bioRxiv preprint doi: https://doi.org/10.1101/079905; this version posted October 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

GW-CALL: Accurate Genome-Wide
Variant Caller

M. Ghareghani! S. A. Motahari? S. Khazaeit
M. Tavassolipour?

I Department of Mathematical Sciences, Sharif University of Technology,
P.O. Box 11365-8639, Tehran, Iran
2 Computer Engineering Department, Sharif University of Technology,
P.O. Box 11365-8639, Tehran, Iran

October 8, 2016

Abstract

The main challenge in reliable variant calling using DNA reads is to
extract information from reads mappable to multiple locations on the
reference genome. Conventional approaches ignore these reads and
rely on reads mappable uniquely to the reference genome. These ap-
proaches fail to perform satisfactorily in variant calling within repeat
regions which are abundant in many species including homo sapiens.
This, in turn, lowers the reliability of any downstream analysis includ-
ing poor performance in genome-wide association studies. GW-CALL,
a fast and accurate variant caller, is proposed. GW-CALL exploits in-
formation of all reads in a genome-wide decision making process. In
particular, it partitions the genome into several independent regions
called clusters and incorporates an efficient algorithm to use all reads
belonging to a cluster in calling variants within that cluster.
Availability: GW-CALL is implemented in C++ and is freely avail-
able at URL: brl.ce.sharif.edu/gwecall.

https://doi.org/10.1101/079905
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/079905; this version posted October 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

1 Introduction

With the advent of high-throughput next generation sequencing technolo-
gies, a large amount of sequencing data has been generated. The increasing
amount of generated data has raised the demand for efficient computational
tools to process these raw data. Generally, the problem of reconstructing a
target genome using its reads, produced from a sequencing platform, is called
DNA sequencing. The high level of similarity between DNA sequences of two
individuals of one species enables us to make use of a sequenced genome of
the same species as a reference genome in assembling the other genome. This
problem is known as reference-based DNA sequencing, resequencing, or vari-
ant calling. It is called variant calling since with the availability of a reference
genome, it suffices to call all variations between target and reference for a
full reconstruction of the target sequence.

DNA sequencing has been applied to a wide range of biological problems,
including disease association studies, discovering disease mechanisms, and
phylogeny studies for finding the history of evolution. The accuracy of all
downstream analyses depends on the way sequencing reads are processed
reliably in the upstream. For a reliable association of genetic variations to
phenotypes and disease, as an example, it is essential to be able to call
variants accurately.

In cancer genomics, studying of somatic variants plays an important role
in finding causal factors of a particular cancer [9], [5]. Many variant callers
are designed to detect variations in cancer genomes including VarScan [6],
[7] and MuTect [2].

Due to evolutionary reasons, the genome sequences of individuals contain
repetitive paralogous regions [17]. Redundant genomic regions are the main
source of ambiguity in both read mapping and variant calling [18]. Indeed,
alignment errors in these regions significantly affects the downstream task
of variant calling. A recent study focussing on challenges of calling repeat
regions has revealed that common variant callers GATK [14] and samtools
mpileup [10] have poor performance in repeat regions [3].

The standard approach for resequencing is mapping-based variant calling
in which all reads are mapped to the reference genome and then the target
genome is reconstructed using the information of mapped reads. The key

https://doi.org/10.1101/079905
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/079905; this version posted October 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

challenge in repetitive regions is that their reads can be mapped to multiple
locations on the genome, and one cannot distinguish their original positions,
i.e., the positions where they have been sampled from. A number of strategies
have been employed in order to evade the problem of alignment ambiguity,
such as discarding all multi-reads (multiply-mapped reads) and utilizing only
unique-reads (uniquely-mapped reads) in variant calling [13, 12], or selecting
the best mapping position, for example the position with lowest hamming
distance with each read. All such strategies can be shown to produce erro-
neous calling in some cases.

The majority of mapping-based callers, including GATK [14] and sam-
tools mpileup [10], do not deal with the complexity of repeat regions and
make the simplifying assumption that there is no alignment error, i.e., all
reads are mapped to their correct position. Based on this presumption, they
locally call each genomic locus by simple genotyping models using the in-
formation of the pileup data in that position. As a result, they fail to call
repetitive parts of the genome accurately. Sniper [15] is a mapping-based
caller that considers ambiguity of multi-reads in a more realistic genotyping
model. In fact, it performs a more global variant calling in repeat regions
where ambiguous reads are mapped to the genome. However, the running
time of its calling algorithm grows exponentially with the length of repeti-
tive regions, making it nearly impractical for genomes with many repetitive
elements, such as the human genome.

Some genomic parts, namely repeat regions, are more complicated and
ambiguous for calling, but the remaining loci are accessible and can be called
confidently. We use a heuristic approach to differentiate between accessible
and ambiguous genomic loci. Our results show that ambiguous positions
cover only a small fraction of genome. This fact inspired us to design a
variant caller, which we refer to as GW-CALL, that calls all accessible loci by
a rather simple algorithm, and then process the remaining ambiguous parts,
called critical points, in a more computationally heavy, but still practical,
procedure.

The ambiguity of multi-reads creates dependency between critical points,
i.e., variant calling in a critical point influences variant calling in other critical
points, in the presence of multi-reads. We refer to the example in section 3.1
for a detailed discussion. This fact makes the task of variant calling in repeat
regions complicated and makes us call variants in critical points collectively.

https://doi.org/10.1101/079905
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/079905; this version posted October 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

We cluster critical points such that those critical points belonging to one
repeat region are put into the same cluster. The critical points in a cluster
are connected to each other, but they are independent from the critical points
in other clusters. Therefore, we can perform variant calling for critical points
in each cluster independently.

We use a heuristic approach in order to decrease the number of candidate
target sequences for variant calling in a cluster. To this aim, we partition
each cluster into several chunks. Every chunk contains those critical points of
a cluster which are concentrated in one part of the genome. For each chunk,
we select a list of most probable candidate sequences for reconstructing target
genome. We utilize a dynamic programming algorithm for efficiently com-
puting these lists for chunks. Finally, for each cluster, we perform a global
variant calling procedure in which we find the most probable selection from
the lists of candidate sequences of its chunks.

2 Methods

We use the following notation: If S is a string, then |S| represents the length
of the string and S|x] represents a subsequence of S indexed by the set of
locations y. In particular, S[i] for i € {1,---,|S|} is the ith letter of S.

Let the reference genome X be a string of length n over the alphabet
I' = {A,C,G, T}, and a target genome S = {Si,...,Sy} consists of M
DNA sequences of length n (M represents the polyploidy number of the target
genome). Variations between reference and target genomes are assumed to be
Single Nucleotide Variations (SNVs). Suppose every target genome has SNV
probability €, independent of other sequences; that is, for all ¢ € {1,--- , M}
and j € {1,--- ,n};

1—e Sifj] = X[j]

M&MIXUD={E (1)

55 Silg] # X[j]-

For brevity, in the case of haploid targets, we denote the target sequence
by §. We have a set of reads R = {Ry,..., Ry}, each one of length L,
extracted from one of the target genomes. The extraction is assumed to be
distributed uniformly across the genomes. We also assume that the process

https://doi.org/10.1101/079905
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/079905; this version posted October 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

of extracting reads is noisy in which a base at the qth position of the read is
read erroneously with probability p,, where 1 < ¢ < L. More precisely, if R;
is sampled from location d of the genome S;, we have: for all ¢ € {1,--- | L};

}P’(R][q] | Sl[q%— d— 1]) = {iq._ Pq; RJ[Q] = gz[Q"’ d— 1] (2)

R R;lql # Silg+d —1]

The variant calling problem is the process of target reconstruction, given
the reference genome and the set of reads. It consists of two distinct problems:
haplotype phasing and genotyping. Haplotype phasing amounts to obtaining
the target genome S with all chromosomes phased. In genotyping, we aim to
reconstruct the target genotype 89, given X and R. Here, 87 determines the
number of occurrences of alphabet letters in all locations without specifying
which base belongs to which chromosome. Hence, S € A", in which A is
the following set:

A={f=0*1%7% 1) €{o,..., M} | SUM(f) = M},
In other words, if the ith location of 89 is (&, fC, f&, fF), it means that
there are f* chromosomes with alphabet a in the 7th location of the target.
Our approach is a mapping-based variant caller that takes as input a
reference genome and a mapped file including information of mapping reads
to the reference (current implementation accepts SAM file [11]), and returns
an estimate of the target sequence. We assume that the mapper is nearly
perfect, i.e., the true location of a read is almost always within the list of
reported positions of that read. It is worth mentioning that a dummy mapper
that reports for each read all the locations of the genome is a perfect mapper.
However, a perfect mapper which has minimal list sizes is favourable as it

hugely reduces the computational complexity of the variant calling.

2.1 Key observation and basic tools

We first present an example to show the limitations of local variant calling
and to see the out-performance of global decision making. We then present
a new MAP approximation which is used in our variant calling algorithm.
We also review some basic tools that we utilize in variant calling.

https://doi.org/10.1101/079905
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/079905; this version posted October 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

2.1.1 Global decision making

Let us recall two commonplace mapping-based scenarios: unique-map and
all-map. We then discuss their limitations in calling variants in repeat
regions. In the unique-map strategy, all multi-reads are discarded, and the
variant calling is performed solely based on unique-reads. Discarding multi-
reads leads to losing sequencing data in repetitive regions. Therefore, in this
scenario, we miss all variants occurred in these parts.

The all-map strategy utilizes all reads for variant calling by a simple
variant calling method. In other words, it locally calls each locus based on
its pileup data, regardless of calling information of other loci. In this manner,
incorrect mapping of reads in repeat regions may lead to erroneous calling in
some positions.

Figure 1 shows that simple variant calling methods are not powerful
enough for accurate calling in the presence of ambiguous multi-reads. The
figure represents a haploid genome with three repetitive parts. We assume
three noiseless reads are sampled from each of these parts. If we map all
reads to the reference genome with hamming distance at most two, the reads
sampled from each of these regions map to all of these parts. The unique-
map strategy removes all of these reads and hence cannot call the SNV in
location yg. The all-map strategy makes erroneous calling in positions y4 and
ys. It calls these positions by C and A respectively, due to its local decision
making. In fact, existence of erroneously mapped multi-reads covering these
positions leads to defective calling.

In a more global view, we realize that we should call the pairs of positions
(y1,v2), (ys3,ysa), and (ys,ys) by values AC, AG, and GC, and we ought
to use all of these values since reads are noiseless. Therefore we should
select a permutation of these values for target reconstruction in these three
genomic regions. The most likely permutation is the one with the lowest
hamming distance with the reference genome, which yields the original target
sequence. As a result, we can reconstruct the target sequence without any
false detections, by using the information of multi-reads and making a global
calling.

This example has motivated us to develop a step-by-step procedure for
calling repeat regions with high accuracy. First, we call all accessible parts of

https://doi.org/10.1101/079905
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/079905; this version posted October 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Y1 Ye Y3 1 Ys 1
tar Y1 Y2 Y3 Ya Ys Ye
= E— moA A O
I = E— moA V. —
= = =
—&—0— —&—0— —a8—o0— DA
5—o— 5—o0— —o0— pi
oC
— oA — A —a A -
L= | =] (=]
a—a— 5—a— a—a—
=1 [=1 [==]
—A—0— —A—O0— —A—O0—
A—O0— A—0— A—0—

Figure 1: An example of read mapping in a repeat region with three repetitive
elements. Reads are assumed to be noiseless. yg is the variant between the
target and reference genomes. The unique-map strategy discard all reads and
looses the coverage. The all-map strategy makes false decision in y4 and ys.
From information embedded in reads AC, AG, and GC are the only possible
pairs at each locus. A global decision maker can find the best permutation
of these pairs.

the genome and mark the ambiguous loci (e.g., positions {y1, ye, y3, Ys, Ys, Y }
in Figure 1.) for further processing. Second, we partition the set of ambigu-
ous points into units called chunks, based on their connectivity created by
multi-reads. We then obtain a set of candidate values for target sequence
corresponding to each chunk. Finally, we make a global selection of candidate
sequences for all chunks belonging to a repeat region.

2.1.2 A new MAP approximation

We present a new MAP approximation which will be used as a basis in our
variant calling algorithm. We propose some preliminary definitions and then
present a basic proposition for MAP estimation.

Definition 2.1 (mapping interval and mapping area of a read) Let R
be a read mapped to locations {xy,--- ,xq}. Every set {x;,x; + 1,-- x; +
L—1}, for 1 <1< d, is called a mapping interval of R. The union of all
mapping intervals of R is called the mapping area of R, denoted by M P(R).

Let x C {1,...,n} be a subset of genomic locations. We denote by I, C R
the set of all reads that each of which covers at least one location in y. More
precisely, I, is defined as follows:

I, = {ReR|IMP(R)Nx # 0}.

7

https://doi.org/10.1101/079905
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/079905; this version posted October 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Let X[x] and S[x] be reference and the target sequences corresponding to Y,
respectively. Suppose SX € I'" is a sequence that is equal to S[x] in x and
equal to the reference genome in other genomic locations. The MAP rule
reveals an estimate S[y] of the target sequence such that:

Si] =arg_max P(S[x]| X, R). (3)

S[xerix!

Proposition 2.2 The posteriori probability P(S[x] | X, R) is approximately
proportional to the following term:

[TEsxu [Bg; | 9.

1EX R;ely

In the Supplementary Material, the reader can find a proof of the proposition.

Let us denote the logarithm of the expression in the proposition 2.2 by
L, (S[x]). We define function L, : TXl — R as bellow:

L (S[) £) log(B(S[] | X[])) +) log(B(R; | 8Y)).

1EX R;ely

Therefore, for a subset y of our interest, our goal is to find a genotype S[x]
that maximizes L, (S[x]). For a singleton set x = {i}, we use the simplified
notation L; instead of Ly;.

2.1.3 Other tools

We use two basic tools in our variant caller: Viterbi algorithm [19] and the
junction tree algorithm [1]. In fact, we use a Viterbi-like dynamic program-
ming algorithm for finding a set of candidate sequences for subsets of genomic
locations called chunks. We also use the junction tree algorithm for global
variant calling in each repeat region of the genome. We detail our approach,
including an illustration of how we use these tools, in the subsequent section.

https://doi.org/10.1101/079905
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/079905; this version posted October 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

2.2 Detailed description of GW-CALL

Since the diploid case is a simple extension of the haploid case, we present
our algorithm for the simpler case of haploid genome. The general case is
explained in section 2.3.

Our variant caller, GW-CALL, consists of six steps. In the first step, we
utilize a heuristic method to distinguish between accessible and ambiguous
parts of the genome. We call all accessible loci in this step and mark the rest
as critical points. The critical points —which mostly lie on the redundant
genomic regions— are the most difficult parts for calling and, at the same
time, cover a very small portion of the genome. Hence, it makes sense to call
them in a more expensive procedure, in the next stages, in order to improve
their calling accuracy.

In the second step, we partition the set of critical points into independent
sets called clusters. In the third step, we partition each cluster into different
sets called chunks, such that every chunk is a clump of critical points in a
cluster. Then, we create a graph in which each connected component corre-
sponds to a cluster in the forth step. For performing a global variant calling
in each cluster, we find a list of most probable sequences for every chunk by
an efficient dynamic programming algorithm, in the fifth step. Finally, in the
sixth step, we search for the most probable selection from the lists of candi-
date sequences of chunks in every cluster. We present a detailed explanation
of the steps of our algorithm in the rest of this section.

Step 1. Calling accessible loci and finding critical points

Let i € {1, - ,n} and u;, v; € ' be the two alphabet letters with the first and
second maximum values of L;(S[i]). We define a calling confidence measure
C'(7) for location i as follows:

Intuitively, low calling confidence shows ambiguity in variant calling. Con-
sider constant real numbers 7 > 0 and 0 < p < 1. We call location ¢ by base
u;, if at least one of the conditions A, B, or C holds. Otherwise, we mark
this position as a critical point.

A. I is empty (ie., there is no coverage in position),

9

https://doi.org/10.1101/079905
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/079905; this version posted October 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

B. All reads in Iy;; are unique,

C. Tt holds that u; = X[i] (i.e., the base X[i] itself has the maximum
posteriori probability) and at least one of the following conditions holds:

— C(i) > T,

— The ratio of multi-reads mapped to this locus is less than p.
In the rest of this paper, x denotes the set of all critical points.

Step 2. Partitioning critical points into clusters

We cluster critical points based on their dependencies created by multi-reads.
We present an exact definition of clusters and explain how the problem of
calling critical points in a genome can be divided into subproblems of calling
critical points in each cluster separately.

We say two critical points are connected, if they are both located in the
mapping area of a read. We say that a set A C x has connection property,
if for every y,y’ € A, there is a sequence (y = yo,y1,...,yqa = y') of critical
points such that for every 1 <17 < d, y;_1 and y; are connected.

Partition x into clusters xi,..., x¢ such that each y;, for 1 <7 < Q, is
a maximal subset of y with connection property. Obviously, this partitioning
is unique. It can be easily shown that the objective function L, is factorized
as follows:

Q
Ly(S) = > LSk (@

As the domains of functions L,,, for 1 < i < @, are mutually disjoint, we
can maximize these functions separately for maximizing L, .

Step 3. Partitioning clusters into chunks

The critical points of a cluster can be dispersed in different parts of the
genome. Thus, we partition every cluster into different blocks, called chunks.
Each chunk is a clump of critical points of cluster in one part of the genome,
which are connected by multi-reads. More precisely, we define chunks as
follows:

Definition 2.3 (chunk) Assume that critical points of the cluster x; C x
are sorted. FEach chunk of cluster x; is defined to be a mazximal set of con-

10

https://doi.org/10.1101/079905
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/079905; this version posted October 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

secutive critical points in x;, in which every two successive critical points are
located in a mapping interval of a read.

Step 4. Constructing adjacency graph

Creating chunks and clusters can be performed using a simple algorithm.
We first scan the set of sorted critical points to find which successive critical
points are put into the same chunk, so we can construct the set of all chunks
in the genome. Then, we create an undirected graph G = (V, E'), in which
V' denotes the set of all chunks, and {C,C'} € FE if and only if C' and C’
are adjacent. Here, we call two chunks C' and C’ adjacent, if the sets I¢
and Ic have a read in common. Every connected component in this graph
corresponds to a cluster. We refer to the corresponding component to each
cluster as an adjacency graph. An example of critical points, chunks and
clusters in a genome is presented in the Figure 1 in Supplementary Material.

Step 5. List decoding for chunks

A list decoder is proposed to obtain a list of candidate sequences for each
chunk. Conceptually, it amounts to collapsing all the critical points of a
chunk into a few possible combinations. To make it more clear, let us con-
sider a given chunk C' consisting of p critical points. These critical points can
potentially take all 47 possible combinations of the four letters {A, C, G, T}.
The list decoder finds only & (k can be as low as 2) possible combinations
out of 4?7 possible ones. The detail of the list decoder and all the derivations
are presented in Algorithm 1 in Supplementary Materials. Here, we only
presents the main ideas behind the proposed list decoder.

The objective function used to obtain the k best combinations is simi-
lar to the one presented in Section 2.1.2. Naively, we need to compute an
approximate to MAP at 4P different points and obtain the k highest ones.
This is computationally intensive and not feasible for even moderate values
of p. However, the objective function in our problem can be partitioned and
maximized efficiently using a dynamic programming algorithm similar to the
Viterbi Algorithm [19].

The list decoder first splits the chunk C' = {y,ys,...,y,} into overlap-
ping segments such that each segment contains minimum number of critical
points and no read belongs to more than one segment. There is an efficient
algorithm to find these segments. Moreover, it can be shown that this split

11

https://doi.org/10.1101/079905
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/079905; this version posted October 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

B critical points

i__: maximally related critical points

reads

(b)

Vi = {y1, 92,98} —> Ya={ys,00,95. 96} —> V3= {ys5, 56,97} —> Yi={yrys}

(R1, Ra, R3) (R4, Rs) R (R, Rs)

Figure 2: List decoding. (a) The critical points {y,--- ,ys} are segmented
into maximally related critical points incited by dashed boxes. (b) Critical
points within a read is included in one of the segments. Reads are assigned
to the segments and state space diagram is created, indicated at the bottom
of the figure.

is unique. An illustrative example is given in Figure 2. In this way, the
objective function can be written as the sum of functions over critical points
of segments. However, it does not imply that each function can be optimized
separately as there exit critical points common between these functions. In-
terestingly, we can employ a dynamic programming algorithm that efficiently
resolves the problem.

Even with the separation of the objective function, the critical points
within a segment need to be processed jointly, i.e., the sate space of the dy-
namic program depends exponentially on the number of critical points within
a segment. To overcome this, we limit the number of possible combinations
of these critical points to the cases where the hamming distance between ref-
erence and target within the segment is bounded by some constant A. In this
way, the possible number of states does relate polynomially to the number
of critical points.

The dynamic programming algorithm consists of a forward and a back-
ward procedure. In the forward procedure, we first compute the objective
function for the first segments. Then, for every segment, we find the most k

12

https://doi.org/10.1101/079905
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/079905; this version posted October 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

probable paths from the previous segment and store these paths in a collec-
tion of pointers called P. Finally, for each of £ best paths between the first
and last segments, we store a pair including the corresponding final decoded
segment and the index of the path in the k-tuple list of that state in a set
called E. The sets P and E are returned as the output of the forward proce-
dure. The backward procedure uses these outputs and backtracks from the
k best pairs in E following the stored paths in P to reconstruct the k most
probable sequences.

After each run of the dynamic programming algorithm, we obtain a list of
candidate sequences for each chunk. If we select the first element of the list for
each chunk, we obtain a new target sequence. We can replace the reference
genome with this new target sequence and run the dynamic programming
algorithm again to obtain new lists of candidate sequences for chunks and
repeat this procedure. Therefore, we can run the dynamic programming algo-
rithm in an arbitrary number of iterations. We experimentally observed that
two iterations significantly improves the performance of our variant caller.

Step 6. Calling chunks in a cluster

Consider a cluster x; C x in which each chunk has k candidate sequences,
computed in the aforementioned list decoding algorithm. We denote the
number of chunks in x; by n(x;). We can view every chunk as a set of
variables taking values in the set {1,--- ,k} and view L,,(-) as a function of
these variables. In other words, every configuration of {1,--- , k}"%) relate
to a selection of sequences from the list of chunks in y; and hence determines
the value of target bases corresponding to y;; so, it determines the value of
L,.(Sxi]). Our final goal is to find a configuration from the set {1, - , k}n0x)
that maximizes the function L,,(-).

A naive solution to this problem is to perform an exhaustive search in
the whole possible configurations of chunks in {1,--- , k}* which is not a
practical solution for large clusters. As an alternative, we can employ a sort
of dynamic programming algorithm called the junction tree algorithm [1] for
maximizing L,,(-). The running time of this algorithm is exponential in the
treewidth of the adjacency graph of the cluster. Therefore, we can utilize it
for large cluster with small treewidth to make it tractable. Our simulation
results show that there are a lot of large clusters with small treewidth. Note
that, we have used algorithms presented in [4, 16] for construction of the

13

https://doi.org/10.1101/079905
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/079905; this version posted October 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

junction tree.

In summary, if the treewidth of the adjacency graph of a cluster is rea-
sonably small, we run the junction tree algorithm. Otherwise, we select the
first candidate sequence of each of its chunks for reconstructing the target
genome corresponding to this cluster.

2.3 Variant calling in diploid genomes

We discuss how our variant calling algorithm can be modified to handle the
diploid genomes. In the first step of the algorithm, we should use the alphabet
set A instead of I'. There is a tiny difference in computing the probability
of reads in the diploid case which is explained in Supplementary Materials.

For the list decoding task, we use the alphabet set I'? and define a new
state space, corresponding to the new alphabet, for critical points of a chunk.
With this new alphabet set, every path through the states of critical points
of a chunk correspond to two target haplotypes. Note that for some of
these paths, there is a complementary path that corresponds to the same
target haplotypes with different order. Since the order of haplotypes is not
important, we should choose one path among each pair of complementary
paths in the list decoding task.

If we replace the target haplotypes (571,S2) with the sequence S in the
function L¢(-), the objective function factorizes similar to the haploid case.
Therefore, we can use a similar dynamic programming algorithm to find the
set of k£ most probable paths through the state space of a chunk. In the final
step of the algorithm, we search through different selections from the list of
chunks in a cluster and find the most probable one. The algorithm for this
step resembles the haploid case.

3 Results

GW-CALL is implemented in C++ and its performance is evaluated on sev-
eral data-sets obtained from human chromosome 19. Human Build 38 patch
release 5 (GRCh38.p5) is used as the reference genome. The reference genome

14

https://doi.org/10.1101/079905
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/079905; this version posted October 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

is also trimmed by removing all ambiguous characters (N bases).

The target genomes are obtained from the reference genome as follows.
Given the SNV probability (€), each base on the reference genome is either
remained unchanged with probability 1 — € or randomly mutated to another
base with probability €. In this way, a target genome is obtained. To gener-
ate multiple genome, this process is executed independently for each target
genome.

Reads are obtained from the target genomes as follows. Given the read
Length (L), the read error probabilities (p,’s) which is assumed to be the
same and equal to p over all bases, and the coverage depth (c), reads starting
points are obtained from a point process with independent inter-arrival time
which are assumed to follow a geometric distribution with parameter cL.
Each base in a read is either exactly the corresponding base on the target
genome with probability 1 — p, or randomly changed to a new base with
probability p.

After generating reads and target genomes, reads are mapped to the
reference genome by mismatch 3 in all simulations using Bowtie [8]. Reads
that are mapped to more than 30 locations on the reference genome are
removed and the rest of reads are used for variant calling. In the current
implementation of GW-CALL, we only call SNVs and short indels are not
considered. Therefore, all reads which are mapped to the reference genome
with indels are also discarded.

GW-CALL requires several adjusting parameters to be specified by the
user. The default parameters that are used in the experiments are as follows:
T=+k=2>5, p=0.>5 h =2 and the list decoder size k = 2. GW-CALL
is iterated twice in all the experiments. To reduce the complexity of the
junction tree algorithm, we remove all junction trees with maximum clique
size greater than 20.

GW-CALL is compared with the unique-map local strategy which is im-
plemented in many variant calling tools. In this strategy, reads that can be
mapped uniquely to the reference genome are only considered for variant call-
ing and each base is called based on all the bases covering it. As a reference
point to our results, we have also considered a perfect caller. In this caller,
aided by a genie, all reads are anchored correctly to their location and best
decision making is made for calling variants. Note that this variant caller

15

https://doi.org/10.1101/079905
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/079905; this version posted October 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

20,000
M Unique-map
GW-CALL

15,000 M Perfect-Map

10,000

50 60 70 80 90 100

Read Length

Calling Errors

Figure 3: Comparison between different callers for variable read lengths. The
other parameters are as follows p = 0.01, ¢ = 20, and € = 0.001.

60,000

M Unique-map
i GW-CALL
" M Perfect-Map
15,000 I T I
I [| [[
5 10 20

Calling Errors
© oA
g8 &
s o
8 8
8 8

15
Coverage Depth

Figure 4: Comparison between different callers for variable coverage depths.
The other parameters are as follows p = 0.01, L = 70, and € = 0.001.

can be counted as a lower bound on the error probability of any real variant
callers as extra information is provided to the caller.

In Figure 3, we have compared the three variant callers for a set of dif-
ferent read lengths, L, ranging from 50 to 100 with step size 10. Other
parameters are fixed with values: p = 0.01, ¢ = 20, and € = 0.001. The re-
sult shows that GW-CALL performs very close to the optimum caller while
the unique-map caller performs poorly when the read length is short.

In Figure 4, we have compared the three variant callers for different cov-
erage depth ranging from 5 to 20 with step size 5. Other parameters are
fixed with values: p = 0.01, L = 70, and € = 0.001. The result shows that
GW-CALL follows the optimum caller for the given range of parameter and
outperforms the unique-map caller.

In Figure 5, the performance of all three callers is compared for various
SNV probability ranging from 0.001 to 0.004. Other parameters are fixed
with values p = 0.01, L = 70, and ¢ = 20. The result shows that GW-
CALL again outperforms the unique-map caller in all cases, however, its

16

https://doi.org/10.1101/079905
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/079905; this version posted October 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

40,000
W Unique-map

20,000 GW-CALL

W Perfect-Map
20,000
o I I I I I

0.001 0.002 0.003 0.004
SNV Rate

Calling Errors

Figure 5: Comparison between different callers for variable SNV rates. The
other parameters are as follows p = 0.01, L = 70, and ¢ = 20.

performance degrades substantially as the SNP probability increases. This
is an indicator for the opportunity in improving the current version of GW-
CALL in case of distance reference and target genomes.

4 Discussion

We proposed GW-CALL, a Genome-Wide variant CALLer, that calls vari-
ants within less ambiguous genomic loci quickly in the first step and pro-
cesses the remaining ambiguous locations, called critical points, in a more
computationally expensive procedure. Critical points, which cover a very
small portion of the genome, mostly lie on the repeat regions where read
alignment and variant calling are not straightforward. In fact, local decision
making is not enough to capture the complexity of these regions and a global
decision making is required. We developed an efficient algorithm that makes
a global decision by calling these points collectively.

We showed that our variant caller outperforms the existing methods,
especially in redundant genomic regions. Our caller is able to call SNVs
given a reference genome and a set of single-end reads with substitution
errors. One significant extension is to incorporate mate-pair and paired-end
reads in the model. Obviously it can improve the performance of variant
calling, since the mapping ambiguity of reads drops greatly by making use
of the information of paired reads. Another suggestion is to consider short
indel mutations and structural variations in our model. Moreover, we can
include indel errors in our read model in order to adapt to situations where
sequencing platforms produce reads with indel errors.

17

https://doi.org/10.1101/079905
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/079905; this version posted October 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

References

[1] Srinivas M Aji and Robert J McEliece. The generalized distributive law.
IEEE transactions on Information Theory, 46(2):325-343, 2000.

[2] Kristian Cibulskis, Michael S Lawrence, Scott L Carter, Andrey
Sivachenko, David Jaffe, Carrie Sougnez, Stacey Gabriel, Matthew Mey-
erson, Eric S Lander, and Gad Getz. Sensitive detection of somatic point

mutations in impure and heterogeneous cancer samples. Nature biotech-
nology, 31(3):213-219, 2013.

[3] Kristal Curtis, Ameet Talwalkar, Matei Zaharia, Armando Fox, and
David A Patterson. Siren: Leveraging similar regions for efficient &
accurate variant calling. Technical report, Tech. rep. UCB/EECS-2015-
159. University of California, Berkeley, 2015.

[4] Philippe Galinier, Michel Habib, and Christophe Paul. Chordal graphs
and their clique graphs. In International Workshop on Graph-Theoretic
Concepts in Computer Science, pp. 358-371. Springer, 1995.

[5] Cyriac Kandoth, Michael D McLellan, Fabio Vandin, Kai Ye, Beifang
Niu, Charles Lu, Mingchao Xie, Qunyuan Zhang, Joshua F McMichael,
Matthew A Wyczalkowski, et al. Mutational landscape and significance
across 12 major cancer types. Nature, 502(7471):333-339, 2013.

[6] Daniel C Koboldt, Ken Chen, Todd Wylie, David E Larson, Michael D
McLellan, Elaine R Mardis, George M Weinstock, Richard K Wilson,
and Li Ding. Varscan: variant detection in massively parallel sequencing
of individual and pooled samples. Bioinformatics, 25(17):2283-2285,
2009.

[7] Daniel C Koboldt, Qunyuan Zhang, David E Larson, Dong Shen,
Michael D McLellan, Ling Lin, Christopher A Miller, Elaine R Mardis,
Li Ding, and Richard K Wilson. Varscan 2: somatic mutation and copy
number alteration discovery in cancer by exome sequencing. Genome

research, 22(3):568-576, 2012.

[8] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ul-
trafast and memory-efficient alignment of short dna sequences to the
human genome. Genome Biology, 10(3), 2009.

18

https://doi.org/10.1101/079905
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/079905; this version posted October 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

[9] Michael S Lawrence, Petar Stojanov, Paz Polak, Gregory V Kryukov,
Kristian Cibulskis, Andrey Sivachenko, Scott L Carter, Chip Stewart,
Craig H Mermel, Steven A Roberts, et al. Mutational heterogene-
ity in cancer and the search for new cancer-associated genes. Nature,
499(7457):214-218, 2013.

[10] Heng Li. A statistical framework for snp calling, mutation discovery, as-
sociation mapping and population genetical parameter estimation from
sequencing data. Bioinformatics, 27(21):2987-2993, 2011.

[11] Heng Li et al. The sequence alignment/map format and samtools. Bioin-
formatics, 25(16):2078-2079, 2009.

[12] Heng Li, Jue Ruan, and Richard Durbin. Mapping short dna sequenc-
ing reads and calling variants using mapping quality scores. Genome
research, 18(11):1851-1858, 2008.

[13] Ruigiang Li, Yingrui Li, Xiaodong Fang, Huanming Yang, Jian Wang,
Karsten Kristiansen, and Jun Wang. Snp detection for massively parallel
whole-genome resequencing. Genome research, 19(6):1124-1132, 20009.

[14] Aaron McKenna et al. The genome analysis toolkit: A mapreduce frame-
work for analyzing next-generation dna sequencing data. Genome Re-
search, 20:1297-1303, 2010.

[15] Daniel F Simola and Junhyong Kim. Sniper: improved snp discovery by
multiply mapping deep sequenced reads. Genome biology, 12(6):1, 2011.

[16] Robert E Tarjan and Mihalis Yannakakis. Simple linear-time algo-
rithms to test chordality of graphs, test acyclicity of hypergraphs, and
selectively reduce acyclic hypergraphs. SIAM Journal on computing,
13(3):566-579, 1984.

[17) Todd J. Treangen and Steven L. Salzberg. Repetitive dna and next-
generation sequencing: computational challenges and solutions. Nature
Reviews Genetics, 13:36-46, 2012.

[18] Todd J Treangen and Steven L Salzberg. Repetitive dna and next-
generation sequencing: computational challenges and solutions. Nature
Reviews Genetics, 13(1):36-46, 2012.

19

https://doi.org/10.1101/079905
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/079905; this version posted October 9, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

[19] Andrew Viterbi. Error bounds for convolutional codes and an asymptot-
ically optimum decoding algorithm. [EFEFE transactions on Information
Theory, 13(2):260-269, 1967.

20

https://doi.org/10.1101/079905
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Methods
	Key observation and basic tools
	Global decision making
	A new MAP approximation
	Other tools

	Detailed description of GW-CALL
	Variant calling in diploid genomes

	Results
	Discussion

