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Abstract 
 
Despite their canonical two-fold symmetry, nucleosomes in biological contexts are often 
asymmetric: functionalized with post-translational modifications (PTMs), substituted with histone 
variants, and even lacking H2A/H2B dimers. Here we show that the Widom 601 nucleosome 
positioning sequence can be used to produce hexasomes in a specific orientation on DNA, 
which provide a useful tool for interrogating chromatin enzymes and allow for the generation of 
precisely defined asymmetry in nucleosomes. Using this methodology, we demonstrate that the 
Chd1 chromatin remodeler requires H2A/H2B on the entry side for sliding, and thus, unlike the 
back-and-forth sliding observed for nucleosomes, Chd1 shifts hexasomes unidirectionally. Chd1 
takes part in chromatin reorganization surrounding transcribing RNA polymerase II (Pol II), and 
using asymmetric nucleosomes we show that ubiquitin-conjugated H2B on the entry side 
stimulates nucleosome sliding by Chd1. We speculate that biased nucleosome and hexasome 
sliding due to asymmetry contributes to the packing of arrays observed in vivo.  
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Introduction 
 
As the repeating unit of chromatin, the nucleosome is the canvas upon which the epigenetic 
histone code is written. A fundamental characteristic of the histone code is the combinatorial 
diversity achieved from multiple marks, which may or may not reside on the same histone tail 
(Ruthenburg et al., 2007; Tee & Reinberg, 2014). Both through post-translational modifications 
(PTMs) and substitution of histone variants, additional chemical diversity arises from 
asymmetric modifications of nucleosomes. Since the nucleosome is pseudo-symmetric with two 
copies of each core histone (H2A, H2B, H3 and H4), asymmetry occurs when each copy 
possesses distinct epigenetic modifications. Recent advances have revealed asymmetry at the 
single nucleosome level (Rhee et al., 2014; Voigt et al., 2012), yet with challenges in 
synthesizing uniform populations of asymmetrically modified nucleosomes (Lechner et al., 2016; 
Liokatis et al., 2016), the biological significance of the vast majority of asymmetric marks 
remains unclear.  
 
A dramatic example of asymmetry is the pairing of activating H3K4me3 and repressive 
H3K27me3 marks, known as bivalency (Voigt et al., 2013). Trimethylation of H3K27 is carried 
out by PRC2, and while H3K4me3 blocks modification of K27 on the same H3 tail, PRC2 can 
deposit H3K27me3 mark on the opposing H3 tail of the same nucleosome (Lechner et al., 2016; 
Voigt et al., 2012). In addition to generating nucleosomes with asymmetric 
H3K4me3/H3K27me3, PRC2 is also activated by the mark it deposits, with substrate preference 
for asymmetric nucleosomes containing one H3K27me3 (Lechner et al., 2016; Margueron et al., 
2009). While recognition of asymmetric H3K27me3 is believed to be important for maintenance 
and spreading of heterochromatin, and the bivalent H3K4me3/H3K27me3 signature has been 
well established for stem cell identity, there is relatively little biological understanding for most 
other epigenetic marks that are prominently asymmetric. Genome-wide studies have revealed 
that the +1 nucleosome is strikingly asymmetric with regards to H3K9 acetylation, H2B 
ubiquitinylation, and residency of H2A.Z (Rhee et al., 2014). Asymmetric marks of the +1 
nucleosome correlate with asymmetric localization of the RSC, INO80, and SWR1 chromatin 
remodelers (Ramachandran et al., 2015; Yen et al., 2012), and a major question is deciphering 
how these and other enzymes generate and read-out the asymmetric distribution of these 
marks.  
 
Nucleosomes can also exhibit asymmetry with respect to histone content, with the lack of one 
H2A/H2B dimer defining the hexasome. The existence of hexasomes in vivo has been 
supported by ChIP-Exo and MNase-seq experiments  (Rhee et al., 2014), and in vitro, 
hexasomes have been shown to be generated by the RSC remodeler with NAP1 histone 
chaperone (Kuryan et al., 2012) and also by RNA polymerase II (Pol II) transcribing through 
nucleosomes (Kireeva et al., 2002; Kireeva et al., 2005). Intriguingly, Pol II successfully 
transcribes through hexasomes oriented with the promoter-distal H2A/H2B dimer missing, but 
stalls in the absence of the promoter-proximal dimer (Kulaeva et al., 2009). Whether the 
orientation of hexasomes may affect other enzymes that act on chromatin has not previously 
been addressed.  
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Transcription requires local disruption and reassembly of nucleosomes, which is achieved by 
elongation factors, histone chaperones, and chromatin remodelers such as Chd1 and ISWI 
(Venkatesh & Workman, 2015). Chd1 and ISWI reposition nucleosomes into evenly spaced 
arrays, and are required for packing arrays of nucleosomes against the +1 nucleosome 
(Gkikopoulos et al., 2011; Lusser et al., 2005; Pointner et al., 2012; Tsukiyama et al., 1999). 
Although specific binding of H3K4me3 by the chromodomains of mouse Chd1 has been 
correlated with its localization to the promoter (Lin et al., 2011), Chd1 and ISWI remodelers 
have been shown to participate in resetting the chromatin barrier in coding regions after 
passage of Pol II, required for preventing cryptic transcription (Cheung et al., 2008; Pointner et 
al., 2012; Radman-Livaja et al., 2012; Smolle et al., 2012). Chd1 has been linked to elongating 
Pol II through interactions with the transcriptional elongation factors FACT and Spt4-Spt5, and 
with the Rtf1 subunit of the PAF complex (Kelley et al., 1999; Krogan et al., 2002; Simic et al., 
2003). To aid passage of Pol II, the machinery that travels along with the transcription bubble 
alters local chromatin structure, yet it is not known how changes to nucleosomes might 
influence Chd1 or other chromatin remodelers. In addition to potentially generating hexasomes, 
passage of Pol II is also coupled to transient ubiquitinylation of H2B (Fleming et al., 2008; Xiao 
et al., 2005). Interestingly, the H2B-Ubiquitin (H2B-Ub) mark is required for FACT-assisted 
disruption of the chromatin barrier (Pavri et al., 2006). Chd1 has been shown to be required for 
high levels of transcription-coupled ubiquitinylation of H2B in vivo (Lee et al., 2012), yet a direct 
connection between Chd1 and transcriptionally altered nucleosomes has remained elusive. 
 
In this work, we report the discovery that the Widom 601 nucleosome positioning sequence can 
generate oriented hexasomes, with the sole H2A/H2B positioned in a sequence-defined 
location. Using oriented hexasomes, we show that Chd1 requires H2A/H2B on the entry side for 
robust sliding and preferentially shifts hexasomes unidirectionally. Hexasomes can be 
transformed into nucleosomes upon addition of H2A/H2B dimers, and we demonstrate that 
oriented hexasomes are an ideal substrate for generating uniform populations of asymmetric 
nucleosomes with uniquely modified H2A/H2B dimers. We find that nucleosomes with an 
asymmetric H2B-Ub modification stimulate nucleosome sliding by Chd1, revealing an 
unexpected activating role for H2B-Ub in remodeling. 
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Results  
 
The Widom 601 sequence allows for generation of oriented hexasomes 
 
Since the nucleosome consists of two copies each of the four canonical histones – H2A, H2B, 
H3 and H4 – in vitro nucleosome reconstitutions that deviate from equi-molar histone 
stoichiometries can result in sub-nucleosomal products. Curiously, during the course of 
nucleosome reconstitutions by salt dialysis, we noticed that native PAGE migration of a smaller 
species changed depending on the location of flanking DNA. We use the strong Widom 601 
positioning sequence (Lowary & Widom, 1998), with the X-601-Y naming convention, where X 
and Y refer to the number of base pairs flanking the core 145 bp 601 sequence. Consistently, 
we observed that the subspecies from 80-601-0 preps migrated faster than that of 0-601-80 
preps (Figure 1A). The hexasome is a stable sub-nucleosomal particle lacking one of the two 
H2A/H2B dimers (Arimura et al., 2012; Kireeva et al., 2002; Mazurkiewicz et al., 2006), and we 
confirmed by SDS-PAGE analysis that the faster migrating species were in fact hexasomes 
(Figure 1B).  
 
Nucleosomes migrate differently in native gels depending on whether flanking DNA is present 
only on one or both sides of the histone core (Eberharter et al., 2004; Pennings et al., 1991). 
With one H2A/H2B dimer missing, a hexasome would have an additional ~40 bp of DNA 
extending from the core at a more internal location. We reasoned that the differences in 
hexasome migration may therefore be due to a systematic loss of H2A/H2B from one side of the 
Widom 601 sequence. To test this idea, we probed the accessibility of DNA using Exonuclease 
III (Figure 1C). Nucleosomes digested with ExoIII showed the expected protection at the edge of 
the histone core, with preferential cleavage in ~10-11 nt increments (lanes 2-4 and 14-16). The 
0-601-80 hexasome, in contrast, was digested more internally by ~30-40 nt on the 0 bp side, 
while showing full nucleosome protection on the 80 bp side (lanes 6-8 and 18-20). Relative to 
the orientation of the 601 sequence, the 80-601-0 hexasome showed an analogous pattern, with 
~30-40 nt more extensive ExoIII digestion on the 80 bp side and similar protection on the 0 bp 
side compared to nucleosomes (Figure 1 - figure supplement 1A). Thus, the preferred location 
of the remaining H2A/H2B dimer in the hexasome was not influenced by flanking DNA, but 
instead was determined in a sequence-specific fashion based on the orientation of the Widom 
601.  
 
Previous work by several labs has revealed asymmetry in the Widom 601 sequence with 
respect to the strength of histone-DNA contacts. Single-molecule DNA unzipping experiments 
demonstrated that one side of the 601 forms more stable contacts with histones (Hall et al., 
2009), and the asymmetry of the 601 was found to form a polar barrier to passage of RNA 
polymerase II (Bondarenko et al., 2006). One feature that has been pointed out as a key 
determinant of stable histone-DNA contacts are periodic TA dinucleotide steps (Lowary & 
Widom, 1998). The Widom 601 is notably asymmetric in TA steps on either side of the dyad 
where binding affinity is expected to be highest, with four TA steps on one side opposite a single 
TA step (Chua et al., 2012). Generation of symmetric derivatives of 601 has shown that the TA-
rich side is much more salt stable than the TA-poor side (Chua et al., 2012), and single 
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molecule experiments have found that the TA-poor side preferentially unwraps under force (Ngo 
et al., 2015). We orient the Widom 601 with the TA-rich side on the right, which means that the 
side lacking the H2A/H2B dimer in hexasomes corresponds with the TA-poor side of the 601 
sequence. 
 
Others have shown that hexasomes can generate nucleosome-like products upon addition of 
H2A/H2B dimer (Kireeva et al., 2002). To investigate this step-wise method of generating 
nucleosomes, we incubated hexasomes with a 2-fold molar excess of H2A/H2B dimer and 
monitored ExoIII digestion. As shown in Figure 1C, addition of H2A/H2B dimer yielded a 
protection pattern indistinguishable from nucleosomes (lanes 10-12). Therefore, even in the 
absence of histone chaperones or elevated salt, addition of H2A/H2B dimer to hexasomes was 
sufficient for recovering nucleosome-like protection patterns. 
 
As an alternative method for characterizing hexasomes and nucleosomes generated from 
H2A/H2B dimer addition, we used histone mapping. By labeling a single cysteine variant of H2B 
(S53C) with photo-reactive 4-azidophenacyl bromide (APB), UV-induced cross-linking can 
reveal the precise position of the H2A/H2B dimer on nucleosomal DNA (Abbott et al., 2005; 
Kassabov et al., 2002). In nucleosomes, each H2B cross-links to only one DNA strand, and 
therefore doubly-labeled fluorescent DNA is needed to report on both sides of the 601 
sequence. In agreement with ExoIII experiments, H2B cross-linking for hexasomes was virtually 
absent on the TA-poor side of the 601, whereas cross-linking on the TA-rich side was equivalent 
for hexasomes and nucleosomes (Figure 1D; compare lane 25 with 26 and 28 with 29). 
Strikingly, addition of H2A/H2B fully recovered the H2B cross-link on the TA-poor side (compare 
lanes 26 and 27), demonstrating that dimer addition generates correctly organized nucleosomes 
that are indistinguishable from those obtained by salt dialysis reconstitution. Similar results were 
obtained with 80-601-0 hexasomes (Figure 1 - figure supplement 1B), reinforcing the conclusion 
that salt dialysis deposits limiting H2A/H2B on the TA-rich side of the Widom 601. 
 
 
Chd1 requires the entry-side H2A/H2B dimer for robust sliding 
 
Given the strong sequence-defined placement of limiting H2A/H2B dimer, we refer to 
hexasomes produced by the Widom 601 as “oriented hexasomes.” By having a defined 
orientation on DNA, these hexasomes offer a unique tool for probing requirements of 
nucleosome-interacting enzymes. Despite the two-fold pseudo-symmetry of the nucleosome, 
factors binding off the central dyad axis encounter the two halves of the nucleosome at distinct 
distances and orientations. The two H2A/H2B dimers and the DNA they coordinate are 
therefore likely to play unequal roles in nucleosome recognition and enzyme regulation. 
Chromatin remodelers such as Chd1 shift DNA past the histone core by acting at an internal 
DNA site called superhelical location 2 (SHL2), located ~20 bp from the dyad (McKnight et al., 
2011; Saha et al., 2005; Schwanbeck et al., 2004; Zofall et al., 2006). Relative to the SHL2 site 
of DNA translocation, one H2A/H2B dimer binds to DNA being shifted onto the nucleosome, and 
is therefore considered to be on the entry side, whereas the other H2A/H2B binds DNA about to 
be shifted off the histone core, and thus is on the exit side. In vitro, Chd1 slides 
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mononucleosomes away from DNA ends (McKnight et al., 2011; Stockdale et al., 2006). By 
using end-positioned nucleosomes, we can restrict the direction of sliding, thereby defining 
H2A/H2B adjacent to the long flanking DNA as the entry-side dimer. Since the placement of the 
single H2A/H2B dimer relative to 601 is maintained regardless of flanking DNA (Figure 1; Figure 
1 - figure supplement 1A), we can generate hexasomes with the H2A/H2B dimer on either the 
entry or exit side. This unique tool therefore allows us to determine the extent that Chd1 relies 
on either the entry- or exit-side H2A/H2B dimer. 
 
As a standard technique for visualizing repositioning of mononucleosomes along DNA, we first 
investigated movement of oriented hexasomes using native PAGE (Figure 2A). We used 80-
601-0 and 0-601-80 constructs described above, which lacked one of the H2A/H2B dimers on 
either the entry side (80-601-0) or exit side (0-601-80). Upon addition of Chd1 and ATP, 
nucleosomes mobility decreased, signifying movement away from DNA ends (lanes 1-8). In 
contrast, under the same conditions the hexasomes failed to show any clear changes in 
migration patterns (lanes 9-16).  
 
Since the loss of one H2A/H2B dimer in the hexasome dramatically alters the location and thus 
the angle at which DNA extends away from the histone core, we considered the possibility that 
native PAGE may not accurately report on changes in hexasome positioning. We therefore 
investigated the ability of Chd1 to remodel hexasomes using histone mapping (Figure 2B). In 
agreement with previous work (Patel et al., 2013; Stockdale et al., 2006), Chd1 shifted end-
positioned mononucleosomes to more central locations on DNA, with the majority of 
nucleosomes repositioned ~20 to ~60 bp from their starting locations (lanes 17-19, 23-34). For 
hexasomes, however, the ability of Chd1 to reposition was strongly dependent on the location of 
the single H2A/H2B dimer. The 80-601-0 hexasomes, which lacked the entry-side H2A/H2B 
dimer, failed to show robust repositioning, with the majority of products remaining at the starting 
position (lanes 20-22). In marked contrast, the 0-601-80 hexasomes shifted robustly onto 
flanking DNA, demonstrating that Chd1 activity can be supported by an H2A/H2B dimer on only 
the entry side (lanes 35-46). Interestingly, instead of generating more centrally positioned 
products, Chd1 shifted 0-601-80 hexasomes to the opposite end of DNA, farther than observed 
for nucleosomes (Figure 2B,C). This biased movement of 0-601-80 is consistent with the poor 
sliding of 80-601-0 hexasomes, which lack entry-side H2A/H2B, and indicate that Chd1 
preferentially slides hexasomes toward the side containing the H2A/H2B dimer. Thus, Chd1 can 
reposition hexasomes, but the requirement for entry-side H2A/H2B yields a strong directional 
bias for hexasomes that contrasts with the back-and-forth sliding observed for nucleosomes. 
 
 
Oriented hexasomes allow for precisely designed asymmetric nucleosomes 
 
The discovery of oriented hexasomes opens up a simple means for producing asymmetric 
nucleosomes, where unique modifications in the two H2A/H2B dimers can be directed to 
specific sides of the nucleosome. One powerful technique that can benefit from generating 
asymmetric nucleosomes is single molecule FRET (smFRET). Though many variations are 
possible, fluorescent dye labeling of nucleosomes commonly involves both histones and DNA, 
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which allows for detection of DNA unwrapping and DNA translocation relative to the histone 
core (Li & Widom, 2004; Yang et al., 2006; Blosser et al., 2009). The FRET signal, however, 
can be complicated by the two-fold symmetry of the nucleosome, since dyes at the two related 
histone positions are typically not equidistant from the DNA-tethered dye, and therefore lead to 
a mixture of FRET levels (Deindl et al., 2013). A standard solution to this issue has been to 
dilute the labeled histone with an excess of unlabeled histone during nucleosome reconstitution, 
and select out the desired FRET signal from a single donor/acceptor pair. We expected that the 
unique placement of a single H2A/H2B dimer relative to the DNA sequence should allow us to 
generate nucleosomes with a single, uniform FRET pair. 
 
To examine this idea, we labeled H2A-T120C with Cy3-maleimide and generated 80-601-3 
hexasomes and nucleosomes containing a DNA-tethered Cy5 dye on the 3 bp side. As 
previously described (Deindl et al., 2013), the nucleosomes gave rise to two major FRET 
populations corresponding to single Cy3 dyes on the distal or proximal H2A (Figure 3A). A mid-
FRET population is expected between these two major species, where nucleosomes contain 
Cy3 on both copies of H2A copies. Here, due to extensive dilution of labeled H2A-Cy3, that 
population was minimal. In contrast, the oriented hexasomes yielded a single, high-FRET 
population as expected for the H2A/H2B dimer located on the exit side, proximal to the DNA 
label (Figure 3B). To see whether these hexasomes would behave as nucleosomes upon 
H2A/H2B dimer addition, we incubated these samples with Chd1 and ATP to stimulate 
nucleosome sliding. After a 10 min incubation, all nucleosomes had shifted to a low FRET state, 
as expected for a ≥ 20 bp shift of the histone core away from the labeled DNA end. Hexasomes, 
in contrast, maintained a significant population of high-FRET species after incubation, 
consistent with the poor movement observed by histone mapping in the absence of entry-side 
H2A/H2B dimer. Addition of H2A/H2B dimer to hexasomes did not significantly alter the starting 
high-FRET population, yet incubation with Chd1 and ATP yielded a low-FRET profile similar to 
that observed for  nucleosomes (Figure 3C). These results show that oriented hexasomes offer 
a defined methodology for producing uniformly labeled nucleosomes that should benefit 
smFRET experiments.  
 
 
Quantification of remodeling activity using nucleosomes produced from hexasomes plus 
H2A/H2B dimer 
 
The experiments presented above suggested that the addition of H2A/H2B dimer to hexasomes 
was sufficient for producing properly organized nucleosomes. For measuring kinetics of 
chromatin remodeling, however, we were concerned about two possible complications 
associated with H2A/H2B dimer addition: too little dimer would allow a significant fraction of 
hexasome to remain in the reaction, which might compete with the nucleosome, whereas too 
much dimer could create off-products that might interfere with nucleosome sliding. To evaluate 
these potential effects of H2A/H2B dimer addition, we monitored nucleosome sliding reactions 
using an assay based on static quenching of fluorescence (SQOF). We found that fluorescence 
quenching of two Cy3 dyes, placed on histone H2A(T120C) and the “zero” DNA end, is reduced 
when the zero-end (exit side) is shifted farther away from the histone core. Using this labeling 
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scheme, we monitored changes in fluorescence intensity of 80-601-0 hexasomes, possessing 
Cy3-H2A on the exit dimer, upon the addition of unlabeled H2A/H2B dimer, Chd1, and ATP 
(Figure 4A). Relative to the constant hexasome concentration used (10 nM), addition of 
unlabeled H2A/H2B dimer stimulated sliding at all concentrations, from undersaturating (4 nM) 
to saturating (24 nM). The total change in fluorescence intensity increased with dimer 
concentration, consistent with only the fraction of hexasomes converted to nucleosomes being 
readily shifted by Chd1. A maximum change in fluorescence was observed with a 1.6-fold molar 
ratio of dimer to hexasome (Figure 4B), which is in agreement with others who have reported 
requiring ~2-fold molar equivalent of dimer to convert all hexasome to nucleosome (Kireeva et 
al., 2002).  
 
Interestingly, the reaction rates were maximal and remained constant over a wide range of 
H2A/H2B concentrations, from subsaturating up to the 1.6-fold molar equivalent that yielded the 
maximum change in fluorescence intensity (Figure 4C). Thus, under the conditions used here, 
the presence of hexasome due to limited H2A/H2B dimer addition did not influence rates for 
Chd1 remodeling. Beyond this saturating amount, both the rates and range of fluorescence 
intensity decreased. These reductions likely resulted from improper H2A/H2B deposition on 
flanking DNA that interferes with Chd1 action. We also monitored nucleosome formation by 
native PAGE, which showed a dimer-mediated shift of the hexasome species to nucleosomes 
and aggregation with excessive H2A/H2B (Figure 4D). As the most consistent rates were 
observed below the two-fold molar equivalent, we used only a slight molar excess of dimer for 
the remainder of our dimer addition experiments (10 nM hexasome plus 12 nM H2A/H2B). 
 
Chd1 is specifically stimulated by ubiquitinylated H2B on the entry-side dimer 
 
The ability to separately add each H2A/H2B via oriented hexasomes offers a straightforward 
methodology to test whether particular enzymes are influenced by histone modifications on one 
or both sides of the nucleosome. Based on the close ties of both Chd1 and H2B ubiquitinylation 
with transcribing Pol II (Kelley et al., 1999; Krogan et al., 2002; Simic et al., 2003; Xiao et al., 
2005), we were interested to determine whether Chd1 might be differentially influenced by a 
ubiquitin modification on one or both sides of the nucleosome.  
 
We used oriented hexasomes to produce nucleosomes with the four combinations of modified 
and unmodified H2A/H2B dimers. To assemble nucleosomes with different placements of 
ubiquitin, we first generated 80-601-0 hexasomes with either unlabeled (Wt) or ubiquitinylated 
(Ub) H2B on the exit dimer. To these hexasomes, H2A/H2B dimer (Wt or Ub) was then added to 
each to produce the four combinations of Wt/Ub nucleosomes. Since ubiquitin significantly 
alters the sizes and shapes of hexasomes and nucleosomes, analysis by native gel clearly 
demonstrates that each reaction possesses a unique nucleosome with the desired placement of 
modified and unmodified H2A/H2B dimers (Figure 5A).  
 
With these four nucleosome species, sliding reactions monitored by Cy3-Cy3 SQOF were 
carried out to determine whether H2A-Ub affected Chd1 activities. Despite the significant size of 
ubiquitin and potential to block access to H2A/H2B, the presence of this modification did not 
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impede nucleosome sliding by Chd1. In fact, the two nucleosomes containing entry-side H2B-
Ub (Ub-Wt and Ub-Ub) yielded faster rates than nucleosomes with unmodified entry-side H2B 
(Figure 5B). These results reinforce the finding that Chd1 activity is sensitive to the entry-side 
dimer, and reveal that Chd1 is stimulated by H2B-Ub.  
 
During the course of these experiments, we found that binding of Chd1 to nucleosomes 
contributed to changes in Cy3 fluorescence due to protein induced fluorescence enhancement 
(PIFE). To determine the extent that the observed stimulation with H2B-Ub resulted from 
nucleosome sliding, we switched to Cy3B, a dye that does not allow for PIFE (Hwang et al., 
2011), in combination with the quencher Dabcyl, which should exclusively report on nucleosome 
movement. Using the Cy3B-Dabcyl pair, we measured the rates of Chd1 sliding for 
nucleosomes with and without H2B-Ub on the entry side, generated from oriented hexasomes, 
as well as for unmodified nucleosomes purified from salt dialysis reconstitution. In agreement 
with previous experiments showing a preferential stimulation of Chd1, nucleosomes containing 
entry-side H2B-Ub consistently showed faster rates of nucleosome sliding (Figure 5C,D). For 
nucleosomes containing only unmodified H2B on entry and exit sides, no significant differences 
were observed in Chd1 sliding rates whether nucleosomes were produced from H2A/H2B 
addition to hexasomes or traditional generation via salt dialysis.  
 
Since sliding experiments were performed using subsaturating  (25 nM) concentrations of Chd1, 
it was unclear whether stimulation was due to a KM or kcat effect. To address this question, 
sliding experiments were repeated using a saturating (400 nM) concentration of Chd1 (Figure 5 
- figure supplement 1). Interestingly, nucleosomes containing entry-side H2B-Ub were still 
shifted significantly faster with saturating Chd1, indicating that H2B-Ub did not merely improve 
Chd1 binding but increased catalytic efficiency (Figure 5E,F). The presence of the ubiquitin 
moiety could accomplish this either by helping to retain Chd1 on the nucleosome thereby 
increasing processivity/productivity from one enzyme-binding event, or by predisposing Chd1 to 
adopt an active conformation on the nucleosome.  
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Discussion  
 
Here we show how the Widom 601 can be used to generate oriented hexasomes, a unique and 
powerful tool for studying chromatin-interacting factors. As the highest affinity and most widely 
used nucleosome positioning sequence, the Widom 601 is well known for its marked asymmetry 
in strength of histone-DNA contacts. This asymmetry correlates with the distribution of TA 
dinucleotide steps where the minor groove contacts the histone core (Chua et al., 2012). The 
TA-rich side of the 601 has been shown to be more flexible and wrap more tightly (Chua et al., 
2012; Hall et al., 2009; Ngo et al., 2015), and our results indicate that the TA-rich side of the 601 
also has a higher affinity for the H2A/H2B dimer. We show that nucleosome reconstitution with 
limiting H2A/H2B dimer yields oriented hexasomes, with the single H2A/H2B dimer positioned in 
a sequence-specific fashion (Figure 1).  
 
For chromatin remodelers, each H2A/H2B dimer is in a unique position, engaging with DNA 
either entering or exiting the nucleosome. Using oriented hexasomes, we show that Chd1 
sliding activity strongly depends on the entry-side H2A/H2B dimer (Figure 2).  
Nucleosome sliding requires engagement of the remodeler ATPase motor at one of the two 
internal SHL2 sites on the nucleosome (McKnight et al., 2011; Saha et al., 2005; Schwanbeck 
et al., 2004; Zofall et al., 2006). Like other remodelers, the ATPase motor of Chd1 shifts DNA 
toward the dyad, which means that the SHL2 site where the motor acts is adjacent to the entry-
side H2A/H2B dimer. On hexasomes, Chd1 sliding appears restricted to the SHL2 adjacent to 
the sole H2A/H2B, resulting in virtually unidirectional movement (Figure 2B). These results 
reveal the importance of the entry-side H2A/H2B dimer for Chd1 sliding, which may arise from a 
critical epitope within H2A/H2B or a requirement for nucleosomal wrapping of entry-side DNA. 
Although experiments performed here were limited to the Chd1 remodeler, we expect that the 
biochemically similar ISWI remodelers, which slide nucleosomes directionally away from bound 
transcription factors and generate evenly spaced nucleosome arrays (Kang et al., 2002; Li et al., 
2015; Lusser et al., 2005), should also exhibit a strong directional bias in sliding hexasomes. 
 
The directional sliding of hexasomes by Chd1, which contrasts with the back-and-forth 
movement typical for nucleosomes, likely influences chromatin organization in vivo. In vitro, both 
transcription through nucleosomes by Pol II and remodeling by RSC along with the NAP1 
chaperone have been shown to generate hexasomes (Kireeva et al., 2002). Although histone 
chaperones such as FACT would be expected to replace the missing H2A/H2B dimer during 
transcription, the passage of Pol II has been shown to specifically displace the H2A/H2B dimer 
distal to the promoter (Hsieh et al., 2013; Kulaeva et al., 2009), which would orient hexasomes 
for biased sliding toward the 5’ end. One speculative idea is that nucleosome array packing 
against the +1 nucleosome, which is dependent on Chd1 and ISWI chromatin remodelers 
(Gkikopoulos et al., 2011; Zhang et al., 2011), would be favored by directional hexasome sliding 
(Figure 6). Even with relatively few or transient hexasomes, directional sliding toward the 
transcriptional start site would be expected to corral upstream nucleosomes, similar to the 
phasing of nucleosome arrays against transcription factor-targeted nucleosomes (McKnight et 
al., 2016; Wiechens et al., 2016). Consistent with this idea, it has been shown that inactivation 
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of Pol II relaxes nucleosome packing in coding regions, resulting in a nucleosome drift of ~10 bp 
toward the 3’ end of yeast genes (Weiner et al., 2010).   
 
Our work also demonstrates how hexasomes made using the Widom 601 are a useful tool for 
generating specifically oriented asymmetric nucleosomes. To extract meaningful information on 
nucleosome dynamics, single molecule FRET experiments require a single, specifically 
positioned donor-acceptor pair (Blosser et al., 2009; Deindl et al., 2013; Ngo et al., 2015). 
However, due to the pseudo two-fold symmetry of the nucleosome, labeling any of the histones 
with a FRET fluorophore (donor or acceptor) typically yields three different labeling 
configurations (Deindl et al., 2013). The presence of multiple FRET pairs, each with distinct and 
potentially closely spaced FRET values substantially complicates such analyses and at the 
same time limits throughput by decreasing the population of nucleosomes with the desired 
labeling configuration. Here, we show how oriented hexasomes can yield a homogeneously 
labeled population (Figure 3) that greatly facilitates smFRET experiments. 
 
We furthermore demonstrate the utility of oriented hexasomes for generating asymmetric 
nucleosomes containing a uniquely positioned H2A/H2B PTM (Figure 5A).  
This method complements a recent procedure described for generating nucleosomes with 
distinct H3 tails (Lechner et al., 2016), and has the added advantage that the standard 
nucleosome reconstitution is sufficient for making oriented hexasomes, which can then be 
readily transformed into asymmetric nucleosomes with H2A/H2B dimer addition. Given the 
prevalence of asymmetric histone modifications and variants, this methodology should aid 
further investigation into how spatial cues contribute to the histone code, especially when used 
in conjunction with recent advances in detecting modifications on asymmetric nucleosome 
substrates (Liokatis et al., 2016). 
 
Using this methodology, we demonstrate that ubiquitin-modified H2B stimulates Chd1, but only 
when present on the entry-side dimer (Figure 5). Unexpectedly, the stimulatory effect of 
ubiquitin was observed even with saturating remodeler concentrations, indicating that it is not 
merely the result of improved Chd1 binding. While we favor the idea of a direct interaction, 
where ubiquitin stabilizes an active conformation of Chd1 on the nucleosome, it is also possible 
that H2B-Ub alters the structure or dynamics of the nucleosome itself. Interestingly, H2B-Ub is 
required for maximum stimulation of Pol II transcription by FACT, potentially through aiding 
displacement of H2A/H2B (Pavri et al., 2006).  
 
The stimulatory effect of ubiquitin raises new questions regarding how histone modifications 
bias chromatin remodelers, and more broadly, the discovery of oriented hexasomes should be a 
valuable tool for deepening our understanding of chromatin biology. 
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Methods 
 
Protein production and modifications 
Expression and purification of proteins used in this study were carried out as previously 
described for a truncated form of S. cerevisiae Chd1 (residues 118-1274) (Hauk et al., 2010; 
Patel et al., 2011), Xenopus laevis histones (Luger et al., 1999), and the ubiquitin variant G120C 
(Long et al., 2014). The ubiquitin sequence used in this work was identical to human and 
Xenopus, which is 96% identical to S. cerevisiae ubiquitin.  
 
Conjugation of H2B and ubiquitin (H2B-Ub) was carried out essentially as described (Long et 
al., 2014) to produce a nonhydrolyzable H2B-Ub mimic. Briefly, based on the concentration of 
reduced cysteines using Ellman’s reagent, H2B(K120C) and His-tagged Ubiquitin (G76C) were 
combined at a 2:1 ratio at a protein concentration of ~ 10 mg·ml−1 in denaturing conditions. 
TCEP (5 mM Cf) was added and incubated for 30 minutes. Crosslinking of the two proteins was 
carried out by adding 0.1 M 1,3 dichloroacetone to a final amount equal to half the total moles of 
reduced cysteines, and then quenching with 2-mercaptoethanol after 45 minutes. Un-
crosslinked histones were removed using nickel affinity purification under denaturing conditions. 
The amount of crosslinked H2B-Ub was estimated from SDS-PAGE and refolded at a 1:1 ratio 
with X. laevis H2A. The H2A/H2B-Ub dimer was purified by size exclusion chromatography as 
described for unmodified H2A/H2B (Dyer et al., 2004). For fluorescently tagged histones, 
H2A(T120C) was labeled with maleimide derivatives of Cy3 or Cy3B prior to refolding as 
previously described (Shahian & Narlikar, 2012).  
 
Production of hexasomes and nucleosomes 
Histone dimers (H2A/H2B), tetramers (H3/H4)2, and octamers (H3/H4/H2A/H2B) were refolded 
in equimolar ratios and purified by size exclusion chromatography as previously described (Dyer 
et al., 2004). Nucleosomes were generated by combining either the histone octamer or 
H2A/H2B dimer and H3/H4 tetramer (2:1 ratio) with DNA containing the Widom 601 sequence 
(Lowary & Widom, 1998). To favor hexasome formation, dimer and tetramer were combined in 
1.2 : 1 ratio. Reconstitution by salt dialysis was performed as described (Luger et al., 1999). 
 
Addition of H2A/H2B dimer to hexasome was carried out within experimental reactions. 
H2A/H2B dimer (stored in 10 mM Tris (pH 7.8), 2 M NaCl, 1 mM EDTA, 5 mM 2-
mercaptoethanol) was diluted roughly 10-30 fold to 6 µM in reaction buffer. Dimer dilutions were 
performed just prior to experiments.  Hexasome was added to the reaction buffer first, followed 
by dimer in the indicated molar ratio. Dimer addition was allowed to proceed at room 
temperature for 2-3 minutes before additional reaction components were introduced. A similar 
pre-incubation step was carried out for nucleosome-containing reactions. 
 
Native gel sliding 
Nucleosome sliding reactions were carried out as previously described with some minor 
adjustments (Eberharter et al., 2004; Patel et al., 2011). Briefly, 150 nM of fluorescently labeled 
nucleosome (or hexasome) and 50 nM Chd1 were diluted and combined in slide buffer (20 mM 
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HEPES (pH 7.8), 100 mM KCl, 5 mM MgCl2, 0.1 mg·ml−1 BSA, 1 mM DTT, 5% sucrose (w/v)) at 
room temperature. Reactions were started with the addition of 2.5 mM ATP and at each 
timepoint, 1 µL of the reaction was added into into 24 µL of fresh quench buffer (20 mM HEPES 
(pH 7.8), 100 mM KCl, 0.1 mg·ml−1 BSA, 1 mM DTT, 5% sucrose (w/v), 5 mM EDTA, 125 ng/µL 
salmon sperm DNA (Invitrogen)) and placed on ice. To separate reaction products, 2.5 µL of the 
quenched timepoints were loaded onto 7% native polyacrylamide gels (60:1 acrylamide to bis-
acrylamide) and electrophoresed (125 V) for 2 hours at 4˚C. Reaction products were observed 
by their fluorescent labels using a Typhoon 9410 variable mode imager (GE Healthcare). 
 
Histone mapping  
Histone mapping experiments were conducted as previously described (Abbott et al., 2005). 
Briefly, nucleosomes made with fluorescently tagged DNA were labeled with ~220 uM p-
azidophenacyl bromide (APB) on H2B S53C in the dark at room temperature for 3 hours before 
being quenched with DTT. Sliding reactions were assembled using 150 nM labeled nucleosome 
and 50 nM Chd1 in slide buffer (20 mM Tris Base (pH 7.8), 50 mM KCl, 5mM MgCl2, 5% 
sucrose (w/v), 0.1 mg·ml−1 BSA, 1 mM DTT). Before addition of ATP, a zero timepoint was 
collected. Sliding reactions were initiated with the addition of 2 mM ATP. At timepoints, 50 µL of 
the reaction was added to 100 µL of quench buffer (20 mM Tris Base (pH 7.8), 50 mM KCl, 5% 
sucrose (w/v), 0.1 mg·ml−1 BSA, 5 mM DTT, 5 mM EDTA, 150 ng/µL salmon sperm DNA) and 
placed on ice. The APB was crosslinked to the DNA by irradiating at 302 nm for 15 sec using a 
UV Transilluminator (VWR). Samples were denatured with 0.1% SDS and heat, and then 
subjected to phenol chloroform extraction and EtOH precipitation to remove uncrosslinked 
material. The crosslinked DNA was resuspended and cleaved with NaOH. The fragmented DNA 
was EtOH precipitated again before resuspending with formamide loading buffer and running it 
on an 8 M urea, 8% polyacrylamide (19:1 acrylamide:bis-acrylamide) sequencing gel. The 
samples were run for 1.25 hours at 65 W alongside a sequencing ladder of the nucleosomal 
DNA to allow precise identification of crosslink locations. Gels were imaged on a Typhoon 9410 
variable mode imager (GE Healthcare) and analyzed using ImageJ (http:// imagej.nih.gov/ij/). 
         
Exonuclease III digestion 
Exonuclease III was carried out on nucleosomes and hexasomes with fluorescently labeled 
DNA. Samples containing nucleosome (100 nM) or hexasome (100 nM) preincubated for 2-3 
minutes with 2-fold molar excess H2A/H2B dimer were incubated at room temperature for 10 
minutes in reaction buffer consisting of 20 mM HEPES (pH 7.6), 50 mM KCl, 10 mM MgCl2, 5% 
sucrose (w/v), 0.1 mg·ml−1 BSA, and 1 mM DTT. For each sample condition, four 10 µL 
digestion reactions were made containing 0, 10, 40, and 160 units of Exonuclease III (New 
England Biolabs). After digesting for 5 minutes at room temperature, reactions were quenched 
by the addition of 40 µL of quench buffer (20 mM HEPES (pH 7.6), 50 mM KCl, 20 mM EDTA, 
1.2% SDS) and placed on ice. DNA was isolated from the digestion reactions by adding an 
equal volume of phenol:chloroform:isoamyl alcohol (25:24:1), vortexing, centrifuging for 2 
minutes, and removing the top (aqueous) layer to a new tube. To completely remove phenol, 
this step was repeated using chloroform:isoamyl alcohol (24:1). DNA was precipitated by adding 
1.5 µL of 10 mg·ml−1 glycogen, 5 µL of 3 M sodium acetate and 250 µL 100% EtOH and then 
chilled at -80° C for > 20 minutes followed by centrifugation (21,130 rcf) for 30 minutes at 4° C. 
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After a 70% EtOH wash and air drying of the pellet, samples were resuspended in 8 µL of 
formamide loading buffer and separated on urea sequencing gels as described for histone 
mapping. 
 
Single molecule FRET 
Biotinylated and dye-labeled nucleosomes and hexasomes (alone or pre-incubated with an 
approximately twofold molar excess of unlabeled H2A/H2B dimer) were surface-immobilized on 
poly(ethylene glycol)-coated quartz microscope slides via a biotin-streptavidin linkage, as 
previously described (Blosser et al., 2009; Deindl et al., 2013). Immobilized samples were 
excited with a 532 nm Nd:YAG laser (CrystaLaser), and fluorescence emissions from Cy3 and 
Cy5 were detected using a prism-type TIRF microscope, filtered with a 550 nm long-pass filter 
(Chroma Technology), spectrally separated by a 635 nm dichroic mirror (Chroma Technology), 
and imaged onto the two halves of an Andor iXon Ultra 897 (512 × 512) CCD camera. The 
imaging buffer contained 12 mM HEPES, 40 mM Tris (pH 7.5), 60 mM KCl, 3 mM MgCl2, 0.32 
mM EDTA, 10% glycerol, an oxygen scavenging system (800 µg ml−1 glucose oxidase, 40 µg 
ml−1 catalase, 10% glucose) to reduce photobleaching, 2 mM Trolox (Sigma) to suppress 
photoblinking of the dyes (Rasnik et al., 2006), and 0.1 mg·ml−1 BSA (Promega). Remodeling 
was induced by infusing the sample chamber with the imaging buffer containing 300 nM Chd1 
remodeling enzyme and ATP using a syringe pump (Harvard Apparatus). 
 
Fluorescence Experiments 
Static quenching of fluorescence (SQOF) experiments were carried out using Cy3-Cy3 or Cy3B-
Dabcyl pairs. Reactions were monitored for 80N0 nucleosomes or hexasomes, with exit-side 
H2A C120 labeled with Cy3 or Cy3B and the zero-end of DNA labeled with Cy3 or Dabcyl (IDT). 
Sliding reactions were conducted with 10 nM nucleosome or 10 nM hexasome with 12 nM dimer 
(unless otherwise noted), 25 or 400 µM Chd1, and 25 µM ATP, 100 mM KCl, 20 mM HEPES 
(pH 7.5), 5 mM MgCl2, 100 µM EDTA, 5% sucrose w/v, 1 mM DTT, 0.2% Nonidet P-40, and 0.1 
mg·ml−1 BSA at 25 °C.   
 
Sliding reactions were monitored by either fluorometer or stopped-flow. Fluorometer 
experiments were conducted on a Fluorolog 3 fluorometer (Horiba) using a 2 mL reaction 
volume with a stir bar in the cuvette. First, 10 nM nucleosome or hexasome followed by 
H2A/H2B dimer was added to the cuvette and allowed to equilibrate for 2-3 minutes. Next, Chd1 
was added, and after another brief equilibration, the sliding reaction was initiated with 25 µM 
ATP. Cy3 was excited at 510 nm and fluorescence was monitored at 565 nm using a 4 nm slit 
width and 1 second integration time. Stopped flow experiments were conducted on an SX20 
stopped-flow (Applied Photophysics Limited) with nucleosome (or hexasome and dimer) and 
Chd1 in one syringe and ATP in the other. Cy3 was excited at 510 nm and emissions were 
monitored above 570 nm with a long-pass filter. Fluorescence signal was integrated over 0.01 
seconds for the first ten seconds of the reaction and then 0.1 seconds for the remainder of the 
trace. Each progress curve is the average of 3-6 technical replicates. Progress curves were fit 
using the double exponential function, 𝑦𝑜𝑏𝑠 = 𝑎'(1	 − 𝑒-./⋅1) 	+ 𝑎4(1	 − 𝑒-.5⋅1) 	+ 	𝑐 , using 
Mathematica (Wolfram), where k1 and k2 are observed rates, a1 and a2 are corresponding 
amplitudes, and c is a constant.  
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Figure Legends 
 
Figure 1. Oriented hexasomes can be generated using the Widom 601 sequence. 
A. Hexasomes but not nucleosomes migrate differently by native PAGE when flanking DNA is 
on the left or right of the 601 sequence. These two gels, poured from the same solution, are 
representative of typical 0-601-80 and 80-601-0 reconstitutions. The gel shown is representative 
of three similar experiments using different hexasome/nucleosome preparations. 
B. Analysis of histone stoichiometry by SDS-PAGE confirms that hexasome species lacks one 
H2A/H2B dimer. The bar graph is a quantification of the gel shown, and band intensities were 
normalized to histone H4. 
C. Exonuclease III analysis demonstrates that hexasomes only retain one H2A/H2B dimer on 
the TA-rich side of the 601 sequence. Samples were incubated with 0, 10, 40, and 160 units of 
ExoIII and resolved on urea denaturing gels. Lanes 9-12 and 21-24 show addition of 200 nM 
H2A/H2B dimer to 100 nM hexasomes, which recovered nucleosome digestion patterns. The 
size (bp) of major products are indicated. These gels are representative of two independent 
experiments. 
D. Histone mapping confirms unique the orientation of hexasomes on the Widom 601 and the 
generation of nucleosomes with H2A/H2B dimer addition. Related mapping experiments using 
wild type and modified hexasomes were performed four times with similar results. See also 
Figure 1 - figure supplement 1. 
 
Figure 1 - figure supplement 1. Hexasome orientation on the 601 is unaffected by the 
position of flanking DNA. 
A. Exonuclease III digestion performed as in Figure 1 except using 80-601-0 nucleosomes and 
hexasomes, where flanking DNA is on the opposite (left) side of the 601. More extensive 
digestion of hexasomes from the left of the 601 (lanes 5-8) indicates that hexasomes are 
missing H2A/H2B on the TA poor side of the 601 regardless of flanking DNA. Addition of two-
fold molar excess H2A/H2B to hexasomes restored nucleosome digestion patterns (lanes 9-12). 
ExoIII digestions of 80-601-0 and 0-601-80 hexasomes and nucleosomes were performed in 
parallel, run on the same gel and are each representative of two independent experiments. 
B. Histone mapping of 80-601-0 hexasomes and nucleosomes shows a loss of crosslinking 
from the TA poor side of the 601 (lane 26), consistent with 0-601-80 shown in Figure 1. Histone 
mapping of 80-601-0 constructs was performed alongside 0-601-80 constructs and run on the 
same gels. Results are representative of two or more independent experiments. 
 
 
Figure 2. Chd1 requires the H2A/H2B dimer on the entry side for robust remodeling. 
A. (A) Nucleosome and hexasome sliding reactions analyzed by native PAGE. Nucleosomes or 
hexasomes (150 nM) were incubated with yeast Chd1 (50 nM) and 2.5 mM ATP and reactions 
resolved for 0, 0.5, 5, and 50 min time-points. Shown is a representative of four independent 
experiments.  
(B) Nucleosome and hexasome sliding reactions, visualized through histone mapping. For 
hexasome and nucleosome 80-601-0 constructs (left), sliding reactions were monitored after 
incubation with 50 nM Chd1 for 0, 1, and 64 min. For 0-601-80 constructs (right), time points 
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were 0, 0.25, 0.5, 1, 2, 4, 8, 16, 32, and 64 min. Sliding experiments for 0-601-80 and 80-601-0 
were each examined six or more times with similar results.  
(C) Comparison of intensity profiles for histone mapping reactions shown in (B). Samples before 
ATP addition (0 min) are black, nucleosome sliding reactions after 64 min are blue, and 
hexasome sliding reactions after 64 min are red. 
 
Figure 3. Oriented hexasomes allow targeted placement of modified H2A/H2B dimers on 
the nucleosome 
A. Analysis of dual labeled nucleosomes (H2A-Cy3 and DNA-Cy5) by single-molecule FRET 
(smFRET) reveals multiple species prior to nucleosome sliding by Chd1. 
B. Oriented hexasomes (H2A-Cy3 and DNA-Cy5) made with an 80-601-3 uniformly show one 
dye pair that yields high FRET. Right panel shows relatively poor mobilization of hexasomes by 
Chd1. 
C. Addition of unlabeled H2A/H2B dimer to the labeled 80-601-0 hexasomes yields asymmetric 
nucleosomes, only possessing the high FRET dye pair. 
 
 
Figure 4. With subsaturating H2A/H2B dimer addition, rates of nucleosome sliding by 
Chd1 are not sensitive to nucleosome:hexasome ratios. 
A. Nucleosome sliding monitored by Cy3-Cy3 fluorescence quenching. The legend shows the 
amount of H2A/H2B dimer for each reaction, which contained 10 nM 80-601-0 hexasome. Each 
trace is an average of 4 or more injections from the same stopped flow experiment. The black 
curves show double exponential fits to the data. 
B. Graph of overall intensity changes at each H2A/H2B dimer concentration added to 
hexasomes, with higher intensity reflecting a greater proportion of nucleosomes that can be 
shifted. Error bars indicate the range from two independent sets of experiments. 
C. Graph of sliding rates for stopped flow H2A/H2B dimer addition. Rates (k1 and k2) were 
determined from a double exponential fit to the data. Error bars indicate the range from two 
independent sets of experiments. 
D. Native PAGE visualization of nucleosomes generated by addition of H2A/H2B dimer to 
hexasomes. Shown is a representative of ten similar titrations performed using wild-type or 
modified H2A/H2B dimers. 
  
 
Figure 5. Entry-side H2B-Ubiquitin stimulates nucleosome sliding by Chd1. 
(A) Generation of symmetric and asymmetric nucleosomes with site-specific placement of H2B-
Ubiquitin. Nucleosomes were formed from H2A/H2B dimer (12 nM) addition to 80-601-0 
hexasomes (10 nM). Hexasomes and H2A/H2B dimer contained either unmodified (Wt) or 
ubiquitinylated (Ub) H2B as indicated, and resulting nucleosome and hexasome species were 
visualized by native PAGE. Shown is a representative from six independent dimer addition 
experiments.  
(B) Comparison of remodeling reactions with subsaturating (25 nM) Chd1, using hexasomes (10 
nM) and H2A/H2B dimers (12 nM) containing unmodified or Ub-conjugated H2B. Shown are 
progress curves for remodeling reactions monitored on a fluorimeter using a Cy3-Cy3 pair. 
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Black traces represent fits to the data. Progress curves are representative of two independent 
experiments.  
(C) Representative progress curves from three independent experiments of nucleosome sliding 
reactions monitored by stopped flow using Cy3B-Dabcyl at subsaturating (25 nM) Chd1. Black 
traces represent fits to the data.  
(D) Comparison of sliding rates monitored with Cy3B-Dabcyl at subsaturating Chd1 (25 nM).  
(E) Representative progress curves from three independent experiments of nucleosome sliding 
reactions monitored by stopped flow using Cy3B-Dabcyl at saturating (400 nM) Chd1. Black 
traces represent fits to the data.  
(F) Comparison of sliding rates monitored with Cy3B-Dabcyl at saturating Chd1 (400 nM). Error 
bars in (D) and (F) show standard deviations from three independent experiments. *** P-value 
<0.0006; **** P-value <0.0001; n.s., not significant. See also Figure 5 - figure supplement 1. 
  
Figure 5 - figure supplement 1. Remodeling saturates at 400 nM Chd1 
Nucleosomes formed by adding 12 nM dimer to 10 nM hexasomes were titrated with 10, 25, 50, 
100, 200, 400, and 800 nM Chd1 and 25 µM ATP. Reactions were monitored by Cy3-Cy3 
SQOF, and show that remodeling plateaued at 400 nM Chd1. The progress curves shown are 
representative of two independent Chd1 titrations using unmodified H2B (Wt-Wt). Similar results 
were observed for duplicate titrations using Ub-Wt, Wt-Ub, and Ub-Ub nucleosomes.  
 
 
Figure 6. Model for nucleosome packing by oriented hexasomes 
As others have shown, transcription by Pol II through nucleosomes is facilitated by removal of 
the promoter-distal H2A/H2B dimer (Kulaeva et al., 2009). Our results indicate that Chd1 would 
slide a hexasome of this orientation upstream. We propose that one or more hexasomes would 
corral intervening nucleosomes toward the promoter. Alternately, if every transcribed 
nucleosome were briefly converted to a hexasome, unidirectionally sliding of each hexasome 
would maintain tight nucleosome packing. 
 
 
 
 
 
 

 
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2016. ; https://doi.org/10.1101/080010doi: bioRxiv preprint 

https://doi.org/10.1101/080010
http://creativecommons.org/licenses/by/4.0/


nucleosome
hexasome

H2A/H2B dimer

+ - -
- + +
- - +

+ - -
- + +
- - +

Cy3
scans

FAM
scans

H2B
cross-link

H2B
cross-link

le
ft 

si
de

rig
ht

 s
id

e

left
right

0-601-80

Widom 601 (145 bp)

TA TA TA TATA

dyad

TA-rich sideTA-poor side

H2B cross-link

H2B
cross-link

H2A+H2B H2A+H2B(H3+H4)2

Cy3
FAM

flanking DNA (80 bp)

225   •

145 •

136 •

125 •

• 184
• 175

• 217

• 193

•
(bp)ExoIII - - - - - - ExoIII

nucleosome hexasome hexasome
+ H2A/H2B nucleosome hexasome hexasome

+ H2A/H2B

FAM scans (probing left side) Cy3 scans (probing right side)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

A B

C D

Figure 1. Oriented hexasomes can be generated using the Widom 601 sequence.
(A) Hexasomes but not nucleosomes migrate differently by native PAGE when flanking DNA is on the left 
or right of the 601 sequence. These two gels, poured from the same solution, are representative of typical 
0-N-80 and 80-N-0 reconstitutions. (B) Analysis of histone stoichiometry by SDS-PAGE confirms that 
hexasome species lacks one H2A/H2B dimer. The bar graph is a quantification of the gel shown, and 
band intensities were normalized to histone H4. The gel shown is representative of three similar 
experiments using different hexasome/nucleosome preparations. (C) Exonuclease III analysis 
demonstrates that hexasomes only retain one H2A/H2B dimer on the TA-rich side of the 601 sequence. 
Samples were incubated with 0, 10, 40, and 160 units of ExoIII and resolved on urea denaturing gels. 
Lanes 9-12 and 21-24 show addition of 200 nM H2A/H2B dimer to 100 nM hexasomes, which recovered 
nucleosome digestion patterns. The size (bp) of major products are indicated. These gels are 
representative of two independent experiments. (D) Histone mapping confirms unique the orientation of 
hexasomes on the Widom 601 and the generation of nucleosomes with H2A/H2B dimer addition. Related 
mapping experiments using wild type and modified hexasomes were performed four times with similar 
results. See also Figure 1 - figure supplement 1.
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Figure 2. Chd1 requires the H2A/H2B dimer on the entry side for robust remodeling.
(A) Nucleosome and hexasome sliding reactions analyzed by native PAGE. Nucleosomes or hexasomes 
(150 nM) were incubated with yeast Chd1 (50 nM) and 2.5 mM ATP and reactions resolved for 0, 0.5, 5, 
and 50 min time-points. Shown is a representative of four independent experiments. (B) Nucleosome and 
hexasome sliding reactions, visualized through histone mapping. For hexasome and nucleosome 
80-601-0 constructs (left), sliding reactions were monitored after incubation with 50 nM Chd1 for 0, 1, and 
64 min. For 0-601-80 constructs (right), time points were 0, 0.25, 0.5, 1, 2, 4, 8, 16, 32, and 64 min. 
Sliding experiments for 0-601-80 and 80-601-0 were each examined six or more times with similar results. 
(C) Comparison of intensity profiles for histone mapping reactions shown in (B). Samples before ATP 
addition (0 min) are black, nucleosome sliding reactions after 64 min are blue, and hexasome sliding 
reactions after 64 min are red.
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Figure 3. Oriented hexasomes allow targeted placement of modified H2A/H2B dimers on the 
nucleosome.
(A) Analysis of dual labeled nucleosomes (H2A-Cy3 and DNA-Cy5) by single-molecule FRET (smFRET) 
reveals multiple species prior to nucleosome sliding by Chd1. 
(B) Oriented hexasomes (H2A-Cy3 and DNA-Cy5) made with an 80-601-3 uniformly show one dye pair 
that yields high FRET. Right panel shows relatively poor mobilization of hexasomes by Chd1. (C) Addition 
of unlabeled H2A/H2B dimer to the labeled 80-601-0 hexasomes yields asymmetric nucleosomes, only 
possessing the high FRET dye pair.
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Figure 4. With subsaturating H2A/H2B dimer addition, rates of nucleosome sliding by Chd1 are not 
sensitive to nucleosome:hexasome ratios.
(A) Nucleosome sliding monitored by Cy3-Cy3 fluorescence quenching. The legend shows the amount of 
H2A/H2B dimer for each reaction, which contained 10 nM 80-601-0 hexasome. Each trace is an average of 4 or 
more injections from the same stopped flow experiment. The black curves show double exponential fits to the 
data. (B) Graph of overall intensity changes at each H2A/H2B dimer concentration added to hexasomes, with 
higher intensity reflecting a greater proportion of nucleosomes that can be shifted. Error bars indicate the range 
from two independent sets of experiments. (C) Graph of sliding rates for stopped flow H2A/H2B dimer addition. 
Rates (k1 and k2) were determined from a double exponential fit to the data. Error bars indicate the range from 
two independent sets of experiments. (D) Native PAGE visualization of nucleosomes generated by addition of 
H2A/H2B dimer to hexasomes. Shown is a representative of ten similar titrations performed using wild-type or 
modified H2A/H2B dimers.
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Figure 5. Entry-side H2B-Ubiquitin stimulates nucleosome sliding by Chd1.
(A) Generation of symmetric and asymmetric nucleosomes with site-specific placement of H2B-Ubiquitin. 
Nucleosomes were formed from H2A/H2B dimer (12 nM) addition to 80-601-0 hexasomes (10 nM). 
Hexasomes and H2A/H2B dimer contained either unmodified (Wt) or ubiquitinylated (Ub) H2B as 
indicated, and resulting nucleosome and hexasome species were visualized by native PAGE. Shown is a 
representative from six independent dimer addition experiments. (B) Comparison of remodeling reactions 
with subsaturating (25 nM) Chd1, using hexasomes (10 nM) and H2A/H2B dimers (12 nM) containing 
unmodified or Ub-conjugated H2B. Shown are progress curves for remodeling reactions monitored on a 
fluorimeter using a Cy3-Cy3 pair. Black traces represent fits to the data. Progress curves are 
representative of two independent experiments. (C) Representative progress curves from three 
independent experiments of nucleosome sliding reactions monitored by stopped flow using Cy3B-Dabcyl 
at subsaturating (25 nM) Chd1. Black traces represent fits to the data. 
(D) Comparison of sliding rates monitored with Cy3B-Dabcyl at subsaturating Chd1 (25 nM). 
(E) Representative progress curves from three independent experiments of nucleosome sliding reactions 
monitored by stopped flow using Cy3B-Dabcyl at saturating (400 nM) Chd1. Black traces represent fits to 
the data. (F) Comparison of sliding rates monitored with Cy3B-Dabcyl at saturating Chd1 (400 nM). Error 
bars in x(D) and (F) show standard deviations from three independent experiments. *** P-value <0.0006; 
**** P-value <0.0001; n.s., not significant. See also Figure 5 - figure supplement 1.
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Figure 6. Model for nucleosome packing by oriented hexasomes
As others have shown, transcription by Pol II through nucleosomes is facilitated by removal of the promoter-distal 
H2A/H2B dimer (Kulaeva et al., 2009). Our results indicate that Chd1 would slide a hexasome of this orientation 
upstream. We propose that one or more hexasomes would corral intervening nucleosomes toward the promoter. 
Alternately, if every transcribed nucleosome were briefly converted to a hexasome, unidirectionally sliding of each 
hexasome would maintain tight nucleosome packing.
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