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Abstract

Although neurons in columns of tissue in visual cortex of adult carnivores and primates share
similar preferences for the orientation of a visual stimulus [1, 2], they can nevertheless have
sparse and temporally uncorrelated firing visual response properties [3–5]. This effect is
supported by the observation that long-range excitatory connections between cortical neurons
are functionally specific, because they interconnect columns with similar orientation
preference [6,7], and local short-range ones are unspecific and sparse. Coupled with strong local
inhibition, this network architecture is a good recipe for local competition arranged within a
cortical column [8]. In this paper we propose a model architecture that is consistent with these
experimental and anatomical findings, and which explains the emergence of orientation-tuned
surround suppression. We explore the effect of local columnar competition, coupled with local
and long-range functional specificity, as substrates for integration of responses from the visual
surround in columnar visual cortex. In addition, we show how presentation of simulated
full-field complex visual stimuli, designed to approximate visual scenes, leads to reduced
correlation of local excitatory responses and increased excitatory response selectivity (lifetime
sparseness). These effects occurred simultaneously with increased inhibitory activity and
decreased inhibitory sparseness, consistent with recordings of excitatory and inhibitory neurons
in cortex [9, 10]. In our networks competition, reduced correlation and increased sparseness
depended on both local and long-range specific excitatory connectivity. The mechanism of local
competition implemented in our model explains several aspects of integration of information
from the visual surround, and is consistent with experimentally measured spatial profiles of
cortical excitation and inhibition.

Author Summary

Cells in the visual areas of the brain are active when an image appears in a small area of visual
space. But the way a cell responds also depends on what images cover the rest of visual space, in
complex ways that we don’t yet understand. In experiments, this leads to some cells shutting
down when visual patterns are shown to an animal on a screen. We developed a computational
model for the visual processing areas of the brain, in animals such as cats, monkeys and humans
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that explains this phenomenon: we propose that nearby nerve cells in the brain compete with
each other when they respond to visual information coming from the eye. In our model, this
competition leads to some nerve cells shutting down, in a similar way as is seen in experiments
with real brains. Ensuring that only a few nerve cells are active makes the brain more efficient at
responding to the visual world. This is a general principle that could very well be in place also in
other areas of the brain. We believe that this model will lead to a better understanding of how
networks of nerve cells in the brain are connected and share information.

Introduction 1

In species with highly developed neocortices, such as cats and primates, cortical neurons are 2

grouped into columns that share functional similarities [11]. In primary visual cortex, columns 3

of neurons have highly similar preferred orientations of a visual stimulus [1, 2]. However, given 4

that neurons in a column share the same retinotopic location and a common orientation 5

preference, the firing activity of these neurons is surprisingly poorly correlated [3, 4, 12], even in 6

response to drifting grating stimuli [3, 12]. 7

As natural sensory inputs are highly temporally correlated [13, 14], an active mechanism to 8

reduce correlations is required to improve information coding efficiency [14, 15]. This is 9

because strong correlations across a population can impair the ability to extract information from 10

a population responding to a sensory stimulus [16, 17]. “Sparse coding” of responses to sensory 11

stimuli is a valuable goal for cortex, which serves to increase the storage capacity [18, 19] and 12

information efficiency [16, 17] of cortical populations. In visual cortex, the functional 13

relationships between nearby neurons is modulated by the influence of information from the 14

visual surround. Wide-field stimulation with natural scenes promotes more selective and less 15

correlated excitatory activity [9, 10], while inhibitory activity becomes stronger and less 16

selective [10]. 17

How does this reduction in response correlation come about, given the prevalence of strong 18

spatial and temporal correlations present in natural visual scenes [13, 14], and given that neurons 19

in a column share common preferences for visual features? Several neural models have been 20

proposed to reduce correlations in network activity, including nonlinearity of spike generation, 21

synaptic-transmission variability and failure, short-term synaptic depression, heterogeneity in 22

network connectivity, intrinsic neuronal properties and recurrent network dynamics [20–24]. A 23

particularly appealing form of recurrent dynamics is that involving inhibitory feedback loops, 24

which are abundant in cortical networks [12, 14, 15, 24–27]. When configured appropriately, 25

inhibitory feedback promotes competition between the activity of a set of excitatory neurons, 26

such that weaker responses are suppressed in a non-linear fashion [28–31]. 27

Local excitatory connections are sparse in cortex, with maximum connection probabilities 28

between closest proximal cells (i.e. ≈ 50µm) of only 20 % to 30 % [32–35] and with connection 29

probability falling off sharply with distance [36, 37]. In contrast, local connections between 30

excitatory and inhibitory neurons are dense in rodents [38–41]. In animals with columnar visual 31

cortices, inhibitory inputs are simply integrated from the nearby surrounding tissue [42], 32

suggesting a similar pattern of dense local connectivity. Long-range excitatory connections 33

(i.e. 500 µm to 1500 µm) within columnar visual cortex are made selectively between points 34

across the cortical surface with similar functional preferences [6, 7, 43–47]. Similarly, excitatory 35

connections in rodents are made selectively [32, 48], between neurons with correlated functional 36

properties [34, 41, 49]. 37

We propose a novel competitive model that exploits excitatory interaction between 38

long-range and local cortical circuits connecting neurons in the superficial layers of cortex. 39

These excitatory interactions produce locally-mediated competition within a cortical column, 40
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which can be recruited or modulated by information conveyed over long-range excitatory 41

projections, including from the visual surround. As discussed above, competition directly 42

reduces correlations within a network (in the sense of making correlation coefficients more 43

negative); however, if competition were to occur within a cortical column, a few “winning” 44

neurons would increase their activity, while that majority of “losing” neurons would decrease 45

their activity. We therefore propose that the physiology of “losing” neurons is highly similar to 46

suppression of neural responses provoked by surround stimulation. 47

Grating stimuli presented in the visual surround predominately suppress neural 48

responses [50–57], with more than 50% of neurons reducing their firing rate [53]. The degree of 49

suppression is sensitive to the grating stimulus orientation presented within the classical 50

receptive field (cRF) and visual surround, with strongest suppression occurring when the 51

orientations within the cRF and surround match [51, 53, 55]. Surprisingly, the tuning of peak 52

suppression is not determined by the preferred orientation of the neuron being suppressed. 53

Instead, peak suppression occurs when cRF and surround orientations are aligned, regardless of 54

the preferred orientation of the neuron being recorded [57]. Indeed, the expression of surround 55

suppression depends on the local structure of the orientation map in V1 [58]. Consistent with a 56

local competitive mechanism, a comparatively smaller proportion of neurons undergo 57

facilitation in response to surround stimulation [52, 53, 59]. 58

Here we investigate the ability of a local competitive mechanism, operating within a cortical 59

column, to explain features of visual responses provoked by stimulation in the visual surround. 60

We design a model for the superficial layers of cat primary visual cortex (area 17), including 61

several populations designed to simulate distinct portions of the visual field (“centre” and 62

“surround”). We present several simulated visual stimuli, designed in analogy to experimental 63

investigations of centre/surround visual interactions, and show how the mechanism of local 64

competition is recruited by visual stimulation to reduce local correlations and to suppress 65

neuronal responses. 66

Results 67

Network architecture 68

We developed a spiking network model for adult columnar primary visual cortex, composed 69

of 7 populations of neurons, each representing a distinct location on the visual field (Fig. 1a; see 70

Methods). Each population consisted of a ring representing one hypercolumn — a full ordered 71

sequence of preferred orientations corresponding to approximately 1 mm of cat area 17 [47]. 72

One population was arbitrarily chosen as the center of visual stimulation; the other populations 73

represented surrounding areas of visual space (i.e. the visual surround). Each population was 74

composed of a series of columns consisting of excitatory and inhibitory neurons, where each 75

column contained neurons with a common preferred orientation. Inhibitory neurons made only 76

short-range recurrent connections within their source population; in contrast, excitatory neurons 77

made wider-ranging recurrent connections within their source population, as well as long-range 78

connections to the other populations in the model (Fig. 1b). All connections were made 79

symmetrically following Gaussian profiles over difference in preferred orientation, taking into 80

account the ring topology within each population. Long-range connections were therefore 81

biased to connect columns with similar orientation preference, as is observed in cat visual 82

cortex [7, 47]. In this paper, we refer to this form of functional synaptic specificity as θ -specific 83

(i.e. orientation-specific). 84

Within each column, excitatory neurons were assumed to form sub-populations (“specific 85

subnetworks”, or SSNs; Fig. 1c), which have a higher-than-chance probability of forming 86
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Figure 1. The network architecture of the center-surround model. (a) We simulated several
populations representing non-overlapping locations in primary visual cortex (dashed cicrles),
covering distinct locations of the visual field. Each population was simulated as a ring of
neurons considered to span an orientation hypercolumn, i.e. containing a set of columns with a
complete ordered sequence of orientation preferences. One population (“C”) corresponded to the
centre of visual stimulation; the others corresponded to the visual surround (“S”). (b) Excitatory
(triangles) and inhibitory neurons (circles) in each population were arranged in orientation
columns around the ring, with preferred orientations indicated by coloured bars. Local excitatory
and inhibitory connections within each population, as well as long-range excitatory connections
between populations, were modelled as Gaussian fields over difference in preferred orientation
(curves in b). For simplicity only projections from a single population are shown (“C” ring;
upper); connections were made identically within and between each population in the model.
(c) Connections from single neurons were made both within a column, and between populations.
Excitatory neurons within a column were distributed evenly across several subnetworks (SSNs;
see Methods for details of parameters). A proportion of local excitatory synapses was reserved
to be made only with other neurons within the same SSN (P+). Long-range excitatory
connections were also sensitive to SSN membership, under the parameter PM . JE , JI : Strength of
excitatory (E) and inhibitory (I) synapses. PIN , PI : Fraction of synapses onto excitatory (IN) and
inhibitory (I) targets made locally within the same hypercolumn, as opposed to long-range
projections to other hypercolumns. For simplicity, only connections from a single excitatory and
inhibitory neuron are shown; projection rules are identical for all neurons in the model. (d)
Placed in visual space, the central population corresponded to approximately 1° of visual space;
the surround populations were defined to cover approximately 4.5° of visual space.

recurrent excitatory connections. In contrast, inhibitory neurons have equal probabilities of 87

forming recurrent inhibitory connections to all neurons within a column, regardless of SSN 88
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membership. This architecture is known to exist in rodent visual cortex [32, 34, 41, 48, 49], but 89

has not been examined experimentally or computationally in columnar visual cortex. In this 90

paper we refer to this form of specificity as SSN-specific connectivity. SSN-specificity in our 91

model could be replaced by the presence of strong recurrent excitatory feedback on the scale of 92

single cortical neurons, if necessary. The strength of SSN-specificity was under the control of a 93

parameter P+ (see Methods). As P+→ 1, all excitatory connections are made within the same 94

SSN. As P+→1/M, all synapses are distributed equally across all SSNs; equivalent to fully 95

random connectivity within a column (here, M is the number of SSNs in each column). 96

Long-range connections were also SSN-specific under the control of a parameter PM (with 97

analogous definition as P+). All parameter values were selected to be realistic estimates for cat 98

area 17 (see Table 1). 99

Our model examined modulation of orientation-tuned responses, caused by inputs from the 100

visual surround, carried by long-range excitatory connections within the superficial layers of 101

columnar cortex. Our model did not investigate the emergence of orientation tuning, which 102

occurs from convergence of thalamic afferents into cortex [60]. We assumed that the neurons in 103

our model resided in the superficial layers of cortex, and therefore received orientation-tuned 104

input primarily from layer 4. 105

Neurons within a column are similarly tuned, but without temporally 106

correlated responses 107

We tested the response of our model to simulated grating visual stimuli, presented first to the 108

classical receptive field only (cRF; centre-only stimulus), and under wide-field stimulation 109

(centre-surround stimulus) (Fig. 2). Stimulation of the cRF with grating stimuli of a single 110

orientation provoked a response over the central population according to the similarity between 111

the stimulus and the preferred orientation of each column (Fig. 2a). 112

Orientation tuning curves were similar between excitatory and inhibitory neurons (Fig. 2e; 113

tuning widths 25.9° half-width at half-height for excitatory neurons and 27.1° for inhibitory 114

neurons; P < 10−10, t-test, 200 neurons). Although neurons within the same column were tuned 115

to identical preferred orientations and responded with a higher average firing rate to the same 116

stimuli, temporal patterns of activation were weakly but significantly negatively correlated on 117

average within a column (Fig. 2c and f; median corr. −0.06; P < 10−10, rank-sum test, 118

200 trials). 119

Wide-field presentation of simulated grating stimuli provoked stronger negative correlations 120

between neurons within a column (Fig. 2b, d and f; median corr. −0.06 vs −0.24; P < 10−10, 121

rank-sum test, 200 trials). Wide-field stimulation also increased the firing rate of the inhibitory 122

population (21.2 Hz to 26.0 Hz; P < 10−10, t-test, 200 trials) and decreased the firing rate of the 123

excitatory population (16.4 Hz to 11.7 Hz; P < 10−10, t-test, 200 trials), consistent with 124

experimental observations in visual cortex [10]. The orientation tuning width of inhibitory 125

neurons increased slightly under wide-field stimulation (27.1° to 28.0°; P < 10−10, t-test, 126

200 trials). 127

Non-random excitatory connectivity promotes negative correlation of 128

neural responses 129

What parameters of cortical connectivity lead to competition in response to centre-surround 130

stimulation? We explored the dependence of competition on the degree of non-random 131

connectivity, both local (P+) and long-range projections (PM; see Methods). We simulated the 132

presentation of wide-field stimulation with grating stimuli, as in Fig. 2, and measured the 133
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Figure 2. Neurons within a column are not temporally correlated in response to
centre-surround grating stimulation. (a–b) Spiking responses of neurons in the centre
population, in response to centre-only (a) and centre-surround stimulation (b) with 90°
orientation stimulus. Inhibitory neurons: blue-green; two of four excitatory SSNs: red and
yellow. (c–d) Firing rates over time for neurons with 90° orientation preference (colours as in
a–b). e Orientation tuning curves for excitatory and inhibitory neurons are similar. Under
centre-only stimulation (a and c), excitatory neurons within a column respond together, since
they share a common preferred orientation, but are temporally decorrelated (correlation
coefficient close to zero; c and f). Under wide-field stimulation (b and d), responses of neurons
within the same column become more negatively correlated (negative correlation coefficient; d
and f). *** p < 0.001.

average correlation coefficient between neurons in the same column. Measurements of 134

correlation coefficients over many network instances with varying P+ and PM are shown in 135

Fig. 3. In all cases, connections within and between populations were θ -specific. However, 136

competition depended strongly on non-random excitatory connectivity, such that when 137

connections were made without local or long-range SSN-specificity (i.e. low P+ and PM), 138

responses within a column were correlated. In contrast, when connections were highly 139

non-random (i.e. P+, PM→1) then responses within a column were negatively correlated. 140

The effects of local and long-range non-random connectivity are mutually supportive. When 141

either of local or long-range connections are made SSN-specific then weak competition is 142
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Figure 3. Non-random excitatory connectivity underlies competition and reduced
correlation in response to centre-surround stimulation. (a–c) Correlation between the
neurons in a column, as a function of the SSN-specificity parameters P+ and PM (see Methods;
Fig. 1). Grey dots and circles: measurements from individual simulations of the spiking network
model. Surface in (a) and curves in (b–c): smooth fit to individual simulations. Both local
recurrent specificity (P+) and long-range specificity (PM) promote competition within single
columns (negative correlation coefficients).

introduced. However, when both connection pathways are SSN-specific then competition is 143

significantly strengthened. 144

We hypothesised that the negative correlations introduced by non-random connectivity 145

depends on the mechanism of competition within a cortical column. We therefore used nonlinear 146

dynamical analysis to explore the presence of competition within a mean-field version of the 147

model, and the dependence of competition on network parameters. Our mean-field model 148

included only two populations from the full spiking model, with each population reduced to a 149

single column; that is, the orientation-selective profile of connectivity is neglected (see details in 150

Methods). In this analysis we systematically vary the parameters of the model under 151

centre-only and centre-surround stimulation, and characterise the strength of competition within 152

a column (Competition Index — CI; see Methods). 153

Results of this analysis are shown in Fig. 4. In general, increasing the strength of excitatory 154

connections (JE ) increased the strength of competition, and the opposite was true for the strength 155

of inhibitory connections (JI). Although competition is mediated via disynaptic inhibitory 156

interactions between excitatory neurons, competition also requires strong excitatory interaction 157

within SSNs, and increasing the strength of inhibition reduces the ability of excitatory neurons 158

to recruit others within the same SSN. 159

Under our estimates for synaptic strengths approximating cortical connectivity (red crosses 160

in Fig. 4a and b; Table 1; see Methods), activity within a column is balanced. Neurons within a 161

column undergo mutual soft winner-take-all competitive interactions (sWTA; gray shading in 162

Fig. 4; [30]). In this regime, increasing the activity of one excitatory neuron results in a decrease 163

of the activity of the other neurons within the column, but is not able to reduce their activity to 164

below the firing threshold. If excitation is strengthened, a regime of hard competition is reached 165

(hWTA), whereby only a single excitatory neuron can be active at a given time. If inhibition is 166
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made too weak, then activity within a column becomes unbalanced and saturates, and no 167

competition is possible (UN). 168
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Figure 4. Dependence of competition on stimulation type and model parameters. Both
synaptic strength (a–b; inhibitory: JI ; excitatory: JE ) and degree of SSN-specificity (c–d; local:
P+; long-range: PM) affect the strength of competition within a column (negative competition
index; grey shading. See Methods). Centre-surround stimulation (b and d) generally increases
the strength of competition. Both soft and hard competitive regimes exist. sWTA: soft
winner-take-all (WTA) regime; hWTA: hard WTA regime; UN: unbalanced regime.

Providing wide-field input to center and surround modules strengthens and changes the 169

profile of competition within a column. For a given choice of parameters, competitive 170

interactions are strengthened by surround stimulation (compare CI at red crosses in Fig. 4a 171

and b; c and d). This occurs simultaneously with a shifting of the parameter regions of the 172

model, such that the size of the region of hard competitive interactions is increased (Fig. 4b). 173

Consistent with competition being responsible for reduced correlation in the spiking model, the 174

strength of competition was related to the degree of local and long-range non-random 175

connectivity (P+ and PM; Fig. 4c and d). 176
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Local competition coupled with tuned long-range connections explains 177

orientation-tuned surround suppression 178

In visual cortex, the strength of suppression induced by wide-field grating stimulation depends 179

on the relative orientations of the grating stimuli presented in the cRF and in the visual 180

surround [51, 53, 55, 57]. We examined the tuning of suppression in our model by simulating the 181

presentation of two gratings to the centre and surround populations, while varying the relative 182

stimulus orientations (Fig. 5). Consistent with experimental findings, the strongest suppression 183

occurred in our model when the orientations of the center and surround stimuli were aligned 184

(∆θ = 0; Fig. 5a and b). 185
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Figure 5. Orientation-tuned suppression under centre-surround stimulation. (a)
Centre-surround grating stimulation (black line: mean response; shading: std. dev.) provokes
suppression on average, compared with centre-only stimulation (dashed line: response for
centre-only stimulation at preferred orientation). (b) In agreement with experimental findings,
our model exhibits orientation-tuned suppression that is strongest when centre and surround
orientations are aligned [51, 53, 55]. (c) Responses of neurons preferring vertical gratings (90◦)
that exhibit suppression under center-surround stimulation with gratings (orientation of surround
stimulus indicated on x-axis). Mean response (thick lines) and standard deviations (shading) are
shown. The profile of suppression shifts depending on the orientation presented to the cRF
(colours of curves corresponding to pips at bottom, indicating orientation of cRF stimulus). The
orientation that provokes maximum surround suppression depends on the orientation presented
to the classical receptive field of a neuron; not on the preferred orientation of that neuron [57].

Somewhat surprisingly, experimental results show that the orientation tuning of surround 186

suppression in visual cortex is not locked to the preferred orientation (θ0) of the neuron under 187

examination [57]. If a non-optimal stimulus (θn) is presented in the cRF, then the strongest 188

suppression occurs when the grating orientation presented in the surround matches the 189

non-optimal stimuls (θn), rather than the neuron’s preferred orientation (θ0). This phenomena 190
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results in a progressive shift of the surround suppression response tuning curve, such that the 191

minimum of the curve is aligned with the orientation of the stimulus presented in the cRF. 192

Our model reproduces both these aspects of surround suppression, by combining local 193

competition with orientation-tuned long-range excitatory connections (see Fig. 5). Note that 194

long-range excitatory connections are made with no inhibitory bias in our model. That is, 195

synapses are made onto excitatory and inhibitory targets in proportion to the existence of those 196

targets in the cortex, as observed experimentally [61]. In our model, 80% of local and 197

long-range excitatory synapses are made onto excitatory targets (see Methods). Excitatory 198

synapses are evenly split between local and long-range projections (i.e. PIN ,PI = 50%; see 199

Methods); this is also in line with experimental observations [62]. 200

Consistent with experimental findings in columnar visual cortex, the strongest surround 201

suppression occurs in our model when the stimulus orientation presented in the cRF and in the 202

visual surround are aligned (Fig. 5a–b). This is because strongest local competition is recruited 203

when the long-range connections from the visual surround are activated simultaneously with 204

local input. Responses in our model are suppressed on average under wide-field stimulation (see 205

Fig. 5a). Due to the competitive mechanism responsible for suppression in our model, one of the 206

local subnetworks will have stronger activity than the others. As a consequence, a subset of 207

neurons express facilitation under surround stimulation (suppression index SI < 0 in Fig. 5b). 208

The proportional size of the facilitated population depends on the number of local subnetworks 209

(four in our model, implying that 1/4 of excitatory neurons exhibit facilitation). 210

Our model replicates the phenomenon of maximum suppression shifting with the orientation 211

presented to the cRF (Fig. 5c; experimental observations in [57]). When non-preferred stimuli 212

are presented in the cRF (pips in Fig. 5c), the profile of suppression shifts in response such that 213

strongest suppression occurs when the surround orientation matches the cRF orientation 214

(colored curves in Fig. 5c). 215

Local competition explains sparsening of local responses to wide-field 216

natural stimuli 217

Responses of neurons in visual cortex are poorly correlated in response to natural 218

stimuli [3, 4, 9, 10], and even more negatively correlated in response to wide-field stimulation 219

compared with cRF-only stimulation [9,10]. Reduced correlation of responses leads to increased 220

population sparseness, increasing information coding efficiency of cortex as discussed above. At 221

the same time, lifetime sparseness also increases with wide-field stimulation [9, 10] — this 222

further improves the selectivity of neurons in cortex, by ensuring they fire in response to only 223

few configurations of visual stimuli. It should be noted that population and lifetime sparseness 224

are not necessarily correlated in populations of neurons [63], meaning that increases in one do 225

not imply a corresponding increase in the other measure. 226

We probed our model with simulated natural stimuli, presented either to the central 227

population only, or as wide-field stimuli (Fig. 6). Responses of a column of neurons to 228

center-only stimulation were significantly less correlated than the correlations present in the 229

input stimulus, measured by recording the responses of a control network with no recurrent 230

connectivity (Fig. 6c; med. correlation coefficients 0.59 vs 0.63; P < 10−10, rank-sum test, 231

4 neurons × 60 columns × 15 trials). However, wide-field stimulation further reduced response 232

correlations within a column (med. correlation 0.28; P≈ 0 versus centre-only stimulation, 233

rank-sum test, 4 neurons × 60 columns × 15 trials). This decorrelation led to a significant 234

increase in population sparseness in response to wide-field stimulation (Fig. 6d; med. 235

sparseness 0.11 vs 0.62; P≈ 0, rank-sum test, 240 neurons × 15 trials), consistent with 236

experimental observations [4, 9]. 237
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Figure 6. Sparsening of responses to simulated natural stimuli. (a–b) Firing rate profiles in
response to cRF-only (a) and wide-field natural stimuli (b). Colors are as indicated in Fig. 2a–d.
Firing rate curves show the responses of neurons tuned for 90° orientation, as indicated in a
and b. See Methods for a description of the time-varying natural stimulus. (c–e) Wide-field
stimulation provokes a significant reduction in correlations within the local population (c),
reflected in a significant increase in both population (d) and lifetime sparseness (e). Colors and
curve styles as indicated in (e2). (f) Responses of the inhibitory population to wide-field
stimulation are significantly elevated, and are less sparse under the Vinje-Gallant measure
(right; V&G) but not under a kurtosis measure (left; Kurt.). Inset: statistical comparison for (f1).
Stronger and less sparse inhibitory responses have been observed experimentally [9, 10].
“Specific”: full network. “Unspecific”: network without local competition in
c–f, P+ = PM = 25%, with other parameters unchanged. “No recurrent”: network with all
recurrent connections removed, JE = JI = 0. a.u.: arbitrary units. Horizontal bars indicate
significance; n.s.: not significant, p > 0.05; * p < 0.05; *** p < 0.001.

The response selectivity of excitatory neurons, measured by lifetime sparseness, was also 238

increased in our model under wide-field stimulation (Fig. 6e; med. sparseness 1.10 vs 0.17; 239

P≈ 0, rank-sum test, 240 neurons × 15 trials), also consistent with experimental 240

observations [4, 9, 10]. This increase in excitatory selectivity came at the cost of inhibitory 241

selectivity (Fig. 6f). Inhibitory activity was increased on average between cRF and wide-field 242

stimulation (mean response 15.5 vs 18.3 Hz; P≈ 0, t-test, 60 neurons), and lifetime sparseness 243

decreased slightly but not significantly under the kurtosis measure and decreased significantly 244

under the Vinje-Gallant measure (med. sparseness 0.14 vs 0.17; P < 10−7, rank-sum test, 245

60 neurons × 15 trials; see Methods). This inverse relationship between excitatory and 246

inhibitory selectivity is consistent with experimental observations [10]. 247
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Discussion 248

We constructed a model for columnar visual cortex, designed to explore integration of 249

information from the visual surround. Our architecture is consistent with the known meso-scale 250

architecture of columnar cortex, which is characterised by long-range, functionally specific (i.e. 251

orientation specific) lateral excitatory projections coupled with short-range local 252

inhibition [8, 10, 49, 64, 65]. We include excitatory specificity over a set of local excitatory 253

subnetworks (SSN-specificity) in order to explore the effect of local competition within a 254

cortical column [8]. 255

Local competition versus inhibitory specificity Several previous models of surround visual 256

interactions have proposed alternative mechanisms for surround suppression. Schwabe and 257

colleages explained the suppressive effects of far surround visual stimulation through fast axonal 258

transport over inter-areal connections [66], but did not examine orientation tuning of surround 259

suppression. They also require that long-range excitatory projections preferentially target 260

inhibitory neurons, which is not justified by anatomical studies of columnar visual cortex [67] 261

but which may underlie a portion of surround suppression in the rodent [68]. Shushruth and 262

colleagues proposed a model that reproduces the fine orientation tuning of surround 263

suppression [57], which relies on strongly tuned feedforward inhibition from the visual surround 264

in a hand-crafted inhibitory network. Several other models for surround suppression (e.g. 265

Somers and colleagues [69]; Stetter and colleagues [70]; Rubin and colleagues [71]) assume 266

horizontally-expressed inhibition on the spatial scale of orientation hypercolumns – a region of 267

the cortical surface spanning all preferred orientations, corresponding to around 1 mm in cat 268

primary visual cortex. However, competition on this scale is poorly supported by cortical 269

anatomy [8]. 270

In our model, suppression provoked by surround stimulation arises through a local 271

competitive mechanism, mediated by strong inhibition within the cortical column balancing 272

local and long-range excitation [62, 72]. Competition arises from local SSN-specific excitatory 273

and non-SSN-specific inhibitory recurrent connections, and is recruited by SSN- and θ -specific 274

long-range excitatory to excitatory (E→E) projections. As a result, the strongest competition — 275

and as a corollary, the strongest suppression — is elicited when the center and surround visual 276

fields are stimulated with gratings of the same orientation. Recruitment of local competition via 277

orientation-tuned E→E connections elicits the shift of suppression with cRF orientation 278

observed experimentally [57]. Importantly, long-range excitatory projections in our model are 279

not class-specific; they target excitatory and inhibitory neurons according to their proportions in 280

the cortex. 281

Sharpening of responses; correlation and information In our model, competition leads to 282

sharpening of response preferences (i.e. increased lifetime sparseness) as well as reducing 283

correlations in activity across the local population (i.e. increased population sparseness), 284

implying that more information about the stimulus is transmitted by each spike. Competition 285

therefore reduces correlation in the sense of signal correlation, which did not occur in a network 286

with local connectivity modified to remove competition (Fig. 6c). Inhibitory feedback loops, 287

which are abundant in cortical networks, efficiently reduce correlations in neuronal activity, to 288

the extent that neurons receiving identical presynaptic input can fire nearly 289

independently [24, 26, 73]. 290

Using this architecture of specific excitation and non-specific inhibition, our model 291

reproduces many features of visual responses related to surround integration, such as 292

orientation-tuned surround suppression and sparsening of excitatory responses under wide-field 293

stimulation. In addition, local competition between neurons within a column in our model 294
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explains the surprisingly low noise correlations between neighbouring neurons in columnar 295

visual cortex [3, 5]. 296

Natural stimuli are extremely redundant [13, 14]. If responses of neurons in visual cortex 297

reflected this redundancy by simply relaying input stimuli, then the information transmitted per 298

neural spike would be low (i.e. a non-sparse encoding). Instead, responses in visual cortex are 299

decorrelated or anticorrelated, implying the presence of a neuronal or network mechanism that 300

reduces correlations in response to visual stimuli. Some temporal whitening may take place at 301

the level of the retina or LGN [74], and some low-level reduction of spatial correlation is 302

implemented by surround inhibition in the retina [75, 76] and dLGN [77]. However, active 303

correlation reduction of nearby neurons in cortex with similar orientation preference, or between 304

cortical neurons distributed across visual space, cannot occur in either the retina or dLGN. 305

Stimulation of the visual surround leads to increased response sparseness and therefore 306

improved coding efficiency from an information-theory perspective, possibly to reduce the 307

deleterious effect of natural stimulus redundancy [78]. 308

Competition and response suppression Due to the presence of local competition in our 309

model, the majority of neurons within a column will show suppression at any given time. As a 310

corollary, some minority of neurons will show facilitation in response to surround stimulation 311

(the “winners” of the competition). In fact, the proportion of facilitating neurons is directly 312

related to the number of local network partitions that are in competition and to the strength of 313

competition. This result implies that experimental quantification of the proportion of facilitation 314

will provide a direct estimate of that parameter of network connectivity. In our model, only a 315

single subnetwork can win the competition; all other subnetworks are suppressed. Therefore, the 316

proportion of neurons undergoing facilitation will converge to 1/M, where 1/M is an estimate 317

of the size of a local subnetwork and M is an estimate for the number of local subnetworks. This 318

parameter can be estimated directly from in vivo recordings of facilitation and suppression under 319

centre-only and full-field visual stimulation, as long as neurons are roughly evenly distributed 320

between local subnetworks in cortex. 321

Formation of local and long-range specificity Our model assumes that local excitatory 322

neurons form ensembles within which recurrent connections are made more strongly, called 323

specific subnetworks or “SSNs”. Patterns of local connectivity consistent with a subnetwork 324

architecture have been described in rodent cortex [32, 34, 41, 48, 49], but have not been examined 325

in animals with columnar visual cortices. Nevertheless, plastic mechanisms within recurrently 326

connected networks of excitatory and inhibitory neurons lead to partitioning of the excitatory 327

network into ensembles [79]. This process occurs during development in rodent cortex after the 328

onset of visual experience [80]; we suggest that similar fundamental plastic mechanisms could 329

apply in columnar visual cortex. 330

Long-range horizontal connections develop in several stages in cat area 17. Initial sparse 331

outgrowth is followed by pruning and increasingly dense arborisation [81], with the result that 332

regions of similar orientation preference are connected [7, 47]. The mechanism for surround 333

suppression exhibited by our model is strongly expressed when long-range excitatory projections 334

between two distant populations preferentially and reciprocally cluster their synapses within 335

individual SSNs in the two populations (i.e. PM > 0.5; see Figs 3 and 4). Note that the precise 336

identity of the two SSNs is not crucial; for simplicity we give them the same index in our model. 337

We propose that specific targetting of long-range projections could come about through 338

similar mechanisms described above for local partitioning of cortex into SSNs. Initially, 339

long-range projections would be made nonspecifically, across SSNs. However, the tendency for 340

local populations to compete will lead to the activity of individual SSNs to be out of phase with 341

each other. SSNs that happen to be concurrently active in two distant populations will induce 342
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reciprocal clustering of long-range projections between the two SSNs in the two populations. 343

Concurrently active SSNs will therefore begin to encourage each other’s activity, leading to 344

stronger clustering of long-range projections. 345

s 346

Competitive mechanisms are known to promote sparse coding [82, 83]; we showed that the 347

architecture of columnar visual cortex lends itself well to local competition as a fundamental 348

computational mechanism for cortex. Local competition can be recruited by excitatory 349

influences from the visual surround to increase response selectivity; this mechanism explains 350

many features of surround visual stimulation in columnar visual cortex. Local excitatory 351

SSN-specificity, over and above connection preference for similar preferred orientations, has not 352

been sought experimentally in mammals with columnar cortices, although it is is important for 353

shaping visual responses in rodent cortex [49]. Our results suggest that careful experimental 354

quantification of local circuitry, in functionally-identified neurons, will be important to identify 355

the mechanisms of surround integration in columnar cortex. 356

Materials and Methods 357

The spiking center-surround model 358

All parameters used for the spiking simulations are summarised in Table 1. 359

Neuron model Excitatory (E; exc.) and inhibitory (I; inh.) neurons are modeled as leaky 360

integrate-and-fire neurons [84], characterized by a resting potential VL =−70mV, a firing 361

threshold Vth =−50mV and a reset potential Vreset =−55mV. The subthreshold membrane 362

potential dynamics VE,I(t) evolve under the differential equation 363

Cm
dV (t)

dt
=−gL [V (t)−VL]− Isyn(t), (1)

where the membrane capacitance Cm = 0.5nF for excitatory neurons and Cm = 0.2nF for 364

inhibitory neurons; the leak conductance gL = 25nS for excitatory neurons and gL = 20nS for 365

inhibitory neurons. After firing, the membrane potential Cm is reset to Vreset and held there for a 366

refractory period of τref seconds. Refractory periods are τref = 2ms for excitatory neurons 367

and τref = 1ms for inhibitory neurons. Isyn(t) denotes the total synaptic input current. 368

Synaptic interactions Excitatory postsynaptic currents (EPSCs; IE ); inhibitory postsynaptic 369

currents (IPSCs; II); excitatory input currents arising from external network input (IExt); and 370

noisy background synaptic inputs (IBack) are modelled as 371

IE(t) = gE
[
V (t)−V E

rev
]
∑
s

ns ·SE,s(t), (2)

II(t) = gI
[
V (t)−V I

rev
]
∑
s

ns ·SI,s(t), (3)

IExt(t) = gExt
[
V (t)−V E

rev
]

SExt(t) and (4)

IBack(t) = gBack
[
V (t)−V E

rev
]

SBack(t) (5)

respectively, where the sums are over the set of input synaptic gating variables S∗; ns is the 372

number of synapses formed in a particular connection; and the reversal potentials are given 373
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by V E
rev = 0mV and V I

rev =−70mV. The synaptic gating variables S∗(t) evolve in response to an 374

input spike train of spike time occurrences tp, under the dynamics 375

dS∗(t)
dt

=−S∗(t)
τ∗

+∑
p

δ (t− tp). (6)

Here τ∗ are time constants of synaptic dynamics, and are given by 376

{τE ,τI ,τExt,τBack}= {5ms,20ms,2ms,2ms} for excitatory, inhibitory, external and 377

background synapses, respectively. Note that axonal conduction times are not considered, such 378

that network interactions are considered to be instantaneous. Synaptic peak conductances g∗ are 379

class- and pathway-specific, and are defined in more detail below. 380

Network architecture The centre-surround model network consists of several 381

populations i ∈ [1 . . .N], each representing a hypercolumn of cat primary visual cortex (area 17; 382

see Fig. 1). For the sake of simplicity we choose only seven populations in this work, i.e. N = 7. 383

As such, each population i contains several columns, with each column k corresponding to a 384

preferred orientation θk, where θk ∈ [0 . . .180°] and k ∈ [1 . . .NCol], such 385

that θk = (k−1)180/NCol. We take NCol = 60 in this paper. In addition, excitatory neurons 386

within each column are partitioned into a set of M subnetworks indexed with j ∈ [1 . . .M]. For 387

simplicity, a single excitatory neuron is defined per subnetwork, such that no additional index is 388

needed to distinguish neurons within the same subnetwork. Only a single inhibitory neuron is 389

present in each column θk. 390

Within a single population i, synaptic connections are modulated by similarity of preferred 391

orientation ∆θ , which has a one-to-one mapping with physical cortical space under the 392

transformation 180°≈ 1mm [47]. To avoid edge effects in our model we adopt a circular 393

topology of preferred orientations θ , with a periodicity of 180°. ∆θ is therefore defined as the 394

minimum distance around a ring according to the relative orientation preference of two neurons; 395

that is, ∆θ = min(|θ1−θ2|,180−|θ1−θ2|). 396

Both local (within-population) and long-range (between-population) excitatory connections 397

are modulated by similarity in orientation preference between source and target neurons (∆θ ), as 398

well as by whether or not the source and target neurons share subnetwork membership j. For 399

orientation-specific connectivity, we use a Gaussian function over ∆θ , given by 400

G (∆θ ,σθ ) =
180√

2π ·NCol ·σθ

exp
(
−∆θ 2

2σ2
θ

)
. (7)

Excitatory and inhibitory synapses are distributed over connection pathways under a set of 401

functions n∗(i1, i2, j1, j2,∆θ), which define the number of synapses made between any two 402

neurons. These functions for recurrent excitatory connectivity are defined as 403

nE→E(i1 = i2, j2 = j2,∆θ) = PIN ·P+ · fE ·NSyn,E ·G
(

∆θ ,σLocal
E

)
(8)

nE→E(i1 6=i2, j2 = j2,∆θ) = (1−PIN)PM · fE ·NSyn,E ·G
(

∆θ ,σ
Long
E

)/
(N−1) (9)

nE→E(i1 = i2, j2 6= j2,∆θ) = PIN (1−P+) fE ·NSyn,E ·G
(

∆θ ,σLocal
E

)/
(M−1) (10)

nE→E(i1 6=i2, j2 6= j2,∆θ) = (1−PIN)(1−PM) fE ·NSyn,E ·G
(

∆θ ,σ
Long
E

)/
(N−1)(M−1)

(11)

These functions define rules for excitatory connections that are local and within the same SSN 404

(Eq. 8); long-range and within the same SSN (Eq. 9); local across different SSNs (Eq. 10); and 405

long-range across different SSNs (Eq. 11) respectively. Connection fields are modulated by 406

15/28

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 3, 2016. ; https://doi.org/10.1101/079962doi: bioRxiv preprint 

https://doi.org/10.1101/079962
http://creativecommons.org/licenses/by-nc-nd/4.0/


parameters σ∗; “Local” denotes connections within the same population and “Long” denotes 407

connections between populations. 408

Note that a fraction PIN ∈ [0 . . .1] of excitatory synapses are formed locally, and the 409

remainder are distributed across the N−1 other populations. Similarly, fractions P+ ∈ [0 . . .1] 410

and PM ∈ [0 . . .1] of excitatory synapses are formed within the same SSN, while the remainder 411

are distributed across the M−1 other SSNs; P+ controls local subnetwork-specificity, while PM 412

controls long-range subnetwork specificity. 413

Similarly, connectivity functions involving inhibitory neurons are defined as 414

nE→I(i1 = i2,∆θ) = PI · fI ·NSyn,E ·G
(

∆θ ,σLocal
E

)
(12)

nE→I(i1 6= i2,∆θ) = (1−PI) · fI ·NSyn,E ·G
(

∆θ ,σ
Long
E

)
/(N−1) (13)

nI→E(∆θ) = fE ·NSyn,I ·G (∆θ ,σI)/M (14)
nI→I(∆θ) = fI ·NSyn,I ·G (∆θ ,σI) (15)

These functions define E→ I connections made within (Eq. 12) and between (Eq. 13) 415

populations; I→ E connections (Eq. 14); and recurrent inhibitory connections (Eq. 15). Note 416

that PI ∈ [0 . . .1] excitatory synapses are made with local inhibitory targets, with the remainder 417

made with long-range inhibitory targets. In addition, connections involving inhibitory neurons 418

are θ -specific but not subnetwork-specific, and inhibitory projections are made only locally (i.e. 419

within the same population). 420

We therefore define ISyn,E(i, j,θk, t) as the total synaptic current input to the excitatory 421

neuron in population i, subnetwork j, with preferred orientation θk, at time t. Similarly, we 422

define ISyn,I(i,θk, t) as the total synaptic current input to the inhibitory neuron in population i, in 423

the column with preferred orientation θk. Input currents ISyn,∗ are of the form 424

ISyn,∗ = ILocal
∗ + ILong

∗ + IExt→∗+ IBack→∗, (16)

where “Ext” denotes external inputs provides as stimuli to the network; and “Back” denotes 425

background inputs representing spontaneous activity. Each term in Eq. 16 evolves according to 426

the synaptic dynamics in Eq. 5, weighting input from the rest of the network according to the 427

connectivity functions Eqs 8–15. 428

Background noise and stimulation protocol All neurons receive an excitatory background 429

noise input, modeled as independent Poisson spike trains at a rate of vBack→E = 180Hz for 430

excitatory neurons and vBack→I = 50Hz for inhibitory neurons. 431

Our model of cat primary visual cortex (area 17) is designed to explore the computational 432

effects of long-range synaptic input from the visual surround on local representations of 433

orientation preference in the superficial layers of cortex. We therefore assume that orientation 434

preference itself is computed within layer 4, and that inputs to the neurons in the superficial 435

layers are already tuned for orientation. 436

We simulated external visual stimuli as independent Poison spike trains. For oriented grating 437

stimuli, the rate vGrat(θk, t) of the input spike trains received by both excitatory and inhibitory 438

neurons depended on the preferred orientation θk of the neuron and the instantaneous stimulus 439

orientation θGrat(t), under 440

vGrat(θk, t) = αGrat ·h(t)exp

[
−∆θ(θk,θGrat(t))

2

σ2
Grat

]
, (17)
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Table 1. Parameters used in simulations of the spiking model. Exc., E: excitatory / excitation;
Inh., I: inhibitory / inhibition; Prop.: proportion of; Syn.: synapses; SSN: Specific subnetwork.

Parameter Description Value
VL Neuron resting potential −70 mV
Vth Neuron firing threshold voltage −50 mV
Vreset Neuron reset voltage −55 mV
Cm,E ; Cm,I Exc. and Inh. neuron membrane capacitance 0.5 nF; 0.2 nF
gL,E ; gL,I Exc. and Inh. neuron leak conductance 25 nS; 20 nS
τref,E ; τref,I Exc. and Inh. neuron refractory periods 2 ms; 1 ms
gE→E ; gE→I ; gI E→ E, E→ I and Inh. syn. conductances 0.05 nS; 0.2 nS; 0.12 nS
gExt Synaptic conductance for external inputs 11.43 nS
gBack Synaptic conductance for spontaneous inputs 11.43 nS
V E

rev; V I
rev Exc. and Inh. syn. reversal potentials 0 mV; −70 mV

τE ; τI ; τExt; τBack Time constants governing syn. dynamics 5 ms; 20 ms; 2 ms; 2 ms
N Number of populations (hypercolumns) 7
NCol Number of columns in each population 60
M Number of subnetworks (SSNs) 4
fE Prop. syn. made by all neurons onto Exc.

targets
80%

fI Prop. syn. made by all neurons onto Inh.
targets

20%

PIN Prop. E→E syn. made locally 50%
P+ Prop. local E→E syn. reserved to be made

within the same SSN
95%

PM Prop. long-range E→E syn. reserved to be
made within the same SSN

95%

PI Prop. E→I syn. made locally, versus long-
range E→I projections

50%

σLocal
E ; σ

Long
E ; σI Functional tuning of orientation-specific con-

nections
20°; 20°; 20°

NSyn,E ; NSyn,I Total syn. made by each exc. or inh. neuron 3000; 4500
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where σGrat = 27° is the tuning sharpness of orientation-tuned inputs, and ∆θ describes 441

orientation differences around the ring topology as described above. The amplitude of stimulus 442

input αGrat = 270Hz and 29 Hz for excitatory neurons and inhibitory neurons, respectively. 443

During center-only visual stimulation, h(t) = 1 for the center population and 0 for surround 444

populations. During center-surround stimulation, h(t) = 1 for both center and surround 445

populations. 446

The simulated natural stimulus was generated as a complex pattern of varying oriented input 447

over the visual field, which shifted over time. Neurons within the same column received similar 448

input vNat(θk, t), by virtue of their shared orientation preference, depending on the difference 449

between the orientation of the stimulus θNat,k and their preferred orientation θk, under 450

vNat(θk, t) = h(t)

{
vconst +αNat exp

[
−

∆θ(θk,θNat,k(t))
2

σ2
Nat

]}
, (18)

where σNat = 20°. In columnar visual cortex, neighbouring neurons are likely to receive less 451

correlated input than this, due to relative shifts in receptive field location. However since the 452

goal of our model is to investigate local competition and reduction of correlations, we designed 453

our stimulus to contain local correlations. During center-only visual stimulation (0 s to 454

50 s), h(t) = 1 and 0 for the center and surround hypercolumns, respectively. During 455

center-surround stimulation h(t) = 1 for both hypercolumns. αNat = 40Hz and 0 Hz for 456

excitatory neurons and inhibitory neurons, respectively, while vconst = 148Hz and 29 Hz for 457

excitatory neurons and inhibitory neurons, respectively. 458

The stimuli provided to each column θNat,k(t) for both center and surround populations were 459

generated by spatially and temporally filtering independent white noise signals for each column. 460

An ergodic noise process ϑk(t) was generated for each column, and evolved under the dynamics 461

ϑk(t +∆t) = ϑk(t)+λnoiseηk(t) and (19)

τnoise
dηk(t)

dt
=−ηk(t)+σnoiseξ (t)

√
τnoise, (20)

where τnoise = 2ms, σnoise = 0.18° and ξ (t) is a gaussian white noise process with zero mean 462

and unit variance. The time step of the stimulation ∆t = 0.1ms; and λnoise = 20. These ergodic 463

noise processes were then spatially filtered under the relationships 464

θNat,k(t) = arctan


NCol
∑

l=1
sin [ϑl(t)]G [θl(t),θk(t)]

NCol
∑

l=1
cos [ϑl(t)]G [θl(t),θk(t)]

 (21)

where G(θl ,θk) = A0 · exp
[
−∆θ(θl ,θk)

2/2σ2
θ

]
, A0 = 0.6 and σθ = 2°. 465

Parameters for the spiking model Axons of pyramidal neurons in cat visual cortex make a 466

roughly even split of boutons between local and long-range arbors [62], providing estimates for 467

PIN = 0.5 and PI = 0.5. Excitatory neurons make NSyn,E = 3000 total synapses per excitatory 468

neuron; inhibitory neurons make NSyn,I = 4500 total synapses per inhibitory neuron [62, 85]. All 469

neurons in the model connect to excitatory and inhibitory targets roughly in proportion to the 470

prevalence of excitatory and inhibitory neurons in cortex [61]: fE = 80% of synapses in the 471

model are made with excitatory targets and fI = 20% of synapses are made with inhibitory 472

targets. 473

Specificity of connections between excitatory neurons has been observed in several cortical 474

areas in the rodent [32, 86, 87], and is correlated with similarity in visual feature preference in 475
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rodent visual cortex [34, 41, 49]. The presence of functionally specific connectivity of the type 476

proposed in this paper has not been investigated in columnar visual cortex (e.g. in cat or 477

monkey), leading us to explore a range of specificity levels P+ and PM . We used nominal values 478

of P+ = PM = 95%. 479

Since inhibitory responses are similarly tuned as excitatory responses in cat primary visual 480

cortex [88], all σθ are 20°. Since the mapping from orientation to physical distance in the 481

central visual field of cat area 17 is approximately 1 mm per 180° hypercolumn, this 482

corresponds to a local anatomical projection field of approximately 450 µm width [47]. 483

Nonlinear dynamical analysis of the system stability and steady-state 484

response 485

Parameters for the mean-field non-spiking model are give in Table 2. 486

Mean-field dynamics We used mean-field analysis methods to investigate the dynamics of 487

the center-surround model. First, we introduce the activation function for excitatory and 488

inhibitory nodes, defined as [89] 489

r
[
Isyn(t)

]
=

φ
[
ISyn(t)

]
1+ τref ·φ

[
ISyn(t)

] and (22)

φ [ISyn(t)] =
γ · ISyn(t)− IT

1− exp
{
−c
[
γ · ISyn(t)− IT

]} , (23)

where r
[
ISyn(t)

]
is the firing rate of a neuron in response to the instantaneous synaptic input 490

current ISyn(t); c and γ are the curvature and gain factors of the activation function, respectively. 491

The activation function becomes a linear threshold function with IT/γ as the threshold current 492

when c is large. τref is the refractory period of the neuron, which also determines its maximum 493

firing rate. 494

We redefine the synaptic gating variables S∗(t) for excitatory and inhibitory synapses in the 495

mean-field model as [89] 496

dS∗(t)
dt

=−S∗(t)
τ∗

+ r
[
I*,Syn(t)+ I*,Ext + I*,Back

]
, (24)

in which the total synaptic input currents I*,Syn(t) are given by 497

I∗(t) = J∗∑
s

ns ·S∗,s(t), where (25)

J∗ = g∗ [〈V (t)〉−V ∗rev] , (26)

and we assume the average membrane potential for each neuron 〈V (t)〉 ≈ −52.5mV. The 498

parameters JE and JI therefore represent constant synaptic weights (for excitation and inhibition, 499

respectively), rather than synaptic conductances as in the spiking model. 500

Reduced model For simplicity, we present only the analysis of a reduced model, such that we 501

consider only two populations (N = 2), each containing only two SSNs (M = 2) and without 502

considering orientation such that (NCol = 1; see Fig. 1c). The connectivity functions n∗ from the 503

spiking model apply as before, but neglecting the indices for preferred orientation. S∗(t) 504

therefore has the form S∗(t) = [x1,1, x1,2, x2,1, x2,2, y1, y2]
T (t). Here xi, j(t) is the 505
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instantaneous value of the gating variable for the excitatory neuron in population i, 506

subnetwork j, and yi(t) is the value for the inhibitory neuron in population i. 507

To investigate the dynamics of the mean-field model we calculate the steady-state 508

responses S̄ of the system, that is S̄ = S∗(t) : dS∗(t)/dt = 0. We solve the simplified system in 509

Eq. 24, under centre-only (“CO”) or centre-surround (“CS”) stimulation, defined as 510

IExt,CO = [ιE ,0, ιE ,0, ιI ,0]
T and (27)

IExt,CS = [ιE , ιE , ιE , ιE , ιI , ιI ]
T , (28)

where ιE and ιI are stimulation currents delivered to exc. and inh. neurons respectively, to 511

obtain S̄CO and S̄CS. We then numerically obtain the system Jacobian JS̄∗ at these fixed points, 512

and examine the eigenvalues of JS̄∗ to determine the stability of the system around these fixed 513

points. 514

Competition index and computational regimes We also define a competition index (“CI”) 515

to quantify the strength of competition exhibited between excitatory neurons in different 516

subnetworks. The competition index measures how strongly the activity of an excitatory neuron 517

in one SSN in the “centre” population is suppressed, when input to the other subnetwork is 518

increased, either for centre-only or centre-surround stimulation. This index is defined as 519

CI ≡
dS̄1,1

d∆IC
(29)

where ∆IC defines a perturbation in the input to a selected set of neurons in the network. In the 520

case of centre-only stimulation, ∆IC = [0,1,0,0,0,0]T ; CI therefore quantifies the suppression 521

evoked in the neuron in population 1, SSN 1 by an increase in input to SSN 2 in population 1. 522

That is, population 1 is defined as the “central” population, and we measure competition 523

between SSNs within that population. 524

In the case of centre-surround stimulation, ∆IC = [0,1,0,1,0,0]T ; CI therefore quantifies the 525

suppression provoked by input to the SSN 2 in both populations 1 and 2. The competition 526

index CI is only defined in the case of stable S̄, i.e. when the eigenvalues of JS̄ have non-positive 527

real parts. 528

We use the eigenvalues of JS̄∗ in conjunction with the CI to identify parameter regimes of 529

stability and computation (see Fig. 4). If JS̄∗ has one or more eigenvalues with positive real part, 530

the system operates in a hard winner-take-all regime (“hWTA”), in which only a single SSN is 531

permitted to be simultaneously active. This is because competition between SSNs is so strong, 532

that activity of a single SSN is capable of entirely suppressing the activity of the other SSNs, via 533

shared inhibitory feedback. 534

Alternatively, if all eigenvalues of JS̄∗ are negative, then the system operates in either a “soft” 535

winner-take-all regime (“sWTA”; if CI < 0), such that several simultaneously active SSNs are 536

permitted at steady state, or in a non-competitive regime (“NC”; if CI > 0). In the sWTA regime, 537

increasing the external stimulus to one SSN will lead to the decreasing of neural activities of the 538

remaining SSNs, implying competition exists between neurons within a column. Stronger 539

competition is indicated by more negative CI. In the NC regime, however, increasing the input 540

to one SSN will increase the activity of the remaining SSNs. The absence of competition is 541

reflected in a positive CI. 542

When strong excitation is unbalanced by inhibition, the network is in an “unbalanced” 543

regime (“UN”). This regime is defined as when firing rates of all neurons are close to saturation 544

in the steady state, and all eigenvalues are negative. 545
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Table 2. Parameters used in analysis of the mean-field model that differ from those given in
Table 1.

Parameter Description Nominal value
cE ; cI Exc. and Inh. neuron activation function cur-

vature parameters
160×10−3;
87×10−3

IT,E/γE ; IT,I/γI Exc. and Inh. threshold currents 0.4 nA; 0.2 nA
〈V (t)〉 Assumed average membrane potential −52.5 mV
JE ; JI Exc. and Inh. total synaptic weights 2.6 pA; 2.1 pA
N Number of populations (hypercolumns) 2
NCol Number of columns in each population 1
M Number of subnetworks (SSNs) 2
ιE ; ιI Input currents representing external stimuli to

Exc. and Inh. neurons
0.90 nA; 0.087 nA

Parameters for the firing-rate model We estimated parameters values from experimental 546

measurements of the properties of cortical neurons. The slope of the I–F curve of an adapted 547

cortical pyramidal neuron, corresponding to γE in Eqn. 23 is approximately 66 Hz/nA [90]. The 548

corresponding value for basket cells (γI) is approximately 351 Hz/nA [91]. The I–F curvature 549

parameters cE and cI were chosen to approximate the spiking model. The strength of a single 550

excitatory synapse is estimated by the charge injected into a post-synaptic neuron by a single 551

spike, given by ISyn = JE ·SE(t). At steady-state, SE(t) = τE , therefore JE = ISyn/τE . We 552

estimated nominal values of JE = 2.6pA and JI = 2.1pA [92]. We estimated firing thresholds 553

for our neurons of IT,E/γE = 0.4nA and IT,I/γI = 0.2nA [90, 91]. The average input currents ιE 554

and ιI injected during visual input were estimated from the average currents received by single 555

pyramidal neurons in visual cortex during visual stimulation [90]. We used values 556

of ιE = 0.90nA, and a proportional value of ιI = 0.087nA [62, 90]. 557

Population and lifetime sparseness measures 558

The measure of the population sparseness and the life-time sparseness we used mainly is the 559

kurtosis, which measures the 4th moment relative to the variance squared [19] and is given by 560

sk =
1
n ∑

i

(ri− r̄)4

σ4 −3, (30)

where ri is the firing rate of each neuron during the presentation of the ith natural stimulus, and n 561

is the number of natural stimuli frames for lifetime spareness. For population sparseness, ri is 562

the firing rate of neuron i during a frame of natural stimuli, and n is the number of 563

simultaneously recorded neurons in our model. r̄ is the mean firing rate and σ is the standard 564

deviation of the firing rate. For a sparse (i.e. heavy-tailed) distribution, sk > 0. 565

In addition we used the Vinje-Gallant measure for sparseness, a nonparametric statistic 566

employed previously in [4, 9], given by 567

sV&J =

1−

(
∑

i

ri

n

)2/(
∑

i

r2
i
n

)/(1−1/n), (31)

where sV&J ∈ [0,1]. A larger sV&J indicates a more sparse response. 568
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Suppression index 569

The strength of surround suppression was quantified using a suppression index (SI), which is 570

defined as 571

SI (θ) = 1− RCS (θ)

RCO
, (32)

where θ is the center-surround orientation difference, RCO is the response to the center-only 572

stimulus, RCS(θ) is the response to the center-surround stimulus. Therefore, SI = 1 indicates 573

that the response in the center population is completely suppressed by the surround stimulus, 574

whereas SI = 0 indicates that there is complete lack of suppression from the surround. 575

Statistical methods 576

All tests are non-parametric two-sided tests of medians (Wilcoxon Rank Sum), unless stated 577

otherwise. 578
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