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Aim: Although there is a vast body of literature on the causes of variation in species composition in ecological communities,
less effort has been invested in understanding how interactions between these species vary. Since interactions are crucial to
the structure and functioning of ecological communities, we need to develop a better understanding of their spatial dynamics.
Here, we apply novel numerical tools to data on species interactions, and reveal that they vary more, and in response to
different climate variables, than species do. Location: Eurasia. Methods: We used a measure of Locality Contribution to Beta-
Diversity to evaluate the compositional uniqueness of 51 host–parasite communities across Eurasia, using publicly available
data. We measured uniqueness based on the species composition, and based on potential and realized biotic interactions.
Results: We show that interactions vary more, over space, than species do. In particular, we show that interactions respond
to some climatic variables that have no effect on species distribution or dissimilarity. Main conclusions: Species interactions
provide far more resolution than species occurrences alone, while still retaining all information about species occurrences.
We suggest that they be put front and center in analyses of communities, especially in a biogeographic context.
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Ecological communities are made of species and their inter-
actions. Understanding how community structure changes re-
quires to address the variability of both these components. One
way to investigate the variability of ecological communities is
through the use of spatially replicated systems: by observing
the presence/absence of species originating from the same re-
gional pool at different localities and documenting their inter-
actions, it is possible to compare these communities to gain
insights about why and how ecological communities vary. In-

formation about both species and their interactions can be ef-
ficiently represent using ecological networks, and the recent
years saw the developments of approaches to quantify the vari-
ation of ecological networks (Poisot et al. 2012). In parallel,
advances in the quantification of �-diversity allows the iden-
tification of hotspots of variation, i.e. localities that through
their unique composition, have a high contribution to the over-
all �-diversity (Legendre & De Cáceres 2013; Legendre 2014;
Legendre &Gauthier 2014). In this manuscript, we bring these
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families of approaches together, by describing the variation of
community structure across space, and identifying the mecha-
nisms and environmental variables responsible for this varia-
tion.

Understanding species within their communities, and by exten-
sion communities themselves, can be done through a quantifi-
cation of the species’ Grinnellian and Eltonian niches (Devictor
et al. 2010). To summarize, species contribute to community
structure first by being present within the community (which
assumes that the local environmental conditions are amenable
to their persistence), and second by fulfilling a functional role
within this community, which is in part defined by the way they
interact with other species (Coux et al. 2016). Community
therefore differ it two complementary ways: first, because they
harbour different species; second because whichever species
they share might interact in different ways (Poisot et al. 2014b).
This dissimilarity of both species composition and species in-
teractions, over space and time, has raised increasing empirical
attention in recent years (Carstensen et al. 2014; Maruyama et
al. 2014; Vizentin-Bugoni et al. 2014; Olito & Fox 2015; Tro-
jelsgaard et al. 2015). Although the drivers of species distri-
butions have been well elucidated in the past decades, there is
virtually no knowledge (nor hypotheses) regarding how species
interactions should be distributed in space. Most of the earli-
est datasets on ecological interactions replicated across space
(e.g. Havens 1992) assume that interactions are constant: two
species will always interact if they are found in the same loca-
tion, environment, etc. Because empirical data contradict this
assumption, there is an urgent need to revise our understand-
ing of how community structure should be defined at both the
local and global scale. Specifically, we need to do so in a way
that accounts simultaneously for the variability of species oc-
currences, and for the variability of species interactions.

Building on the framework put forth by Poisot et al. (2014b),
it is possible to develop quantitative hypotheses regarding the
variation of species presence, interactions, and the relationship
between them. The key point is that an interaction between
any pair of species is only possible when the two species of
this pair co-occur. Therefore, the dissimilarity of interactions
is greater or exactly equal to the dissimilarity of species com-
position; it cannot be smaller if the two dissimilarities are mea-
sured from the same community data. There are two important
consequences to this fact. First, overall, species composition
across multiple localities should be less dissimilar than inter-
actions. Second, interaction dissimilarity will display a finer
picture of how communities differ, because the distribution of
interactions is intrinsically more variable than that of species:
evenwhen two species are found together, theymay not interact
locally. Most importantly, species are nested within interac-
tions (at least from a purely mathematical standpoint, whereby
nodes/species are embedded into edges/interactions) – there-
fore, describing interactions is a more informative way of de-
picting community structure, which not only includes but ac-
tually supersedes the usual approach of communities-as-lists-
of-species.

This study is the first demonstration of the fact that species
interactions, in a biogeographic perspective, are more infor-
mative than species distributions to describe the variation of
community structure and its response to climatic variables. In
particular, we show that (i) species interactions are more diver-
sified, and allow the identification of more sites with unique
contribution to �-diversity, than species only; and (ii), species
interactions react to climatic variables of their own, in addition
to capturing most of the climatic variables acting on species
distributions. We discuss these results in the light of our cur-
rent definition of ecological communities, and highlight ways
of refining this definition in order to make more accurate and
realistic predictions about community structure.

MATERIALS AND METHODS

Wewill measure how species composition and species interac-
tions in host–parasite communities vary across environmental
gradients. Specifically, we will use novel methods to quantify
the compositional uniqueness of localities based on different
definitions of community structure, then identify the climatic
variables involved in driving the dissimilarity between locali-
ties. An interactive document allowing to reproduce all analy-
ses (including downloading all data) is available as supplemen-
tary information (Appendix S2 in supporting information).

Species interaction data Species interactions data were
taken from Hadfield et al. (2013). They describe species in-
teractions between rodents and ecto-parasites at 51 locations
throughout Eurasia. This system is species-rich, and likely
originates from successive co-speciation events within pairs of
interacting species (Krasnov et al. 2012; Hadfield et al. 2014).
The data were downloaded from themangal database [Poisot et
al. (2014a); http://mangal.io/data/dataset/4/]. The
communities (where “community” is defined as the species
and interactions detected at one location) have between 3 and
27 (median 11) hosts, 7 and 40 (median 19) parasites, and 12
and 226 (median 63) interactions between them. Out of 326
species, 94 were observed only once, and 43 were observed at
more than 10 locations.

For every location, we define two levels of analysis. First,
the realized interactions; this corresponds to interactions that
where reported to occur within individual locations in the origi-
nal data. Second, the potential interactions; this corresponds to
the interactions that could happen given the information con-
tained in the entire dataset. For example, if parasite Pj and
hostHk do not interact locally, but interact in at least one other
location, there will be an interaction between them in the po-
tential interaction network. These two levels correspond to the
effect of sampling of species only (potential interactions; inter-
actions are assumed not to vary), and of interactions between
sampled species (realized interactions; interactions can vary)
with regard to a regional pool (Poisot et al. 2012). For a given
location, the realized and potential interaction networks have
an equal number of species, and the realized network has as
many or fewer interactions than the potential one. The extent to
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which the realized and potential interactions differ is measured
using �′OS (Poisot et al. 2012). �′OS is measured by compar-
ing the number of interactions in the realized and potential net-
works, and therefore works as a measure of the strength of local
interaction sorting. Values close to 0 mean that all potential
interactions are realized (weak interaction filtering), whereas
values close to unity indicate that most potential interactions
are lost (strong interaction filtering).

This distinction between realized and potential interactions, as
we detail below, is of the utmost importance. Drivers of the
variability of interactions exist at different scales, ranging from
the distribution of functional traits (Olesen et al. 2011) that
are likely expressed at macro-ecological scales, to neutral and
random-chance events (Canard et al. 2014) that are applied at
the micro-ecological scale. In short, potential interactions are
more likely to reflect the evolutionary history of the species
pairs, while the realized interactions are more likely to reflect
how this species pairs reacts to a set of local environmental
condition. From a species distribution point of view, potential
interactions offer the possibility to look at the co-distribution
of interacting pairs of species – any signal on the spatial distri-
bution of potential interactions is highly suggestive of the fact
that species that interact distribute non-randomly.

Climatic variables data We downloaded the 19 BioCLIM
data (Hijmans et al. 2005) at a geographic resolution of 5 arc
minutes. The data for each location were then extracted using
theGPS coordinates of the sampling location. Since the precise
extent that was sampled around each location is unknown, we
deemed more conservative to use a coarser spatial resolution to
capture the general environmental conditions around each site.

Quantification of species and interactions variation We
use the approach put forth by Legendre & De Cáceres (2013) –
the overall �-diversity between sites of a spatially replicated
sampling is measured as the variance of a community data
matrix Y, and noted �Y. Y is a binary matrix with locations
as rows, and items on which to measure the dissimilarity in
columns. These matrices are defined such that Y (l, i), that is
the value at row l and column i of matrix Y, is 1 if item i is
found at location l, and 0 otherwise. For site-species matrices,
the row sums give the richness at the locations, and the column
sums give the number of occurrences of the species. We define
four community data matrices. H has host species in columns;
P has parasite species in columns. These first two matrices will
generate a baseline estimate for the dissimilarity of localities
based on species composition. Finally, we also define R, with
realized interactions in columns, and Q with potential interac-
tions in columns. This approach is represented in Figure 1.

The method of Legendre & De Cáceres (2013) also yields a
distance matrix between localities of a community data matrix,
which we note DY. As per the recommendations in Legendre
& Gallagher (2001), we used the Hellinger distance to measure
the dissimilarity across locations for all four matrices detailed
above, resulting in DH, DP, DR, and DQ. This distance has
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Figure 1 Illustration of the construction of the four community
data matrices. Assuming two interaction networks with shared
species A, B, C, and D, and unique species E in location 2,
one can construct the usual community data matrix (S) where
1 denotes species presence at a location. Similarly, we build
community data matrices for the interactions (R and Q). In R, a
1 denotes the existence of the interaction at a location. In Q, a 1
denotes that the interaction could potentially exist; for example,
altough A and D do not interact in location 1, they do interact in
location 2, and therefore the AD interaction has a 1 in matrix Q.
Note that the interaction BE cannot exist in site 1, because the
species E is not present here.

been shown to be appropriate for �-diversity studies (Legendre
& De Cáceres 2013). This method also allows measuring the
local contribution to beta-diversity (LCBD). LCBD is a quan-
tification of how much every location (row of the Y matrix)
contributes to the overall dissimilarity, presented as a vector
lY. We interpret this value as a measure of the originality of
a location: a large contribution to beta-diversity indicates that
the location has a set of species or interactions that is differ-
ent from the overall species pool. The values of LCBD can be
tested for statistical significance under a permutation scheme,
specifically by re-distributing species or interactions across lo-
cations. This tests, in effect, the fact that the LCBD values
obtained were not due to chance (specifically, the fact that the
LCBD values are larger than expected from random variations
in species composition). We assume that LCBDs larger than
expected by chance indicate that the locality is unique with re-
gard to the species or interactions found therein. We used the
default threshold of � = 0.05, with 9999 random permutations
of each column of the four community data matrices.

To summarize, for each community data matrixY representing
hosts, parasites, potential, and realized interactions, we mea-
sure the �-diversity (�Y), the pairwise distance between sites
(DY), the extent to which each location contributes to �Y (lY),
and the significance of each element lY(i).

Ordination and variable selection We investigated the ex-
tent to which the structure of the dissimilarity matrices (D...)
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Figure 2 Distribution of �′OS across the entire dataset. Local
communities tend to be relatively good images of the regional
interactions, as evidence by dissmilarity values going down to
0, with nevertheless some variability. The inset shows the value
of �′OS in space.

was driven by climatic variables using db-RDA (using the
caspcale function of the vegan package for R; see Appendix
S1 in supporting information; Legendre & Legendre (1998)].
The 19 bioClim variables were put in a matrix Ewith one loca-
tion per row. To identify themost significant climatic variables,
we used stepwise model building using forward variable selec-
tion over 9999 replicate runs for each matrices. This approach
yields four models of the form CAP(DY ∼ E), for which we
extract eY, i.e. a vector of significant climatic variables to ex-
plain the structure of DY. In each model, we also record the
rank of each climatic variable; variables selected early have a
stronger contribution to the structure of dissimilarity.

RESULTS

Species and interactions vary across space In Figure 2,
we show that the 51 locations have interactions that are not
the same found at the regional level. Specifically, the mode of
the distribution of �′OS is around 0.3, indicating that the filter-
ing of interactions from the regional pool to local communities
is comparable to other rodents–parasite systems (Poisot et al.
2013 reported values between 0.2 and 0.4 in a central European
system). Using the Legendre & De Cáceres (2013) approach
reveals that interactions vary more than species. Specifically,
�R ≈ 0.94, �Q ≈ 0.90, �H ≈ 0.80, and �P ≈ 0.79. That the
variation inR is larger than that inQ is expected, as the realized
interactions account for one additional ecological mechanism,
namely the filtering of potential interactions. These are known
to react in stochastic ways to population abundances (Canard

et al. 2014), and are therefore inherently more variable. That
localities in this dataset exhibit different interactions, and have
varying strengths of filtering from the potential to the realized
interactions, raises the question of identifying which of these
localities have the strongest contribution to �-diversity.

Species and interactions contribute differently to site
uniqueness Using the LCBD approach, we measure the ex-
tent to which every location contributes to the beta-diversity of
hosts, parasites, local, and potential interactions. These results
are presented in Figure 3.

For each distance matrix, we clustered the locations using par-
tition around themedoids, and selecting the number ofmedoids
that gave the smallest silhouette. This yielded respectively
three clusters for hosts (east; north west; south west), and two
for the parasites, the local interactions, and the realized inter-
actions (north; south). Overwhelmingly, the locations with
significant contributions to beta-diversity are located in the
southernmost half of the dataset, in more desertic areas (i.e.
Turkestan, Taklamakan, and Gobi deserts). Using informa-
tion on host (resp. parasites) identifies 8 (resp. 12) locations
with significant contributions to beta-diversity, i.e. locations
that have unique species compositions. By contrast, using lo-
cal (resp. potential) interactions yields 23 (resp. 25) such lo-
cations. With six exceptions, local and potential interactions
agree on which locations are unique. In the next part, we inves-
tigate how the dissimilarity of communities is driven by local
climatic variables.

Beta-diversity of species and interactions is structured
by the environment In Figure 4, we present the results of a
db-RDA on the four beta-diversity matrices, using the bioClim
variables as predictors (additional informations such as num-
ber of constrained axes and inertia are given in the supp. mat.).
As in Figure 3 (and because environmental variables tend to be
spatially auto-correlated), locations from the same cluster, and
locations with significant contributions to beta-diversity tend
to occupy the same area of the space defined by the canonical
axes. This suggests that (i) clustering of communities as a func-
tion of their species or interaction composition is the result of
species or interactions having the same requirements about the
habitat, and (ii) locations with significant contributions to beta-
diversity are unique because their local environmental condi-
tions select unique species and interactions assemblages.

Finally, in Table 1, we present the variables that have been re-
tained during stepwise model building. The most important
variables are bio06 (minimum temperature during the cold-
est month), and bio08 and bio10, minimum temperatures
during the wettest and coldest quarters.Some precipitation re-
lated variables were associated to hosts and interactions, but
not parasites. Meanwhile, a number of variables where as-
sociated to parasites only (and, surprisingly, not to interac-
tions). Finally, two variables (bio04, seasonality of temper-
ature; bio11, mean temperature of warmest quarter) where as-
sociated to interactions only.
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Figure 3 The beta-diversity matrices were divided in clusters (indicated by different symbols). Black-filled symbols have significant
LCBD values. The size of each symbol is proportional to its LCBD value. Note that there is no correspondance between the symbols
used to denote cluster identity across the four panels.

DISCUSSION

The �-diversity of interactions was higher than the �-diversity
of species. Although notable, this is not a surprising result for
at least two reasons. First, in any community there are many
more interactions than species, and therefore interactions paint
a finer picture of community structure than species do. Second,
interactions are probabilistic events (Poisot et al. 2015) that
can vary even if the two species involved are consistently co-
occurring. Since the information in species presence/absence
is by definition included in the information about species in-
teractions, it stands to reason that we would more adequately
describe community structure and variation by systematically
considering species interactions. This is emphasized by the
fact that measuring LCBD indices based on interactions re-
vealed more (over twice as many) unique sites that measuring
the LCBD of species (Figure 3). Quantifying the �-diversity
of communities as based only on their species composition (i)
consistently under-estimates �-diversity and (ii) consistently
underestimates the uniqueness of localities in the dataset. A
species-centered vision of diversity, in short, does artificially
homogenize the structure of communities by missing impor-
tant sources of variation.

An additional result of out study is that, although species and
their interactions in this system do share a lot of their biocli-
matic predictors, interactions responded to two variables that
had no bearing on species composition (Table 1). We recognize
that this can, in part, stem for the mismatch of scales between

the observation of species interactions, and the observation of
climatic variables; in itself, this is an intriguing question: what
is the scale at which ecological interactions are affected by the
environment? Nevertheless, our results highlight a challenge
for current efforts to add biotic interactions to species distri-
bution models (Boulangeat et al. 2012; Araújo & Rozenfeld
2013; Blois et al. 2014): from additional predictors, species
interactions become objects that must first be predicted them-
selves based on local environmental condition. This is in ad-
dition to the fact that interactions require first and foremost the
presence of both species (Gravel et al. 2011) to be realized.
Nevertheless, this problem may prove less complicated based
on the observation that there is little difference (besides their
relative importance) in the predictors of potential and realized
interactions. What this suggests is that climatic variables act
on the distribution of species pairs that can interact, and the
signal at the level of realized interactions is inherited from the
co-distribution of potential interaction partners. Or in other
words, the signal on potential interactions is a predictor of the
co-occurrence of interacting species. As suggested in Poisot et
al. (2014b), interactions are filtered after the two species in-
volved have co-distributed – it therefore stands to reason that
environmental conditions that do not affect the co-distribution
of the two species can affect the realization of the interaction
locally.

Taken together, the results of this study highlight two impor-
tant notions. First, interactions contain intrinsically more in-
formation than species; second, interactions react to climatic
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Table 1 List of bioclim variables retained during the model selection step (also used in Figure 4). Numbers identify the rank in the
forward-selected model. Variables 4 and 11 (in bold) are unique to interactions.

bioclim variable Explanation H P R Q
06 Min temp. cold. month 1 1 1 1
08 Mean temp. of wettest quarter 2 3 2 2
10 Mean temp. of coldest quarter 5 4 6 5
13 Precipitation of wettest month 4 5 9 4
01 Annual mean temp. 3 3 3
18 Precipitation of warmest quarter 6 5 6
15 Precip. seasonality 7 4 8
19 Precipitation of coldest quarter 8 10 7
17 Precipitation of driest quater 10 9
02 Mean diurnal range 2
05 Max temp. warm. month 6
12 Annual precip. 8
14 Precipitation of wettest month 7
04 Temp. seasonality 7 10
11 Mean temp. of warmest quarter 8 11
03 Isothermality
07 Temp. ann. range
09 Mean temp. of driest quarter
16 Precipitation of wettest quater

variables in ways that seem to have no bearing on species
themselves. Taken together with the fact that the information
on species occurrence is by definition nested within the in-
formation on species interactions, this points to the idea that
we should be extremely cautious when defining what a “com-
munity” is. In particular, we show that while describing the
presence and absence of species at different locations is im-
portant, it misses a lot of information by systematically under-
estimating the variability and the uniqueness of these loca-
tions. For these reasons, we believe that themore desirable way
of representing community structure is to describe, not only
species, but also their interactions. Although this demands a
much larger sampling effort, it is the correct approach not to ne-
glect an entire aspect of what is community structure: species,
not being independent entities, are organized in non-random
ways through their interactions.

Supporting information
Appendix S1 – Supplementary material
Appendix S2 – Document and code source to generate the sup-
plementary material
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Figure 4 Ordinations of the four distance matrices, based on the scaled bioclimatic variables. Shape represents the cluster to which
each location belongs, symbol size scales with LCBD, and filled symbols have significant LCBD.
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