
 1 

Genome-Wide Association Study of Ionomic Traits on Diverse Soybean 1 
Populations from Germplasm Collections 2 

Greg Ziegler1,2, Randall Nelson3, Stephanie Granada2, Hari B. Krishnan4,5, Jason D. Gillman4,5  3 
and Ivan Baxter1,2 4 

 5 
1USDA-ARS Plant Genetics Research Unit, St. Louis, Missouri 6 
2Donald Danforth Plant Science Center, St. Louis, Missouri 7 
3 USDA-ARS, Soybean/Maize Germplasm, Pathology and Genetics Research Unit and 8 
Department of Crop Sciences, University of Illinois, Urbana, Illinois 9 
4USDA-ARS Plant Genetics Research Unit, Columbia, Missouri 10 
5Plant Science Division, University of Missouri, Columbia, Missouri 11 
 12 
 13 
 14 

 15 
Abstract 16 
The elemental content of a soybean seed is a determined by both genetic and environmental 17 
factors and is an important component of its nutritional value. The elemental content is 18 
chemically stable, making the samples stored in germplasm repositories an intriguing source of 19 
experimental material. To test the efficacy of using samples from germplasm banks for gene 20 
discovery, we analyzed the elemental profile of seeds from 1653 lines in the USDA Soybean 21 
Germplasm Collection. We observed large differences in the elemental profiles based on where 22 
the lines were grown, which lead us to break up the genetic analysis into multiple small 23 
experiments. Despite these challenges, we were able to identify candidate SNPs controlling 24 
elemental accumulation as well as lines with extreme elemental accumulation phenotypes. Our 25 
results suggest that elemental analysis of germplasm samples can identify SNPs in linkage 26 
disequilibrium to genes, which can be leveraged to assist in crop improvement efforts.  27 
 28 
 29 
Introduction 30 
 31 
One of the biggest challenges facing agricultural research today is finding ways to improve crop 32 
yield and nutrition while farming in increasingly erratic climates and on more marginal lands. 33 
Throughout modern agriculture, crops have been bred for maximal yield under optimal  34 
environmental conditions. Farming marginal soils with insufficient fertilization or irrigation leads 35 
to dramatic decreases in crop yield. In addition, plants grown on marginal soils may exhibit a 36 
reduced nutritional profile, which is an important consideration for staple crops. To properly 37 
address these issues, we need to develop a more complete understanding of the genetic 38 
mechanisms underlying a plant's response to various environmental stresses (Baxter and Dilkes 39 
2012). 40 
 41 
An important aspect underlying a plant's response to environmental stresses is its ability to 42 
regulate mineral nutrients. Apart from carbon and oxygen, a plant relies entirely on the 43 
bioavailable nutrients in the soil in which it is growing for survival. Soil nutrient bioavailability can 44 
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vary drastically, not just as a result of soil composition, but also as a side effect of drought and 45 
flood conditions, changes in soil pH, and changes in the soil microbiome (FAO 1996). 46 
Understanding the uptake, regulation, transport, and storage of mineral nutrients under a variety 47 
of environmental conditions is essential to deciphering the complex relationship between a plant 48 
and its environment. 49 
 50 
Single-seed ionomic profiles have proven both highly heritable and susceptible to environmental 51 
perturbations in maize (Baxter et al. 2014). This makes the study of the seed ionome a powerful 52 
tool for matching a plant’s genetic characteristics with its response to environmental 53 
perturbations. Additionally, once collected, apart from the possibility of external contamination, 54 
the elemental content of a seed sample is fixed. Tissue for ionomic analysis doesn't need to be 55 
specially stored or quickly analyzed after collection. Conveniently, this allows for the ionomic 56 
analysis of excess tissue collected for other purposes, without the necessity of a separate field 57 
experiment. Here we demonstrate the utility of leveraging existing germplasm by performing a 58 
genome-wide association study on ionomic traits in seed tissue measured from diverse soybean 59 
lines selected from the USDA Soybean Germplasm Collection.  60 
 61 
Results 62 
 63 
Experimental Design 64 
 65 
The mission of the USDA-ARS National Plant Germplasm System (NPGS) is “to acquire, 66 
evaluate, preserve and provide a national collection of genetic resources to secure the 67 
biological diversity that underpins a sustainable U.S. agricultural economy.” Some of these 68 
collections are the target for high-density genotyping projects making them ideal populations for 69 
genome-wide association studies. However, the prohibitive cost of controlled field trials to 70 
measure novel phenotypes can limit their utility for genetics research. In this experiment, we 71 
used existing germplasm to find novel genotype-phenotype associations without the expensive 72 
overhead of independent field trials. Although this experiment is limited by the inability to grow 73 
plants in a common environment, the high heritability of ionomics traits (Baxter et al. 2014), as 74 
well as the stability of the ionome in stored tissue (Baxter et al. 2014), makes ionomic 75 
phenotyping an ideal test case for mining germplasm resources. To test the power of ionomics 76 
to find genetic factors underpinning elemental accumulation, we analyzed seeds from 1653 77 
soybean [Glycine max (L.) Merr.] lines representing the diversity found in the USDA Soybean 78 
Germplasm Collection stored at Urbana, IL. 79 
 80 
A core collection of 1685 accessions of the USDA Soybean Germplasm Collection represents a 81 
substantial amount of the genetic diversity in the entire collection.  The core collection contains 82 
approximately 10% of the total number of introduced soybean accessions.  The 1653 soybean 83 
lines used in this study comprised all of the 1685 accessions available when the research was 84 
started. For accessions in maturity groups 000 through VIII for which field evaluation data were 85 
available the core was selected using origin, qualitative and quantitative data.  Accessions were 86 
divided in groups based on origin and then further subdivided based on maturity group, which 87 
classifies soybean accessions based on photoperiod and temperature response.  A total of 81 88 
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strata were established. A multivariate proportional sampling strategy within each stratum was 89 
determined to be the optimal procedure for identifying a sample of accessions that best 90 
represents the diversity of the total collection. Field evaluation data were not available for 91 
accessions in maturity groups IX and X, but because these accessions are adapted to sub-92 
tropical and tropical conditions and are likely to have unique genetic diversity, a sample of 10% 93 
of these accessions was added to the core collection based on multivariate analysis of the 94 
qualitative data.  A full explanation of the development of the core collection can be found in 95 
Oliveira et al. (2010). The seeds available in the NPGS for this core collection come from grow-96 
outs that span 12 years at three locations (Urbana, IL, Stoneville, MS, and Upala, Costa Rica) 97 
(Table 1). The selection of which lines to grow for line maintenances in a given year is 98 
independent of the strata used to select the core collection, making each growout year an 99 
independent experiment to look for loci controlling elemental accumulation. Additonally, analysis 100 
of the first two principal components from the SNP dataset shows no apparent bias between 101 
genetic architecture and growout (Supplemental Figure 1).   102 
 103 
Table 1. Number of lines and markers in each GWAS dataset. There is no overlap between lines in the 104 
datasets. Markers are the number of segregating SNPs in each dataset, filtered for minor allele frequency > 105 
0.05. 106 

Location	 Growout	Year	 Lines	
GWAS	

Markers	
Stoneville	 1999	 104	 33962	
Stoneville	 2004	 121	 34571	
Stoneville	 2006	 59	 35192	
Urbana	 2000	 109	 36432	
Urbana	 2001	 69	 36032	
Urbana	 2002	 94	 36151	
Urbana	 2003	 147	 35783	
Urbana	 2004	 89	 35490	
Urbana	 2005	 87	 35559	
Urbana	 2006	 143	 36065	
Urbana	 2007	 98	 36091	
Urbana	 2008	 58	 35432	
Urbana	 2009	 102	 36489	
Costa	Rica	 9	years	combined	 111	 31479	

 107 
Phenotypes 108 
Using the elemental analysis pipeline described in Ziegler et al. (2013, see methods), we 109 
analyzed ~6 seeds from each line, measuring the levels of 20 elements in each seed 110 
(Supplemental Table 1). While 1653 lines were analyzed in total, 262 of these lines were from 111 
grow-outs containing fewer than 50 lines in the dataset. We excluded these lines from further 112 
analysis and all following analysis is based on the remaining 1391 lines (elemental profiles for 113 
excluded lines are included in the Supplemental Table 1). We performed an ANOVA 114 
significance test to assess whether there are significant environmental effects on the phenotypic 115 
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data gathered from lines grown in separate locations and in separate years at the same 116 
location. Although a distinct set of lines were grown in each grow-out, lines were assigned to a 117 
grow-out without regard to population structure.  As a result, we would expect, in the absence of 118 
environmental effects, phenotypic measurements to be similar. The ANOVA test indicates a 119 
significant location effect, and for Stoneville and Urbana, significant effects for growth year, for 120 
most elements measured (p<0.01 with Bonferroni correction, Table 2). This effect can also be 121 
seen in the phenotypic distribution (before transformation) for many of the traits (Figure 1 and 122 
Supplemental Figure 2). The lack of significant differences by year for many elements in Costa 123 
Rica (13 out of 21) may be indicative of a lack of statistical power due to the small number of 124 
lines grown per year. Because there were not enough lines in any one grow-out from Costa 125 
Rica for a GWAS analysis, the only way we were able to analyze the Costa Rica data was by 126 
combining data across all 10 years.  127 
 128 
 129 
Table 2. Analysis of grow out location and year effect on elemental accumulation. The p-value for each 130 
element from an ANOVA of a linear model with Location or Location x Year interaction. The significance 131 
cutoff was set at p < 0.01 with Bonferroni correction. NS=Not Significant 132 

Element	 Location	 Costa	Rica	x	Year	 Stoneville	x	Year	 Urbana	x	Year	
Seed	Weight	 NS	 NS	 6.87E-07	 0.0001776	
B	 0.0001174	 NS	 1.24E-07	 NS	
Na	 3.06E-307	 NS	 NS	 NS	
Mg	 0.0003425	 5.24E-08	 7.19E-09	 2.19E-29	
Al	 9.17E-31	 8.70E-13	 2.62E-11	 3.56E-36	
P	 5.72E-27	 1.26E-05	 NS	 3.29E-16	
S	 6.49E-34	 NS	 3.58E-10	 6.23E-35	
K	 2.37E-24	 1.16E-05	 1.46E-07	 2.12E-06	
Ca	 1.63E-19	 NS	 6.78E-13	 1.17E-26	
Mn	 9.80E-45	 0.0003116	 3.03E-15	 1.53E-17	
Fe	 7.12E-29	 NS	 8.44E-09	 2.36E-34	
Co	 3.42E-148	 NS	 1.10E-19	 3.65E-12	
Ni	 3.04E-173	 5.90E-13	 5.75E-06	 2.37E-33	
Cu	 1.33E-243	 NS	 1.05E-14	 1.40E-29	
Zn	 1.34E-145	 NS	 6.38E-08	 9.29E-30	
As	 1.66E-57	 NS	 5.50E-12	 NS	
Se	 0	 0.0001141	 1.13E-16	 2.23E-14	
Rb	 0	 4.39E-08	 6.75E-44	 2.17E-15	
Sr	 0	 NS	 7.59E-06	 3.34E-18	
Mo	 0	 NS	 3.68E-40	 6.66E-44	
Cd	 3.25E-45	 NS	 5.48E-26	 3.79E-07	

 133 
  134 
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 135 
Figure 1. Molybdenum accumulation in single soybean seeds (mg/kg) across experimental grow-outs. 136 

  137 
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 138 
Comparison of elemental concentrations of replicate seeds from the same line in each grow-out 139 
does indicate the presence of a genotypic effect on elemental concentrations. Concentrations in 140 
seeds from the same line were usually more similar to each other than they were to the 141 
population as a whole (Figure 2 and Supplemental Figure 3).  142 

 143 
Figure 2. Distribution of Cadmium phenotype (linear model residuals, see Methods) in lines from a single 144 
growout: Stoneville, MS, 1999. Lines are ordered by median of between 2 and 8 seed replicates. 145 

  146 
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 147 
The Box-Cox procedure (Box and Cox 1964) was used to estimate appropriate transformation 148 
functions for the phenotype data to meet the assumptions of GWAS for normally distributed 149 
dependent variables. The Box-Cox algorithm suggested that 138 of the 294 traits (14 150 
environments x 21 phenotypes) needed no transformation and an additional 151 needed only 151 
minor transformations to control for the long-tail distributions often seen in concentration data 152 
(inverse, inverse square root, log, or square root) (Supplemental Table 2). Because most traits 153 
appear to only need minor transformations, for uniformity and ease of interpretation, all of the 154 
traits in which a transformation was recommended were transformed using a log transformation. 155 
 156 
Population Structure 157 
 158 
The first two principal components obtained using the 36,340 polymorphic SNPs from the entire 159 
1391 lines in the dataset explained 15% of the total SNP variance and the first 10 principal 160 
components explained 28% of the total variance. Variance explained by each PC drops rapidly 161 
after the first 10 PCs with 50% variance not reached until PC76. The first two principal 162 
components separate the population into groups roughly corresponding to each lines country of 163 
origin, with South Korean and Japanese accessions forming distinct clades while Chinese, 164 
Russian and other accessions form a much less cohesive block (Figure 3).  165 

 166 
Figure 3. Principal component analysis of the genotypes of 1391 soybean lines. Colored by country of origin: 167 
China (532), Japan (267), South Korea (200), Russia (61), Other or unknown country of origin (331). 168 
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MLMM GWAS 169 
 170 
Using the SoySNP50k chip data (Song et al. 2013), we performed a GWAS study using a multi-171 
locus mixed model (MLMM) to identify associated loci for each of 21 phenotypes (20 elements, 172 
seed weight) in 13 distinct grow-outs of diverse soybean lines and the Costa Rica dataset of 173 
grow-outs pooled across years (Table 1). The MLMM procedure returns a list of cofactors that 174 
together describe the total estimated narrow-sense heritability of a given trait (which we will 175 
refer to as the all cofactor model). By definition, MLMM will create a model containing at least 176 
one cofactor for each trait. Of the models generated, 84 models met the stopping criteria after 177 
only one SNP was added to the model. The average model contained 11 SNPs, with no traits 178 
reaching the maximum 40 SNP model (e.g. not converging on a model describing all of the 179 
phenotypic variance). The largest model contained 29 SNPs, for iron in the 2009 Urbana grow-180 
out. The 294 GWAS tests returned 1756 unique SNPs. While these most complex models likely 181 
contain factors that account for phenotypic variance merely by chance (e.g., false positives), 182 
many of these cofactors are likely real.  183 
 184 
A simpler model, which includes only a subset of the total cofactors, can be selected using a 185 
model selection parameter (Segura et al. 2012). Segura et al. proposed two model selection 186 
criteria: the extended Bayesian information criterion (EBIC) and the multiple-Bonferroni criterion 187 
(mBonf) (Segura et al. 2012). Although both criteria produced generally similar results, we found 188 
the EBIC criteria to be less stringent than mBonf. Due to the relatively small sample size in 189 
many of our grow-outs, we have chosen the more inclusive EBIC criteria in an attempt to 190 
include more moderate effect loci in our model at the cost of a higher false positive rate. QQ-191 
plots for both the null model, containing no cofactors, and the optimal EBIC model were 192 
generated to assess whether there were uncontrolled confounding effects in our model arising 193 
from cryptic relatedness and population structure. While there was some inflation of p-values in 194 
the null model, the MLMM procedure of iteratively including large-effect loci into the model 195 
successfully controls for this p-value inflation and the distribution of p-values in the EBIC models 196 
closely follows the expected null distribution except for the significantly associated loci (Figure 4 197 
and Supplemental Figure 4). 198 
  199 
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 200 

 201 
Figure 4. Quantile-quantile plot of the observed p-values against expected p-values from the GWAS analysis 202 
for sulfur accumulation. The MLMM algorithm includes cofactors that reduce inflation of p-values (green 203 
line). The model without cofactors indicates presence of p-value inflation (blue line). The expected 204 
distribution of p-values under the null hypothesis (red line). 205 

  206 
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The EBIC model selection method returned the MLMM model containing no cofactors for about 207 
half of the GWAS tests (164/294). The remaining 130 tests returned a total of 573 unique SNPs. 208 
When looking at the combined set of SNPs returned across all grow-outs, of the 21 phenotypes 209 
tested, at least one SNP was returned for each trait, with seed weight returning the most (96) 210 
and boron returning the least (6). Table 3 contains information about the number of cofactors 211 
returned in each model (EBIC and all) for each trait and Supplemental Table 3 contains the 212 
complete list of SNPs returned. Since the likelihood of the same false associations being found 213 
more than once for the same trait in separate grow-outs with independent sets of lines is small, 214 
we looked for SNPs returned in multiple scans, which are likely to be real. Across these 130 215 
experiments, 10 SNPs were returned more than once. Of these 10 SNPs, the exact same SNP 216 
was found for the same element in a different grow-out two times (ss715604985 and 217 
ss715605104, both for cadmium), different elements in the same grow-out once (ss715608340 218 
for Ca and Sr), and different elements in different growouts 7 times (Table 4). The same 219 
element/multiple location and multiple element/same location SNPs constitute our highest 220 
confidence set for SNPs affecting the ionome, but likely greatly underestimate the useful 221 
information in the dataset. Table 5 contains a list of SNPs found on or near candidate or already 222 
characterized genes. 223 
  224 
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   225 
Table 3. Number of SNP cofactors returned by each GWAS experiment. Each cell contains the number of cofactors in the EBIC selected model and the all cofactor 226 
model, respectively. 227 

Growout/
Element	 Al	 As	 B	 Ca	 Cd	 Co	 Cu	 Fe	 K	 Mg	 Mn	 Mo	 Na	 Ni	 P	 Rb	 S	

Seed	
Weight	 Se	 Sr	 Zn	 Total	

00U	 1/1	 0/1	 3/7	 4/10	 12/13	 0/10	 0/3	 0/14	 0/3	 18/19	 8/10	 1/4	 0/1	 0/13	 0/12	 0/3	 0/13	 2/16	 0/10	 2/10	 4/20	 55/193	

01U	 8/8	 1/1	 1/1	 1/8	 1/1	 2/4	 0/2	 0/7	 2/6	 1/1	 3/5	 0/8	 1/1	 0/1	 0/1	 0/1	 0/1	 7/8	 17/18	 1/4	 0/1	 46/88	

02U	 0/2	 0/11	 0/1	 1/4	 10/13	 0/14	 0/4	 0/3	 0/7	 0/1	 1/2	 0/8	 0/1	 2/11	 5/10	 2/3	 0/9	 14/16	 1/3	 0/14	 0/9	 36/146	

03U	 2/3	 0/2	 0/2	 0/1	 3/19	 2/7	 0/4	 0/8	 0/11	 0/12	 1/3	 1/11	 0/2	 0/6	 3/7	 0/1	 0/8	 26/26	 3/6	 0/11	 0/7	 41/157	

04S	 1/9	 0/1	 0/4	 2/6	 3/3	 0/3	 0/1	 0/6	 3/5	 0/14	 0/1	 0/1	 0/4	 0/3	 1/11	 1/1	 0/4	 1/24	 0/11	 4/12	 0/8	 16/132	

04U	 0/1	 0/1	 0/3	 5/5	 1/1	 0/2	 0/1	 1/7	 0/3	 0/1	 1/1	 0/1	 0/2	 1/2	 0/1	 0/1	 2/6	 0/15	 1/2	 0/7	 0/1	 12/64	

05U	 0/10	 0/1	 1/1	 2/4	 3/6	 3/6	 0/2	 0/23	 0/4	 0/5	 2/5	 0/1	 0/1	 0/1	 1/1	 0/1	 2/13	 17/18	 14/16	 1/1	 0/2	 46/122	

06S	 0/4	 8/8	 0/5	 0/1	 0/1	 0/2	 0/1	 0/5	 2/10	 1/1	 0/1	 0/3	 0/1	 1/5	 16/17	 0/8	 0/2	 3/4	 15/15	 0/5	 5/6	 51/105	

06U	 0/1	 0/2	 0/1	 1/7	 1/15	 0/1	 1/10	 5/13	 3/10	 0/9	 0/6	 0/3	 0/1	 1/11	 0/1	 0/1	 0/10	 3/12	 1/14	 0/11	 0/1	 16/140	

07U	 0/1	 0/1	 1/2	 1/1	 2/5	 1/2	 1/1	 0/1	 3/3	 0/9	 1/3	 1/2	 0/2	 2/3	 0/3	 1/4	 0/1	 1/10	 1/4	 0/3	 0/3	 16/64	

08U	 1/2	 2/3	 0/1	 14/15	 1/4	 20/20	 8/8	 9/10	 0/1	 12/12	 0/1	 0/1	 0/1	 0/1	 9/11	 2/3	 0/1	 5/7	 1/2	 3/4	 0/1	 87/109	

09U	 1/1	 0/1	 0/1	 19/20	 0/10	 0/14	 0/14	 29/29	 1/1	 0/2	 1/2	 22/22	 18/18	 1/1	 1/1	 0/21	 19/19	 17/18	 0/1	 0/10	 0/1	 129/207	

99S	 2/2	 0/5	 0/1	 1/11	 1/12	 1/13	 0/10	 0/2	 0/1	 1/6	 0/15	 1/1	 0/4	 0/7	 0/1	 1/11	 0/4	 0/15	 0/17	 0/1	 0/20	 8/159	

CR	 0/11	 0/1	 0/3	 0/8	 4/7	 0/11	 0/1	 2/3	 7/8	 3/11	 1/7	 7/9	 0/3	 0/4	 0/9	 0/8	 0/9	 0/12	 0/1	 2/13	 0/12	 26/151	

Total	 16/56	 11/39	 6/33	 51/101	 42/110	 29/109	 10/62	 46/131	 21/73	 36/103	 19/62	 33/75	 19/42	 8/69	 36/86	 7/67	 23/100	 96/201	 54/120	 13/106	 9/92	 585/1837	
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Because each grow-out contains an independent set of lines, the set of SNPs tested differs 228 
between grow-outs depending upon the SNP minor allele frequency in each dataset. 229 
Additionally, common SNPs between growouts will still differ in allele frequency, which could 230 
result in neighboring SNPs, still in LD with the causal variant, being returned for different GWAS 231 
experiments. Therefore, looking for only exact overlaps between datasets may be overly 232 
restrictive. Soybean has been estimated to have a linkage disequilibrium (LD) decay distance of 233 
between 360Kbp in euchromatic regions and 9.6Mbp in heterochromatic regions (Hwang et al., 234 
2014). To better search for overlaps between our datasets while also taking into account the 235 
large variability in LD range across the soybean genome, we grouped all of the SNPs returned 236 
across experiments by whether they are in LD with one another, defined as whether a pair of 237 
SNPs has an r2 > 0.2. When this approach was applied to the all cofactors model, the same 238 
locus was returned for the same phenotype in different grow-outs 18 times, a different 239 
phenotype in the same grow-out 44 times and different phenotypes in different growouts 237 240 
times (Supplemental Table 4).  Often a SNP returned as significant in the EBIC model for one 241 
growout, will have a corresponding SNP in the all cofactor model of another growout, indicating 242 
that the signal is there in other populations, but at too weak a level to meet strict significance 243 
thresholds.  244 
 245 
Table 4. SNPs returned in the EBIC selected model in two or more grow-outs. 246 

Chromosome	 Base	Pair	 Environment	 Trait	 logP	 Model	 Overlap	Type	

9	 4612586	 99S	 Cd	 10.06	 EBIC	 Same	Element,	Different	Location	

9	 4612586	 04U	 Cd	 5.39	 EBIC	 Same	Element,	Different	Location	

9	 4991159	 00U	 Cd	 18.68	 EBIC	 Same	Element,	Different	Location	

9	 4991159	 02U	 Cd	 18.95	 EBIC	 Same	Element,	Different	Location	

9	 4991159	 03U	 Cd	 11.88	 EBIC	 Same	Element,	Different	Location	

9	 4991159	 06U	 Cd	 6.77	 EBIC	 Same	Element,	Different	Location	

10	 5863544	 04S	 Ca	 6.20	 EBIC	 Different	Element,	Same	Location	

10	 5863544	 04S	 Sr	 7.68	 EBIC	 Different	Element,	Same	Location	

2	 46468030	 03U	 Seed	Weight	 11.73	 EBIC	 Different	Element,	Different	Location	

2	 46468030	 05U	 Se	 29.18	 EBIC	 Different	Element,	Different	Location	

5	 41315343	 06S	 Mg	 4.82	 EBIC	 Different	Element,	Different	Location	

5	 41315343	 09U	 Mo	 4.58	 EBIC	 Different	Element,	Different	Location	

10	 5179735	 05U	 S	 5.73	 EBIC	 Different	Element,	Different	Location	

10	 5179735	 06S	 Ni	 7.36	 EBIC	 Different	Element,	Different	Location	

13	 19554349	 07U	 Ni	 6.66	 EBIC	 Different	Element,	Different	Location	

13	 19554349	 09U	 Ca	 18.06	 EBIC	 Different	Element,	Different	Location	

13	 22047323	 02U	 Cd	 14.82	 EBIC	 Different	Element,	Different	Location	

13	 22047323	 06S	 K	 5.59	 EBIC	 Different	Element,	Different	Location	

13	 26504428	 00U	 Cd	 6.30	 EBIC	 Different	Element,	Different	Location	

13	 26504428	 03U	 Seed	Weight	 10.48	 EBIC	 Different	Element,	Different	Location	

19	 84371	 08U	 Cu	 16.51	 EBIC	 Different	Element,	Different	Location	

19	 84371	 09U	 Fe	 51.76	 EBIC	 Different	Element,	Different	Location	
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Table 5. Returned SNPs overlapping candidate or already characterized genes. Bold font indicates lines returned in the more conservative EBIC model 247 
for at least one growout. SNP basepairs are mapped to soybean reference genome build Glyma1.1. 248 

249 
Chromosome	

Base	Pair	(of	most	
significant	SNP)	 Environment(s)	 Trait(s)	

-logP	(Of	most	
significant	SNP)	 Candidate	Gene	

9	 4991159	
00U;	02U;	03U;	
06U	 Cd	 18.95	 HMA13;	Glyma.09g055600	(Benitez	et	al.,	2012);	(Fang	et	al.,	2016)	

2	 43023030	 99S;CR	 Cd	 20.67	
Glyma.02g215700	is	similar	to	At2-MMP	which	is	induced	during	cadmium	stress	to	leaves	(Golldack	et	al.,	
2002)	

3	 40883820	 02U;	99S	 Se	 21.15	 NRAMP	metal	transporter	(Glyma.03g181400);	Aluminum	Sensitive	3	(ALS3;	Glyma.03g175800)	

5	 33737561	 CR;	09U	 Ca	 36.24	
Multidrug	resistance-associated	protein	3	(MRP3,	Glyma.05g145000);	AtMRP5	implicated	in	Calcium	
homeostasis	in	Arabidopsis	(Gaillard	et	al.,	2008)	

14	 47003645	 06S;	03U	 Co	 17.91	 ZIP	metal	ion	transporter	(Glyma.14g196200);	Overlaps	with	a	Zn	and	Rubidium	(in	all	cofactor)	

15	 410656	 04S;	07U	 Mn	 7.11	
CAX2	(Glyma.15g001600),	implicated	in	Mn	transport	(Shigaki	et	al.,	2002);	NRAMP6	(Glyma.15g003500),	
Mn	transport;	MGT2	(Glyma.15g002700)	and	MGT4	(Glyma.15g005200),	magnesium	transport	

2	 5555909	 07U	
Fe;	Zn;	P;	
Cu	 6.91	 ATOX1	(Glyma.02g068700),	Copper	transport		

1	 54551283	
01U;	CR;	00U;	
04U	

Al;	Rb;	Mo;	
Co;	K	 7.64	

ALMT	(Glyma.01g223300),	Aluminum	activated	malate	transport,	malate	is	a	chelator	for	aluminum	and	
critical	in	detoxification	

2	 44460357	 09U;	02U	 Co;	Ca	 10.96	
Heavy	metal	transport/detoxification	(Glyma.02g222600,	Glyma.02g222700);Potassium	transporter	1	
(Glyma.02g228500);	Phosphate	transporter	4;3	(Glyma.02g224200)	

3	 5165511	 09U;	06U	 Fe;	Mn	 36.05	 YSL6	(Glyma.03g040200);	FPN1	ferroportin	(Glyma.03g042500)	

7	 5480577	 06S;	06U	 As;	Ni	 22.46	 Heavy	metal	transport/detoxification	(Glyma.07g065800);	NRAMP2	(Glyma.07g058900)	

11	 17367460	 04U;	06U	 Fe;	Se	 21.13	 ABC	Transporter	(Glyma.11g194700,	Glyma.11g196100)	

19	 84371	 08U;	09U	 Cu;	Fe	 51.76	 ATOX1	(Glyma.19g001000),	Copper	transport	

3	 5455217	 00U;	04U	 Mg;	Co	 7.45	 iron	regulated	1	(Glyma.03g042500);	iron	regulated	2	(Glyma.03g042400);	YSL6	(Glyma.03g040200)	

15	 1222084	 05U	 Se	 29.64	
Sulphate	Transporter	(Glyma.15g014000)	(El	Kassis	et	al.,	2007;	Cabannes	et	al.,	2011);	Sulfite	Transporter	
(Glyma.15g015600)	

9	 4799335	 06S	 K	 4.31	 Potassium	Transporter	(Glyma.09g052700)	

7	 5900018	 06U	 Fe	 5.07	
Overlap	with	IDC	for	FRO2	(Mamidi	et	al.	2014);	Glyma.07g067700;	Also	Glyma.07g065800	a	heavy	metal	
detox	

9	 4518093	 09U	 Mo	 17.96	 Molybdenum	Cofactor	sulfurase	(Glyma.09g050100)	

9	 3807440	 09U	 S	 31.98	 Glyma.09g045200	Heavy	Metal	Transport;	Close	to	all	cofactor	selenium	

5	 8074553	 00U;	06S	 Fe	 7.06	 Stabilizer	of	iron	transporter	(AGO10,	PNH,	ZLL;	Glyma.05g011300),	in	IDC	datset	(Mamidi	et	al.	2014)	

3	 45338714	 03U	 Fe	 8.30	 NAS3;	Glyma.03g231200;	Overlaps	IDC	(Mamidi	et	al.	2014)	
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Verification of High and Low Sulfur and Phosphorus accumulating lines 250 
 251 
To test the whether the elemental accumulation of ionomic traits in the lines in our panel are 252 
intrinsic to the genetics of the lines or an artifact of the environmental and field conditions, we 253 
performed two experiments in which we selected the highest and lowest accumulating lines for 254 
sulfur and phosphorus and regrew the seeds in controlled field and greenhouse conditions. 255 
Eight lines, four with a high phosphorus phenotype and four with a low phosphorus phenotype 256 
were selected for regrowth in a field in Columbia, MO. Three of the four high phosphorus lines 257 
exhibited a high phosphorus phenotype in the regrow experiment, while the low phosphorus 258 
lines had phenotypes closer to the control line level (Figure 5 and Table 6). Broad-sense 259 
heritability for phosphorus between the GRIN growout concentrations and this experiment was 260 
0.65 (Supplemental Table 5). 261 
 262 
Table 6. Accessions chosen for validation of phosphorus accumulation. High and low phosphorus 263 
accumulating lines were chosen to regrow to test the reproducibility of ionomic traits. Values listed in the 264 
table are mg Phosphorus/kg tissue. 265 

Accession	

Regrow	
Phosphorus	
(mg/kg)	

Regrow	
Phosphorus	
Standard	
Error	

Regrow	
Number	of	
Seeds	
Tested	

Collection	
Phosphorus	

Collection	
Phosphorus	
Standard	
Error	

Collection	
Number	of	
seeds	tested	

Phosphorus	
Level	

PI081042-1	 5464.77	 127.08	 12	 4149.66	 109.15	 5	 Low	
PI424159B	 5965.40	 160.35	 12	 4305.02	 168.68	 5	 Low	
PI475822B	 5830.14	 179.63	 11	 5819.22	 335.34	 6	 Low	
PI567691	 6121.47	 186.62	 11	 6001.76	 372.65	 6	 Low	
PI086081	 6665.44	 123.66	 12	 8280.90	 123.01	 6	 High	
PI423813	 7100.48	 198.13	 14	 8421.17	 481.09	 6	 High	
PI089772	 6432.51	 130.76	 12	 8785.44	 300.08	 6	 High	
PI567721	 5622.10	 193.65	 12	 9602.50	 504.11	 5	 High	

 266 
 267 
In a separate experiment, 10 lines total, four low sulfur accumulating lines and six high sulfur 268 
accumulating lines were selected and regrown in both a field and greenhouse trial. In both the 269 
field and greenhouse experiment, all of the six high sulfur lines had a higher sulfur accumulation 270 
than the four low accumulating lines. Interestingly, the field grown varieties had a larger 271 
difference in sulfur accumulation between the high and low varieties (Figure 5 and Table 7). 272 
Although not selected for accumulation of other elements, there was also a correlation between 273 
measured values in the germplasm collection and the regrow set for many other elemental 274 
phenotypes tested (Supplemental Figures 5 and 6). Broad-sense heritability for sulfur between 275 
the GRIN growout concentrations, the greenhouse, and the field growouts was 0.64 276 
(Supplemental Table 5). 277 
  278 
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Table 7. Accessions chosen for validation of sulfur accumulation. High and low sulfur accumulating lines were chosen to regrow to test the reproducibility 279 
of ionomic traits. Values listed in the table are mg sulfur/kg tissue. 280 

281 

Accession	

Regrow	
Field	
Sulfur	
(mg/kg)	

Regrow	
Field	
Standard	
Error	

Regrow	
Field	
Number	of	
Seeds	
Tested	

Regrow	
Greenhouse	
Sulfur	
(mg/kg)	

Regrow	
Greenhouse	
Standard	
Error	

Regrow	
Greenhouse	
Number	of	
Seeds	
Tested	

Collection	
Sulfur	
(mg/kg)	

Collection	
Sulfur	
Standard	
Error	

Collection	
Number	of	
seeds	
tested	

Sulfur	
Level	

PI096322	 3674.77	 82.01	 6	 3303.99	 86.76	 6	 2694.52	 75.46	 7	 Low	
PI229327	 3183.07	 69.30	 6	 NA	 NA	 NA	 2764.57	 62.35	 7	 Low	
PI507411	 3190.73	 26.38	 4	 3126.35	 84.73	 6	 2797.00	 67.14	 8	 Low	
PI603599A	 3584.44	 48.23	 6	 3075.94	 114.71	 8	 2874.06	 64.85	 8	 Low	
PI603162	 4336.25	 45.05	 6	 3703.22	 70.82	 6	 3771.84	 71.02	 8	 High	
PI339734	 4856.20	 158.22	 6	 4875.50	 68.81	 4	 3774.48	 21.99	 2	 High	
PI437377	 4728.93	 112.23	 6	 3413.30	 82.30	 6	 3847.54	 82.38	 7	 High	
PI603910B	 4301.96	 64.81	 5	 4074.24	 80.70	 5	 3925.33	 71.42	 8	 High	
PI082278	 4703.29	 51.39	 5	 4265.62	 99.98	 6	 3929.56	 117.16	 7	 High	
PI424078	 NA	 NA	 NA	 4791.33	 187.03	 5	 4245.06	 78.57	 5	 High	
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Figure 5 Confirmation grow out of high and low sulfur and phosphorus 
accumulating lines. A, Regrow versus original concentration of 8 lines 
selected for high and low phosphorus accumulation. Correlation 
between GRIN concentration and regrow was 0.24. B, Regrow versus 
original concentration of 10 lines selected for high and low sulfur 
accumulation, regrown in both greenhouse and field environments. 
Error bars indicate the standard error of the replicate seeds. Correlation 
(r2) between GRIN seed concentrations and the regrown high and low 
varieties grown in the greenhouse and in the fields were 0.61 and 0.84, 
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Discussion 284 
 285 
Analysis of ionomic traits has led to a deeper understanding of the complex regulatory system 286 
organisms use to maintain homeostasis of essential elements (Baxter et al. 2008; Baxter 2010; 287 
Atwell et al. 2010; Yu et al. 2012). To broaden our understanding of how genetic and 288 
environmental components affect the ionome, we have developed a high-throughput ionomic 289 
phenotyping system that can rapidly measure 20 ionomic traits and seed weight in 290 
agronomically important crops, such as soybean, maize, sorghum and cotton. To assess the 291 
utility of our phenotyping system for genome wide association studies in soybean, we measured 292 
the ionome of a diverse set of more than 1300 soybean lines, divided into 14 independent 293 
populations grown in three locations over the course of a decade. Coupled with a high-294 
resolution genetic map (Song et al. 2013), we performed a genome wide association study 295 
using a multi-locus mixed model procedure (Segura et al. 2012). We were also able to show 296 
that lines selected from these experiments for extreme phenotypes of elemental accumulation 297 
were likely to display similar phenotypes in follow up experiments.  298 
 299 
In spite of the limited number of lines in each grow-out, one of the strengths of this study is the 300 
number of distinct field replications. Although there was no overlap between lines for any of the 301 
14 grow-outs, we found many genetic interactions that were robust across environments and 302 
genotypes. We report serveral different sets of SNPs corresponding to different levels of 303 
stringency in the individual experiments and the way we compared results between the 304 
experiments. These range from the 1756 SNPs from the full models, which likely contain several 305 
false positive associations, to the two SNPs that were returned in multiple experiments for the 306 
same element. Hundreds of SNPs in the total dataset are likely to be real due to their inclusion 307 
in a more conservative model or due to being found in several locations once LD is taken into 308 
account.  Several of these mapped directly to what could be considered a priori candidate 309 
genes that have either already been characterized in soybean or are close orthologs of metal 310 
homeostasis proteins in A. thaliana and other species (Table 5). The discovery of orthologs of 311 
known Arabidopsis genes in soybean experiments highlights the value of studies in model 312 
organisms, where the genetics and growth habits are more amenable to large scale studies. 313 
Many more overlaps between different phenotypes found in different locations suggests genetic 314 
by environmental effect on which phenotype is affected by a causal locus. Many of the SNPs 315 
which overlap across environments are novel associations with no obvious gene candidates and 316 
are strong candidates for follow-up studies to determine their relationship to plant nutrient 317 
homeostasis. 318 
 319 
The strongest element-loci association in our study was for the cadmium phenotype which is 320 
associated with a gene that codes for HMA13, a P1B-ATPase (HMA13; Glyma.09g055600) 321 
previously implicated in seed cadmium concentration in soybean (Benitez et al. 2012).   322 
 323 
A previous GWAS study on iron deficiency chlorosis found seven loci strongly associated with 324 
the disease phenotype (Mamidi et al. 2014). Our analysis returned 3 of the seven loci found in 325 
that study, including the two strongest associations from the IDC panel: a locus associated with 326 
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nicotianamine synthase 3 (NAS3; Glyma.03g231200) and a locus associated with a stabilizer of 327 
iron transporter (AGO10; Glyma.05g011300). 328 
 329 
 330 
Conclusion 331 
Using state-of-the-art association mapping techniques we were able to use the data we 332 
collected using our high-throughput ionomic phenotyping pipeline to identify many a priori 333 
candidate genes and, furthermore, generate a list of novel associations. Many of these 334 
associations were strong enough to occur across a diverse set of environmental conditions, 335 
while others were found in only one of the environments tested. While there are likely many 336 
more associations in our GWAS dataset that we haven't yet explored, this experiment serves as 337 
a proof of concept of using stored seed to perform GWAS on ionomic traits. The use of seeds 338 
as the phenotyped tissue allows for the direct association of the consequences of allelic 339 
difference in candidate genes with traits that affect the tissue with the most agronomic 340 
importance in soybeans. While planned experiments with more replication and higher numbers 341 
of lines will always have more power to identify genetic and environmental factors driving 342 
elemental accumulation in the seed, this study demonstrates the utility of leveraging available 343 
samples to screen germplasm.  344 
 345 
Materials and Methods 346 
 347 
Germplasm 348 
 349 
A diverse panel of 1653 soybean accessions was selected from the core soybean collection of 350 
the USDA Soybean Germplasm Collection, as described in the results. Because the mission of 351 
NPGS is to maintain a viable collection of plant germplasm, the collections are periodically 352 
regrown to maintain viable seed. The size of the soybean germplasm collection necessitates 353 
that only a subset of the complete germplasm collection is grown-out each year. Furthermore, 354 
the diverse panel of accessions belongs to a variety of maturity groups and was grown-out in 355 
three separate locations: Stoneville, MS, Urbana, IL, and Upala, Costa Rica. The 1653 lines in 356 
the panel are, thus, broken into 13 distinct year and location sets, with no overlap of lines 357 
between years or locations (Table 1). The Costa Rica dataset had no individual years with 358 
enough lines (>50) to perform a successful association analysis. However, by creating three 359 
additional datasets by combining data from each location, regardless of year, we were able to 360 
analyze data from the Costa Rica grow-outs. 361 
 362 
Confirmation Growouts  363 
 364 
Small plots of four low sulfur accumulating lines and six high sulfur accumulating lines were 365 
grown in Mexico silt loam soil at Bradford Research and Extension Center, Columbia, Missouri. 366 
Cultural practices were typical of those utilized for soybean production in the Midwest US. The 367 
same set of plants were also grown in environmentally controlled greenhouse in 6 liter pots 368 
containing PRO-MIX (Premier Horticulture, Quebec, Canada) medium amended with Osmocote 369 
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Classic controlled release fertilizer (Scotts, OH). Greenhouse settings were 16 h day length with 370 
30/18°C day/night temperatures.  371 
 372 
Small plots of differential phosphorus lines were grown out in 2012 at South Farm Agricultural 373 
Research Center (Columbia, MO, Latitude 38.908189, Longitude -92.278693, Mexico silt loam 374 
soil) as single plots of 5 feet long with a 3 foot gap between rows and 30 inches between rows. 375 
Field conditions were typical of soybean production in the Midwest US, with NPK Fertilizer 376 
applied at rates appropriate according to soil analyses (10.6/50/75) and two pre-emergent 377 
herbicides were applied before planting: Authority First (Authority First Corp, Philadelphia, PA) 378 
applied at 6.45 oz/acre; and Stealth applied at 1 qt/ac (Loveland Products, Loveland, CO, USA). 379 
Post-emergent herbicides were also used: Ultra Blazer (UPI, King of Prussia, PA, USA) applied 380 
at 1.5pt/acre;  Basagran (Arysta LifeScience North America, LLC, Cary, NC, USA) applied at 381 
1.5pt/acre and Select Max (Valent Biosciences Corp., Libertyville, IL, USA) applied at 24 382 
oz/acre. At maturity, plots were bulk harvested and threshed and a subsample was used for 383 
ICP-MS analysis. 384 
 385 
Ionomic Phenotyping by ICP-MS 386 
 387 
Samples were phenotyped on two separate occasions for the elemental concentrations for B, 388 
Na, Mg, Al, P, S, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Mo, and Cd following the analytical 389 
methods described in Ziegler et al. (2013). Seed weight is also recorded for each sample 390 
analyzed, so it was also included as a phenotype in our study. 391 
 392 
A simple weight normalization procedure to correct measured sample concentrations for seed 393 
size was found to introduce artifacts, especially for elements whose concentration is at or near 394 
the method detection limit. This could either be due to a systematic over or under reporting of 395 
elemental concentrations by the ICP-MS procedure or a violation of the assumption that all 396 
elemental concentrations scale linearly with weight. We used an alternative method to normalize 397 
for seed weight following the method recently reported in Shakoor et al. (2016). A linear model 398 
was developed modeling unnormalized seed concentrations against seed weight and the 399 
analytical experiment the seed was run in. The residuals from this linear model were then 400 
extracted and used as the elemental phenotype. For each element, the phenotypic 401 
measurement was taken as the median of the elemental concentrations from the 2 or 8 seeds 402 
measured from each line (after outlier removal of measurements with a median absolute 403 
deviation of >10). To meet the normality assumptions required for GWAS, an analysis using the 404 
Box-Cox algorithm was used to determine an appropriate transformation for each trait (Box and 405 
Cox 1964). Since each grow-out has a distinct set of lines, which may result in different 406 
phenotypic distributions, transformations were performed separately for each element in each 407 
dataset listed in Table 1. Transformations were selected based upon the 95% confidence 408 
interval returned by the Box-Cox function implemented in the R package MASS (Box and Cox 409 
1964; Venables et al. 2002). 410 
 411 
GWAS 412 
 413 
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All of the lines included in this analysis (and all of the annual accessions in the Soybean 414 
Germplasm Collection in 2010) have been genotyped using the SoySNP50K beadchip and are 415 
available at soybase.org (Song et al. 2013). Separate genotype files were generated for each 416 
grow-out that contain only the lines present in that grow-out. The genotype files were each 417 
filtered to remove SNPs with a minor allele frequency less than 0.05 and missing SNPs were 418 
imputed as the average allele for that SNP. The number of SNPs for each grow-out varied 419 
between 31,479 and 36,340. The final number of SNPs used for association mapping of each 420 
grow-out are listed in Table 1. SNPs were called using the Glyma1.1 reference genome. All 421 
SNP base pair locations reported are from a map to Glyma1.1. 422 
 423 
Both kinship and structural components were included in the mixed model and were calculated 424 
using the filtered genotype matrix containing all 1391 lines found across all 13 grow-outs. The 425 
kinship matrix was calculated using the VanRaden method as implemented in GAPIT 426 
(VanRaden 2008; Lipka et al. 2012). To correct for population stratification a principal 427 
component analysis was performed. The first ten principal components were used as fixed 428 
effects in the mixed model. 429 
 430 
Association mapping was performed using a multilocus mixed model (MLMM) approach that 431 
performs a stepwise mixed-model regression with forward inclusion and backward elimination of 432 
genotypic markers included as fixed effects (Segura et al. 2012). In this model forward steps are 433 
performed until the heritable variance estimate reaches 0 (indicating the current model includes 434 
covariates that explain all of the heritable phenotypic variance) or a maximum number of 435 
forward-inclusion steps have been performed, which we set at 40. 436 
 437 
MLMM implements two model selection methods to determine the optimal mixed model from the 438 
set of step-wise models calculated: the extended Bayesian information criterion (EBIC, Chen 439 
and Chen 2008) and the multiple-Bonferroni criterion (mbonf, Segura et al. 2012). In our 440 
analysis, the EBIC was usually less conservative (eg. selected larger models). A larger model 441 
likely increases the number of type 1 errors, but it is less likely to miss true associations. 442 
Because we are performing a further selection step comparing results across independent 443 
experiments, we used the EBIC models for further analysis. Additionally, we also analyzed the 444 
cofactors returned by the final forward inclusion model (maximum model), which includes either 445 
the maximum 40 cofactors or the total number of cofactors needed to explain the estimated 446 
heritability. 447 
 448 
SNPs included as cofactors in either the EBIC model or the maximum model were compared 449 
across GWAS experiments. SNPs were determined to overlap with a neighboring SNP if it had 450 
an r2 LD of >0.2. 451 
 452 
Calculation of Linkage Disequilibrium 453 
 454 
Linkage disequilibrium, expressed as a correlation coefficient between markers (r2), was 455 
calculated using the filtered SNP data set containing all 1391 lines from the experiment and the 456 
LD function of the ‘genetics’ R package (Warnes et al. 2013).  457 
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 458 
Germplasm and Data Availability 459 
 460 
Lines used can be found at the USDA Soybean Germplasm Center. All scripts and data used 461 
can be found at www.ionomicshub.org and https://github.com/baxterlab/SoyIonomicsGWAS. 462 
 463 
Figure/Table Legends 464 
 465 
Supplemental Figure 1. Principal component analysis of the genotypes of 1391 soybean 466 
lines. Colored by GRIN growout. 467 
 468 
Supplemental Figure 2. Elemental accumulation in soybean seeds across experimental 469 
grow-outs. 470 
 471 
Supplemental Figure 3. Distribution of all elemental phenotypes in all grow-outs. Lines 472 
are ordered by the median of between 2 and 8 seed replicates. 473 
 474 
Supplemental Figure 4. QQ-plots for all GWAS experiments performed. 475 
 476 
Supplemental Figure 5. Regrow versus original concentration for all phenotypes in the 477 
phosphorus selection experiment. 478 
 479 
Supplemental Figure 6. Regrow versus original concentration for all phenotypes in the 480 
sulfur selection experiment. 481 
 482 
Supplemental Table 1. Raw ionomics data and phenotypes after transformation for 483 
GWAS for all lines in the experiment. 484 
 485 
Supplemental Table 2. Box-Cox suggested transformations for ionomics phenotypes. 486 
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Supplemental Table 3.  All SNPs returned in either ‘All Cofactor’, ‘EBIC’, or ‘Multiple 488 
Bonferroni’ models for all GWAS experiments.  489 
 490 
Supplemental Table 4. SNPs returned in two or more grow-outs based on Linkage 491 
Disequilibrium calculation. 492 
 493 
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