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Abstract

Experimental evolution (EE) studies are powerful tools for observing molecular evolution
“in-action” from populations sampled in controlled and natural environments. The advent of
next generation sequencing technologies has made whole-genome and whole-population sampling
possible, even for eukaryotic organisms with large genomes, and allowed us to locate the genes
and variants responsible for genetic adaptation. While many computational tests have been
developed for detecting regions under selection, they are mainly designed for static (single time)
data, and work best when the favored allele is close to fixation.

EE studies provide samples over multiple time points, underscoring the need for tools that
can exploit the data. At the same time, EE studies are constrained by the limited time span
since onset of selection, depending upon the generation time for the organism. This constraint
impedes adaptation studies, as the population can only be evolve-and-resequenced for a small
number of generations relative to the fixation time of the favored allele. Moreover, coverage in
pool-sequenced experiments varies across replicates and time points, leading to heterogeneous
ascertainment bias in measuring population allele frequency across different measurements.

In this article, we directly address these issues while developing tools for identifying selective
sweep in pool-sequenced EE of sexual organisms and propose Composition of Likelihoods for
Evolve-And-Resequence experiments (Clear). Extensive simulations show that Clear achieves
higher power in detecting and localizing selection over a wide range of parameters. In contrast
to existing methods, the Clear statistics are robust to variation of coverage. Clear also
provides robust estimates of model parameters, including selection strength and overdominance,
as byproduct of the statistical test, while being orders of magnitude faster than existing methods.
Finally, we apply the Clear statistic to data from a study of D. melanogaster adaptation to
alternating temperatures and discover enrichment of genes related to “response to heat” and
“cold acclimation”.

1 Introduction

Natural selection is a key force in evolution, and a mechanism by which populations can adapt to
external ‘selection’ constraints. Examples of adaptation abound in the natural world, including for
example, classic examples like lactose tolerance in Northern Europeans [10], human adaptation to
high altitudes [66, 81], but also drug resistance in pests [16], HIV [26], cancer [30, 82], malarial
parasite [4, 50], and other antibiotic resistance [67]. In these examples, understanding the genetic
basis of adaptation can provide actionable information, underscoring the importance of the problem.

Experimental evolution refers to the study of the evolutionary processes of a model organism in a
controlled [8, 11, 31, 41, 42, 53, 54] or natural [6, 9, 17, 18, 46, 58, 80] environment. Recent advances
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in whole genome sequencing have enabled us to sequence populations at a reasonable cost even for
large genomes. Perhaps more important for experimental evolution studies, we can now evolve and
re-sequence multiple replicates of a population to obtain longitudinal time-series data, in order to
investigate the dynamics of evolution at molecular level. Although constraints such as small sizes,
limited timescales, and oversimplified laboratory environments may limit the interpretation of EE
results, these studies are increasingly being used to test a wide range of hypotheses [38] and have
been shown to be more predictive than static data analysis [13, 19, 64]. In particular, longitudinal
EE data is being used to estimate model parameters including population size [37, 55, 71, 76–78],
strength of selection [12, 33, 34, 45, 48, 68, 71], allele age [45] recombination rate [71], mutation
rate [7, 71], quantitative trait loci [5] and for tests of neutrality hypotheses [9, 14, 25, 71].

While objectives, designs and organisms of EE studies can be entirely different [7, 65], here we
restrict our attention to the adaptive evolution of multi-cellular sexual organisms. For simplicity,
we assume fixed population size, and for the most part, positive single locus selection (only one
favored mutation). This regime has been considered earlier, typically with D. melanogaster as the
model organism of choice, to identify adaptive genes in longevity and aging [14, 59] (600 genera-
tions), courtship song [74] (100 generations), hypoxia tolerance [83] (200 generations), adaptation
to new laboratory environments [53, 72] (59 generations), egg size [36] (40 generations), C virus
resistance [47] (20 generations), and dark-fly [35] (49 generations).

The task of identifying genetic adaptation can be addressed at different levels of specificity. At
the coarsest level, identification could simply refer to deciding whether some genomic region (or a
gene) is under selection or not. In the following, we refer to this task as detection. In contrast,
the task of site-identification corresponds to the process of finding the favored mutation/allele
at nucleotide level. Finally, estimation of model parameters, such as strength of selection and
overdominance at the site, can provide a comprehensive description of the selection process.

A wide range of computational methods [75] have been developed to detect regions under pos-
itive selection. A majority of the existing methods focus on static data analysis; analysis of a
single sample of the population at a specific time, either during the sweep, or subsequent to fix-
ation of the favored allele. Static analysis is focused on reduction in genetic diversity [24, 61, 70]
shift in allele-frequencies, prevalence of long haplotypes [62, 75], population differentiation [14, 32]
in multiple-population data and others. Many existing methods use the Site Frequency Spec-
trum (SFS, see Suppl. Fig. S1) to identify departure from neutrality. Classical examples including
Tajima’s D [70], Fay and Wu’s H [24], Composite Likelihood Ratio [52], were all shown to be
weighted linear combination of the SFS values [1]. While successful, these methods are prone to
both, false negatives [49], as also false-discoveries due to confounding factors such as demogra-
phy, including bottleneck and population expansions, and ascertainment bias [3, 49, 51, 56, 57].
Nevertheless, SFS based tests continue to be used successfully, often in combination with other
tests [3, 75]. One of the contributions of this paper is the extension of SFS based methods to
analyze time-series data, and the identification of selection regimes where these methods perform
well.

Relative to the analysis of static samples, fewer tests-of-selection for dynamic time-series data
have been proposed. Often, existing tests for static data are adopted for dynamic data with two
time-points. Zhu et al. [83] used the ratio of the estimated population size of case and control
populations to compute test statistic for each genomic region. Burke et al. [14] applied Fisher
exact test to the last observation of data on case and control populations. Orozco-Terwengel
et al. [53] used the Cochran-Mantel-Haenszel (CMH) test [2] to detect SNPs whose read counts
change consistently across all replicates of two time-point data. Turner et al. [74] proposed the
diffStat statistic to test whether the change in allele frequencies of two population deviates from
the distribution of change in allele frequencies of two drifting populations. Bergland et al. [9] applied
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Fst to populations throughout time to signify their differentiation from ancestral (two time-point
data) as well as geographically different populations. Jha et al. [36] computed test statistic of
generalized linear-mixed model directly from read counts. Bollback et al. [12] provided diffusion
approximation to the continues Wright Fisher Markov process and estimated s numerically and
performed standard likelihood ratio test under X 2 distribution.

It is only recently that direct tests for analyzing time-series data have been developed, and
much of it is based on whole-genome sequencing of pools of individuals (pool-seq) at specific times.
Using continuous-time continuous-state Brownian motion process, Feder et al. [25] proposed the
Frequency Increment Test (FIT). More recently, Topa et al. [73] proposed a Gaussian Process(GP)
for modeling single-locus time-series pool-seq data. Terhorst et al. [71] extended GP to compute
joint likelihood of multiple loci under null and alternative hypotheses.

A key contribution of our paper is the development of a direct, and significantly faster method,
Clear, for identifying selection in short-term experimental evolution with pool-seq data. We show
for a wide range of parameters that Clear provides higher power for detecting selection, is robust
to ascertainment bias due to coverage heterogeneity, estimates model parameters consistently, and
localizes favored allele more accurately compared to the state-of-the-art methods, while being orders
of magnitude faster.

2 Materials and Methods

Notation. Consider a locus with starting derived allele frequency ν0. Frequencies are sampled
at T + 1 distinct generations specified by T = {τi : 0 ≤ τ0 < τ1, . . . ≤ τT }, and denoted by
ν = {ν0, . . . , νT }. Moreover, R replicate measurements are made, and we denote the r-th replicate
frequency data as ν(r).

2.1 The Clear statistic

To test if a genomic region is evolving under natural selection, we consider a likelihood-based
approach [52, 71, 73, 75] that (a) maximizes the likelihood of the time series data w.r.t. selection
and overdominance parameters s, h, for each polymorphism in the region; and, (b) computes the
log-odds ratio of the likelihood of selection model to the likelihood of neutral evolution/drift model,
for every polymorphism in the region. Subsequently, (c) site likelihood ratios in a genomic region are
combined to compute the Clear statistic, which is a composite likelihood score for the region being
under selection. In addition to detecting selection, the Clear statistic can be used to rank variants
for site-identification, and it provides maximum likelihood estimates of selection parameters.

Likelihood for Neutral Model. To model neutral evolution, it is natural to model the change in
frequency νt over time via Brownian motion [25] or Gaussian process [71, 73]. Significant deviations
from this Null could be indicative of non-neutrality. However, in our experiments, we found that
the Brownian motion approximation is inadequate for small populations, low starting frequencies
and sparse sampling (in time) that are typical in experimental evolution (see Results, and Fig. 2).
In fact, other “continuous” models such as Gaussian process for dynamic allele frequencies, are also
susceptible to this issue (see Results and Fig. 5A-C).

Instead, by computing likelihood of data using a discrete-time discrete-state-space Wright-
Fisher Markov chain, we turn the problem of small-population size into an advantage. Consider a
neutrally evolving diploid population with N individuals. Define a 2N × 2N transition matrix P ,
where P (τ)[i, j] denotes probability of change in allele frequency from i

2N to j
2N in τ generations,
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solely due to genetic drift. P is defined as follows [22]:

P (1)[i, j] = Pr

(
νt+1 =

j

2N

∣∣∣∣νt =
i

2N

)
=

(
2N

j

)
νjt (1− νt)2N−j , (1)

P (τ) = P (τ−1)P (1) (2)

Note that P (τ) needs to be computed only once and can be reused for all the variants in the genome.
Also, precomputing and storing P (τ) is tractable and numerically stable for controlled experimental
evolution experiments with N ≤ 5000.

Likelihood for Selection Model. Assume that the site is evolving under selection constraints s ∈
R, h ∈ R+, where s and h denote selection strength and overdominance parameters , respectively.
By definition, the relative fitness values of genotypes 0|0, 0|1 and 1|1 are given by w00 = 1,
w01 = 1 + hs and w11 = 1 + s. Recall that νt denotes the frequency of the site at time τt ∈ T .
Then, νt+ , the frequency at time τt + 1 (one generation ahead) can be estimated using:

ν̂t+ = E[νt+ |s, h, νt] =
w11ν

2
t + w01νt(1− νt)

w11ν2t + 2w01νt(1− νt) + w00(1− νt)2

= νt +
s(h+ (1− 2h)νt)νt(1− νt)
1 + sνt(2h+ (1− 2h)νt))

.

(3)

For finite populations, let Q
(τ)
s,h[i, j] denote the probability of transition from i

2N to j
2N in τ gener-

ations. We model Q as follows (See [22], Pg. 24, Eqn. 1.58-1.59):

Q
(1)
s,h[i, j] = Pr

(
νt+ =

j

2N

∣∣∣∣νt =
i

2N
; s, h

)
=

(
2N

j

)
ν̂j
t+

(1− ν̂t+)2N−j (4)

Q
(τ)
s,h = Q

(τ−1)
s,h Q

(1)
s,h (5)

For s = 0, Eq. 4 and 5 are identical to Eq. 1 and 2, respectively. The likelihood of observing the
trajectory ν is computed using:

LM (s, h|ν) = Pr(ν; s, h) =
T∏
t=1

Pr(νt|νt−1; s, h) =
T∏
t=1

Q
(δt)
s,h [̂i, ĵ], (6)

where, (̂i, ĵ) = (2Nνt−1, 2Nνt), and δt = τt − τt−1. Combining the likelihood over independent
replicate samples ν(r), we get:

LM (s, h|{ν(r)}) =
∏
r

LM (s, h|ν(r)). (7)

Let ŝ, ĥ denote the parameters that maximize the likelihood. The simplest form of the Markov
likelihood ratio test statistic for each variant is given by

M = sgn(ŝ). log

(
LM (ŝ, ĥ|{ν(r)})
LM (0, 0|{ν(r)})

)
. (8)
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Accounting for Heterogeneous Ascertainment Bias. In the discussion so far, we assumed
that the exact allele frequencies are supplied. However, in most cases, allele frequencies are esti-
mated from genotype data with small sample size or pool-seq data [44] (Suppl. Fig. S3,S2). More-
over, the depth at a site varies for different replicates, and different time samples (Suppl. Fig. S4)
and filtering low coverage variants can potentially discard useful information. For instance, in
analyzing data from a study of D. melanogaster adaptation to alternating temperatures [53], by
setting minimum read depth at a site to be 30, allowing the site to be retained only if the depth
for all time points, and all replicates exceeded 50, the number of sites to be analyzed would drop
from from 1,733,121 to 11,232 (Suppl. Fig. S5). To account for this heterogeneity, we extend the
Markov chain likelihood in Eq. 7 to a Hidden Markov Model (HMM) for pool-seq data.

Consider a variant position being sampled at time point τt ∈ T . We denote the pool-seq
data for that variant as xt = 〈ct, dt〉 where dt, ct represent the read depth, and the count of
the derived allele, respectively, at time τt. The time-series data is represented by the sequence
x = {x0, x1, x2, . . . , xT }. We model the dynamic pool-seq data using a an HMM with 2N + 1
states which state i (0 ≤ i ≤ 2N) corresponds to allele frequency i/2N . Also, we note that HMM is
stationary model in that transition and emission distributions do not change over time and defining
these distributions completely specifies the HMM model. Eqs. 1, 2 define transition probabilities.
The probability that state i emits x = 〈d, c〉 is given by

ei(x) =

(
d

c

)(
i

2N

)c(
1− i

2N

)d−c
.

For 1 ≤ t ≤ T , let αt,i denote the probability of emitting x1, x2, . . . , xt and reaching state i at τt.
Then, αt,i can be computed using the forward-procedure [20]:

αt,i =

 ∑
1≤j≤2N

αt−1,j Q
(δt)
s,h [j, i]

 ei(xt) . (9)

where δt = τt − τt−1. The joint likelihood of the observed data from R independent observations is
given by

LH(s, h|{x(r)}) =

R∏
r=1

LH(s, h|x(r)) =

R∏
r=1

∑
i

α
(r)
T,i . (10)

Similar to Eq. 8, let ŝ, ĥ denote the parameters that maximize likelihood. The likelihood ratio
statistic for each variant of pool-seq data is given by

H = sgn(ŝ). log

(
LH(ŝ, ĥ|{x(r)})
LH(0, 0|{x(r)})

)
. (11)

Composite Likelihood Ratio. In general, the favored allele can be in linkage disequilibrium
with some of its surrounding variation. The linked-loci hitchhike and share similar dynamics
with the favored allele. Some models such as multi-locus Gaussian process [71] incorporate these
associations by modeling linkage and recombination explicitly. However, these approaches are
computationally expensive. Moreover, linkage computations are difficult without haplotype resolved
data, which pool-seq does not provide. Instead, we work with a simpler Composite Likelihood Ratio
(CLR) [52, 79] computation to combine the individual scores of all variants into a composite score.

Consider a genomic region L to be a collection of segregating sites with little or no recombination
between sites and the favored allele. This scenario holds when the starting frequency of the favored
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allele is not high and the region is small. Let M` (respectively, H`) denote the likelihood ratio score
based on Markov chain (respectively, HMM) for each site ` in L. The classical CLR is computed by
averaging scores of all the variants withing the testing region. However, the levels of LD between
favored allele and its surrounding variation depend on initial frequency ν0, strength of selection s
and time since the onset of selection (see Appendix 6.5 for more details). Hence, we parameterize
CLR to discard those polymorphisms that are in low LD with the favored allele, from computation
of CLR. In particular, we can choose to only include sites whose likelihood ratio score is above a
certain threshold. For percentile cut-off π, let Lπ ⊆ L denote the set of sites whose likelihood ratio
scores had percentile π or better. For all π, the modified CLR statistic for Markov chain and HMM
is computed using:

Mπ =
1

|Lπ|
∑
`∈Lπ

M`, Hπ =
1

|Lπ|
∑
`∈Lπ

H`. (12)

In combining the sites, recall that sites that are not on the same lineage as the favored site, will
reduce in frequency and have negative likelihood values, but are still informative about selection.
Therefore, we also define:

M+
π =

1

|Lπ|
∑
`∈Lπ
|M`|, H+

π =
1

|Lπ|
∑
`∈Lπ
|H`|. (13)

We also note here that unlike H, H+
π can be computed without knowledge of the ancestral allele.

Final Word on Notation. In the following, we use M , Eq. 8 (respectively, H, Eq. 11) to denote
the Clear scores for individual variants. Similarly, we use Mπ,M+

π (respectively, Hπ,H+
π ) to

denote the composite Clear scores for a genomic region. In this notation, H100 = H+
100 corresponds

to the CLR based on choosing the best site in a region, while H0,H+
0 both correspond to the CLR

based on all sites in the region. For ease of notation, we sometimes use H, or H+ to denote Clear
scores in results, when the choice of π is apparent.

Site-identification. We rank the individual variant scores in a region to predict the favored site.
In general, identifying the favored site in pool-seq data is difficult [72], due to extensive span
of hitchhikers in an ongoing sweep (see Appendix 6.5 for more detail). In our analysis of the
D. melanogaster EE data, we identify a set of “candidate” variants whose scores exceed a False
Discovery Rate threshold based on the distribution of Clear scores on negative controls.

Estimating Parameters. Depending on data (read count or allele frequency) the optimal value
of the parameters can be found by

ŝ, ĥ = arg max
s,h

R∑
r

log
(
LM(s, h|ν(r)

)
, or, (14)

ŝ, ĥ = arg max
s,h

R∑
r

log
(
LH(s, h|x(r)

)
. (15)

where likelihoods are defined in Eq. 7 and Eq. 10, respectively. The parameters in Eqs. 14, 15 are
optimized using grid search. By broadcasting and vectorizing the grid search operations across all
variants, the genome scan on millions of polymorphisms can be done in significantly smaller time
than iterating a numerical optimization routine for each variant(see Results and Fig. 6). The value
of the overdominance parameter can provide extra information regarding dominance of the favored
allele and the kind of selection [29] (See Suppl. Fig. S6,S7):
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condition comment

h = 0 recessive adaptive allele
h = 0.5 directional selection
h = 1 dominant adaptive allele
h > 1 overdominance

Precomputing Transition Matrices. Clear requires a one-time computation of matrices Q
(τ)
s,h

for the entire range of s, h values. Precomputation of 909 transition matrices for s ∈ {−0.5,−0.49, . . . , 0.5}
and h ∈ {0, 0.25, . . . , 2} took less that 15 minutes (≈ 1 second per matrix) on a desktop computer
with a Core i7 CPU and 16GB of RAM.

2.2 Extending Site Frequency Spectrum based tests for time series data

The site frequency spectrum (SFS) is a mainstay of tests of neutrality and selection, and can be
computed using pool-seq data (does not need haplotypes). Following Fu, 1995 [28], any linear com-
bination of the site frequencies is an estimate of θ. However, under non-neutral conditions, different
linear combinations behave differently. Therefore, many popular tests of neutrality either compute
differences of two estimates of θ, or perform cross-population tests comparing the θ estimates in
two different populations [1, 61, 63].

We asked if SFS-based tests could be adapted for time-series data. A simple approach is to
use cross-population SFS tests on the populations at time 0 (before onset of selection), and at
time sample τt, for each t. However, these tests are not independent. Evans et al. [21] developed
diffusion equations for evolution of SFS in time series, but they are difficult to solve. Instead, we
derive a formula for computing Dt, the dynamic of Tajima’s D at generation t. Specifically, for
initial value D0, initial carrier frequency ν0 and selection coefficient s:

Dt = D0 − log(1− νt)
W0

log(2N)
− ν2t Π0 , (16)

where W0 and Π0 are Watterson’s and Tajima’s estimates of θ in the initial generation (Ap-
pendix 6.2). See Suppl. Fig. S8 for comparison to empirical values from simulations. Similarly,
we show (Appendix 6.3), that the dynamics of Fay and Wu’s H statistic [24] are directly related
to expected value of the of Haplotype Allele Frequency (HAF) score [60], and can be written as a
function of νt as follows:

nHt = θνt

(
νt + 1

2
− 1

(1− νt)n+ 1

)
+ θ(1− νt)

(
n+ 1

2n
− 1

(1− νt)n+ 1

)
(17)

In both cases, νt itself can be written as a function of s, t (Suppl. Eq. S2). This allows us to compute
likelihood functions LS(s; {Dt}) or LS(s; {Ht}). Then, a likelihood ratio, similar to Eqns. 8, 11
provides a statistic for detecting selection in each window.

However, as ν0 and D0 are often unknown in sampling from natural populations, we do not
directly use Eqns. 16, 17. Instead, we heuristically aggregate statistics throughout time to compute
a time-series score (Appendix 6.4).

2.3 Simulations

We performed extensive simulations using parameters that have been used for D. melanogaster
experimental evolution [40]. See also Fig. 1 for illustration. To implement real world pool-seq
experimental evolution, we conducted simulations as follows:
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I. Creating initial founder line haplotypes. Using msms [23], we created neutral populations
for F founding haplotypes with default parameters $./msms <F> 1 -t <2µLNe> -r <2rNeL>

<L>, where F = 200 is number of founder lines, Ne = 106 is effective population size, r =
2 ∗ 10−8 is recombination rate, µ = 2× 10−9 is mutation rate and L = 50K is the window size
in base pairs which gives θ = 2µNeL = 200 and ρ = 2NerL = 2000.

II. Creating initial diploid population. To simulate experimental evolution of diploid organ-
isms, initial haplotypes were first cloned to create F diploid homozygotes. Next, each diploid
individual was cloned N/F times to yield diploid population of size N .

III. Forward Simulation. We used forward simulations for evolving populations under selection.
We note that all experiments denoted as soft sweep below, refer to selection acting upon
standing variation. Given initial diploid population, position of the site under selection,
selection strength s, number of replicates R = 3, recombination rate r = 2 × 10−8 and
sampling times T = {0, 10, 20, 30, 40, 50}, simuPop was used to perform forward simulation
and compute allele frequencies for all of the R replicates. For hard sweep (respectively, soft
sweep) simulations we randomly chosen a site with initial frequency of ν0 = 0.005 (respectively,
ν0 = 0.1) to be the favored allele.

IV. Sequencing Simulation. Give allele frequency trajectories we sampled depth of each site
identically and independently from Poisson(λ), where λ ∈ {30, 100,∞} is the coverage for
the experiment. Once depth d is drawn for the site with frequency ν, the number of reads
c carrying the derived allele are sampled according to Binomial(d, ν). For experiments with
finite depth the tuple 〈c, d〉 is the input data for each site. Infinite depth experiments refer
to the case, where the true allele frequency is provided and Markov and HMM likelihood
computations give identical results.

We also conducted simulations to evaluate performance for cases involving evolution and re-
sequencing of natural populations. Sampling from natural populations differs from (controlled)
experimental evolution in some important ways. First, the time of onset of selection may not be
known. Second, as the start of sampling can be any generation during selective sweep, mutations
that arose after the onset of selection appear in data can have a nontrivial effect on SFS, specifically
if sampling is started long after onset of selection. On the other hand, the power of detection of
selection is highest near fixation, and larger population sizes help provide more robust estimates of
deviation from neutrality. To simulate these scenarios, msms was used to forward-simulate a pop-
ulation with Ne = 104, ν0 = 10−4, and to record SFS of a 50Kbp region (Fig. 1A). The remaining
parameters were identical to controlled experimental evolution simulations.

False Discovery Rate (FDR). We applied Clear to the data from a study of D. melanogaster
adaptation to alternating temperatures [53], by computing the H+ statistic for sliding windows of
30Kbp with steps of 10Kbp over the entire genome. Due to the great variation in the density of
polymorphic sites, we observed a large variation in scores. Moreover, high LD between proximal
sites resulted in many neighboring windows with similar scores. Therefore, we computed a local
false discovery rate for any candidate window by choosing an encompassing genomic region of 2Mbp
to preserve the genomic background. For each candidate window, we sampled a subset of variants
from the encompassing region 10, 000 times, and computed the H+ score. The candidate window
was selected if its score was among the top 1% of scores in the permuted tests.
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3 Results

Modeling Allele Frequency Trajectories in Finite Populations. We first tested the good-
ness of fit of the discrete-time Markov chain versus continuous-time Brownian motion (Gaussian
approximation) in modeling allele frequency trajectories in finite populations, under different sam-
pling schemes and starting frequencies. For this purpose, we conducted 100K simulations with
two time samples T = {0, τ} where τ ∈ {1, 10, 100} is the parameter controlling the frequency of
sampling in time. In addition, we repeated simulations for different values of starting frequency
ν0 ∈ {0.005, 0.1} (i.e., hard and soft sweep) and selection strength s ∈ {0, 0.1} (i.e., neutral and
selection). Then, given initial frequency ν0, we computed expected distribution of the frequency of
the next sample ντ under two models and compared them with empirical distributions calculated
from simulated data. Fig. 2A-F shows that Brownian motion is inadequate when ν0 is far from 0.5,
and when sampling times are sparse (τ > 1). If the favored allele arises from standing variation in
a neutral population, it is unlikely to have frequency close to 0.5, and the starting frequencies are
usually much smaller (see Suppl. Fig. S1). Moreover, in typical D. melanogaster experiments for
example, sampling is sparse. Often, the experiment is designed so that 10 ≤ τ ≤ 100 [40, 53, 83].

In contrast to the Brownian motion results, Fig. 2A-M also shows that Markov chain predictions
(Eq. 5) are highly consistent with empirical data for a wide range of simulation parameters for both
selection and neutral evolution.

Detection Power. We compared the performance of Clear against other methods for detecting
selection. Define power as the fraction of true-positives identified with false-positive rate ≤ 0.05
(Suppl. Fig. S9). We also took into account of ascertainment bias in our comparisons, by evaluating
each simulation for different coverage values sampled from a Poisson distribution with mean λ ∈
{30, 100,∞}. To evaluate power for each configuration (specified with values for selection coefficient
s, starting allele frequency ν0 and coverage λ), we conducted 2000 simulations, half of which modeled
neutral evolution and the rest modeled positive selection.

Before comparing against other methods, we first evaluated the use of Clear with different
percentile-cutoffs π (Eq. 12) in computing composite statistics of a region. For each configuration,
we computed average Power for s ∈ {0.025, 0.05, 0.075, 0.1}, using Hπ,H+

π . We computed the
optimal value of π using a line-search. Fig. 3 reveals several important trade-off between π, initial
frequency, and coverage.

• H+
π consistently achieves a high power for π = 0, and in the absence of knowledge of the

selection regime or the ancestral allele, H+
0 is a powerful statistic to use.

• In every scenario tested, maxπ{Power(Hπ)} ≥ maxπ{Power(H+
π )}, suggesting that it helps

to choose Hπ with the optimum value of π, if the selection regime is well-understood.

• In soft sweep, relative to hard sweep, it helps to choose a higher value of the cut-off π. This
is consistent with the fact that LD between the favored site and other sites is generally lower
for soft sweep. For instance, in soft sweep with infinite coverage (Fig. 3F), optimum is gained
at π = 100, equivalent to considering the score of the highest scoring site as H statistic of the
region.

• When coverage is low (Fig. 3A,D), it helps to accumulate evidence from multiple sites, and
the best results are achieved for lower values of π.

In the following tests, we fix the value of π = 70, 97, 99 for λ = 30, 100, 300, respectively, and
simplify notation by denoting the optimum score as H. For example, when λ = 30, H corresponds
to H70. In addition, we use H+ to denote H+

0 . We also compared M (Markov likelihoods) versus
H. As shown in Fig. 4, H has better power for low coverage (λ = 30) compared to M decays.
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Finally, we compared the power of Clear with Gaussian process (GP) [71], FIT [25], and
CMH [2] statistics. As CMH only takes read count data, here we used λ = 300 to implement
infinite coverage scenario. All methods other than Clear and CMH convert read counts to allele
frequencies prior to computing the test statistic. Clear shows the highest power in all cases and
the power stays relatively high even for low coverage (Fig. 5 and Table S1). In particular, the
difference in performance of Clear with other methods is pronounced when starting frequency is
low (hard sweep). This stems from the fact that favored alleles with low frequency alleles might be
missed by low coverage sequencing, and the contribution of other sites becomes more important.
The power of Clear improves consistently with increasing values of s. We note that methods using
only two time points, such as CMH, do relatively well for high selection values and high coverage.
However, time-series data can be used to get estimates of selection parameters s, h (see below),
and our results (Fig. 5B,C) suggest that taking many samples with lower coverage is preferable to
sparse sampling with higher coverage.

SFS for Detection in Natural Samples. We did not show the SFS based statistics in Fig. 5
as they did not perform better than random. In many experimental evolution settings, we sample
a restricted set of F founder lines, where F << Ne (Fig. 1B) and inbred during the experiment.
This creates a severe bottleneck, confounding SFS. Suppl. Fig. S11 demonstrates the effect of
experimental evolution on different SFS statistics under neutral evolution for 1000 simulations. A
second problem with using SFS for experimental evolution is that the sampling starts right after
the onset of experimentally induced selection, and the favored allele may not reach high enough
frequency to modify the site frequency spectrum (Suppl. Fig. S10).

However, in experiments involving naturally occurring populations, even if the span of the
time-series is small, the onset of selection might occur many generations prior to sampling. To
test performance of SFS-based statistics in natural evolution, we conducted 200 (100 neutral and
100 sweep) forward simulations for different values of s, λ using Ne = 10K and accumulating new
mutations. The start of sampling was done at a randomly picked time subsequent to the onset
of selection in two distinct scenarios. Let tν=x(s,Ne) denote the expected time (in generations)
required to reach carrier frequency x in a hard sweep and U [a, b] denote discrete uniform distribution
in the interval [a, b]. First we considered the case when start of sampling is chosen throughout the
whole sweep. i.e., τ1 ∼ U [1, tν=1(s,Ne)] (Fig. 7A). Next, we considered sampling start time chosen
nearer to fixation of the favored allele, i.e., τ1 ∼ U [tν=0.9(s,Ne), tν=1(s,Ne)] (Fig. 7B). In both
scenarios, sampling was done over 5 time points within 50 generations of τ1. We compared H,
GP, FIT with both static and dynamic SFS based statistics of SFSelect and Tajima’s D. Fig. 7A
shows that SFS based statistics are outperformed by single locus and CLR methods. However,
when sampling is performed close to fixation, i.e., when the favored allele has frequency of 0.9 or
higher, SFS based statistics perform significantly better than GP, FIT and H (Fig. 7b). Moreover,
dynamic SFS statistics outperform static SFS statistics, demonstrating that in these regimes, SFS
based statistics could be used to detect selection.

Site-identification. Localizing the favored site is a nontrivial task. We used the simple approach
of ranking each site in a region detected as being under selection. The sites were ranked according
to the likelihood ratio scores (Eqns. 8, 11). For each setting of ν0 and s, we conducted 1000
simulations and computed the rank of the favored mutation in each simulation. The cumulative
distribution of the rank of the favored allele in 1000 simulation for each setting (Fig. 8) shows that
Clear outperforms other statistics. We also compared each method to see how often it ranked the
favored site in as the top ranked site (Table 1A-B), among the top 10 ranked sites (Table 1C-D),
and among the top 50 (Table 1E-F) ranked sites. In the 1150 variants tested, Clear performed
consistently better than other methods in all of these measures.
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An interesting observation is the contrast between site-identification and detection. When
selection coefficient is high, detection is easier (Fig. 5A-F), but site-identification is harder due
to the high LD between hitchhiking sites and the favored allele (Table 1A-F). Moreover, site-
identification is harder in hard sweep scenarios relative to soft sweeps. For example, when coverage
λ = 100 and selection coefficient s = 0.1, the detection power is 75% for hard sweep, but 100% for
soft sweep (Fig. 5B-E). In contrast, the favored site was ranked as the top in 14% of hard sweep
cases, compared to and 95% of soft sweep simulations (Table 1A-B). Our results are consistent with
previous studies [43, 72]. See Appendix 6.5 for a detailed explanation.

Estimating Parameters. Clear computes the selection parameters ŝ and ĥ as a byproduct of
the hypothesis testing. We computed bias of selection fitness (s − ŝ) and over dominance (h − ĥ)
for of Clear and GP in each setting. The distribution of the error (bias) for 100× coverage is
presented in Fig. 9 for different configurations. Suppl. Fig. S12, S13 provide the distribution of
estimation errors for 30×, and infinite coverage, respectively. For hard sweep, Clear provides
estimates of s with lower variance of bias (Fig.9A). In soft sweep, GP and Clear both provide
unbiased estimates with low variance (Fig. 9B). Fig. 9C-D shows that Clear provides unbiased
estimates of h as well.

Running Time. As Clear does not compute exact likelihood of a region (i.e., does not explicitly
model linkage between sites), the complexity of scanning a genome is linear in number of polymor-
phisms. Calculating score of each variant requires O(TR) and O(TRN2) computation for M, and
H, respectively. However, most of the operations are can be vectorized for all replicates to make
the effective running time for each variant, O(T ) and O(TN), respectively. We conducted 1000
simulations and measured running times for computing site statistics M , H, FIT, CMH and GP
with different number of linked-loci. Our analysis reveals (Fig. 6) that Clear is orders of mag-
nitude faster than GP, and comparable to FIT. While slower than CMH on the time per variant,
the actual running times are comparable after vectorization and broadcasting over variants (see
below).

These times can have a practical consequence. For instance, to run GP in the single locus
mode on the entire pool-seq data of the D. melanogaster genome from a small sample (≈1.6M
variant sites), it would take 1444 CPU-hours (≈ 1 CPU-month). In contrast, after vectorizing and
broadcasting operations for all variants operations using numba package, Clear took 75 minutes
to perform an scan, including precomputation, while the fastest method, CMH, took 17 minutes.

3.1 Analysis of a D. melanogaster Adaptation to Cold and Hot Temperatures

We applied Clear to the data from a study of D. melanogaster adaptation to alternating tem-
peratures [53], where 3 replicate samples were chosen from a population of D. melanogaster for 59
generations under alternating 12-hour cycles of hot (28◦C) and cold (18◦C) temperatures and se-
quenced. In this dataset, sequencing coverage is different across replicates and generations (see Fig.
S2 of [71]) which makes variant depths highly heterogeneous (Suppl. Figs. S5, S4). We computed
the H+ statistic for sliding windows of 30Kbp with steps of 10Kbp over the whole genome. After
filtering for heterochromatin[15, 27], and applying a local false discovery rate ≤ 0.01 (Methods),
we identified 89 intervals (Fig. 10) containing 968 genes (Suppl. Table S6).

We found 11 GO Biological Process terms to be enriched with Fisher exact P -value ≤ 10−3

(Table 2,S5), including many Heat Shock Proteins (HSPs) involved in ‘cold acclimation’ (Hsp22, 23,
26), and ‘response to heat’ (e.g., Adar, Syn). The effect of rapid changes in temperature is profound,
and it is not surprising that the enriched GO terms include many generic stress and stress response
genes. As longer genes contain more variants, the probability of a false variant being selected could
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increase with the length of the gene. Although the Clear statistic for genes does not favor longer
genes, we also performed a single variant based GO enrichment using Gowinda [39]. The analysis
identified 34 enriched GO terms (Suppl. Table S4) associated with Biological Process. 5 of 11 GO
terms in the gene level analysis overlapped with the 34 Gowinda terms (Fisher exact p-val: 10−8)
suggesting consistency of single variant based and gene-based analysis.

4 Discussion

We developed a computational tool, Clear, that can detect regions under selection experimental
evolution experiments of sexual populations. Using extensive simulations, we show that Clear
outperforms existing methods in detecting selection, locating the favored allele, and estimating
selection parameters. Importantly, we make design choices that make Clear very fast in practice,
facilitating genome-wide studies.

Many factors play a role in adaptation during experimental evolution studies. The statistics
used by Clear perform well because they account for many of these aspects. Clear is not
restricted to two-time points, but uses the complete time-series data. Because it uses an exact
model, Clear achieves robust predictions for all values of the initial frequency. It adjusts for
heterogeneous ascertainment bias in finite-depth pooled-seq data to avoid hard filtering variants.
It exploits presence of high linkage within a region to compute composite likelihood ratio statistic.
Finally, Clear uses s, h as model parameters in its likelihood calculation, and provides optimized
estimates of these parameters, which can provide extra information such as fixation time, and
dominance.

In our simulations, we found that the power of detection can be severely affected by the sampling
schedule as well as initial frequency of the favored allele. In general, while EE studies are powerful,
they also pose some challenges that are not adequately considered by other tools. One serious
constraint is the sampling-time-span, the gap between the first and last sampled generations, which
depends upon the generation time of the organism. It can be very small relative to the time of
fixation of the favored allele. In D. melanogaster for example, 30-50 generations are typical [40],
although there are some notable exceptions [83]. Therefore, unless the selection coefficient is very
strong, the time series data will only capture a ‘partial sweep’. This limitation is more pronounced
in controlled experimental evolution, where the sampling often starts at the onset of selection. In
particular, in a hard sweep scenario, the initial frequency of the favored allele is low, and may
not reach detectable frequency in the sampling-time-span. Through exact (discrete-time, discrete-
frequency) modeling, Clear performs better than competing tools even when initial frequency is
low and sampling-time-span is limited.

However, even if it were possible to sample over a larger time-span, many methods, especially
the ones that compute full likelihoods, would simply not scale to allow computation of evolutionary
trajectories over a large time-span. In contrast, Clear precomputes the transition matrices, and
scales linearly with number of samples, irrespective of the time-span in which they were acquired.

Sequence coverage is a practical consideration that is often ignored by other tools. Low se-
quencing coverage can lead to incorrect frequency estimates, even for the favored allele, especially
when the initial frequency is low. Clear uses HMMs to explicitly model variation in sequence
coverage. Moreover, it computes the composite likelihood from multiple linked sites, reducing the
impact of coverage on any one site, and detects selection even when the favored site is not sampled
due to low sequencing depth.

In controlled experimental evolution experiments, populations are evolved and inbred. As this
scenario involves picking a small number of founders, the effective population size significantly drops
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from the large number of wild type (e.g., for D. melanogaster , Ne ≈ 106) to a small number of
founder lines (F ≈ 102) for Experimental Evolution, and the evolution includes a severe population
bottleneck. This bottleneck confounds SFS-based statistics and makes it difficult to fit a model
or test a hypothesis (Suppl. Fig. S11). Hence, statistical testing based on SFS statistic provides
poor performance in controlled experiments where the initial sampling time is close to the onset of
selection. However, SFS-based methods perform very well when sampling is started long after the
onset of selection (e.g., sampling from natural populations). The larger time gap from the onset of
selection provides an opportunity for the site frequency spectrum to shift away from neutrality.

The comparison of hard and soft sweep scenarios lead to interesting observations. First, when
LD is high in the selected region, as is often the case in a hard sweep, composition of scores
significantly improves power of detection. When LD is low, as in soft sweep scenarios, composition of
scores does not work as well. However, the favored allele is well established at the onset of selection,
and will grow faster compared to the hard sweep scenario under identical selection regimes. This
makes it possible to detect selection even in soft sweep scenarios. The situation is a little different
with respect to localizing the favored allele. In soft sweep scenarios, the favored allele is not in high
LD with nearby variants, and its frequency change is independent of them. Therefore, we obtain
better localization results in soft sweep scenarios.

There are many directions to improve the analyses presented here. In particular, we plan to
focus our attention on other organisms with more complex life cycles and experiments with longer
sampling-time-spans. As evolve and resequencing experiments continue to grow, deeper insights
into adaptation will go hand in hand with improved computational analysis.

Software. The source code and running scripts for Clear are publicly available at
https://github.com/bafnalab/clear.
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5 Figures

Fig. 1: Two settings for collecting genomic time series data.
Different settings in which dynamic data is collected are depicted with typical parameters for D. melanogaster.
In both settings, 6 samples (vertical red dashed lines) are taken every 10 generation. When sampling from
naturally evolving populations (A), the time of onset of selection is unknown, and population size is larger.
For (controlled) experimental evolution (B), founder lines are first sampled from a natural population to
create a homogeneous population. Then, multiple replicates of this population are evolved and sampled over
time.
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Fig. 2: Comparison of empirical distributions of allele frequencies (red) versus predictions
from Brownian Motion (green), and Markov chain (blue).
Comparison of empirical and theoretical distributions under neutral evolution (panels A-F) and selection
(panels G-M) with different starting frequencies ν0 ∈ {0.005, 0.1} and sampling times of T = {0, τ}, where
τ ∈ {1, 10, 100}. For each panel, the empirical distribution was computed over 100,000 simulations. Brownian
motion (Gaussian approximation) provides poor approximations when initial frequency is far from 0.5 (A) or
sampling is sparse (B,C,E,F). In addition, Brownian motion can only provide approximations under neutral
evolution. In contrast, Markov chain consistently provide a good approximation in all cases.
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Detection power is averaged for s ∈ {0.025, 0.05, 0.075, 0.1} for Clear statistics, Hπ and H+
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π∗ = arg maxπ{Power(H),Power(H+)}. Average power was computed using 2000 simulations for each choice
of s. The appropriate choice of π can be used to improve performance for different coverage values. In all
simulations, 3 replicates are evolved and sampled at generations T = {0, 10, 20, 30, 40, 50}.
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Fig. 4: Comparison of power of M and H.
Detection power for M and H under hard (top) and soft sweep (bottom) scenarios, for different settings of
mean coverage λ and selection strength s. The y-axis measures power – sensitivity with false positive rate
FPR ≤ 0.05 – for 2000 simulations of 50Kbp regions. The horizontal line reflects the power of a random
classifier. In all simulations, 3 replicates are evolved and sampled at generations T = {0, 10, 20, 30, 40, 50}.
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Fig. 5: Power calculations for detection of selection.
Detection power for Clear(H), Frequency Increment Test (FIT), Gaussian Process (GP), and CMH under
hard (top) and soft sweep (bottom) scenarios. λ, s denote the mean coverage and selection coefficient,
respectively. The y-axis measures power – sensitivity with false positive rate FPR ≤ 0.05 – for 2, 000
simulations of 50Kbp regions. The horizontal line reflects the power of a random classifier. In all simulations,
3 replicates are evolved and sampled at generations T = {0, 10, 20, 30, 40, 50}.
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Fig. 6: Running time.
Box plots of running time per variant (CPU-secs.) of Clear(M, H), CMH, FIT, and GP with single, 3, 5,
7, and 10 loci over 1000 simulations conducted on a workstation with 4th Generation Intel Core i7 processor.
The average running time for each method is shown on the x-axis. In all simulations, 3 replicates are evolved
and sampled at generations T = {0, 10, 20, 30, 40, 50}.
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Fig. 7: Power of SFS based statistics.
Power of detecting selection for Frequency Increment Test (FIT), Gaussian Process (GP), Clear(H) on
hard sweep natural experimental evolution with Ne = 104 and depth λ = ∞. The measurements are
conducted for a range of selection coefficients, s. Each point represents the mean of 200 simulations. For
each simulation, sampling starts at a randomly chosen time, and subsequently 5 replicate samples are acquired
every 10 generations. (A) Start of sampling is chosen randomly throughout the sweep τ1 ∼ U [1, tν=1(s,Ne)],
where tν=x(s,Ne) denotes is the expected time to reach carrier frequency x in a hard sweep and U [a, b] is
discrete uniform distribution. (B) The start of sampling is chosen near fixation of the favored allele, i.e.
τ1 ∼ U [tν=0.9(s,Ne), tν=1(s,Ne)].
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Fig. 8: Ranking performance for 100× coverage.
Cumulative Distribution Function (CDF) of the distribution of the rank of the favored allele in 1000 sim-
ulations for Clear (H), Gaussian Process (GP), CMH, and Frequency Increment Test (FIT), for different
values of selection coefficient s and initial carrier frequency. Note that the individual variant Clear score
(H) is used to rank variants. The Area Under Curve (AUC) is computed as a quantitative measure to
compare the performance of methods for each configuration. In all simulations, 3 replicates are evolved and
sampled at generations T = {0, 10, 20, 30, 40, 50}.
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Fig. 9: Distribution of bias for 100× coverage.
The distribution of bias (s − ŝ) in estimating selection coefficient over 1000 simulations using Gaussian
Process (GP) and Clear (H) is shown for a range of choices for the selection coefficient s and starting
carrier frequency ν0, when coverage λ = 100 (Panels A,B). GP and Clear have similar variance in estimates
of s for soft sweep, while Clear provides lower variance in hard sweep. Also see Table S3. Panels C,D show
the variance in the estimation of h. In all simulations, 3 replicates are evolved and sampled at generations
T = {0, 10, 20, 30, 40, 50}.
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Fig. 10: Clear scan of the data from a study of D. melanogaster adaptation to alternating
temperatures.
Manhattan plot of the Clear (H+) statistic (A) and the number of SNPs (B) in 30Kbp sliding windows
with steps of 10Kbp, excluding windows close to centromere and telomere. The dashed line corresponds to
the top 1%-ile threshold. Regions that exceed the threshold are shown in red dots. For comparison to past
results, only Chromosomes 2, 3, and X are shown.
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Tables

Hard Sweep Soft Sweep

(A) (B)
s CMH FIT GP Clear

0.025 3 0 0 2
0.05 5 0 0 5
0.075 11 0 0 10
0.1 15 0 0 14

s CMH FIT GP Clear

0.025 9 1 4 11
0.05 53 10 51 63
0.075 87 31 92 91
0.1 93 54 95 95

(C) (D)
s CMH FIT GP Clear

0.025 21 3 0 15
0.05 39 2 0 28
0.075 57 4 0 49
0.1 78 4 0 71

s CMH FIT GP Clear

0.025 34 8 27 44
0.05 86 41 86 92
0.075 100 81 100 100
0.1 100 97 100 100

(E) (F)
s CMH FIT GP Clear

0.025 51 19 0 43
0.05 70 18 0 66
0.075 85 20 2 81
0.1 94 26 6 93

s CMH FIT GP Clear

0.025 60 22 62 75
0.05 96 69 97 99
0.075 100 97 100 100
0.1 100 100 100 100

Table 1: Percentage of simulations in which the favored allele is ranked first (A-B); appears in top 10 (C-D);
or, appears in top 50 (E-F). In soft sweep simulations (B,D,F), the ranks are consistently better than hard
sweep simulations (A,C,E). This can be attributed to lower LD between the hitchhikers (false positives) and
favored allele in soft sweep scenarios.

Rank GO ID GO Term -log(p-value) Hits Num of Genes

1 GO:0042742 defense response to bacterium 5.0 15 62
2 GO:0009408 response to heat 4.8 16 71
3 GO:0006719 juvenile hormone catabolic process 4.5 3 4
4 GO:0008363 larval chitin-based cuticle development 4.5 6 14
5 GO:0045664 regulation of neuron differentiation 4.5 3 4
6 GO:0051291 protein heterooligomerization 4.5 3 4
7 GO:0061077 chaperone-mediated protein folding 4.4 4 7
8 GO:0009631 cold acclimation 4.0 4 8
9 GO:0030837 negative regulation of actin filament polymer-

ization
3.4 3 6

10 GO:0042026 protein refolding 3.1 4 11
11 GO:0007552 metamorphosis 3.0 8 36

Table 2: GO (Biological Process) enrichment. A Fisher exact test was performed for GO enrichment
in genes located in selected regions. All GO terms that contained at least 3 selected genes, and had Fisher
exact p-value ≤ 10−3, are listed above.
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6 Appendix

6.1 An approximate logistic function for allele frequency dynamics

Assume that a site is evolving under selection constraints s, h ∈ R, where s and h denote selection
strength and overdominance, respectively. Let νt denote the frequency of the site at time τt ∈ T .
Then, νt+ , the frequency at time τt + 1 can be estimated (See Eq. 6.1) using:

ν̂t+ = νt +
s(h+ (1− 2h)νt)νt(1− νt)
1 + sνt(2h+ (1− 2h)νt))

.

We can show that the dynamic of the favored allele can be modeled via a logistic function, in the
case of directional selection (h = 0.5). Taking derivatives of Eq. 6.1, we have

dνt
dt

=
sνt(1− νt)
2 + 2sνt

(S1)

To, solve the differential equation, note that for small s, 2 + 2sνt ≈ 2. Substituting,

νt =
1

1 + 1−ν0
ν0

e−st/2
= σ(st/2 + η(ν0)) (S2)

where σ(.) is the logistic function and η(.) is logit function (inverse of the logistic function).

6.2 Dynamic of Tajima’s D

In this part we derive dynamic of Tajima’s D statistic in hard sweep as function of its value at
the onset of selection, D0, selection strength and the frequency of the favored allele at the onset
of selection. Let D0,Π0,W0, be Tajima’s D, Tajima’s estimate of θ, and Watterson’s estimate of
θ at time zero and D0 = Π0 −W0. In order to compute, Dt = Πt −Wt we compute Πt and Wt

separately as follows. Let P be the n × n matrix of pairwise heterozygosity of individuals, then
Π = 1/n2

∑
Pij . So, if the population consist of νn identical carrier haplotype (due to lack of

recombination), their pairwise hamming distance is zero and should be subtracted from the total
Πt:

Πt = (1− ν2t )Π0 (S3)

To compute Wt, first remember that Wt = mt
Sn

where mt is the number of segregating sites at
time t and Sn =

∑n
i 1/i ≈ log(n). Also we have

Wt

W0
=

mt
S
m0
S

⇒Wt =
mt

m0
W0 (S4)

Because of hard sweep and lack of recombination assumption, the population at time t consist of
(1−νt)n non-carrier haplotypes and νtn identical carrier haplotypes. While not strictly correct, we
assume that the (1− νt)n+ 1 individuals are evolving neutrally. Using this assumption, we have

mt

m0
=

log ((1− νt)n+ 1) θ

log(n)θ
≈ log ((1− νt)n)

log(n)
=

log(1− νt) + log(n)

log(n)
= 1 +

log(1− νt)
log(n)

. (S5)

Finally, by putting Eqs. S3, S4, S5 together, we can explicitly write the dynmics of D statistic as

Dt = (1− ν2t )Π0 − (1 +
log(1− νt)

log(n)
)W0

= D0 − log(1− νt)
W0

log(n)
− ν2t Π0

≈ D0 − log(1− σ(st/2 + η(ν0)))
W0

log(n)
− σ(st/2 + η(ν0))

2Π0.

(S6)
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where σ and η are logistic and logit functions.

6.3 Dynamics of Fay and Wu’s H

In any finite population size of n with m segregating sites, allele frequencies take discrete values,
i.e., xj ∈ { 1n , 2n , . . . , n−1n }, ∀j ∈ 1, . . . ,m. We have the following:

‖x‖2 =
m∑
j=1

x2j =
n−1∑
i=1

(
i

n

)2

ξi =
(n− 1)

2n
H,

where ξi is the number of sites with frequency i/n and H is the Fay & Wu’s estimate of θ and
x ∈ (0, 1)m is the vector of allele frequency of a region with m segregating sites. Recently, Ronen
et al. [60] devised the 1-HAF statistic for identifying selection on static data, and showed that the
expected value of 1-HAF statistic is given by:

E[1-HAF(t)] = n‖xt‖2 ≈ ng(νt) (S7)

where

g(νt) = θνt

(
νt + 1

2
− 1

(1− νt)n+ 1

)
+ θ(1− νt)

(
n+ 1

2n
− 1

(1− νt)n+ 1

)
(S8)

The dynamics of Fay & Wu’s estimate are given by

Ht =
n− 1

2
g(νt) (S9)

6.4 Greedy computation of time-series SFS-based statistics

As discussed in Section 2.2, modeling dynamic of Tajima’s D (and Fay&Wu’s H) requires knowledge
of initial carrier frequency ν0 and the value of D (and H) statistic at the onset of selection, which
are often unknown. As these statistics are monotonically decreasing (or increasing for SFSelect)
under no demographic changes, we chose to greedily aggregate statistics throughout time. For
example, for Tajima’s D, we have

D =
∑
t∈T

Dt (S10)

where the same procedure applies to Fay&Wu’s H and SFSelect.

6.5 Linkage Disequilibrium

Nonrandom associations, Linkage Disequilibrium (LD), between polymorphisms are established in
the substitution process, broken by recombination events and reinforced by selection. Although
LD can not be measured in pooled sequencing data (phased haplotype data is required), it is still
worthwhile to examine the behavior of LD as a result of the interaction between recombination and
natural selection. In this part we theoretically overview expected LD in short EEs.

Let ρ0 be the LD at time zero between the favored allele and a segregating site l base-pairs
away, then under natural selection we have

ρt = αtβtρ0 = e−rtl
(
Kt

K0

)
ρ0 (S11)

whereKt = 2νt(1−νt) is the heterozygousity at the selected site, r is the recombination rate/bp/gen.
The decay factor, αt = e−rtl, and growth factor, βt (see Eq. 30-31 in [69]), are result of recombination
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and selection, respectively. Fig. S14 presents the expected theoretical value of LD when ρ0 =
0.5 between favored allele (site at position 500K) and the rest of genome, and ν0 = 0.1. For
neutral evolution (top), LD decays exponentially through space and time, while in natural selection
(bottom), LD increases and then decreases. Interestingly, LD increases to its maximum value, 1,
for the nearby region (the plateau in the Fig. S14 bottom) of the favored allele.

In principle, LD increases after the onset of selection, until log(αt) + log(βt) > 0, see Eq. S11.
Specifically, log of decay term is linear and, using Eq. S2, we write growth factor in term of initial
frequency ν0 and selection strength s. Fig. S15 depicts interaction of decay and growth factors for
weak and strong selection and soft and hard sweeps. In all the case, LD of the favored allele with
a segregating site 50Kbp away, increases in the first 50 generations, which give rise to increasing
number of hitchhikers.

Increase of LD in a large (100Kbp) region is particularly advantageous to the task of identifying
the region under selection, if the composite statistics is used. As a result, H statistic outperforms
existing (single-loci) tools in identifying selection. In contrast, augmentation of LD, increases the
number of candidates for the favored allele, which makes is difficult to localize the favored allele.
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7 Supplemental Figures and Tables
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Fig. S1: Site Frequency Spectrum.
Theoretical and Empirical SFS in a 50Kbp region for a neutral population of 200 individuals when Ne = 106

and µ = 10−9. The x-axis corresponds to site frequency, and the y-axis to the number of variants with a
specific frequency. In a neural population, majority of the variations stand in low frequency.
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Fig. S2: Trajectory of pool-sequenced variants.
Trajectory of three different variants that are increasing in frequency over time. Note that for read count
data, the true allele frequency is not known. Here we draw the posterior distribution of the allele frequency
at each time point using box plot. The median of each distribution is denoted by dots. The variance of
each box is seen to be inversely related to the depth of the measurement. For instance, generation 59 is
sequenced with higher coverage than generation 37. As a result, variance of observations in generation 59 is
considerably smaller.
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Fig. S3: Posterior distribution of allele frequency.
Distribution of hidden allele frequency for different values of depth d = {5, 50, 500}. In all cases, the true
frequency is 0.2. The estimated frequency values are binomially distributed, with different variances, around
the true value in all cases with.
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Fig. S4: Coverage heterogeneity in time series data.
Each panel shows the read depth for 3 replicates of the data from a study of D. melanogaster adaptation
to alternating temperatures data (see section 3.1). Heterogeneity in depth of coverage is seen between
replicates, and also at different time points, in all 4 variants. None of these sites pass the the hard filtering
with minimum depth of 30.
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Fig. S5: Distribution of depth in the real data.
Scaled PDF (A) and CDF (B) of the read depths of all (≈22.1M) measurements, i.e., all replicates and time
points of the all (≈1.7M) variants. Scaled PDF (C) and CDF (D) of the minimum depth of sites. While
more than half most (≈12.5M) of the measurements have depth of 50 or greater (dashed line in (A),(B)),
only a small fraction (≈11K) of variants (dashed line in (C),(D)) pass the filter of having minimum depth
of 50.
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Fig. S6: Natural selection in infinite population.
Trajectory of the favored allele in an infinite population with s = 0.1 for h = 0 (recessive favored allele),
h = 0.5 (directional selection), h = 1 (dominant favored allele) and h = 2 (overdominant favored allele).
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Fig. S8: Dynamic SFS-based statistics.
Mean and 95% CI of 100 simulations for neutral (blue trajectories) selection with s = 0.1 (red trajectories).
In all case, statistic computed for a 50Kbp window and Ne = 104, µ = 10−9. The dashed line shows the
parametric models derived in Appendix 6.2.
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Fig. S9: Schematic for computing power of detecting selection.
Receiver Operating Characteristics (ROC) curve (left) for classification of 2000 simulations (1000 selection
and 1000 neutral). The Area Under the Curve (AUC) represents overall performance. The diagonal black
line represents performance of a random hypothesis which achieves Area under the curve (AUC) of 0.5. To
avoid computing AUC for the regions where FPR is unacceptably high, we restrict ROC curve to the region
where FPR≤ 0.05 (right). In this case, we define power to be the (scaled) AUC of the restricted region.
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Fig. S10: Theoretical (Markov chain) and Empirical trajectories of favored allele for hard and
soft sweep scenarios.
Theoretical (A,C) and empirical (B,D) trajectories of the frequency of the favored allele are computed for
1000 simulations of populations with 1000 diploid individuals. Each curve shows the mean and the 95%
confidence interval. Panels A and C represent theoretical Markov chain based calculations of the favored
allele frequency under hard (ν0 is small), and soft sweep due to standing variation (higher ν0), for a range of
values of s. Note that s = 0 corresponds to neutral evolution. Similarly, panels B and D show the empirical
forward simulations of populations under the same selection regimes, and hard/soft-sweep scenarios. The
first 50 generations are shaded in gray to represent the typical sampling span of EE experiments. The plot
illustrates the difficulty of EE experiments in having to predict selection at a very early stage of the sweep.
The signal is slightly stronger under standing variation scenario. The theoretical and empirical simulations
are in close correspondence.

Fig. S11: Effect of bottleneck in a typical experimental evolution experiment with restricted
number of founder lines.
For the experiment, F = 200 founders were selected from a larger population size (Ne = 10−6), and evolved
under neutral scenario (s = 0). The statistics for Tajima’s D (left), Fay Wu’s H (middle) and SFSelect were
computed for 1000 neutral simulations and the mean and 95% confidence interval plotted. Under neutral
evolution, all the statistics are expected to vary around a fixed mean through time. However, under selective
constraint, D and H take negative values, while SFSelect take positive values. In experimental evolution,
bottleneck effect will suppress the signal of selection, especially in early generations.
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Fig. S12: Distribution of bias for 30× coverage.
The distribution of bias (s − ŝ) in estimating selection coefficient over 1000 simulations using Gaussian
Process (GP) and Clear (H) is shown for a range of choices for the selection coefficient s and starting
carrier frequency ν0, when coverage λ = 30 (Panels A,B). GP and Clear have similar variance in estimates
of s for soft sweep, while Clear provides lower variance in hard sweep. Also see Table S3. Panels C,D show
the variance in the estimation of h.
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ŝ)

(A)

ν0 =0.005 (Hard Sweep)

0.025 0.05 0.075 0.1

s

−0.2

−0.1

0.0

0.1

0.2

0.3

(B)

ν0 =0.1 (Soft Sweep)

GP

Clear

0.025 0.05 0.075 0.1

h

−0.4

−0.2

0.0

0.2

0.4

0.6

B
ia

s
(h
−
ĥ
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Fig. S13: Distribution of bias for infinite coverage.
The distribution of bias (s − ŝ) in estimating selection coefficient over 1000 simulations using Gaussian
Process (GP) and Clear (H) is shown for a range of choices for the selection coefficient s and starting
carrier frequency ν0, when coverage λ =∞ (Panels A,B). GP and Clear have similar variance in estimates
of s for soft sweep, while Clear provides lower variance in hard sweep. Also see Table S3. Panels C,D show
the variance in the estimation of h.
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Fig. S14: Expected dynamic of LD under selection and neutral evolution.
Dynamic of LD (ρt) of a 1Mbp genome to the favored allele (at position 500K) is drawn as function of
position and time for neutral (top) and selection(bottom) regimes. For sake of illustration, we assumed that
at generations 0, LD of all variants with the favored allele is 0.5, initial frequency of the favored allele is
0.1, recombination rate is r = 2× 10−8 (top). The selection strength is 0 and 0.05 for neutral and selection
regimes, respectively. As expected LD decay exponentially through space and time. However, selection
causes LD to increase then decrease.
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Fig. S15: Interaction between growth and decay factors of LD.
Expected evolution of LD under natural selection for weak selection (s=0.01) and a distance of 100Kb
between sites for hard (A,B) and soft (C,D) sweeps. In addition to recombination, initial frequency of the
favored allele and selection strength determine dynamic of LD. The vertical dashed line denotes the time in
which LD start to decrease. In all cases, LD increase in first 50 generations, which implies that localizing
adaptive allele in short term experimental evolution is a difficult task.
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Fig. S16: Ranking performance for 30× coverage.
Cumulative Distribution Function (CDF) of the distribution of the rank of the favored allele in 1000 sim-
ulations for Clear (H), Gaussian Process (GP), CMH, and Frequency Increment Test (FIT), for different
values of selection coefficient s and initial carrier frequency. Note that the individual variant Clear score
(H) is used to rank variants. The Area Under Curve (AUC) is computed as a quantitative measure to
compare the performance of methods for each configuration.
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Fig. S17: Ranking performance for infinite coverage.
Cumulative Distribution Function (CDF) of the distribution of the rank of the favored allele in 1000 sim-
ulations for Clear (H), Gaussian Process (GP), CMH, and Frequency Increment Test (FIT), for different
values of selection coefficient s and initial carrier frequency. Note that the individual variant Clear score
(H) is used to rank variants. The Area Under Curve (AUC) is computed as a quantitative measure to
compare the performance of methods for each configuration.
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Hard Sweep Soft Sweep

λ Method Avg Power

300 Clear 34
300 CMH 12
300 FIT 2
300 GP 0
100 Clear 31
100 CMH 4
100 FIT 2
100 GP 0
30 Clear 20
30 FIT 2
30 CMH 0
30 GP 0

λ Method Avg Power

300 Clear 69
300 CMH 69
300 GP 61
300 FIT 8
100 Clear 67
100 CMH 60
100 GP 59
100 FIT 1
30 Clear 57
30 GP 53
30 CMH 39
30 FIT 3

Table S1: Average of power for detecting selection in a 50Kbp region, when power is computer for 8000
simulations with s ∈ {0.025, 0.05, 0.075, 0.1}. Frequency Increment Test (FIT), Gaussian Process (GP),
Clear (H) and CochranMantelHaenszel (CMH) are compared for different initial carrier frequency ν0. For
all sequencing coverages, Clear outperform other methods. When coverage is not high (λ ∈ {30, 100}) and
initial frequency is low (hard sweep), Clear significantly perform better than others.

Method Avg. Time per Locus

CMH 0.0
M 0.006

FIT 0.006
H 0.033

GP(1) 2.551
GP(3) 19.177
GP(5) 50.291
GP(7) 95.602
GP(10) 202.017

Table S2: Average running time per variant in seconds for different methods.

Method ν0 Mean STD

GP 0.005 0.073 0.061
Clear 0.005 0.016 0.035

GP 0.1 0.002 0.016
Clear 0.1 0.002 0.013

Table S3: Mean and standard deviation of the distribution of bias (s− ŝ) of 8000 simulations with coverage
λ = 100× and s ∈ {0.025, 0.05, 0.075, 0.1}.
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GO ID GO Term -log(p-value)

GO:0001558 regulation of cell growth 4.1
GO:0001700 embryonic development via the syncytial blastoderm 4.1
GO:0003341 cilium movement 4.1
GO:0006030 chitin metabolic process 3.8
GO:0006355 regulation of transcription, DNA-templated 4.1
GO:0006367 transcription initiation from RNA polymerase II promoter 4.1
GO:0006508 proteolysis 4.1
GO:0006719 juvenile hormone catabolic process 4.1
GO:0006839 mitochondrial transport 4.1
GO:0007018 microtubule-based movement 4.1
GO:0007269 neurotransmitter secretion 3.6
GO:0007291 sperm individualization 4.1
GO:0007298 border follicle cell migration 4.1
GO:0007475 apposition of dorsal and ventral imaginal disc-derived wing

surfaces
4.1

GO:0007552 metamorphosis 3.8
GO:0007602 phototransduction 4.1
GO:0008104 protein localization 3.1
GO:0008340 determination of adult lifespan 4.1
GO:0008362 chitin-based embryonic cuticle biosynthetic process 4.1
GO:0009312 oligosaccharide biosynthetic process 3.0
GO:0009408 response to heat 4.1
GO:0015991 ATP hydrolysis coupled proton transport 4.1
GO:0016079 synaptic vesicle exocytosis 4.1
GO:0016485 protein processing 4.1
GO:0031146 SCF-dependent proteasomal ubiquitin-dependent protein

catabolic process
4.1

GO:0035556 intracellular signal transduction 4.1
GO:0042742 defense response to bacterium 3.8
GO:0043066 negative regulation of apoptotic process 3.1
GO:0045494 photoreceptor cell maintenance 4.1
GO:0045664 regulation of neuron differentiation 4.1
GO:0045861 negative regulation of proteolysis 4.1
GO:0048675 axon extension 4.1
GO:0055114 oxidation-reduction process 3.1
GO:0061024 membrane organization 4.1

Table S4: GO enrichment analysis of data from a study of D. melanogaster adaptation to alternating
temperaturesusing Gowinda.
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FlyBase ID GO Term Gene Name

FBgn0001224 cold acclimation Hsp23
FBgn0001225 cold acclimation Hsp26
FBgn0001233 cold acclimation Hsp83
FBgn0034758 cold acclimation CG13510
FBgn0001224 response to heat Hsp23
FBgn0001225 response to heat Hsp26
FBgn0001233 response to heat Hsp83
FBgn0001223 response to heat Hsp22
FBgn0001226 response to heat Hsp27
FBgn0001227 response to heat Hsp67Ba
FBgn0001228 response to heat Hsp67Bb
FBgn0001229 response to heat Hsp67Bc
FBgn0003301 response to heat rut
FBgn0004575 response to heat Syn
FBgn0010303 response to heat hep
FBgn0019949 response to heat Cdk9
FBgn0023517 response to heat Pgam5
FBgn0025455 response to heat CycT
FBgn0026086 response to heat Adar
FBgn0035982 response to heat CG4461

Table S5: Enriched genes of analysis of data from a study of D. melanogaster adaptation to alternating
temperaturesassociated with GO terms of “cold acclimation” and “response to heat”.

Statistic Value

Num. of Vatiants 1,608,032
Num. of Candidate Intervals 89
Total Num. of Genes 17,293
Num. of Variant Genes 12,834
Num. of Genes within Candidate Intervals 968
Total Num. of GO 6,983
Num. of GO with 3 or More Genes 3,447
Num. of Candidate Variants for Gowinda 2,886

Table S6: General statistic of analysis of data from a study of D. melanogaster adaptation to alternating
temperatures.
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