality bias, as 

expected the overlap in the enrichment results with the top 100 multifunctional genes and the 

experimental hit lists is very high. Filtering out this overlap results in an average retention of only 46.4% 

of the results, SD 10.8% (darker shaded bars in Figure 5C).  

We next assessed robustness by removing the 5% of most multifunctional genes from the 

experimental hit lists (as demonstrated in Figure 2B and Figure 5A). While this percentage is 

arbitrary, it seems an extremely conservative test to us (if removal of only 5% of the hit list – as little 

as one gene – can alter reported enrichments, it would seem unreasonable to consider the results 

meaningfully robust). As for the comparison with the top 100 multifunctional genes, we compare the 

results after this removal to the original results with the hit list, finding an average of ~53.5% (SD 

10.1%) of reported enrichments are retained (lighter shaded bars in Figure 5C). This confirms that 

many enrichment results in these case studies are not robust. 

We next combined the uniqueness and robustness filters, yielding an average 26.6% (SD 9%) of 

GO terms robust to both (lightest shaded bars in Figure 5C). It may seem surprising that the filters 

are not basically redundant. Since we are removing multifunctional genes to test for robustness, it 

might seem like this should downgrade the multifunctional functions as well. Such reasoning underlies 

at least some enrichment software’s pre-filtering. However, as we noted earlier (Figure 3C), functions 

returned because they are multifunctional are likely to be robust, since the aggregate of any 

remaining biological signals will yield such functions. In contrast, the functions susceptible to removal 

of a single multifunctional gene are (paradoxically) not likely to be very multifunctionally biased 

themselves. The multifunctional gene is simply a good bet to affect any given functional enrichment, 

and then non-robust functions will be disrupted.  

Thus far the analysis simply confirms that the robustness and uniqueness heuristics are behaving 

as expected, overall, on the four case studies across 17 different enrichment methods. But the true 

power of this assessment is to help understand the behaviour of specific methods. We divide the 

enrichment tools into those which apply standard statistical tests (enrichment only – 5 methods 

considered “non-correcting”) and those which attempt to improve on standard approaches (through 

statistical corrections or filtering of GO terms, etc., 12 “correcting” methods, see Table 1). Looking at 

whether two or more algorithms report the same GO terms enriched for a given study, the non-

correcting algorithms overlap (at least two algorithms report) on average 58.3% (across studies, SE 

~9%) of functions; in contrast, the correcting methods overlap in on average 24.2% of functions (when 

downsampled to the same number of algorithms; SE ~5%). And, as expected, the union of functions 
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ever reported as enriched is much higher for the correcting algorithms (average downsampled 

~58.2%) than the non-correcting (37.2%). Thus, it is hard to see any methodological convergence in 

advances among enrichment methods and methodological variance is likely to make results even less 

robust. While the methods themselves are diverse, their output can be heuristically understood in a 

consistent way in the light of our multifunctionality assessments. Partitioning our multifunctionality-

based assessment by the enrichment method class (Figure 5D), we can see that ‘correcting’ methods 

are much more likely to return robust and unique results (average ~30.7%, SD 10.4%) in contrast to 

non-correcting methods (average ~16.7%, SD 6.7%), as described in Table 2 (more details in 

Supplementary Table 2 and 3). 

Understanding the Gene Ontology using Multifunctionality 

The correction-based algorithms we have characterized start with the GO annotations and then 

attempt to moderate the impacts of properties like annotation bias on a particular analysis. An 

alternative, as described in the introduction, would be to alter or filter the GO hierarchy to reduce 

multifunctionality bias and apply that “improved” GO to all analyses. The effect of such manipulations 

can now be evaluated in a useful way using our methods. In the following two sub-sections, we exploit 

this ability to perform general assessments which characterize both fine-scale features and the 

general architecture of GO. 

Dissecting the Gene Ontology and its Annotations 

To assess the relative contribution to multifunctionality bias of species (mouse or human), annotation 

codes, GO domain (e.g., biological process), and GO relation type (e.g., part_of), we built 512 

alternative versions of the Gene Ontology and its annotations (collectively coined as “alt-GOs”, see 

methods). Returning to an observation presented earlier for the default human GO, we calculated the 

gene multifunctionality scores for each alternative GO, yielding a single ranked gene list. Assessing 

the fraction of GO terms enriched in this list at an FDR<0.05 and FDR<1E-10 gives a feel for how 

multifunctionality-biased the annotations are. Recall from our earlier results that in a default human 

GO annotation set, nearly all GO terms are enriched at FDR < 0.05 and over one third are at FDR 

<1E-10 (described in the above results section Tests for multifunctional effects in gene set 

enrichment). For the alt-GOs we extend this analysis to evaluate enrichment of each possible pair of 

alt-GOs (create the ranking with one GO, evaluate enrichment using another). This was done for all 

possible pairs including the simple self-comparison (Figure 6A for FDR<0.05 and Supplementary 

Figure 8 for FDR<1E-10). 

Across all the possible pairs of versions of GO and its annotations, the multifunctionality bias 

remains very high (Figure 6A). All the versions yield quite high reported fractions of enriched terms 

(>0.85; Figure 6A). There is also clear structure such that fractions of enriched terms within a given 

ontology (columns) are perfectly clustered by species first, then evidence code, with moderate 

clustering by domain and little by relation. Multifunctionality is thus, itself, robustly estimated from the 

various ontologies and so varies only modestly from GO row to row. 

When split by species (Figure 6B), the multifunctionality from the complete GO and all evidence 

code set is enriched (FDR<0.05) in every derivative ontology’s annotated gene sets for greater than 
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94% of GO terms (median 98%). The trend in mouse is slightly stronger with all derivative ontologies 

being enriched in more than 96% of GO terms. We can perform the same assessment across species, 

using the original multifunctionality scores from each species to test for enrichment in the other; this 

modestly lowers reported enrichments (minimum 90%). The proportions scale similarly to our original 

assessment in that fractions at FDR<1E-10 show broadly similar trends centering at around 30% of 

terms being enriched in each derivative ontology (not shown).  

If we are to consider each derivative ontology only with respect to its own multifunctionality, then 

our evaluation reduces to the diagonal of the heatmap in Figure 6A, and performance subject to 

evidence code choice (Figure 6C), domain (Figure 6D), and relation (Figure 6E) can each be 

evaluated. Some interesting patterns are clearly evident, with different evidence codes having 

different roles in extreme multifunctionalities; interestingly, traceable author statements (TAS) has 

relatively high multifunctionality bias while simply using all evidence codes has far less. This can be 

seen in the left panel of Figure 6C, where TAS (far right) has mean 47.4% (median 48.6%) of terms 

enriched at FDR<1E-10, while using all evidence codes (far left of the same panel) yields only mean 

30.2% (median 28.7%) of terms enriched at the same level; this multifunctionality bias in TAS may 

reflect the focused annotation efforts (or biases) by curators. The more information via propagation 

used in the relational structure of GO, the stronger the multifunctionality bias (Figure 6E). However, 

we think the variation in values is actually quite modest given the enormous redundancy one can 

imagine propagation induces. This seems more a feature of  the underlying biology or our knowledge 

of it rather than a problem with GO’s structure.  

Rebuilding the Gene Ontology and its Annotations 

Just as we can use the multifunctionality heuristic to readily parse GO and its annotations in fine detail, 

we can consider how even more vastly altered Gene Ontologies would behave through this heuristic. 

In the following section, we consider four radically different versions of the Gene Ontology and 

annotations (summarized in Figure 7).  

In our first version of GO, every Gene Ontology term brings into existence its opposite to which 

genes would additionally be annotated as “not” being members. This yields a logically consistent GO, 

and forces all genes to have the same number of annotations (one for each GO term, as to whether it 

belongs or not). The main other effect is to formalize a closed world assumption on GO, which is 

consistent with how GO is normally applied. Despite having no annotation bias, multifunctionality 

scores from the Shadow-GO are still highly correlated with those derived from the original GO 

(Spearman’s rank correlation rs ~ 0.69). Shadow-GO also suffers from almost the same enrichment 

problems as default GO with almost 97% of gene sets enriched at FDR<0.05 and 37% at FDR<1E-10. 

However, unlike in the original assessment, where sidedness had no impact, the multifunctionality 

ranking is now highly sided, with only 50% of GO terms being positively enriched. This is almost fully 

accounted for by 99% of the original GO terms being positively enriched with only a few of the new 

shadow terms being positively enriched. This is striking since the calculation of multifunctionality is 

“unaware” of the structure of GO and simply sees the annotated sets. Conceptually the modest 

impact the GO shadowing has makes sense: Shadow-GO is at least as redundant as the original GO 
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and is only concealing its bias from a trivial assessment. We consider two additional hypothetical-GOs, 

Ortho-GO and Weigh-GO (see supplement: “Rebuilding the Gene Ontology. . .”), both of which may 

be thought of as elaborations of Shadow-GO, in one case by constructing gene sets to be orthogonal 

and in the other by weighting gene membership within existing gene sets. In both cases, while 

annotation bias is largely gone, the utility of multifunctionality in understanding “expected” enrichment 

results is still very high. 

Our final version of GO, “Local-GO”, also discards GO as a universal tool and asks only if we can 

construct local non-overlapping sets that “work”. This is close to the premise of GO-slim and one 

might imagine it as pre-registering a function of interest for a given experiment and then having that 

function define which other sets are independent enough to also be tested. One obvious limitation of 

this approach is that not all of the genes originally possessing some function will now have one 

annotated. Indeed we see this: the 200-local-GO attached annotations to only 14% of originally 

covered genes and the 1000-local-GO attached annotations to only 45% of originally annotated genes 

(see methods). While 68% of GO groups were significantly enriched by multifunctionality on 200-local-

GO (and 52% on 1000-local-GO), almost none were very significantly enriched (~1% 200-local-GO, 

~2% 1000-local-GO FDR<1E-10), even with the more modest multiple hypothesis test correction. 

Thus, using pre-registration, semantic filtering and extreme enrichment thresholds would seem to be 

a potential improvement in ensuring results were biologically specific.  

Implementation of multifunctionality reporting in ErmineJ 

The approaches we describe are general enough that they can be adapted to any gene set analysis 

method. To permit biologists to rapidly benefit, we have integrated new features in ErmineJ (version 

3.0) that expose information on multifunctionality to users. ErmineJ (22,23) is open source desktop 

software implemented in the Java programming language that affords a point-and-click interface for 

enrichment analysis with extensive visualization features, as well as programmatic and scriptable 

interfaces. Our philosophy in designing the multifunctionality features of ErmineJ 3.0 is to make it 

clear which results are sensitive to multifunctionality, rather than to focus on corrected results as such. 

Users can then decide to filter or re-rank the results based on multifunctionality effects. Figure 8 is a 

screenshot of the ErmineJ 3.0 interface illustrating the presentation of multifunctionality effects for the 

hypoxia case study. ErmineJ also provides diagnostic plots of multifunctionality which can be useful 

for detecting how biased the user’s data is before analysis. The new ErmineJ features are 

documented at http://erminej.chibi.ubc.ca/. 

DISCUSSION 

Gene set analysis allows us to make statements ascribing an experimental result to changes in 

underlying gene-based functions. This is of tremendous scientific value if it works and can be 

correspondingly damaging if it does not. No consensus has emerged as to the correct way to perform 

function enrichment, and this is impossible to resolve without accepted gold standards, which are 

currently not attainable. Rather than tackle this issue, we have suggested a generally applicable 

heuristic test to assess if function enrichment is working reasonably in terms of robustness and 
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uniqueness. We showed that both of these properties are highly associated with gene 

multifunctionality (as operationalized by gene sets). In the simplest version of our approach, when 

testing for enrichment of a gene set, one simply removes the most multifunctional gene from the data 

and reruns the analysis in whatever software tool being used. This can be repeated until either the 

notable results vanish or the experimenter is comfortable that the results are robust and can be 

reported as such, e.g., “Our 350 candidate genes were enriched for synaptic activity, a property 

robust to the removal of the 5 most multifunctional genes”. By considering robustness over 

multifunctional genes, weak signals can still be considered significant if they are unusual (of low prior 

probability). 

In contrast to our approach, attempts to improve enrichment methods to better recover the true 

functions by fixing the underlying enrichment tests or determining the underlying dependencies of 

functions are trying to address ill-posed problem given the current incompleteness of annotation data. 

We do not know how functions combine (linearly?), whether an absence of annotations reflects an 

annotation of absence (a necessary and untrue assumption), or indeed, the true null distribution for 

many experimental designs. We propose that the best we can hope is to assess the conditions under 

which enrichment results are not sensitive to these likely confounds. An important result from our 

analysis is that the methods that do attempt to correct for biases and lack of gene independence have 

succeeded even while ending up with highly variable output. We think this is a generally important 

principle that may be fruitfully generalize to other areas of bioinformatics research: Even treating the 

methods as black boxes, uniqueness and robustness are fundamental properties which can serve to 

benchmark methods. Our formal assessment of this for enrichment focusses on multifunctionality, but 

these ideas will find alternate expression in different areas of research and serve as an important 

alternative to developing methods based on assessment in specific gold standards, which can result 

in fieldwide overfitting (39). Our assessment of the current state of corrections in enrichment – that 

they work, modestly – was both encouraging and surprising to us. Combined with our evaluation of 

hypothetical GOs, we feel these demonstrations provide strong evidence of the intuitive significance 

of our approaches and create a strong argument for making multifunctionality considerations a routine 

aspect of enrichment analysis. 

We have shown that gene multifunctionality has a major impact on the biological interpretability of 

functional enrichment analysis, and presented algorithms that improve the interpretability of results, 

often dramatically. Enrichment analysis is already extremely widely used, and we suggest that 

accounting for multifunctionality will make it a more attractive approach for interpreting genomics 

studies. The availability of the implementations in ErmineJ 3.0 put these approaches in the hands of 

researchers. The algorithms are also simple to implement and general, and could easily be adopted 

for use in other software packages. 
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TABLE AND FIGURES LEGENDS 

Table 1. Methods used and their correction types  

Name URL/package Correction type Cite 
No corrections    

GOTermFinder 
[03/31/2015] 

http://go.princeton.edu/cgi-
bin/GOTermFinder  

 (40) 

GOMiner (v. 457) 
[03/31/2015] 

http://discover.nci.nih.gov/gominer/
index.jsp  

 (41) 

Gorilla 
[03/31/2015] 

http://cbl-gorilla.cs.technion.ac.il/   (42) 

PANTHER 
[03/31/2015] 

http://go.pantherdb.org   (43) 

Hypergeometric  Local implementation in R, used to 
generate input for GO-Elite and 
GO-Module below 

  

Pre-test 
adjustments 

   

GenGO  
[04/01/2015] 

http://www.sb.cs.cmu.edu/GenGO/
run.html  

A generative model is used to select 
the subset of “active” GO categories, 
and filters out non-active 

(44) 

DAVID (v. 6.7) 
[03/31/2015] 

http://david.abcc.ncifcrf.gov/  Clusters similar GO terms, uses 
“fuzzy” methods 

(45) 
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GENECODIS 
[03/31/2015] 

http://genecodis.cnb.csic.es/  Merges similar GO terms into clusters (46) 

GOStat  
[03/31/2015] 

http://gostat.wehi.edu.au/  GO structure (paths and splits) (47) 

GOStats (v 2) 
[03/31/2015] 

http://www.bioconductor.org/packa
ges/release/bioc/html/GOstats.html  

Conditions on the fact that the child 
terms are significant. Only terms with 
non-significant leaves are tested. 

(48) 

FatiGO 
[03/30/2015] 

http://babelomics.bioinfo.cipf.es/  GO structure clustering (49) 

Ontologizer (v 
2.0) [03/03/2015] 

http://compbio.charite.de/contao/in
dex.php/ontologizer2.html  

PCI – Parent, child intersection – 
ignore genes not annotated to the 
parents 

(50) 

  T4T – term for term – standard  
  Topology elim. – ignores genes 

mapping to child terms that are 
significant 

 

Post-test 
adjustments  

   

GO-Elite (v 1.2.5) 
[03/31/2015] 

http://www.genmapp.org/go_elite  Prunes redundant GO groups (51) 

GO-Module (v 
1.2) [03/31/2015] 

http://lussierlab.org/GO-Module  Takes in lists of GO terms and 
removes “dispensable” terms 

(52) 

ErmineJ (v 3.0.2) 
[03/31/2015] 

http://erminej.chibi.ubc.ca/  Reports multifunctionality, thresholds 
on MF groups 

 

 

 

Table 2. Significant GO term result overlaps of the 17 algorithms on the four case studies  

 Enrichments only  Corrected  

 Average SD Average SD 
Down- 
sampling 
(5) 

SD 

2 or more methods       

All results 58.4% 9.2% 52.4% 5.3% 24.2% 10.7% 

Both robust & unique 37.4% 17.9% 29.0% 8.5% 15.9% 8.1% 
Enriched across  
all studies (union)       

All results 37.2% 4.1% 97.3% 1.1% 58.2% 22.9% 

Both robust & unique 29.2% 4.8% 91.6% 4.9% 48.0% 7.9% 
Enriched per study 
(averaged)       

Both robust & unique 16.7% 10% 30.7% 26% 30.5% 6% 
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Figure 1. A conceptual model for gene group analysis. Consider a hypothetical process (e.g., a 

disease) which involves two gene functions (bars at left). Assume a gene is “detected” in the 

experiment (with some non-zero probability) if they are involved in one of the functions that underlie 

the process of interest. In this case, the genes with the highest probability of “showing up” are the 

ones in functions 2 and 4. From a gene set enrichment analysis of this hit list, it is hoped that 

enrichment will be found for both functions 2 and 4, but not the others. Yet, genes in these functions 

are highly multifunctional and share other functions, which show up erroneously as enriched in the 

analysis (bars on the right).  
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Figure 2. Uniqueness and robustness as constraints for testing validity of enrichment outputs. 

(A) For a given experiment 1 with unknown (or known) functions 1 and 3 (bar on right in top panel), an 
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experiment detects a set of genes (marked in dark grey in figure). Gene set enrichment outputs 

results (bar on left in top panel). Because the genes detected are multifunctional, many functions are 

returned enriched. For a different experiment with a different phenotype or disease, the functions 

(right bar in bottom part of panel), are different (or overlapping), and the genes detected may be 

similar. Enrichment yields similar if not identical results to the previous experiment due to the 

multifunctional genes. Comparing this output to that of the multifunctionality assessment shows that 

the results enriched are non-unique. (B) When testing robustness, removing genes such as the most 

multifunctional has little impact on the non-unique results, but removing genes from functions in 

experiments with less “noise” (i.e., fewer overlaps that are multifunctional), removes the non-specific 

signals.  

 

Figure 3. Multifunctionality strongly impacts GO enrichment results on published “hit lists”. (A) 

Multifunctional genes appear more often in MolSigDb lists. Multifunctionality is the number of GO 

terms assigned to a gene. Data are smoothed with a sliding window of 100 genes. (B) Multifunctional 

GO terms are more frequently enriched in MolSigDb hit lists. P-values for AUROCs for GO functions 

using gene multifunctionality ranking versus GO group incidence results of simple over-representation 

enrichment analyses of MolSigDb groups (threshold FDR<0.05). The Pearson correlation is r=-0.67 

using the log p-values as shown, Spearman’s rank correlation rs=-0.59. (C) Enrichment results are 

sensitive to the removal of single genes depending on multifunctionality of the GO term. Change in 

top 10 GO ranks for each hit list after removing one gene (the strongest contributing one). 

Multifunctionality-enriched hit lists tend to gather at the left; (at a FDR<0.05, mean shift is 8) whereas 

the sets that are not enriched for multifunctional genes change by an average of 902 (right-hand 

peak). 
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Figure 4. Simulations showing that the presence of multifunctional genes degrades recovery 

of “true” functions. (A) Analysis of a simple simulation, in which hit lists of size 100 are generated 

using 10 genes from a randomly selected GO group (which becomes the target) plus background 

noise of 90 randomly chosen genes, with the background constrained to have a minimum 

multifunctionality level. Increasing the minimum multifunctionality of the background genes (x-axis) 

decreases recovery of the target GO term. Black line indicates average of 1000 simulations; grey area 

covers 50% of simulations (middle quartiles). (B) Analysis of a more complex model, mixing 10 genes 

from 10 GO groups to make an artificial hit list, and testing the effect of removing each gene (one at a 

time, not cumulatively). We plotted the average rank of the target functions against the 

multifunctionality rank of a single gene removed. Because only a single gene is removed, the effect is 

modest, but the more multifunctional the gene, the more removing it improves the score but also the 

more the scores vary. Note the y-axis only includes the range from 19.3-20.7. The plot is the average 

of 1000 simulations, each of which involved removing each of the 100 genes in turn.  
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Figure 5. Effects of multifunctionality on algorithm behavior. (A) Schematic of method to assess 

uniqueness and robustness of the 17 gene set enrichment methods. We input the top 100 

multifunctional genes, the case study genes, and then the case study genes filtered at 5% for the 

most multifunctional genes. The 5% reduced output results are those robust to multifunctionality. The 

results filtered by the multifunctional results are those used in uniqueness test. (B) The top 100 

multifunctional genes were given as a hit list for the individual algorithms, and the resulting GO 

enrichment results for each were compared. The methods that do not claim to correct cluster together. 

The corrections that prune results post-enrichment cluster with the non-correcting methods. (C) Four 
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case studies were assessed in each of 17 commonly used enrichment methods and their results 

assessed for the role of multifunctional genes in generating their systemic results. Only a modest 

fraction (average 46.4%, average SE 6%) of the reportedly enriched functions are not the same ones 

that each algorithm outputs when the 100 most multifunctional genes are used as an input (leftmost 

panels). Removing the 5% most multifunctional genes from each hit list (as few as 1 gene) 

dramatically alters most reported enrichment, leaving only ~53.5% (average SE 7%) of them in tact 

(middle panel). This combination of effects has an impact on all but a small fraction (average 26.6%, 

average SE 5%) of the algorithms across all four studies (right most panels). Note that colors 

associated with the study are indicated in the legend in panel B. (D) Algorithm behavior is examined 

for the effects of corrections. We partitioned the algorithms into two classes, those which perform 

more standard statistical tests (darker colors) and those which attempt to correct for problems with 

enrichment in some way (lighter colors). We then repeated the analysis from part A. Algorithms 

attempting to correct their output yield a significantly higher fraction of terms which are both specific 

(not multifunctional) and robust (to removal of 5% of genes from the hit list). 
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Figure 6. Multifunctionality bias is a robust feature of GO.  

Different versions of GO, filtered for different annotation properties were built and compared. (A) 

Heatmap of the fraction of GO terms enriched in a list of genes ordered by multifunctionality estimated 

from a different version of GO at an FDR of 0.05. We see a clear structure within a given ontology, 

with clustering by species (mouse in green, human in purple), then by annotation (shades from red to 
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blue), then by domain (shades from orange to yellow) and some clustering by the relation (shades 

from blue to green). The color codes listed in the key are used consistently throughout the rest of the 

panels. (B) The fractions for the original human GO on all the other human GO derivatives, the 

original mouse GO on all the mouse derivatives, and all the human GOs on the mouse GOs. This is 

shown for both the FDR<0.05 and FDR<1E-10. (C) Taking each multifunctionality list and calculating 

the enrichment on “itself”, we see for the GO’s conditioned on annotation codes follow an upward 

trend to be more enriched as the annotations are more reliable. (D) For domains, this is fairly stable. 

(E) For relations, it is the opposite, as we become more strict, we lose the multifunctionality bias, 

moderately.  

 

Figure 7.  Alternate hypothetical GOs to assess multifunctionality 

Constraining the ontology to reduce or change multifunctionality can be done by “Shadowing” GO to 

obtain members “not” in GO. Selecting orthogonal groups to force minimal overlaps (Ortho-GO), or 

weighting the genes (Weigh-GO) so that overall membership is the same also constrains 

multifunctionality. A targeted version (Local-GO) has a more specific and hypothesis driven basis, 

where a known function is pre-selected, and other GO groups are selected that do not intersect with 

each other.  
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Figure 8. Screen shot of the ErmineJ interface showing multifunctionality-related features. The 

results of the enrichment analysis for the Manalo case study are shown. Each row in the table is a 

gene group. The right-most column shows the enrichment results as p-values, with different tints of 

green indicating strength of enrichment. The degree to which the result is sensitive to 

multifunctionality correction is indicated by a diamond next to the p-value, with red indicating the 

highest sensitivity. The p-value is shown in grey if it would not be significant at an FDR of 0.1 after 

multifunctionality correction. The second column from the left shows the multifunctionality of the GO 

term, which darker tints of red indicating stronger bias. Note that the most multifunctional GO terms 

are not necessarily the ones which have the strongest effect of correction. 
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