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ABSTRACT 
The advent of high-throughput sequencing (HTS) has revolutionized the way in which 
epigenetic research is conducted. Often coupled with the availability of fully sequenced 
genomes, millions of small RNA (sRNA) reads are mapped to regions of interest and the 
results scrutinized for clues about epigenetic mechanisms. However, this approach 
requires careful consideration in regards to experimental design, especially when one 
investigates repetitive parts of genomes such as transposable elements (TEs), and 
especially when such genomes are large as is often the case in plants. Here, to shed light 
on the challenges of mapping sRNAs to TEs, we focus on the 2,300Mb maize genome, of 
which >85% is derived from TEs. We compare various methodological strategies that are 
commonly employed in TE studies. These include choices for the reference dataset, the 
normalization of multiple mapping sRNAs, and the selection among different types of 
sRNA metrics. We further examine how these choices influence the relationship between 
sRNAs and the critical feature of TE age, and explore and contrast their effect on low 
copy regions (exons) and other popular HTS data (RNA-seq). Finally, based on our 
analysis, we share a series of take-home messages to help guide TE epigenetic studies 
specifically, but our conclusions may also apply to any work that involves mapping and 
analysis of HTS data. 
 
INTRODUCTION 
Across eukaryotes, epigenetic pathways contribute to diverse functions, including gene 
regulation and transposable element (TE) silencing (1). Small RNAs (sRNAs) are a key 
component of these pathways. Numerous studies have investigated the biogenesis and 
functional roles of sRNAs, with most focusing on the molecular mechanisms that 
underlie these processes (for recent reviews see (2-4)). Some of these studies have 
utilized high-throughput sequencing (HTS) technologies, which generate vast numbers of 
sRNA reads. This capacity of HTS has facilitated the identification of novel sRNA 
classes, the quantification and comparison of sRNA expression profiles across tissues, 
and the discovery of genomic loci that map large volumes of sRNAs. These tasks have 
been aided by numerous computational tools, most of which have been tailored to study 
micro RNAs (miRNAs) (5-11), with fewer offering comprehensive identification, 
quantification and visual-based support for all sRNA types (12-17). 
 Even with these tools, significant challenges remain in the handling and 
interpretation of HTS sRNA data. One major challenge concerns the sequencing depth of 
libraries during differential expression analysis across tissues; this topic, however, has 
been thoroughly investigated (e.g., (6,15,18)) and will not be discussed further. 

Another important challenge, which we will address here, stems from the fact that 
some sRNAs map to unique locations (U_sRNAs) of a reference genome, while others 
align equally well to multiple locations (M_sRNAs). The handling of the latter is a major 
concern, as it impacts downstream analyses (15), and is as yet practically unresolved as 
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different studies (reviewed in Johnson et al. 2016) and related sRNA analysis tools have 
used different approaches. For example, the NiBLS method allows multiple mapping 
without any kind of normalization for the number of mapping locations (19), the SiLoCo 
tool of the UEA sRNA Toolkit weights each read by its repetitiveness in the genome 
(20), the segmentSeq package of Bioconductor allocates each M_sRNA only once to a 
predefined locus even if it maps to more than one places within this locus or indeed 
across the genome (13), Novoalign (http://www.novocraft.com) excludes M_sRNAs, and 
bowtie (21) and bwa (22) randomly place each M_sRNA to a single locus under their 
default settings (22). Finally, a recently updated version of ShortStack allocates 
M_sRNAs to single loci based on the densities of U_sRNAs (23). 
 The importance of M_sRNAs and of their handling may be dependent on the 
component of the genome under investigation; for instance, due to their repetitive nature, 
TEs are likely to map many M_sRNAs, which unavoidably complicates TE-related 
studies. This effect may be especially prominent in plants, because of their large genomes 
(the average size of a diploid angiosperm is ~6,400Mb) and the fact that most of plant 
DNA has originated from TEs (24). This point is exemplified by contrasting data from 
the unusually small genome of Arabidopsis thaliana (which is only 125Mb and contains 
~24% TE-derived DNA) and the larger - but still small, relative to the angiosperm 
average - genome of maize (2,300MB, ~85%). sRNA mapping studies have shown that 
<25% of A. thaliana TEs are mapped solely by M_sRNAs (25), but this proportion raises 
to >72% for maize TEs (26). Hence, careful consideration of M_sRNAs is crucial for 
understanding epigenetic processes in genomes like maize. The challenges of mapping 
sRNAs to TEs are further exacerbated by the fact that accurate TE identification is a 
notoriously difficult task (27). To simplify the problem, previous studies have often used 
TE exemplars (28-30), which are a consensus of many TE sequences representing a 
single TE family or subfamily. The use of exemplars may be pragmatic, but it likely 
reduces the analysis resolution compared to examining whole populations of annotated 
TEs. 

Here we attempt to systematically address the complex, but understudied, issue of 
analyzing sRNAs in the context of TEs, because the impact of their treatment on analyses 
is presently unclear. To better assess different approaches, we focus on the maize genome 
and the most abundant Copia and Gypsy Long Terminal Repeat (LTR) retrotransposon 
families. We perform standard sRNA mapping using existing HTS data from three 
different tissues, but vary several features of the analyses, such as i) the reference dataset, 
which ranges from whole genome TE annotations to TE exemplars, ii) the treatment of 
M_sRNAs, which ranges from various normalization options to their complete exclusion, 
and iii) the sRNA metrics, i.e. consideration of distinct sequences or their abundances. 
Figure 1 depicts the methodological matrix of our work, along with many of the terms 
that we use throughout the study. We then comment on the effect of some of these 
choices on the relationship of mapping with other TE features such as TE age, with low 
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copy regions of the maize genome, or when using HTS mRNA data. We conclude by 
sharing our insights as take-home messages to help guide researchers in epigenetic 
analyses of TEs or mapping of HTS data to large and complex genomes. 

Figure 1. A matrix of the terms, data and analyses used in this study. 
 
RESULTS & DISCUSSION 
Reference datasets: TE exemplars vs. annotated TE populations 
It is common practice in TE epigenetic studies to examine only full-length TEs. But how 
do inferences vary as a function of the reference dataset? In this study, we compared 
mapping patterns of 21, 22 and 24 nucleotide (nt) sRNAs of leaf, tassel and ear tissues 
between two ΤΕ datasets. The first was a comprehensively annotated dataset of Sirevirus 
LTR retrotransposons of the Copia superfamily in maize (31). Sireviruses encompass the 
three most abundant Copia families in maize, namely Ji, Opie and Giepum. Ji and Opie 
each constitute ~10% of the genome, and Giepum represents another ~1.2% (32,33). We 
used 3,285 Ji, 2,926 Opie and 102 Giepum full-length elements that were recently 
analyzed for their epigenetic patterns (26) (Figure 1). To add to this dataset, we devised a 
pipeline (see Methods) to identify full-length elements of the three most abundant Gypsy 
families, including Huck (10.1% of the genome), Cinful-zeon (8.2%) and Flip (4.2%) 
(32) (Figure 1). We annotated 2,460, 6,276 and 483 copies respectively. The second 
reference dataset consisted of exemplar TE sequences. We downloaded all maize TE 
exemplars from http://maizetedb.org. The number of exemplars for the six Copia and 
Gypsy families ranged from one to 41 consensus sequences (Figure 1). 
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Exemplars miss a substantial fraction of sRNA information 
We began by first examining the total number of distinct sRNA sequences 

(termed “sRNA species” hereafter) mapped to each family. An initial observation was 
that there is a much lower number of sRNAs (3-fold decrease on average) that mapped to 
the exemplars compared to the annotated populations (Figure 2A, Table S1). For 
example, 90,503 sRNA species of the leaf library mapped to the exemplars of all six 
families combined, compared to 310,548 that mapped to the annotated elements. This 
result indicates that a substantial fraction of sRNA information is lost when using 
exemplars. Nonetheless, the majority of sRNAs that mapped to exemplars do relate to the 
six families, because 89% (162,493 of 181,188 for all libraries and families combined) 
also mapped to the annotated TE populations. 

Figure 2. sRNA metrics on TE exemplars and annotated TE populations. (A) Total 
number of sRNA species that mapped to each family. (B) Proportion of U_sRNAs and 
M_sRNAs for all families combined. (C) Total number of sRNA species that mapped to 
different datasets of the three Copia families. (D) Proportion of the number of U_sRNAs 
that mapped per TE. 
 

U_sRNA and M_sRNA ratios differ between datasets 
 Previous research has suggested that U_sRNAs may exert a stronger effect on TE 
silencing compared to M_sRNAs (25,34). Accordingly, several studies have used only 
U_sRNAs as the basis for inference, derived either from mapping to genomes or to 
exemplars (29,30,35,36). Our analysis showed that there is a massive difference in the 
U:M sRNA ratio as a function of the reference dataset: a much higher proportion of 
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sRNAs map uniquely to exemplars (43% of all sRNAs for all libraries and families 
combined) compared to annotated TE populations (2.6%) (Figure 2B, Table S2). In fact, 
the vast majority of U_sRNAs that map to exemplars become M_sRNAs when mapped 
to the genome. This finding raises two important points. First, U_sRNAs appear to be 
overrepresented in the analysis of exemplar datasets and hence their use over M_sRNAs 
(e.g., (29,30)) should be carefully considered.	 Second, U_sRNAs may convey little 
information at the genome level for TE studies, because there may be only a few mapping 
to each element, at least in TE-rich and large genomes like that of maize. 

Low levels of sRNA ‘cross-talk’ between families are consistent between 
datasets 
 The extent to which sRNAs can map to elements of multiple TE families is 
largely unknown. Yet, this epigenetic ‘cross-talk’ may be important for host defenses, by 
spreading TE silencing through homology-based mechanisms (37,38). Our analysis of 
both TE exemplars and annotated TE populations was consistent in showing that sRNAs 
are generally family specific. For all libraries combined, only 0.2% of 181,188 exemplar-
mapping and 1.7% of 550,755 population-mapping sRNA species cross-talked between 
families. For completeness, we also investigated the degree of sRNA cross-talk between 
TEs and exons from the maize Filtered Gene Set. The low levels of cross-mapping 
(<0.2% for each library) imply that exon-mapping sRNAs (545,601 sRNAs for all 
libraries combined) serve biological roles unrelated to TE silencing. 

sRNA patterns along TE sequences differ between datasets 
 We then examined the mapping characteristics of each TE dataset by averaging 
sRNA targeting per nucleotide of each full-length element, so as to allow comparisons 
among TEs. For this analysis, we used sRNA species but also the metric of “sRNA 
expression” that indicates the number of reads in a library for each sRNA species. In 
addition, we did not normalize M_sRNAs by their number of mapping locations. (We 
compare weighted and un-weighted data further below). Our analysis showed that, 
despite the low number of sRNAs that mapped to exemplars, there was agreement across 
datasets (Figure S1): 24nt sRNAs, measured either as species or expression, generally 
targeted all families more intensely than 21-22nt sRNAs, although this was not as evident 
in tassel and for Ji that was previously categorized as a “22nt” family (39). 

Next, we examined if this consistency persists during in-depth analysis of sRNA 
mapping along the length of elements. For this comparison we focused on the three 
Copia families, because of the preexisting annotation of their genomes, including 
information about complex palindrome motifs in the cis-regulatory region of the LTRs 
that are sRNA targeting hotspots (26). We found that both datasets produced highly 
similar patterns, with one intriguing exception: the exemplars were not mapped by 
sRNAs in the palindrome-rich regions (Figure 3A). Closer investigation of the exemplar 
sequences revealed that they contain long runs of N nucleotides in these regions (Figure 
3B). We presume that the process of generating consensus sequences does not perform 
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well in areas of high sequence variability, because the palindromes of the Sirevirus 
families differ both along the sequence of an individual element and among elements 
(26). As a result, these regions are masked in exemplars, even though they may be of 
biological importance due to their elevated sRNA mapping and rapid evolution (26). 

Searching further, we found that 74 exemplars from 37 families within 
http://maizetedb.org contain stretches of >100 N nucleotides (Huck, Cinful-zeon and Flip 
were not among them), making the occurrence of masked regions a fairly common 
feature of this dataset. The extent of this problem is not known for other plant species that 
have generated exemplar datasets such as foxtail millet (40) and strawberry (41), but 
needs to be assessed, especially in the light of how helpful these datasets can be in 
combination with genomic, sRNA and mRNA HTS data in the analysis of the repetitive 
fraction of genomes (42,43). Overall, this analysis illustrates that the use of exemplars 
may not only reduce the volume of available sRNA information (Figure 2A, Table S1), 
but may in fact entirely omit mapping to specific regions of TEs (Figure 3A). 

Figure 3. sRNA mapping along the sequences of Ji, Opie and Giepum exemplars and 
annotated populations. (A) Un-weighted sRNA data from ear tissue were mapped 
separately to the LTRs and the internal (INT) domain. Each region was first split in 100 
equally sized windows, and mapping was calculated as the number of sRNA species per 
nucleotide of the sense (positive y-axis) and antisense (negative y-axis) strands, and 
visualized with a boxplot for each window. The position of the palindromes (LTRs) and 
the gag, pol and envelope (env) genes (INT domain) are shown at the bottom of each 
panel. (B) An example of the LTR sequence of an Opie exemplar with N nucleotides 
masking the unresolved palindrome-rich region. 
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‘Contamination’ of annotated TE populations affects sRNA mapping profiles 
Our reference dataset representing the three Copia families is a strictly curated 

subset of the complete population of maize Sireviruses available from MASiVEdb 
(http://bat.infspire.org/databases/masivedb/). This larger dataset contains 6,283 Ji, 6,881 
Opie and 221 Giepum full-length elements (Figure 1) that have been identified as bona 
fide Sireviruses (44). However, unlike our reference dataset, these TEs have not been 
carefully examined for the presence of ‘contaminating’ DNA from insertions of other 
elements or even from captured genes. As a result, an unknown number of elements may 
harbor foreign DNA, which in turn may affect data interpretation. 

To examine this issue, we compared the mapping characteristics of the reference 
dataset against the complete MASiVEdb population. The number of sRNA species that 
mapped to each TE family increased substantially for MASiVEdb. Collectively, 626,836 
sRNAs from the three sRNA libraries mapped to the 13,385 TEs of MASiVEdb, but only 
a third (206,589) of that total mapped to our reference dataset (Figure 2C, Table S1). 
Hence, the MASiVEdb population represents far more sRNA variation, but the extent to 
which TE contamination contributes to this increase is unclear. It is also hard to assess, 
because even very small fragments may map several sRNAs that could collectively 
account for a large fraction of the sRNA pool. 

One indication may be provided by comparing the level of sRNA cross-talk 
between families of the two datasets. Our conjecture is that higher levels of cross-talk in 
MASiVEdb will reflect the presence of fragments of one family within elements of 
another family, thereby artificially increasing their ‘common’ sRNAs. Our analysis 
showed that indeed this was the case. For example, 30.8% (188,926 of 612,225 for all 
libraries combined) of the Ji and Opie sRNAs mapped to elements of both families using 
MASiVEdb compared to 3.1% (6,033 of 194,582) using the reference dataset. Likewise, 
cross-talk increased with the Gypsy families, for example from 0.2% to 5.3% between Ji 
and Huck, and from 0.2% to 10% between Opie and Cinful-zeon. To further test this 
conjecture, we screened for foreign TE fragments within the two datasets using non-
Sirevirus maize TE exemplars as queries (BLASTN, max E-value 1x10-20). We detected 
only two elements of the reference dataset with foreign TEs, compared to 1,158 elements 
of MASiVEdb that contained fragments (of 189nt median length) from 451 non-Sirevirus 
families. 

Using MASiVEdb as an example, this analysis implies that a substantial fraction 
of the full-length elements of TE databases contain foreign TE fragments. Yet, that is not 
to say that these databases are of low quality; they all employ sophisticated algorithms 
based on various structural and homology criteria to identify high-quality full-length 
elements. To support this argument, we note that MASiVEdb generated similar sRNA 
mapping patterns as the reference dataset along the TE sequence, including the 
palindrome-rich region (Figure S2). It is likely, however, that other types of epigenetic 
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analyses might be negatively affected by TE contamination. Hence, it is advisable that 
the sequence quality of TEs is considered prior to mapping of sRNA data. 
 
Normalization: Complexities regarding the use of M_sRNAs 

Inclusion of M_sRNAs is necessary in TE studies 
The handling of sRNAs with multiple mapping locations is an issue that has long 

troubled scientists. Often, in an effort to avoid methodological complications, M_sRNAs 
are excluded from analyses (29,30,35,36). However, even though U_sRNAs correlate 
more consistently with TE silencing than M_sRNAs (25), a significant proportion of 
RNA-directed DNA methylation (RdDM) is thought to be mediated by M_sRNAs (34). 
Moreover, our data in Figure 2B suggest that there may not be enough U_sRNAs to make 
meaningful inferences about TEs in hosts with large genomes. 

To examine potential U_sRNA differences among plant species, we calculated the 
median density of 24nt U_sRNAs per nucleotide of maize TEs (for all libraries and 
families combined) and compared it to those of Arabidopsis thaliana and lyrata TEs 
previously reported by Hollister et al. (2011). While the median densities were only 
twofold different between thaliana and lyrata (0.11 vs. 0.06), these two species had a 69-
fold and 37-fold difference with maize respectively (0.0016 24nt U_sRNAs per 
nucleotide of maize TEs). Comparative data were not available for 21-22nt U_sRNAs 
from the Hollister et al. study, but given that only 3,522 21-22nt U_sRNAs from all 
libraries mapped to the 15,532 full-length elements of the Copia and Gypsy datasets 
combined, it is clear that most elements did not map U_sRNAs in maize. These findings 
i) suggest that the effect of U_sRNAs on TE silencing may be less prominent in maize 
and other large genomes, and ii) decisively argue in favor of including M_sRNAs in TE 
analyses. 

Normalization of M_sRNAs varies across genomic regions and between 
datasets 

Besides excluding M_sRNAs from analyses as discussed previously or sometimes 
even allocating them randomly to single loci (45-47), the most common approaches for 
handling M_sRNAs is either to count all mapping locations so that each location has a 
value of 1.0, or to weight for multiple mapping so that each location is assigned a value 
of 1/x, where x is the total number of locations for a given M_sRNA. This normalization 
can be applied to both “sRNA species” and “sRNA expression”. Nonetheless, it is 
unclear if and how these normalization strategies affect downstream research. One 
parameter that may provide valuable insights is the extent of multiple mapping (i.e., the 
number of mapping locations) for M_sRNAs that target various parts of a genome or 
different reference datasets (Figure 1). The reasoning is that the smaller the x, the weaker 
the differences between strategies will be and vice versa. To our knowledge, such a 
systematic examination has not been conducted so far. We therefore compared the 
mapping locations of Μ_sRNAs that target our Copia and Gypsy families i) across the 
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genome, ii) within their annotated full-length populations, and iii) across the TE exemplar 
database, so as to keep in line with the various strategies of previous studies. 

Focusing first on the entire genome, we find that Μ_sRNAs have an exceptionally 
high number of mapping locations. For example, the median number of locations for all 
families combined was up to 513 among the three libraries, while the average often 
exceeded 1,500 (Table 1). Interestingly, separate investigation of the Copia and Gypsy 
families revealed that Μ_sRNAs targeting Copia elements had twice as many mapping 
locations compared to Gypsy elements (Table S3), even though each group of families 
comprises ~20-25% of the maize genome (32,33). This discrepancy may reflect different 
levels of sequence heterogeneity, i.e. families with many highly similar elements provide 
substantially more mapping loci for a given Μ_sRNA, compared to families with more 
divergent elements. Second, in contrast to the numerous mapping locations across the 
entire genome, there was a marked decrease in the number of locations within the 
annotated full-length populations (Table 1). We found that, on average, only a fifth of the 
genomic locations correspond to full-length elements, indicating that most Μ_sRNAs 
map to other types of sequences related to the six families, presumably unidentified full-
length elements, degraded copies or solo LTRs. Third, the decrease was even more 
dramatic within the TE exemplar dataset, where the M_sRNAs of the six families only 
had three to five mapping locations each (Table 1). 
 
Table 1. Number of locations for M_sRNAs that mapped to different parts of the 
maize genome 

library 
sRNA 
length 

# of loci for sRNAs of the six familiesa # of genomic 
loci for exon 

sRNAsa  

# of genomic 
loci for other 

sRNAsa genome  TE population exemplar db 

leaf 

21 283 - 1,397 66 - 298 3 - 5 4 - 12 5 - 37 
22 262 - 1,261 70 - 284 3 - 5 4 - 11 5 - 42 
24 82 - 613 11 - 121 3 - 4 4 - 12 4 - 21 
all 127 - 854 18 - 179 3 - 4 4 - 11 4 - 26 

tassel 

21 425 - 2,033 114 - 419 3 - 5 4 - 18 6 - 57 
22 380 - 1,615 118 - 369 3 - 5 4 - 15 7 - 60 
24 199 - 1,017 26 - 194 3 - 4 5 - 17 4 - 25 
all 277 - 1,353 60 - 281 3 - 5 5 - 17 4 - 34 

ear 

21 513 - 2,130 86 - 411 4 - 5 4 - 14 6 - 55 
22 454 - 1,748 83 - 359 4 - 5 4 - 15 7 - 56 
24 147 - 897 19 - 170 3 - 5 4 - 17 5 - 26 
all 219 - 1,231 31 - 241 3 - 5 4 - 16 5 - 32 

aThe median (left) and average (right) number of mapping locations are shown for each category. 
 

The above findings were derived from the most abundant TE families in maize 
and hence represent the most repetitive parts of a large genome. To contrast them with 
lower copy regions, we calculated the genomic locations of two additional sets of 
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M_sRNAs: exon-mapping M_sRNAs and all other M_sRNAs that did not map to either 
exons or the six TE families. We assume that a substantial proportion of the last category 
corresponds to less abundant TE families. (Note that the libraries were filtered for 
tRNAs, rRNAs, snoRNAs and miRNAs). Our analysis showed that the mapping locations 
of both categories did not exceed a handful of sites (Table 1); nonetheless, the average 
number of locations of the ‘other’ M_sRNAs was three-fold higher than the exon-
mapping M_sRNAs, implying that a large proportion of the former type may indeed 
target low copy TEs. 

Altogether, these data show that there can be up to a hundred-fold variation in the 
number of locations for M_sRNAs of maize TEs, depending on the reference dataset that 
is employed. This huge variation particularly affects the most abundant TE families, 
because mapping to TE exemplar datasets turns extreme multi-mappers to essentially 
semi-U_sRNAs (Table 1). Moreover, this effect likely holds true for the majority of 
plants, as most have genomes larger than maize and with concomitant TE content (24). 
Based on this evidence, and given the rapid accumulation of sequence data for several 
organisms, exemplars should be avoided when possible, and whole genomes or (at least) 
annotated TE populations should be preferred for the normalization of M_sRNAs. 

Impact of normalization on data inference 
 To gain further insights into how sRNA metrics can change as a function of 
methodology, we compared the two extremes of a theoretical ‘normalization spectrum’, 
i.e. un-weighted vs. genome-weighted sRNA data, by investigating two questions of 
increasing complexity. The first was the general mapping characteristics of TE families, 
i.e. levels of sRNA targeting per nucleotide of full-length elements. We found that this 
metric was not altered substantially by the two extremes, because 24nt sRNA targeting 
remained stronger than 21-22nt sRNAs across most tissues for all families (Figure S3). 

The second question was how sRNA mapping correlates with other TE variables. 
For this question, we studied sRNA targeting as a function of the insertion age of TEs. 
Age was calculated based on the sequence divergence of each LTR pair and profiled at 
the family level (Figure 4A). Use of un-weighted data generated strong negative 
correlations between age and both sRNA species and sRNA expression for all 
combinations of tissue, family and sRNA length (average Spearman r = -0.67, P < 10-20; 
Figures 4B, S4). Critically, use of genome-weighted data retained this pattern only for 
21-22nt sRNAs (average Spearman r = -0.35, P < 10-20 in most cases), while for 24nt 
sRNAs there was discordance both between sRNA metrics and among families. We 
detected a positive correlation for Ji, Opie and Huck using sRNA species, which was 
often reversed or not statistically supported using sRNA expression (Figures 4B, S4). In 
contrast, there was a negative correlation for Cinful-zeon, Flip and Giepum across most 
tissues and for both sRNA metrics. 
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Figure 4. Relationship between TE age and sRNA mapping using un-weighted and 
genome-weighted approaches. (A) Age distribution in million years (my) of TE 
families. (B) Mapping of sRNA species (left panels) or expression (right panels) from ear 
tissue was calculated per nucleotide of full-length elements for each family. Age is cutoff 
at 3my to allow sufficient visualization of the x-axis. The Spearman r coefficient is 
shown for each plot, calculated for all elements and not only for those <3my. P values 
were <0.01, except those indicated by an asterisk. 
 

Finally, we contrasted the above analysis with how normalization affects another 
type of commonly used HTS libraries, that is of mRNA expression data. It is known that 
mRNA libraries have a considerably smaller amount of multiple mapping reads (10% 
against the genome, in comparison to 40-90% of sRNA libraries), which can be attributed 
to the longer read lengths and mostly single-copy transcription loci (23). We therefore 
retrieved mRNA data from three biological leaf replicates and examined (as we did with 
sRNAs) i) their general mapping characteristics to the genome, ii) the expression patterns 
of TE families, and iii) the relationship between expression and TE age. First, our 
analyses confirmed the aforementioned ~10% of M_mRNAs at the genome levels, but 
we additionally discovered that the vast majority TE-mapping reads were M_mRNAs 
(Table S4). Furthermore, the median number of locations for these TE-mapping 
M_mRNAs across the genome or within the annotated full-length elements (Table S4) 
was approximately only two-fold lower to those of the TE-mapping M_sRNAs (Table 1). 
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Second, both normalization approaches generated the same relative expression levels 
among families despite their widely different sizes (Figure S5A). Finally, both types of 
data produced strong negative correlations between mRNA expression and age for all 
possible combinations (average Spearman r = -0.61, P < 10-20; Figure S5B). 

Taken together, these findings suggest that the choice of treatment of HTS data 
can affect biological inference, clearly evident in the inconsistent relationship between 
24nt sRNAs and age. And although the conclusions of many of the analyses were 
unchanged, we note that the strength of the correlations with age were substantially 
weaker for genome-weighted than un-weighted data (average r of 0.32 vs. 0.67 for 
sRNAs and 0.72 vs. 0.52 for mRNAs, using absolute values). This is counterintuitive, 
because, as we showed earlier (Table 1), weighting-by-location is expected to have a 
stronger impact on high-copy than low-copy sequences. Yet, 21-22nt sRNA and mRNA 
profiles did not change as a function of age within each family, whereby the numerous 
young and highly similar elements were mapped by more sRNAs (Figures 4B, S4) or 
mRNAs (Figure S5B) than their few, old and divergent relatives in both normalization 
approaches. Also, the relative mRNA expression levels of families of varying sizes did 
not change by using weighted or un-weighted data (Figure S5A). Based on these insights 
and the unpredictability of how normalization may further impact other research 
questions, we argue that multiple approaches should be used in parallel to validate 
results. 

U_sRNA-guided mapping of M_sRNAs may be problematic for TE studies 
 An alternative approach for mapping M_sRNAs assigns reads to single loci using 
as guide the local densities of U_sRNAs (23). This method, which is at the core of the 
ShortStack tool (12), aims to find the true generating locus of each read, instead of 
allocating M_sRNAs across their targets or even excluding them altogether. Historically, 
this concept was initially tested with mRNA data where it significantly improved 
placement of M_mRNAs (48). For sRNAs, recent analysis of simulated libraries by 
Johnson et al. (2016) showed that the U_sRNA-guided mode outperforms other 
methodologies in selecting the correct locus from which an M_sRNA may have 
originated. 
 However, our data suggest that two properties of TEs may pose a real challenge to 
this process. First, there is a very small number of U_sRNAs that align to TEs. For 
example, only 2,166 of 147,034 sRNA species of the ear library that collectively mapped 
to our Copia and Gypsy elements are U_sRNAs (Figure 2B, Table S2); furthermore, the 
vast majority of these U_sRNAs mapped to different TEs (Figure 2D). As a result, and 
given that the length of our TEs ranges between 7-15kb and that ShortStack examines 
250nt windows (23), it is expected that most windows will not have a U_sRNA score and 
hence vast amounts of M_sRNAs will be discarded. The second issue concerns the 
numerous genomic locations for M_sRNAs targeting TEs (Table 1). These are far above 
the 50-target cutoff that Johnson et al. suggest leads to a high rate of misplacement. 
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Finally, ShortStack can also guide M_sRNA allocation by calculating the densities of 
both U_sRNAs and weighted M_sRNAs; however, this option did not perform as well as 
the U_sRNA-only option at the genome level in Arabidopsis, rice and maize (23) and, 
hence, it is likely that its performance will be further compromised in TE-focused 
analyses. 
 A last important point is that a distinction should be made between sRNA-
generating vs. sRNA-targeting loci. ShortStack appears to work beautifully for allocating 
M_sRNAs to their single locus of origin, and future developments may make this 
approach more efficient for TE data as well. Nonetheless, studies that investigate sRNA 
targeting patterns may benefit more by methods that allow multiple mapping. This may 
be especially important for TEs, where it is possible that a given sRNA mediates 
silencing of more than one locus. Although not empirically proven yet, this conjecture is 
supported by evidence for the importance of M_sRNAs in RdDM (34), the homology-
based trans silencing pathway among TEs (38), and the cytoplasmic step of Argonaute 
loading that dissociates sRNAs from their generating loci (49). 
 
sRNA metrics: unexpected differences between sRNA species and sRNA expression 
So far, our analysis has indicated that sRNA species and sRNA expression generally 
produce similar results. However, this is not always true. When we examined the 
relationship between sRNAs and age separately for the LTRs and the internal (INT) 
domain of TEs using un-weighted data, we observed that the plots of the Opie family 
were markedly different in one case. The expression levels of 24nt sRNAs from leaf on 
the LTRs split the Opie elements in two distinct groups, whereby the ‘upper zone’ was 
mapped by approximately twice as many reads compared to the ‘lower zone’ (Figure 
5A). Species of 24nt sRNAs did not generate the same pattern, nor did other 
combinations of sRNA lengths and metrics in Opie (Figure 5A), or in other families or 
tissues (not shown). 

To our surprise, closer investigation revealed that this ‘zoning’ was triggered by 
sRNAs that mapped to a narrow region on the sense strand of the LTRs (Figure 5B). This 
region was targeted by ~115x more reads in the elements of the upper zone compared to 
the elements of the lower zone (median coverage of 1,610 and 14 reads/nt respectively), 
while there was only a three-fold difference (6.1 vs. 2.1 reads/nt) along the rest of the 
LTR. This finding implies that highly expressed sRNA species mapping to this region of 
the elements of the upper zone may drive the Opie split. We retrieved 836 24nt sRNA 
species from all Opie elements and, surprisingly, only one appeared to be responsible for 
the zoning. This sRNA species combined very high expression (1,976 reads) and number 
of target LTRs (3,228 LTRs that comprise the upper zone), ranked 1st and 7th respectively 
among the 836 sRNAs. In contrast, most other highly-mapped sRNAs of the same region 
had expression levels of <10 reads, and therefore did not contribute to the zoning. 
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Figure 5. Opie population split based on sRNA expression data from leaf tissue. (A) 
Relationship between TE age and number of sRNA species (left) or expression (right) 
calculated per nucleotide of the Opie LTRs and INT domain. Age is cutoff at 3my to 
allow sufficient visualization of the x-axis. (B) Mapping patterns (calculated as in Figure 
3A) of 24nt expression data along the LTRs of the two distinct Opie subpopulations. 
sRNA data in A and B were not weighted by their number of genomic loci. 
 

The fact that a single sRNA generates this spectacular pattern raises several 
methodological concerns. First, it is likely that such very high expression levels may be 
the outcome of biases during library construction (15). Second, our data imply that the 
use of sRNA species is more robust than sRNA expression, because it appears to be less 
sensitive to errors that can occur, e.g., during PCR amplification. Finally, and perhaps 
most importantly, these findings denote the need for the confirmation of such 
observations. This can be achieved by cross-examining results from different 
normalization approaches. We checked if genome-weighted sRNA expression data 
reproduce the zoning, but this does not seem to be the case (not shown). However, given 
the inconsistencies of normalization approaches as discussed previously, the most 
appropriate way is the inclusion in the experimental design of technical and/or biological 
replicates. In previous years the lack of sRNA studies could be attributed to the high costs 
of sequencing. These costs are now much lower and, hence, replicates should be typically 
included in epigenetic studies to help identify aberrancies. 
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CONCLUDING REMARKS 
In this work we attempted to address the complex issue of mapping and analyzing sRNAs 
in the context of TEs, which comprise the vast majority of most plant genomes. With the 
goal of providing insights that might help guide future studies, we compared mapping to 
TE exemplars vs. annotated TE populations; explored the extent of multiple mapping 
across different genomic regions or datasets; examined how various strategies for 
mapping M_sRNAs (or M_mRNAs) affect biological inference or are applicable to TEs; 
and finally presented an unexpected inconsistency between the two sRNA metrics of 
species and expression. Summarizing each section into take-home messages: 

1) TE exemplars have been widely popular thus far for various reasons, including 
the absence of sufficient sequence information or, indeed, because research would not 
truly benefit from the burdensome analysis of annotated TE populations. However, their 
usage comes with several limitations that scientists need to be aware of, such as the 
presence of unresolved/masked regions in their sequences, the overrepresentation of 
U_sRNAs, and the large volumes of unmapped data that may severely bias analyses. 
 2) Annotated TE populations appear to be more informative than exemplars for 
mapping epigenetic data. Given that sequence data are now available for a large number 
of genomes, the use of TE populations – additionally filtered for foreign DNA if needed – 
should be preferred over exemplars when possible. 

3) Our analyses also suggest that the inclusion of M_sRNAs in TE studies is 
necessary, and we strongly advocate against a focus solely on U_sRNAs. We favor using 
comparative un-weighted and weighted (i.e. normalized) mapping approaches in parallel 
to validate biological inferences. Crucially, whole, or even partially, sequenced genomes 
should be preferred over exemplars for weighting M_sRNAs. Furthermore, approaches 
that assign M_sRNAs to single loci based on U_sRNAs density are very promising but 
are not yet applicable for TE studies. 

4) Finally, the metric of sRNA expression (and to a lesser extent sRNA species) 
may be prone to errors during HTS library construction. However, sRNA expression is 
often a crucial measurement, for example during differential expression analysis. Aided 
by the rapidly falling costs of sequencing, the inclusion of technical and/or biological 
replicates in sRNA studies should now be standard. 
 
METHODS 
TE datasets 
For the Ji, Opie and Giepum Sirevirus families of the Copia superfamily we used the 
strictly curated set of full-length elements that were previously analyzed in Bousios et al. 
2016. We also retrieved the complete annotated populations from the MASiVEdb website 
(http://bat.infspire.org/databases/masivedb/) (31). 
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 For the Huck, Cinful-zeon and Flip families of the Gypsy superfamily we first 
retrieved the repeat annotation file of the maize TE consortium 
(ZmB73_5a_MTEC+LTR_repeats.gff) from ftp.gramene.org. This file, however, does 
not specify whether an annotated region represents full-length or fragmented TEs. Hence, 
we plotted the frequency distribution of the lengths of the annotated regions to identify 
peaks for each family that would correspond to the size of full-length elements as 
calculated by Baucom et al. (32) (Figure S6A). This approach identified a single peak for 
Huck that nearly overlapped with the Baucom full-length average (13.4kb), two peaks for 
Cinful-zeon that flanked the Baucom average (8.2kb), and two peaks for Flip – one nearly 
overlapping with the Baucom average (14.8kb) and one residing in close proximity 
(Figure S6A). Based on these results, we selected regions between 13.3-14.1kb for Huck, 
7.1-7.5kb and 9.2-9.7kb for Cinful-Zeon, and 14.8-15.6kb for Flip as candidates for full-
length elements, retrieving 2,614, 6,965 and 607 sequences respectively. We then ran 
LTRharvest (50) with parameters xdrop 25, mindistltr 2000, maxdistltr 20000, ins -3, del 
-3, similar 50, motif TGCA, motifmis 1, minlenltr 100, and maxlenltr 5000 in order to 
identify the borders between the LTRs and the INT domain, and to also calculate the 
canonical LTR length of each family. Based on our approach, we selected LTR lengths 
between 1-1.8kb for Huck, 450-750nt for Cinful-zeon, and 4.1-4.5kb for Flip, finally 
yielding 2,460, 6,276 and 483 full-length elements for each family respectively (Figure 
S6B). 

The insertion age of each Copia and Gypsy TE was calculated by first aligning the 
LTRs using MAFFT with default parameters (51) and then applying the LTR 
retrotransposon age formula with a substitution rate of 1.3 x 10-8 mutations per site per 
year (52). 
 Finally, all maize TE exemplars were downloaded from http://maizetedb.org. 
Note that we removed one Ji (RLC_ji_AC186528-1508) and two Giepum 
(RLC_giepum_AC197531-5634; RLC_giepum_AC211155-11010) exemplars from our 
analysis, based on evidence from Bousios et al. (2012) that indicated that the specific 
exemplars are not true representatives of these families. 
 
Mapping sRNA and mRNA libraries 
We used published sRNA data from leaf (GSM1342517), tassel (GSM448857), and ear 
(GSM306487) tissue, and mRNA data from three technical replicates from leaf 
(SRR531869, SRR531870, SRR531871) tissue. Adapters and low quality nucleotides 
were removed using Trimmomatic and the FASTX toolkit respectively, until every read 
had three or more consecutive nucleotides with a Phred quality score of >20 at the 3’-end. 
The libraries were filtered for miRNAs (http://www.mirbase.org/), tRNAs 
(http://gtrnadb.ucsc.edu/), and rRNAs and snoRNAs (http://rfam.sanger.ac.uk/); sRNA 
reads of 21nt, 22nt and 24nt length and mRNA reads longer than 25nt were mapped to 
the maize B73 genome (RefGen_V2) and the maize TE database using BWA with default 
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settings and no mismatches (22). Following previous work (26), each distinct sRNA or 
mRNA sequence was termed “species”, and the number of its reads was its “expression”. 

After mapping, each species was tagged as either U_sRNA/U_mRNA or 
M_sRNA/M_mRNA separately for the genome and the exemplar database. 
M_sRNAs/M_mRNAs were either normalized by their number of mapping locations or 
not normalized, depending on the analysis. Finally, we calculated the total number of 
sRNA species that mapped to a TE ‘locus’ (i.e. the full-length sequence, LTRs or INT 
domain), but also the number of sRNA species and sRNA expression (weighted or un-
weighted) per nucleotide of each locus. The per nucleotide measures allow comparisons 
of averages among TEs and also analysis along the length of the TE sequence. 
 
SUPPLEMENTAL MATERIAL 
The sequences and other information of the annotated TE populations are available as 
Supplemental Material in bat.infspire.org/sireviruses/Submission_Data/. 
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