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Abstract 11 

Current tools for visualization and integration of proteomics with other omics datasets are 12 

inadequate for large-scale studies and capture only basic sequence identity information. We 13 

developed PoGo for mapping peptides identified through mass spectrometry to a reference 14 

genome to overcome these limitations. PoGo exhibited superior performance over other 15 

tools on benchmarking with large-scale human tissue and cancer phosphoproteome 16 

datasets. Additionally, extended functionality enables representation of single nucleotide 17 

variants, post-translational modifications and quantitative features. 18 

Main Text 19 

Mass spectrometry (MS) and Next-generation sequencing (NGS) technologies have vastly 20 

improved our understanding of the cross-talk between genome, transcriptome and 21 

proteome, and contribute to a better understanding of the variations between healthy and 22 

diseases states. Examples are the identification of new therapeutic target kinases in breast 23 

cancer1 and detection of differentially regulated pathways and functional modules 24 

potentially enabling patient stratification in ovarian cancer to inform therapeutic 25 

management.2  26 

Substantial advances in MS technologies enable more complete identification and 27 

quantification of proteomes, making these data more comparable to transcriptomics. Tools 28 

like PGx3 and iPiG4 to readily visualize proteomics with corresponding RNA-sequencing data 29 

on a reference genome are now increasingly indispensable. While iPiG heavily relies on the 30 

annotation format used for UCSC genes, PGx uses sample specific protein sequence 31 

databases derived from RNA-sequencing experiments and corresponding genomic 32 

coordinates. Both tools require reformatting a reference genome annotation in order to 33 

enable their mapping. 34 

We developed PoGo to allow direct mapping to reference annotations and improve speed 35 

and quality of mapping.  PoGo leverages the annotated protein coding sequences (CDS) 36 

together with a reference protein sequence database (protein-DB) to map peptides to their 37 

genomic loci. Firstly, PoGo maps the genomic coordinates of CDSs onto the protein (Fig. 1), 38 
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thereby connecting the protein sequences to the genomic coordinate space. Database 39 

search tools enable peptides to be identified from MS using a protein-DB.5 By using the 40 

PoGo-indexed database genomic coordinates of a peptide are retrieved based on the 41 

peptide’s position within the protein (Fig. 1b and Online Methods). PoGo further takes 42 

advantage of distinct attribute columns of the output file formats, such as color, to indicate 43 

uniqueness of a peptide across the genome, to show positions of post-translational 44 

modifications, to allow quantitative comparison between multiple samples and conditions 45 

linking this information to transcripts and genetic loci (Fig. 2 and Online Methods). The main 46 

genome browsers, Ensembl6, UCSC7, and BioDalliance8, however, have file size limits for 47 

direct upload insufficient for large-scale proteogenomics. Our track-hub generator 48 

application, therefore, enables seamless online visualization directly from PoGo output and 49 

is crucial for open access proteomics of large datasets. 50 

We first evaluated PoGo’s performance on large-scale datasets using the proteogenomic 51 

reanalysis of the draft human proteome maps.9 We used the filtered high stringency level 52 

set comprising 233,055 unique peptides across 59 adult and fetal tissues. The mappings 53 

were derived from the gene annotation set and protein coding translation sequences for 54 

GENCODE (release 20)9 as GTF and FASTA files. All tools were run with standard parameter 55 

settings and evaluated based on speed, memory usage and number of unique and correct 56 

mappings. PoGo (94 seconds) was 6.9 and 96.4 times faster than PGx (651 seconds) and iPiG 57 

(memory error after 9,064 seconds), respectively, and required 20% less memory compared 58 

to PGx (9.7 GB and 11.9 GB respectively). These data show a major improvement of speed 59 

and memory usage in addition to application with a readily available reference annotation.  60 

In total 89% of mappings are common between PoGo and PGx. The 10.5% uniquely reported 61 

by PGx can be explained by shifting into the correct frame, indicating incorrect assignment. 62 

PoGo resulted in 89 completely unique mappings, 72 of these can be attributed to 63 

incompletely annotated transcripts (CDS start/end not found). Additionally, 17 unique 64 

mappings correspond to alternative splicing, immunoglobulin genes and multiple 65 

overlapping mappings in a repeat region. For example, the peptide ‘VPEPGCTKVPEPGCTK’ 66 

(missed cleavage between repeats of 8 amino acids) was mapped by PGx as two consecutive 67 

loci in the SPRR3 gene (Supplementary Fig. 1). PoGo, on the other hand, mapped the 68 

sequence 4 times with the repeats overlapping each other (Fig. 1c). 69 

The fast and diverse mapping capabilities of PoGo, as shown above, prompted the current 70 

integration of the algorithm into the PRIDE10 tool suite and soon into the OpenMS 71 

framework9. This dataset also exemplifies the growing need to handle large numbers of 72 

peptides. Therefore, we have generated tissue track-hubs at two different significance 73 

thresholds from the draft human proteome maps allowing identification of genes and 74 

transcripts unique to single tissues. The scaffolding protein CASS4, for example, was only 75 

found in platelets (Supplementary Fig. 2). The genomic region of RBP3, only identified in 76 

retina, shows full peptide support for all splice junctions (Supplementary Fig. 3). 77 

The large number of single nucleotide variants in individuals can affect the protein 78 

sequences and hinder identification of peptides through database searching against a 79 

reference genome.10 Uniquely compared to other tools, PoGo is able to account for up to 2 80 

non-synonymous variants in its mapping (Supplementary Fig. 4). Application with the draft 81 

human proteome maps allowing 1 and 2 variants resulted in a 1.5- and 60.8-fold increase in 82 
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runtime (Supplementary Fig. 5). Unique mappings to single transcripts and single genes were 83 

reduced to 94.9% and 84.1% while the number of peptides belonging to multiple genes 84 

increased exponentially by 220.9% and 3,175.2% (Supplementary Fig. 5 and 6). The mapping 85 

of additional repeats of the sequence ‘VPEPGCTK’ following application with mismatches 86 

were validated through identified peptides in the sample (Fig. 1c). This highlights the added 87 

value to PoGo for mapping peptides to genomic loci with potential single nucleotide 88 

variants.   89 

To demonstrate additional PoGo functionalities we chose the phosphoproteome of high-90 

grade serous ovarian cancer with isobaric labelling of 96 tumor samples, identifying 13,646 91 

unique peptides with annotated phosphorylation sites (19,156 phosphopeptides).2 PoGo 92 

mapped 13,617 peptides to 15,944 genomic loci in 66.9 seconds; these could not be mapped 93 

by PGx and iPiG. Only a small fraction, 0.2%, of the peptides could not be mapped due to 94 

sequence differences of the originating proteins between RefSeq and GENCODE databases. 95 

Compared to the other tools PoGo was able to use the annotated post-translational 96 

modifications and color code them (Supplementary Table 1) resulting in mappings for 99.8% 97 

of the phosphopeptides with their respective localized phosphorylation sites on the 98 

reference genome (Supplementary Fig. 7). 99 

PoGo also integrates peptide quantitation with genomic loci through the GCT file format. 100 

This allows comparative visualization of multiple samples in the Integrative Genomics 101 

Viewer11 and enables downstream quantitative analysis. The log2-fold changes of 102 

phosphopeptides between all 69 ovarian cancer samples and the pooled reference were 103 

mapped with PoGo (Supplementary Fig. 7). As an example, MAPK3 identified with multiple 104 

phosphorylated sites in a single peptide and the associated fold changes across samples are 105 

shown in Figure 2Figure 2. To our knowledge PoGo is the only tool directly integrating 106 

quantitative information for peptides with genomic coordinates.  107 

Our data show that PoGo represents a major advance for peptide-to-genome mapping 108 

making it a cornerstone component of proteogenomics workflows. Although the examples 109 

used here focus on human tissue and cancer cell lines, PoGo can be applied to any 110 

proteomic study for which annotation of coding sequences in GTF format and translated 111 

sequences in FASTA format are available. The additional functionalities such as allowing up 112 

to two non-synonymous single nucleotide variants, mapping of post-translational 113 

modifications and integration of quantitation distinguish it from other tools. Semi-114 

standardized file formats commonly used in genomics for in- and output as well as the 115 

scalability for large datasets make PoGo an indispensable component of small and large-116 

scale multi-omics studies. The current integration into the PRIDE tool suite and our track-117 

hub generator application promote open access proteogenomics supporting studies 118 

focusing on integration of gene, protein and post-translational modifications expression12 in 119 

the future. PoGo has been developed to cope with the rapid increase of quantitative high-120 

resolution datasets capturing proteomes and global modifications. Integration of orthogonal 121 

genomics platforms with these datasets through PoGo will be valuable for large-scale 122 

analysis such as personal variation and precision medicine studies. 123 
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Figures 147 

 148 

Figure 1 Schema of PoGo algorithm for mapping peptides through proteins to genomic loci. 149 

(a) Annotated protein coding transcripts in GTF format and respective translated protein 150 

sequences in FASTA format are integrated by PoGo through intermediate coordinates 151 

(turquoise), representing the exonic structure of the transcript within the protein. (b) 152 

Peptides, identified through searching mass spectrometry data against the protein sequence 153 

database, are mapped against the proteins. The position within the proteins then allow 154 

retrieval of overlapping coding exons and enable the calculation of the exact genomic 155 

coordinates.  (c) Example mappings of PoGo for the overlapping repeat peptide 156 

‘VPEPGCTKVPEPGCTK’ in a genome browser (0 Mismatches). Application of PoGo allowing 157 

for up to two mismatches results in identification of two additional repeats (1 and 2 158 

Mismatches, red boxes) validated through mass spectrometry identified peptides of the 159 

exact sequence (Validation). 160 
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 161 

Figure 2 Visualization of different PoGo output formats for the peptide 162 

‘IADPEHDHTGFLTEYVATR’ within the MAPK3 gene. Genomic coordinates are shown at the 163 

top as x-axis. Gencode (v20) annotations of transcripts are indicated in blue. (a) Besides 164 

genomic location of the peptide the GTF format holds additional information, such as the 165 

gene name and gene identifier, while the BED output visualises uniqueness of the mapping 166 

across the genome. Here the black color indicates unique mapping to the gene MAPK3. (b) 167 

Genomic loci of post-translational modifications within a peptide, here phosphorylation 168 

identified through brackets in the sequence, are depicted through thick blocks spanning 169 

from the first and last modification site. The red color indicated in this output format the 170 

presence of phosphorylation.  (c) Depiction of log2-fold changes mapped for the example 171 

peptide to the genomic location across 69 ovarian cancer samples (y-axis). High values are 172 

shown in red while blue indicates low log2-ratios.  173 
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Online Methods 174 

Software availability. PoGo is implemented in C++. Executable files for Windows and Linux, 175 

instructions for running PoGo, and explanations for each output format and their specific 176 

visual attributes are available at http://www.sanger.ac.uk/science/tools/pogo. The source 177 

code is available through https://github.com/SangerProteomics/PoGo. The track hub 178 

generator application, instructions for running it, explanation of visual components of 179 

resulting track hubs, and a list of proteogenomic track hubs generated at the Wellcome 180 

Trust Sanger Institute are available at 181 

http://www.sanger.ac.uk/science/projects/proteogenomichubs. The perl source code is 182 

made available through https://github.com/SangerProteomics/TrackHubGenerator.  183 

PoGo algorithm. PoGo is a multi-sample peptide-to-genome mapping tool taking as input 184 

tab delimited lists of peptides identified through mass spectrometry (MS) with associated 185 

number of peptide-to-spectrum matches (PSMs), quantitative value and sample identifier. 186 

PoGo also requires a reference genome annotation in the General Transfer Format (GTF) 187 

and translated protein coding sequences in FASTA format as input. The genomic coordinates 188 

of annotated coding sequences are mapped onto their respective protein sequences. 189 

Peptides identified through MS are then mapped against protein sequences accounting for 190 

up to two mismatches. The genomic coordinates for each peptide are calculated based on 191 

their position within the proteins. Each mapped peptide is additionally assigned the 192 

associated sample identifier as well as the number of PSMs and the quantitative value. 193 

Furthermore, post-translational modifications annotated in the peptide sequence are 194 

mapped to their respective genomic coordinates and color coded for the type of 195 

modification. 196 

Connecting protein sequences with genomic coordinates. PoGo requires protein sequences 197 

and gene annotations in FASTA and GTF format, respectively. Protein sequences have to be 198 

connected to genes and transcripts through type specific identifiers (IDs). For each protein 199 

sequence lines from the GTF file containing the transcript ID and feature-type CDS (coding 200 

sequence) are extracted. The order of exons per transcript starts with the first exon in the 201 

sequence reflecting the reading direction during translation, regardless of the strand, 202 

resulting in a reverse order of genomic coordinates for transcripts on the reverse strand. 203 

This way protein sequences and the exons match directionality. The exonic structure is 204 

mapped onto the protein sequence through construction of protein exons. Let a transcript T 205 

be a set of exons t1, t2, … tn where n is the number of exons and each exon t contains the 206 

chromosome identifier, the start and end positions within the chromosome, St and Et 207 

respectively, the strand on which the transcript is annotated. The corresponding protein P is 208 

defined as a set of protein exons p1, p2, … pn, where each protein exon p contains the start 209 

and end positions, sp and ep respectively, within the protein sequence so that the protein is 210 

mapped onto the transcript as f: P→T, pi→ti. For each protein in the FASTA file a map of 211 

protein exons to genomic exons is generated in PoGo.  212 

To account for frame shifts between genomic exons ti and ti+1 each protein exon p also holds 213 

information about the number of base pairs (bp) contributing to the codon of the first (N-214 

term) and last (C-term) amino acid as offsets O={1,2,3}. In general, the N-term offset at the 215 

beginning of a protein defined as O(p1(N-term))=3 resulting in O(pn(C-term))=3 for complete 216 

annotations of coding transcripts. In instances where the annotation is missing a start or end 217 
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codon the offsets may vary and is identified through the annotated frame. C-term offsets 218 

O(pi(C-term)) for each protein exon p are calculated based on the length of the genomic 219 

exon L(ti) and the offset of the N-term O(pi(N-term)) so that O(pi(C-term))=X=L(ti) mod 3-220 

O(pi(N-term))+3 with the exception O(pi(C-term))=X mod 3 for X>3. N-term offsets of 221 

following protein exons O(pi+1(N-term)) are calculated so that O(pi(C-term))+O(pi+1(N-term)) 222 

mod 3=0. 223 

Identifying proteins of origin for input peptides. To allow fast lookup of proteins containing 224 

any given peptide PoGo creates a dictionary of words with length k (k-mer) overlapping by k-225 

1 amino acids from the protein sequences in the FASTA input. Associated with each k-mer is 226 

a list of protein entries containing the associated protein with identifiers and the start 227 

position of the k-mer in the sequence. The dictionary is designed to consider leucine and 228 

isoleucine as equal as they are not distinguishable in MS. Peptides identified through MS are 229 

retrieved from the input file and searched against the dictionary. Thereby PoGo allows 230 

imperfect matching with up to 2 amino acid substitutions (mismatches m) to also identify 231 

proteins with potentially underlying non-synonymous single nucleotide variants. For 232 

peptides shorter than (m + 1) * k residues only the first word of length k is used and all 233 

combinations with m amino acid substitutions are generated. Each new word is looked up in 234 

the dictionary. Peptides longer than (m + 1) * k are split into consecutive k-mers and 235 

searched in the dictionary. At most m consecutive k-mers can contain amino acid 236 

substitutions leaving one word without any substitutions allowing for perfect matching in 237 

the look-up table. The presence of the peptide in each found protein then is validated taking 238 

into account the number of mismatches. The gene and transcript identifiers and the 239 

respective start position within each protein are retrieved. 240 

Retrieving genomic coordinates for peptides. Peptides with associated gene and transcript 241 

identifiers and the start positions within each protein are used to calculate the genomic 242 

coordinates. The length of the peptide sequence A with start position sA in protein P is used 243 

to calculate the end position eA. To calculate the genomic coordinates for the peptide first 244 

the overlapping protein exons p are obtained so that P(A) = {x e P | sx ≤ sA ≤ ex v sx ≤ eA ≤ ex}. 245 

Through the mapping of protein exons to genomic exons PoGo can now retrieve the 246 

genomic exons for the peptide sequence A through P(A)→T(A). The genomic coordinates 247 

then are calculated as start SA = SE + dSA and end EA = SE + dEA if the gene is on the forward 248 

strand or start SA = SE – dSA and end EA = SE – dEA if on the reverse strand with dSA = (sA – sP – 249 

1) * 3 + O(P(N-term)) and dEA = (eA – sP) * 3 + O(P(N-term)) – 1 denoting the distance of the 250 

genomic start and end of the peptide, respectively, from the genomic start position SE of the 251 

genomic exon E. 252 

Mapping post-translational modifications. Besides mapping peptides, PoGo is also capable 253 

of mapping post-translational modifications (PTMs) onto the genome. Post-translational 254 

modifications are commonly annotated in the peptide sequence through round brackets 255 

containing the PSI (Proteomics Standards Initiative) name of the modification following the 256 

modified amino acid. With the position of post-translational modifications in the peptide 257 

sequence, start sPTM and end ePTM, the mapping of the underlying peptide to the genome the 258 

above equations to calculate the genomic positions are adjusted: dSPTM = (sA + sPTM – sP - 1) * 259 

3 + O(P(N-term)) and dEPTM = (sA + ePTM) * 3 + O(P(N-term)) – 1. Different types of PTMs are 260 

mapped separately and color coded in the output while multiple occurrences of the same 261 
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PTM type, e.g. phosphorylation, within a single peptide are combined into a single mapping 262 

using the first and last PTM sites.  263 

Adding quantitative information for multiple samples. To allow visualization of quantitative 264 

information for peptides on a genome, PoGo records this type of information. Peptide and 265 

sample pairings may only occur once in the input file uniquely identifying a quantitation 266 

value. PoGo stores the tuples of sample identifier, quantitative value and the number of 267 

peptide to spectrum matches (PSMs) for each peptide. This information is used in the 268 

different output formats to allow comparative analysis. 269 

Generating different output formats. PoGo generates output in three formats commonly 270 

used in genomics. The first and central output format of PoGo is BED. This format stores 271 

each mapped peptide as a single line of twelve tab delimited columns. Besides chromosome 272 

coordinates, the peptide sequence, strand as well as start and end coordinates of a thick 273 

block the start positions and lengths of peptide blocks mapping to genomic exons are 274 

included. Additionally, BED files support individual coloring of each feature. PoGo utilizes 275 

this in two different forms. Firstly, in the general peptide centric output of PoGo peptides 276 

are colored based on their uniqueness within the genome. Peptides unique to a single 277 

transcript are colored in red while peptides shared between multiple transcripts of a single 278 

gene are shown in black. Peptides mapping to multiple genes are indicated by their grey 279 

color. Secondly, PoGo also generates a separate BED file for peptide forms with post-280 

translational modifications. In this instance the thick block element is used to indicate the 281 

position of the post-translational modification. Two or more modifications of the same type 282 

within a single peptide sequence are collapsed to indicate the range between the first and 283 

last modification site. The coloring of the uniqueness per peptide in the genome is 284 

substituted to accommodate color coding of post-translational modifications. 285 

The second file format supported by PoGo for mapped peptides is the general transfer 286 

format (GTF). PoGo redefines some of the feature types to accommodate mapping of 287 

peptides. The feature type ‘transcript’ is used to indicate a mapped peptide while the 288 

feature type ‘exon’ indicates the concrete mapping of the peptide to underlying genomic 289 

exons. PoGo additionally stores information such as the gene identifier, name and biotype 290 

for the gene as well as the number of peptide-to-spectrum matches (PSMs) and quantitative 291 

values for each sample in which the peptide was identified.  292 

For comparative or quantitative analysis PoGo generates the output format GCT which can 293 

be visualized in the Integrative Genomics Viewer (IGV).11 This third format is similar to a 294 

matrix with rows identifying a peptide with genomic mapping and columns identifying a 295 

sample. Each cell holds the quantitative values associated with the peptide and the sample 296 

given in the input file. 297 

Human tissue data. High-resolution MS data from 59 fetal and adult human tissues were 298 

used for the validation of PoGo. The raw data of these draft human proteome maps were 299 

generated by the Pandey lab13, the Kuster lab14, and Cutler lab.15 All three datasets were 300 

combined and reprocessed by Wright et al.9 The data were retrieved in a tab delimited 301 

format combining all results from mzid files available from PRIDE Archive.10 Identifications 302 

were filtered to the highest stringency level described in Wright et al.9 for identification of 303 

novel coding regions (q-value ≤ 0.01 (1% FDR), a PEP of ≤ 0.01, peptide length between 7 304 

and 29 residues, full tryptic peptides, a maximum of two missed cleavages). 305 
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Phosphoproteomic ovarian cancer data. We applied PoGo to isobaric labelled 306 

phosphoproteome data from an ovarian tumor study comprising 69 samples.2 307 

Phosphopeptides with associated iTRAQ quantitation were downloaded as tab separated file 308 

from https://cptac-data-portal.gorgetown.edu. Lower case characters (s, t and y) in the 309 

peptide sequence showing phosphorylation were substituted by upper case characters 310 

followed by the PSI name of phosphorylation in brackets. 311 

Protein sequences and gene annotation and PoGo settings. The annotation of human genes 312 

in GTF format and the corresponding protein coding sequence translation as FASTA files 313 

were downloaded for GENCODE v209 from http://www.gencodegenes.org. Gene and 314 

transcript identifiers were set as “ENSG” and “ENST” for genes and transcripts, respectively, 315 

followed by 11 digits and the word length for k-mers was set to 5 amino acids. For post-316 

translational modifications 10 biologically relevant types were chosen for easy 317 

discriminability of the color code (Supplementary Table 1Error! Reference source not 318 

found.). 319 

Comparison of algorithms for performance evaluation. For the human tissue and the 320 

ovarian cancer phosphoproteome data PoGo’s performance was compared against PGx3 321 

(downloaded from https://github.com/FenyoLab/PGx) and iPiG4 (downloaded from 322 

https://sourceforge.net/projects/ipig/), two standalone tools available to map peptides to 323 

their corresponding genomic coordinates. Each dataset was formatted using in-house scripts 324 

in R and perl to fit the required input format for each tool. Each program was run using 325 

default parameters and the minimum number of required input files. To compare the 326 

mappings between the tools, we marked as equal when chromosome name, start and end 327 

positions, the exon starts and lengths as well as the peptide sequence were the same. 328 

Frameshifts then were identified amongst unique mappings per tool through shifting either 329 

start or end position by up to two base pairs and comparing those to the consensus 330 

mappings. Remaining unique mappings of the tools then were examined manually by 331 

comparing the peptide sequence to the translated sequence of the respective genomic 332 

coordinates in the IGV browser.11  333 

Generating track hubs. Track hubs were generated to visualize different aspects of the 334 

human proteome maps. The data was filtered to two stringency levels resulting in two sets. 335 

The first result set was filtered to a standard significance (q-value of ≤ 0.01 (1% FDR), a PEP 336 

of ≤0.05 and a minimum peptide length of 7 residues) while the highest stringency level 337 

mentioned in Wright et al.9 (q-value ≤ 0.01 (1% FDR), a PEP of ≤ 0.01, peptide length 338 

between 7 and 29 residues, full tryptic peptides, a maximum of two missed cleavages) was 339 

applied to the second set. Additionally, each set was split into subsets for individual tissues, 340 

resulting in 60 files per set. PoGo was run with default parameters using the property of 341 

passing a comma separated list of input files to be mapped separately. The Track-Hub 342 

Generator application then was run using the 60 output files in BED format to generate two 343 

track hubs; one for each significance level filter. Folders and files required for track hubs are 344 

generated automatically. The script ‘fetchChromSizes.sh’ and tool ‘bedToBigBed’ from UCSC 345 

(both downloaded from http://hgdownload.cse.ucsc.edu)16 are used in the Track-Hub 346 

Generator to create binary files from the original BED files used for track hubs. The 347 

generated track hubs are accessible through ftp and http via 348 

http://www.sanger.ac.uk/science/projects/proteogenomichubs. 349 
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