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Abstract

This report describes an R package, called the Individualized Coherent Absolute Risk

Estimation (iCARE) tool, which allows researchers to quickly build models for absolute

risk, and apply them to estimate an individual’s risk of developing disease during a specified

time interval, based on a set of user defined input parameters. An attractive feature of the

software is that it gives users flexibility to update models rapidly based on new knowledge of

risk factors and tailor models to different populations. The tool requires three input argu-

ments be specified: (1) a model for relative risk (2) an age-specific disease incidence rate and

(3) the distribution of risk factors for the population of interest. The tool handles missing

risk factor information for individuals for whom risks are to be predicted using a coherent

approach where all estimates are derived from a single model after appropriate model av-

eraging. The software allows single nucleotide polymorphisms (SNPs) to be incorporated

into the model using published odds ratios and allele frequencies. We discuss the statistical

framework, handling of missing data and genetic factors, and provide real data examples

that demonstrate the utility of iCARE for building and applying absolute risk models, using

breast cancer as an example.
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1 Introduction

Absolute risk models estimate disease risk in an upcoming time interval based on known

risk factors for healthy individuals in a population, accounting for the presence of competing

outcomes, such as death from other causes [5]. Absolute risk models for cancers and other

diseases have important clinical and public health applications. Assessment of absolute risk

of disease is fundamental for developing health intervention strategies to optimize an individ-

ual’s risks and benefits. For example, absolute risk models can be used to identify individuals

who have a high risk of disease in order to target screening and disease prevention strategies

[8, 9, 14, 4]. Decisions regarding the initiation of screening or preventative intervention are

often made on the basis of age and family history (fh), as proxies for risk. However, there

is increasing consensus in the medical community that these decisions should instead be

guided directly by individualized estimates of risk, which can be obtained from absolute risk

models that include a wider array of environmental and genetic risk factors. Assessment of

the distribution of risks for individuals in the population allows public health researchers

to weigh the risks and benefits of a given intervention, such as a screening regimen, for the

entire population [6, 3, 12]. Absolute risk models can also be applied to assess the power of

clinical trials by projecting the expected distribution of disease risk from the distribution of

risk factors in a population [4]. At an individual level, absolute risk estimates can be used

to counsel individuals on the basis of their personal risk.

As large-scale epidemiologic studies continue to discover new risk factors for many dis-

eases, there is a growing demand to develop and apply models for absolute risk prediction

that can facilitate translation of our understanding of etiology into tools for managing health

at the clinical and public health levels. There currently does not exist general software for

researchers to build, update, and apply absolute risk models in R, and the Individualized

Coherent Absolute Risk Estimation (iCARE) package provides this much needed capability.

The iCARE package fits absolute risk models by synthesizing multiple data sources con-

taining information on relative risks, the distribution of risk factors in the population, and

age-specific incidence rates for the disease of interest and rates of competing risks. This

compartmentalization allows researchers to incorporate the best available information on
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key model parameters, to easily update models as new information becomes available, and

to tailor or extend models to particular populations. Releasing iCARE will reduce that

start up time for researchers, help standardize the methodology, and make it easy to share

absolute risk models and make associated analyses reproducible. The package also imple-

ments methods for handling missing data, which is likely to be an issue in practice, and gives

special attention to the efficient incorporation of genetic factors based solely on published

information.

2 iCARE Methodology: Synthesizing Data Sources

Here, we present the statistical framework underlying the iCARE package. We describe the

data inputs that are required to use the tool, examples of appropriate sources for the data,

and details regarding how the key inputs are used to estimate model parameters. Specifically,

we explain the methodology used to estimate the baseline hazard function component of the

model and the approach used to handle missing data in the risk factor profiles used in

the estimation of individuals’ risks. We describe the tool’s special treatment of SNPs, which

allows genetic information to be incorporated into the model based on published information.

2.1 Model

The iCARE package fits a model for absolute risk, which assumes the age-specific incidence

rates of the disease given a set of risk factors, Z, follows the Cox proportional hazard (PH)

model [2] of the form

pr(T ∈ [t, t+ ∆t)|T ≥ t, Z) = λ0(t|Z) = λ0(t) exp(βTZ),

where T represents the event time of diagnosis for the disease of interest. The model assumes

that risk factors Z act in a multiplicative fashion on the baseline hazard function, λ0(t).

Given this model, the absolute risk of the disease for an individual who is currently at age

a over the time internal a+ τ is defined as [5],
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∫ a+τ

a

λ0(t) exp(βTZ)exp

(
−
∫ t

a

[
λ0(u) exp(βTZ) +m(u)

]
du

)
dt. (1)

Formula (1) accounts for competing risks due to mortality from other causes through the

age-specific mortality rate function m(t). In the current implementation, for simplicity it

is assumed that risk of mortality does not depend on the risk factor Z, but the method in

principle can be extended to relax this assumption if covariate-specific risks of competing

mortality can be estimated from external sources or models.

2.2 Data and Estimation

In order to fit the above model and apply it for absolute risk estimation, users must provide

three main data sources:

• a model for the relative risk (or hazard ratio) parameters: β

• a marginal age-specific disease incidence rate: λm(t)

• a dataset containing risk factors for a set of representative individuals that could be

used to estimate the risk factor distribution for the underlying population: Zj for

j = 1, ..., Nref

In order to account for competing risks, an optional input with age-specific incidence rates

of all-cause mortality, ideally excluding the disease of interest, m(t) should also be provided.

The iCARE tool computes absolute risk estimates as the sum of the integrand of (1)

over integer ages in the time interval of interest. The user-provided hazard ratio parameter

estimates, β̂, are plugged into the equation directly to carry out the computation. There are

a number of ways that these input parameters may be obtained. For example, the estimates

β̂ may be derived from the analysis of a prospective cohort study using a multivariate PH

model. Alternatively, they may be obtained from the analysis of a case-control study using

a multivariate logistic regression model adjusted for fine categories of age, the parameters of

which have been shown to approximate the PH model [15]. Ideally, datasets used to estimate

model parameters should include information on all risk factors of interest and be large
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enough to provide precise estimates. When this is not available, estimates of relative risk

for different risk factors could be obtained from multiple data sources (e.g. large published

studies or meta-analyses). It is important that the provided estimates account for possible

confounding (i.e. are adjusted for other risk factors in the model), and interactions.

The second data source needed for the model is an estimate of the overall (or marginal)

age-specific disease incidence rate, defined as

pr(T ∈ [t, t+ ∆t)|T ≥ t) = λm(t),

for the population of interest. This information, for example, could be available from

population-based registries, such as the United States’ Surveillance Epidemiology and End

Results (SEER) cancer registry maintained by the National Cancer Institute [7]. Similarly,

users that wish to account for competing risks must provide the optional marginal age-specific

incidence rates of all-cause mortality excluding the disease of interest

pr(M ∈ [t, t+ ∆t)|M ≥ t) = m(t).

In general it is best to incorporate rates defined for fine age categories, such as 1- or 5-year

age strata, however iCARE can accommodate information on coarser age strata as well. For

estimation, the age-specific disease incidence rates λm(t) are used in combination with the

third data input, a dataset of risk factors that is representative of the population of interest,

to estimate the baseline hazard function, λ0(t).

2.3 Estimating the Baseline Hazard Function

Given the model of relative risks, β̂, and marginal age-specific disease incidence rates, λ̂m(t),

we use the following relationship to derive the baseline hazard rate

λm(t) = λ0(t)E
[
exp(βTZ|T ≥ t)

]
= λ0(t)

∫
exp(βT z)pr(z|T ≥ t)dz, (2)

where, under the proportional hazard model,

pr(z|T ≥ t) =
exp(−

∫ t
0
λ0(u)exp(βT z)du)∫

exp
{
−
∫ t
0
λ0(u)exp(βT z)du

}
dF (z)
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with F (Z) denoting the distribution of the risk factors in the underlying population. If the

disease can be assumed to be rare, then (2) can be approximated in closed form as

λm(t) ≈
∫
λ0(t) exp(βT z)dF (z).

Computationally, the iCARE implementation starts with an initial value for λ0(t) based

on the rare disease approximation and iterates based on formula (2) to obtain more exact

estimates. This approach is closely related to an alternative formula for estimation of λ0(t)

described by Gail et al.[5]. That approach involved an alternative maneuvering of the formula

to allow estimation based on the risk factor distribution from a random sample of cases. In

contrast, our estimation method relies on an available distribution of the risk factors for

a general population. Thus, a model based on our proposed method (as implemented by

iCARE) can be easily updated to reflect the risk factor distribution for different populations

without requiring access to a sample of cases from each population of interest.

2.4 Specification of risk factor distribution

As detailed in Section 2.3, the risk factor distribution F (Z) plays a key role in calibrating

the model to the marginal disease rates in the underlying population. Thus, to carry out the

calibration, the user must provide individual level data on the model risk factors for a sample

that is representative of the underlying population. Ideally, this representative dataset would

simply be the empirical distribution of Z, from a national survey, an epidemiologic study

such as a population-based cohort, or controls from a population-based case-control study

sampled from the population of interest. When empirical data are available, there are no

additional modeling assumptions needed. However, if complete empirical data in all risk

factors is not available, users can instead provide a representative dataset that may have

been simulated under modeling assumptions appropriate to the population of interest. For

example, in the application illustrated later we develop a model for absolute risk of breast

cancer and incorporate a representative dataset of risk factors Z which were simulated based

on data from a combination of national surveys.
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2.5 Handling Missing Data in Covariate Profile

In addition to providing the three data inputs for estimating model parameters, users must

provide information on risk factors for the individuals to whom the model should be applied.

When there is complete information for all risk factors of interest, risk estimation is as

straightforward as plugging the individuals Z into formula (1). However, in practice there

may be missing data on some of the risk factors for individuals for whom we want to produce

risk estimates.

One way to handle missing data on risk factors for a given individual is to use multiple

imputation procedures [16]. The user would obtain estimates of absolute risk using iCARE

for each of the completed-by-imputation risk factor profiles for the individual, and then

average the absolute risk estimates to obtain an overall estimate of the absolute risk for that

individual.

The iCARE tool also provides an internal option for handling missing data in the co-

variate profile for prediction: model-free imputation based on the referent representative

dataset of risk factors provided by the user. The methodology underlying this imputation is

as follows. For any subject indexed by i with a covariate profile Zi, we define the risk score

Ri = βTZi, the linear predictor associated with the user specified log relative risk model. If

a subject has missing values in some of the covariates, we partition Ri = Ro
iP + Ru

iP , where

P indexes the observed pattern of missing data (i.e. which covariates are observed and

which are missing) and where Ro
iP = βoP

TZo
iP and Ru

iP = βuP
TZu

iP denote the corresponding

“observable” and “unobservable” components of the risk score. In general, this partitioning

depends on which columns of the design matrix of the original model can be specified by the

observed set of covariates for a given individual’s risk factor profile. Given this partitioning,

the absolute risk, AR, of the individual i is defined by

AR(RiP ) =
∑
ruiP

AR(Ro
iP , r

u
iP )pr(ruiP |Ro

iP ) = E
[
AR(Ro

iP , r
u
iP )|Ro

iP

]
. (3)

The absolute risk for the i-th individual is obtained by averaging over possible values for the

unobserved component of the risk score given the value of the observed component of the

risk score. As all the risk scores are scalar quantities, one can estimate the conditional dis-
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tributions pr(rmiP |Ro
iP ) in a non-parametric fashion using the user-specified referent dataset.

In particular, to carry out (3) for a given covariate profile with missing data, the method

finds subjects in the reference dataset that are similar on the basis of the observable compo-

nent of the risk score, Ro
iP , and take as the risk estimate the average of the full model risk,

AR(Ro
P , r

u
P ), for the referent subjects identified to be similar. Specifically, the observable

risk scores Ro
jP are obtained for j = 1, ..N in the referent dataset, categorized into single

percentile strata, and the individual’s Ro
iP is matched to one of the strata. The reported risk

for the individual is then computed by averaging over the values of the full AR(Ro
P , r

u
P ) for

all referent subjects in this matching stratum. This method can be viewed as a type of “hot

deck” imputation based on the risk score, which is popular in survey literature.

2.6 Special treatment of SNP markers

As large genome-wide association studies continue to discover low penetrant, common SNPs

associated with risk of complex chronic diseases, it is important to investigate the utility

of the SNPs, in combination with other risk factors, for public health strategies of disease

prevention. Evaluation of absolute risk, as opposed to relative risk, which is typically used

for summarizing associations, is fundamental for these public health applications. Due to

the importance of SNP markers in absolute risk models and natural assumptions specific to

genetic data, the iCARE package provides a number of options for incorporating SNPs into

the model.

Users can include individual SNPs in the model, or include a polygenic risk score (PRS), in

the same way as any other risk factor as long as all input components can be identified. This

allows researchers to specify interactions between SNPs and other risk factors in the model

or to include PRSs with more complex weighting structures if desired. However, to include

SNPs this way, a referent dataset must be provided that has the individual SNPs (or the

PRSs) for all subjects. Again, researchers may create this referent distribution by creating

a simulated dataset of individuals who are representative of the underlying population if

necessary.

Alternatively, the iCARE package also provides a special approach for handling indepen-

7

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 12, 2016. ; https://doi.org/10.1101/079954doi: bioRxiv preprint 

https://doi.org/10.1101/079954


dent SNPs, which requires that the user only provide information on the odds ratio θk and

population allele frequency fk for each SNP to be included. iCARE internally creates a PRS

from all provided SNPs weighted by the odds ratios,

PRSi =
∑
k

log(θk)Gk,

where Gk denotes the SNP genotype status of individuals, coded as the number of non-

referent alleles they carry (with respect to the referent allele for which the odds ratios are

reported).

In general, iCARE assumes this PRS to be distributed independently of all other covari-

ates. However, if a family history variable is included in the model, then the method allows

a simple adjustment for the expected correlation between PRS and family history. The ad-

justment method assumes the latter is coded as a binary indicator of the presence or the

absence of disease among first-degree relatives. In particular, when the model risk factors

include family history, iCARE provides the option to adjust the log odds ratio associated

with family history using the formula

βAFh = βFh − 0.5
∑
k

2 {log(θk)}2 × 2fk(1− fk)

with θk denoting the disease odds ratio of the SNPs, unadjusted for family history. This

adjustment reflects the fact that, with the addition of SNPs into the model, the effect of

family history is attenuated by a magnitude that is proportional to the degree of heritability

explained by the SNPs. This treatment should be applied only when the provided βFh

represents the effect of a binary variable for first-degree family history, unadjusted for the

SNPs.

Users may provide relative risk estimates for family history that are already adjusted for

the SNPs in the model, and if so they should simply not select the option for the family

history adjustment.

One important way in which this approach treats SNPs differently involves the referent

dataset of risk factors. Recall that this dataset might come from a national survey; however,

a national survey is unlikely to have genotyped individuals, particularly for the exact set of

SNPs to be included in the model. Recognizing this, for user convenience the referent dataset
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need only include non-genetic risk factors and iCARE will simulate SNP genotype values

based on the provided allele frequencies for the population. SNPs are multiply imputed

with user-specified n.imps determining the number of imputations for each subject in the

referent dataset. The method assumes that the SNPs are independent and that the genotype

distributions follow Hardy-Weinberg Equilibrium. Specifically, the joint distribution of SNP

genotypes and other risk factors (X) are assumed to follow the decomposition

pr(g1, . . . , gk, X) = pr(g1, . . . , gk|fh)× pr(X).

If family history of the disease is included in the model as a binary risk factor indicating

the presence or absence of any first-degree relative with disease history, assuming that the

disease is rare, we approximate

pr(g1, . . . , gk|fh = 0) ≈ pr(g1, . . . , gk) = pr(g1)× . . .× pr(gk).

The distribution of SNP genotypes among subjects with family history is approximated as

pr(g1, . . . , gk|fh = 1) ≈ pr(g1|fh = 1)× . . .× pr(gk|fh = 1), where

pr(gk|fh = 1) =
θ0.5k pr(gk)∑
k θ

0.5
k pr(gk)

.

The above approximation is derived under the assumption of rare disease and multiplicative

effect of SNPs on the risk of the disease. If family history is not indicated to be in the model,

and is thus not provided for each referent dataset subject, we impute the SNPs based on the

unconditional distribution for independent SNPs in Hardy-Weinberg equilibrium.

It is possible that SNP information may also be missing in the covariate profiles for whom

the model will be applied to estimate risk. In this case, SNPs are treated the same as all

other risk factors and handled according to the methodology given in Section 2.5. Again, this

approach is equivalent to averaging over the possible values of the missing SNPs according

to the population distribution, taking advantage of any known SNPs in the genotype profile.

3 Using the iCARE package

In this section, we demonstrate how to use iCARE to build and apply two absolute risk

models for breast cancer: one with SNPs only, and one with risk factors and SNPs.
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The main function in iCARE is compute.absolute.risk. The input arguments to this

function are named with the prefix “model.” or “apply.” according to whether they are

used primarily for model building or application respectively.

To begin, the R package and the example dataset breast cancer should be loaded:

R> library("iCARE")

R> data("breast cancer", package="iCARE")

Example 1: SNP-only Model

To specify a SNP-only model, we must input the marginal age-specific disease incidence

rates of breast cancer and the SNP information matrix, snp.info, that has three columns

named: snp.name, snp.odds.ratio, and snp.freq. Marginal age-specific incidence rates

of competing risks are optional, and in this example we include them.

R> bc 15 snps <- breast cancer$bc 15 snps

R> bc inc <- breast cancer$bc inc

R> mort inc <- breast cancer$mort inc

Here, bc 15 snps contains published information on 15 SNPs identified to be associated

with breast cancer risk by a recent genome-wide association study [11]. bc inc contains age-

specific incidence rates of breast cancer from SEER, and mort inc has age-specific incidence

rates of all-cause mortality from the WONDER mortality database [13]. In fitting a SNP-

only model, the referent dataset need not be provided as iCARE will impute the referent

SNP distribution. The function call below builds an absolute risk model based on 15 SNPs

for breast cancer and applies the model to estimate risk of breast cancer in the interval from

10
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age 50 to age 80:

R> res snps miss = compute.absolute.risk(model.snp.info = bc 15 snps,

model.disease.incidence.rates = bc inc,

model.competing.incidence.rates = mort inc,

apply.age.start = 50,

apply.age.interval.length = 30

return.refs.risk = T)

Note, for this SNP-only model, we exercised the option of not providing any new profiles for

estimation (i.e. no apply.snp.profile input). In this case, iCARE simulates N=10,000

SNP profiles internally for the referent dataset and reports as the risk estimate the average

of the risks estimated from the profiles: 0.09583. We can access the estimated risks for the

(simulated) referent profiles and obtain summary information by calling

R> summary(res snps miss$refs.risk),

which yields the following output:

Risk_Estimate

Min. :0.07474

1st Qu.:0.09196

Median :0.09573

Mean :0.09583

3rd Qu.:0.09957

Max. :0.12008

From this, we learn that on average women of age 50 have a 9.6% chance of being diagnosed

with breast cancer before age 80, and that the 15-SNP model stratifies breast cancer risk

from a minimum risk of 7.5% to a maximum risk of 12.0% in the interval 50-80.

11
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If we wished to predict breast cancer risk for three specific women whom we had geno-

typed, we might call

R> new snp prof <- breast cancer$new snp prof

R> res snps dat <- compute.absolute.risk(model.snp.info = bc 15 snps,

model.disease.incidence.rates = bc inc,

model.competing.incidence.rates = mort inc,

apply.age.start = 50,

apply.age.interval.length = 30,

apply.snp.profile = new snp prof,

return.refs.risk = T)

Now our output res snps dat$risk contains the risk estimates for the three women whose

genotype profiles we provided. Additionally, res snps dat$refs.risk contains the risk es-

timates for the referent dataset (again N=10,000 simulated internally) because we requested

that those risks also be reported. These results allow us to create a useful plot, like Figure

1, showing the distribution of risks in our referent dataset and to add the risks of the three

women to see where they fall on the population distribution, with the code

R> plot(density(res snps dat$refs.risk), xlab="Absolute Risk of Breast Cancer",

main="Referent SNP-only Risk Distribution: Ages 50-80")

R> abline(v=res snps dat$risk, col="red")

R> legend("topright", legend="New Profiles", col="red", lwd=1)

Note, in this example the first genotype profile was missing two SNP values, demonstrat-

ing iCARE’s ability to produce risk estimates when there is missing data in the profile, with

no inconvenience to the user.

Example 2: Breast Cancer Risk Model with Risk Factors and SNPs

The process of building and applying a breast cancer risk model with risk factors and SNPs

follows much the same approach as in the SNP-only model in Example 1, however we must

12
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Figure 1: Estimated Risk for Three Women on Population Distribution of Risk in 50-80

specify a few additional arguments.

v1 = list(); v1$name = "famhist"; v1$type = "continuous"

v2 = list(); v2$name = "parity"; v2$type = "factor" ; v2$levels = c(0,1,2,3,4)

bc model cov info <- list(v1, v2)

bc model log or <- breast cancer$bc model log or

ref cov dat <- breast cancer$ref cov dat
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Having prepared the data sources, we can now run

R> res covs snps$details = compute.absolute.risk(

model.formula = caco ∼ famhist + as.factor(parity),

model.cov.info = bc model cov info,

model.snp.info = bc 15 snps,

model.log.RR = bc model log or,

model.ref.dataset = ref cov dat,

model.disease.incidence.rates = bc inc,

model.competing.incidence.rates = mort inc,

model.bin.fh.name = "famhist",

apply.age.start = 50,

apply.age.interval.length = 30,

apply.cov.profile = new cov prof,

apply.snp.profile = new snp prof,

return.refs.risk = T)

With the exception of model.bin.fh.name, which is always optional, all arguments listed

in green should either be included or excluded in the function call as a set. This is to say

that if one is included, then all should be included.

This fits an absolute risk model with risk factors family history and parity (i.e. number

of children) additively with the 15 SNPs associated with breast cancer. In a model that

includes risk factors, such as this one, we must supply the model formula, the risk factor

information, the log odds ratios for the risk factors, and a referent dataset of risk factors to

build the model. The model.cov.info input tells the function that family history can be

treated as a continuous variable (though it only has levels 0 and 1) and that parity should

be treated as a factor variables with levels 0,1,2,3, and 4 indicating the number of children

for a given subject. Here, the bc model.log.or input contains the log odds ratios for family

history and parity, from a logistic regression model adjusted for cohort and fine categories
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of age in the Breast and Prostate Cancer Cohort Consortium [1, 10]. The ref cov dat

dataset was created by simulation from the National Health Interview Survey (NHIS) and

the National Health and Nutrition Examination Survey (NHANES), which are representative

of the US population. We indicate model.bin.fh.name = "famhist" to allow the software

to properly attenuate the log odds ratio for family history to account for the addition of the

15 SNPs.

In addition to summarizing and plotting the risk estimates, iCARE includes an option

to view more detailed output, by calling

R> print(res covs snps$details),

which reports the interval start and end ages over which absolute risk was computed, the

entire covariate profile to which the model was applied (SNPs and risk factors if applicable),

and the resulting risk estimate.

Int Start Int End Risk Est rs12405132 rs12048493 rs72755295 rs6796502

P1 50 80 0.09434 NA NA 0 0

P2 50 80 0.08072 0 0 1 0

P3 50 80 0.07232 2 0 0 0

... rs13162653 rs2012709 rs7707921 rs9257408 rs4593472 rs13365225 rs13267382

P1 0 2 1 1 0 0 1

P2 1 1 2 1 1 1 1

P3 1 1 0 0 1 0 0

... rs11627032 chr17:29230520:D rs745570 rs6507583 famhist parity

P1 2 1 0 0 0.00 2.00

P2 1 0 0 0 0.00 4.00

P3 1 1 1 0 0.00 2.00

In this case, both the profiles P1 and P3 had the same levels of the risk factors family

history and parity, however we estimate that P1 has a 9.4% chance of breast cancer in the age

interval 50 to 80, which is higher than P3’s chance of 7.2%, due to the fact that the two have
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very different genotype profiles. This detailed output is also helpful for visually reminding

users of whether they had any missing data in the covariate profiles used for estimation.

Additional Options

iCARE provides several advanced options as well. For example, model.ref.dataset.weights

allows the user to optionally specify a vector of weights for each row in the referent dataset.

Whenever any averaging is performed over the referent dataset, such as in the case of missing

covariates for prediction, a weighted average is applied using the provided sampling weights.

Additionally, iCARE allows the time intervals over which risk is to be computed to differ

for each subject; this flexibility is useful, for example, in estimating 5-year risks for healthy

individuals starting from their current ages.

Using the compute.absolute.risk.split.interval function a user can also specify

that the absolute risk interval be computed in two parts, using two different sets of pa-

rameters. This allows the proportional hazards assumption to be relaxed to some extent,

by allowing the relationship between risk factors and the outcome to vary over time. For

example, it is well documented that the relationships between certain risk factors, such as

body mass index, and breast cancer are different among premenopausal and postmenopausal

women. Using compute.absolute.risk.split.interval, users can specify a different set

of relationships by inputting model.log.odds.ratio and model.log.odds.ratio.2 for use

prior to and after a cutpoint of age 50, the median age at menopause. This more advanced

function is also helpful in the context where the distribution of risk factors varies with age.

In addition to returning risk estimates for the specified profiles, the iCARE functions can

optionally return the absolute risks for the referent dataset as well if return.refs.risk=T.

The relative risk scores, or βTZi, for the covariate profiles can be obtained by requesting

return.lp=T. For individuals where there is missing data in covariate profile Z, the reported

linear predictor is the average of the full linear predictors of all referent subjects in the

matching strata according to the approach described in Section 2.5.
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4 Conclusion

The iCARE package is a new tool for building and applying absolute risk models by synthe-

sizing data sources on key model parameters. The tool standardizes methodology and gives

researchers the ability to easily update and share absolute risk models, and to evaluate the

public health implications of etiologic findings by translating relative risks onto the abso-

lute risk scale. The package incorporates calibration to population-based age-specific disease

rates and handling of missing data by leveraging a referent dataset of risk factors for the

population of interest. Through this handling of missing data and the ability to incorporate

SNP information based on published estimates, the tool gives researchers the ability to easily

handle analytic issues that are likely to arise in practice when building absolute risk models

for health contexts. In this paper we have described the methodology underlying this new

tool and illustrated its use with examples by building absolute risk models for breast cancer.
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