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Abstract

Controlling the behaviour of cells by rationally guiding molecular processes is an
overarching aim of much of synthetic biology. Molecular processes, however, are no-
toriously noisy and frequently non-linear. We present an approach to studying the
impact of control measures on motifs of molecular interactions, that addresses the
problems faced in biological systems: stochasticity, parameter uncertainty, and non-
linearity. We show that our reachability analysis formalism can describe the potential
behaviour of biological (naturally evolved as well as engineered) systems, and pro-
vides a set of bounds on their dynamics at the level of population statistics: for exam-
ple, we can obtain the possible ranges of means and variances of mRNA and protein
expression levels, even in the presence of uncertainty about model parameters.

Introduction

Muchof the research in synthetic and systemsbiology in the last decadehas focused on the
studyof elementarybiological systems. This has oftenbeenwith the aimof controlling and
modifying them in order to achieve new functional modules exhibiting novel and useful
behaviour [1], such as sustained oscillations [2] and bistability [3]. It is now becoming
possible to use engineered biological systems made of characterised components to solve
specific problems, such as information processing, energy production or production of
chemicals.

However, biological systems are inherently noisy and probabilistic in nature, which
can pose significant difficulty for one aiming for a reliable, well-characterised module. Al-
though several external control techniques have been developed which are able to avoid
some of the variability in a population [4, 5], noise at the level of molecular processes is
often unavoidable and does, for example affect quite profoundly how information is trans-
mitted along the molecular networks underlying cell function [6, 7]. Furthermore, due to
the unreliability ofmeasured quantities, our understanding of the underlyingmechanisms
might be mistaken leading to sub-optimal analysis and design. Therefore we have to as-
sess the practical limits on the amount of noise in a general biological module, in order to
evaluate the efficiency of a control design or the reliability of a mechanistic model.

*e.lakatos13@imperial.ac.uk
†m.stumpf@imperial.ac.uk

1

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 7, 2016. ; https://doi.org/10.1101/079723doi: bioRxiv preprint 

https://doi.org/10.1101/079723
http://creativecommons.org/licenses/by/4.0/


Reachability analysis has been widely used in control design and engineering for ap-
plications such as verification of electrical or mechanical networks and hybrid automata
[8, 9]. The analysis focuses on the computation of the subset of the state space that can
be reached within a certain time-limit, given some starting position of the system and ex-
ternal inputs. The technique can also be used to verify that a certain undesired state is
not reached under realistic operating condition, or that the behaviour of the system is
robust and qualitatively/quantitatively holds for different conditions, including different
realistic inputs to the system.

To this end reachability is generally calculated under varying levels of uncertainty re-
garding details of the system – such as initial state, input signal and rate parameters —
usually formalised by assuming that these parameters come from a set of plausible val-
ues. Therefore, unless analytical solutions are derived for some abstraction of the system,
the applicability of the computation heavily relies on the choice of the set representation.
Some representations might prove computationally expensive and hence impractical for
high dimensional systems, while a simple shape representation can lead to crude over-
approximation of the reachable set. Methods have beenproposed using several techniques
such as polygonal projections [10], oriented hyper-rectangles, special polyhedra [11], el-
lipsoids [12], or level sets [13]. In this work we use zonotopes [14], a centrally symmetric
type of polytopes that can be conveniently represented by a list of vectors.

Although there is already an enormous body of work on reachable set computation for
problems in engineering, including highly nonlinear cases [15], hybrid automata [16], and
differential-algebraic equations [17], the complexity, frequent nonlinear behaviour, and
strict constraints onmany of themodel parameters of biochemical systems require the de-
velopment of specialised analysismethods. There are already a few applications of reacha-
bility techniques to biological exampleswith special emphasis on the treatment of the non-
linearity of the system, either through direct computation [18] or through hybridisation-
based methods using either static or dynamic partitioning of the state space [19, 20, 21].
The work by Dang et al. [21] has also been expanded to take into account the possible lack
of knowledge of parameter values [22]. The stochasticity in biological systems has been
tackled in even more diverse ways: through computing bounds on the probability func-
tion [23], using stochastic hybrid systems [24], or analytically deriving invariant sets for
linear equations obtained from the stochastic model [25].

In this work we propose a computationally efficient and flexible method to compute
the reachable set (in a zonotopic representation) of stochastic biochemical systems; be-
sides stochasticity we also consider possibly nonlinear rate laws, controlled or uncertain
input signals, and uncertainty about model parameters that might also represent control
over these values. The main steps behind our derivation are the following: (i) we first
obtain an ODE representation of the system’s mean and (co-)variances; (ii) then use an
iterative procedure to obtain a conservative approximation of consecutive reachable sets
up to a final time of interest. Herewe primarily use the LinearNoiseApproximation (LNA)
for the first step, but also present the Moment Expansion Approximation [26, 27, 28] to
demonstrate that other methods with different applicability can be equally used to gener-
ate equations for the second step. We derive a newmethod to tightly approximate realistic
biological input signals, and a piece-wise temporal linearisation method is applied to deal
with common nonlinearities. We also give conservative approximation formulae for the
reachable set if rate parameters of the system are not precisely known — which is very
often the case in biochemical systems. The method is demonstrated on two elementary
modules fundamental to mathematical models and regulatory designs of biochemical net-
works. The first system presents the use of reachability analysis for the study of noisy
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biochemical reactions and evaluating a control on the levels of cell heterogeneity; the sec-
ond example considers the task of model (in)validation for cases when high cell-to-cell
variability poses a challenge to estimating the system’s true behaviour.

Methods

Zonotopes

A zonotope [29] is described by the position of its centre (c) and a set of generator vectors
(g1, . . . ,gp) as

Z :=

{
x ∈ Rn | x= c+

p

∑
i=1

aigi, −1≤ ai ≤ 1

}
. (1)

In the followings we use the shortened notation (c ;G) to represent Z, where G ∈ Rn×p

is a generator matrix formed from the generator column vectors. Zonotopes are a conve-
nient representation as they are closed under Minkowski-addition and affine transforma-
tions, the two key operations in reachability analysis [14]. Furthermore, the above can
be calculated through simple matrix-vector operations: given zonotopes Z = (c ;G) and
W = (d ;H), (H ∈ Rn×q) and the affine transformation T(x) = Ax+b,

Z⊕W =
{
x+y | x ∈ Z, y ∈W

}
= (c+d ; [G,H]), (2a)

T(Z) = {Ax+b | x ∈ Z}= (Ac+b ;AG), (2b)

where [G,H] is the concatenation of the ‘vector lists’.

Linear Noise Approximation

Given a stochastic system with N-dimensional state variable χ(t) describing the abun-
dance of modelled species at time t. We divide the state variable into a macroscopic part,
and random fluctuations, as χ(t) = ϕ(t)+ξ(t). If the system is defined by a stoichiometry
matrix (S) and a collection of reaction propensities, F= [a1, a2, . . . ,ar]T, the corresponding
equations of time-evolution are,

dϕ(t)
dt

= S ·F(ϕ(t)) (3)

dξ(t)
dt

= S ·D(ϕ(t))ξ(t)+
r

∑
j=1

S:,jWj(aj(ϕ(t))),

whereWj(d) is a Wiener process and {D(ϕ)}ik =
∂aj(ϕ)

∂ϕk , hence D= ∂F
∂ϕ is the Jacobian of the

system. In applicationswhere population-level behaviour is of interest Eq. (3) can be used
to obtain equations that describe how the mean and variance of the probability distribu-
tion of χ(t) changes. The decomposition of the state variable makes it straightforward to
follow the change in the mean of the system, as it is already given by Eq. (3); while the
evolution of the covariance matrix (Σ) is calculated as

dΣ
dt

= SDΣ+Σ(SD)T+S ·diag{F(ϕ)} ·ST. (4)

Thus a set of ordinarydifferential equations canbederived that follows the time-dependent
change of the mean values and (co)variances of all species, summarised in the x(t) ∈ Rn

vector, where n= N(N+3)/2:

dx
dt

=
d
dt

[
ϕ(t)
Σ(t)

]
=

[
S ·F(ϕ(t))

SDΣ(t)+Σ(t)(SD)T+Sdiag{F(ϕ(t))}ST
]
= f(x(t)).

3

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 7, 2016. ; https://doi.org/10.1101/079723doi: bioRxiv preprint 

https://doi.org/10.1101/079723
http://creativecommons.org/licenses/by/4.0/


Moment Expansion Approximation

The Linear Noise Approximation is based on the assumption that the system noise is well
described by a normal distribution, and molecules are present in at least moderately high
amounts. In many cases it offers a good approximation even when these conditions are
not met. However, to handle more problematic cases, we also use Moment Expansion
Approximation, a less constrained moment generating method, to obtain ordinary differ-
ential equations. A user-friendly Python-based interpretation for automatic computation
of this step is available from github [28].

In brief, given the aforementioned stochastic system formed by χ(t), S and F, we obtain
the moment generating function of the species’ probability distribution, m(χ(t), t), which
is then differentiated with k times to lead to equations of the kth order moments. These
expressions are evaluated with the help of two consecutive Taylor expansions. As for non-
linear systems the resulting equations would be in theory infinite for – due to moments
always depending on subsequent moments – we finish by applying moment closure formu-
lae (mck) to substitute the highest order terms (E(χk)) with expressions of means (ϕ(t))
and (co)variances (Σ(t))

E(χk)←− mck(ϕ(t),Σ(t)). (5)

A detailed description of the algorithms and applicability of moment expansion can be
found in [26] and of closure methods in [27].

For reachability analysis our primary interest is in themean and variance ofmolecules
of the system, and Moment Expansion can be used in three ways to derive these. We can
(i) set the expansion to be only up to second-order moments; (ii) use the step in Eq. (5) to
substitute all higher order moments, not just the highest order ones; or (iii) use the whole
system of k moments as our state vector, to make sure no essential influence on means
and variances is omitted.

State-space representation

In the next step we consider a general deterministic system, S , described by the evolution
of the n-dimensional state variable, x(t)

ẋ(t) = f(x(t),u(t)); x(0) = x0, (6)

where u(t)∈Rm is an input signal, and f(x,u) is a generally nonlinear but time-independent
transition function. We focus on the case where the input-dependence in the above equa-
tion can be separated as

f(x,u) = g(x)+Bu,

whereB∈Rn×m is the inputmatrix, which specifieswhich states are affected by the inputs.
We further assume that instead of x0, a set containing all possible initial values in the
state-space, I , is given – for example because we observe a range of expression values in a
population of cells. Similarly, the input signal also comes from a set, U, which is bounded
by some value µ ∈ R so that ||u(t)|| ≤ µ ∀t. Then Eq. (6) is presented as a differential
inclusion [30] of the form

ẋ(t) ∈ g(x(t))⊕BU; x(0) ∈ I . (7)

The reachable set of this system at any time t is defined as

R t := {y ∈ Rn | ∃(x, u); x(0) ∈ I , u(s) ∈U, x(s) follows (7) ∀s≤ t, y= x(t)}, (8)
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i.e. all the stateswecanachievebyhaving the abovedescribed systemstart fromapossible
initial state and affected by plausible input signals. Similarly, we can define R [0,t] as all
the states reachable within the time interval [0, t], by computing all individual reach sets:
R [0,t] =

∪
s∈[0,t] R s.

Reachable set computation

Westart our derivation considering the casewhen function f is a linear function of x; under
such condition the system can be represented in the linear time-invariant (LTI) form,

ẋ(t) = Ax(t)+Bu(t); x(0) = x0, (9)

where A ∈ Rn×n is the state (transition) matrix. We focus on single input systems, where
B is an n×1matrix; however, all results can be easily generalised to other values of input
dimension, m. The solution of this system is generally given as

x(t) = eAtx0+
∫ t

0
eA(s)Bu(t− s)ds, (10)

which can be further simplified through assuming a constant input signal and an invertible
transition matrix ∫ t

0
eA(s)ds ·Bu= A−1

(
eAt− I

)
Bu, (11)

where I is the n×n identity matrix. In the followings for convenience we use the notation

ψ(A, t) = A−1
(
eAt− I

)
.

We consider an equidistant partitioning of the time horizon into N intervals, with time-
step τ = T/N. The base of the algorithm is the propagation of reachable sets from I to
R T in the autonomous system, i.e. when u≡ 0. Given a reachable set at an arbitrary time-
point,R t = (c ;G), the new set reached under zero input can be calculated according to the
first element in Eq. (10). This equals the affine transformation x→Mx (withM= eAτ) and
hence, according to Eq. (2b), the new reachable set is given by the zonotope (eAτc ;eAτG).
The same dynamics hold for all t, and the transition matrix can be iteratively applied to
propagate I up to the final reach set, R T. Furthermore, functions of the transition matrix,
such as eAτ, have to be calculated only once through the initialisation of the algorithm.

However, in systems with uncertainty (that might be of the form of an unknown input
signal) we need to transform and enlarge, or bloat, the set R iτ in each iteration, to obtain
all states the system can take under an admissible input in U. This is done by taking the
Minkowski sum of R t+τ and bloating sets, βµ and βδ, corresponding to uncertainty in the
input and parameter values, respectively.

In case the aim is to map the entire space the system explores between times 0 and
T, the reachable sets of the time intervals, R [iτ,(i+1)τ] has to be derived from the two end-
points. Generally, this can be done by computing the convex hull of R iτ and R (i+1)τ and
then “bloating” this set to contain all affine solutions for one time-step (see [31] for an
illustration). In order to avoid the exact computation of a convex hull, as zonotopes are not
closed under this operation, a conservative (“over–”)approximation is presented in [14]
—we use this approximation to derive a set enclosing all points reachable between 0 and τ.
All following intervals can be propagated from this set, as for all t ∈ [0,τ] , R t ∈ R [0,τ] and
hence eAτR t ∈ eAτR [0,τ]. To summarise, using the short formR i+1 to denote eitherR (i+1)τ
or R [iτ,(i+1)τ], depending on the type of analysis we aim for, given R i = (ci ;Gi), the next
reachable set is calculated as

R i+1 =
(
eAτci ;e

AτGi
)
⊕βµ⊕βδ. (12)
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Input for biological systems

In the algorithm proposed by Girard [14], the input set, U is taken to be an n-dimensional
hypercube enclosing all points between [−µ,µ] in all dimensions: equivalent to the radius
µ ball in the infinity norm. Such a generalised approximation of the input set is sometimes
necessary, as the analysis is motivated by a target or an avoidable set in the state-space
and the input set ismeant to capture all variations induced by noise in a physical/electrical
system.

In the case of biological inputs, however, we usually have more detailed information
about U, meaning that the aforementioned general input set would contain many implau-
sible signals, and hence the over-approximation would be too loose to provide useful in-
formation on the actual reachable sets. For example, in the typical case the control input
is implemented as a certain type of molecular species added to the system; this cannot
take negative values, and it is also reasonable to assume an upper limit on the number of
molecules injected at any time point, which can be viewed as the bound µ. Furthermore,
the inputmatrix, B, determines howmuch each variable is effected by the input signal and
hence cannot be neglected.

As U is typically not centred around 0, we divide the input effect into a drift term,
corresponding to the effect of the centre of U (uc), and an uncertainty term representing
our lack of knowledge about the exact input value, i.e. themaximal difference, ud, between
the centre and possible values of U. Thus the whole input set is taken into account as
U = [uc−ud;uc+ud]; for instance, in the example above, uc = µ/2 and ud = µ/2. The drift
and uncertainty terms are calculated using equation (11), and the bloating set will be the
zonotope

βµ = (ψ(A,τ)Buc ;ψ(A,τ)Bud) . (13)

This calculation in this exact from is only possible if A is invertible — in the singular case
we can use an approximation of Eq. (11), based on the integral of the Taylor-series of eAs

and compute a bloating factor βν to correct for the small error thus introduced [17]:

ψ(A, t) =
ν

∑
i=0

Aiti+1

(i+1)!
⊕

(
0 ;e|A|t−

ν

∑
i=0

|A|iti

i!

)
︸ ︷︷ ︸

βν

Parameter uncertainty

Often we have to make predictions but only have approximate values of the parameters
contributing to matrix A, either due to imperfect knowledge of reaction rates [32], or be-
cause we can control a reaction through some interaction that is not or cannot be mod-
elled explicitly. Therefore, we derive a way to account for uncertainty in case the matrix
A is also drawn from a set or ensemble of matrices. For example, we can consider the case
where a single reaction rate, k, possibly effectingmore than one element ofA, is not known
precisely or controlled. We assume that k has some plausible upper and lower bounds and
hence it can be considered as coming from an interval centred at the nominal value k̂, i.e.
k ∈ [k̂− δ, k̂+ δ]. We approach the problem by following the nominal dynamics using the
previously defined matrix, A, and defining a bloating term to enclose all solutions arising
from admissible parameter values, so that

R i+1(A(k))⊆ R i+1(A(k̂))⊕βδ,

where A(k) denotes the matrix formed using the parameter value k. For a positive x, we
can boundA(k)xwithA(k̂)x+DxwhereD is the n×nmatrix computed as |A(k̂+δ)−A(k̂)|.

6

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 7, 2016. ; https://doi.org/10.1101/079723doi: bioRxiv preprint 

https://doi.org/10.1101/079723
http://creativecommons.org/licenses/by/4.0/


TomakeDx independent of the state variable – and thus derive a general formula –, we use
a conservative estimation of x: Dx ≤ D|x|max, where |x|max can be approximated generally
for the whole algorithm, or, more practically, in each time step based on the states in the
current reachable set. We derive |x|max from the zonotope definition in Eq. (1): given a
reachable set in the form (c,G), the ith coordinate of the maximal vector is computed by
the formula

{|x|max}i = {c}i+
p

∑
k=1

|{gk}i|. (14)

Note that |x|max might not be in the reachable set, but there is at least one point for each
coordinate for which {x}i = {|x|max}i holds. |x|max is derived as |c|+∑ |G| with all summa-
tions carried out by rows. We also take into account a rough estimate of the next reach-
able set, so that in non-converging cases |x|max is not underestimated: |x|max = max{|c|+
∑ |G|,eAτ(|c|+∑ |G|)}.

For each coordinate of vectorD|x|max the difference between dynamics under any k and
the centre, k̂, can be enclosed in the zero-centred set:

∀di = {A(k)x}i−{A(k̂)x}i, ; di ∈ (0 ;{D|x|max}i), (15)

from which a zonotope considering all coordinates can be obtained as (0 ;diag{D|x|max}).
From here we proceed considering this zonotope as an input set centred at 0 – in agree-
ment with the fact that trajectories of the nominal value, k̂, are already calculated through
the transitionmatrix. Therefore the bloating set accounting for parameter uncertainty, βδ,
can be computed as

βδ = (0 ;ψ(A,τ)diag{D|x|max}) . (16)

Nonlinear systems

Biological systems are often nonlinear, as even the simplest dimer-formation requires
second-order rate laws that cannot be eliminated from the system. Nonlinear systems can
lead to complex and unpredictable behaviour and their analysis can be difficult. The most
popular way to overcome this is by performing a (piece-wise) linearisation of the system,
in each segment of an either temporal or spacial partitioning of the time-horizon and state-
space studied. In our work we apply the former approach, and at each step linearise the
system around its current centre using first-order Taylor expansion, as described in [33].
This results in a system which is piece-wise linear, and has LTI properties between two
time-steps, but overall time-varying and is only an approximation of the real underlying
dynamics. The linearised system calculated at time iτ is

ẋ(t) =
∂f
∂x

∣∣∣∣
x=ci

(x(t)− ci)+ f(ci) = Aix(t)−Aici+ f(ci). (17)

This system can be used to obtain the next reachable set together with a bloating factor
that accounts for the difference between the original and the linearised dynamics

R i+1 = (ci+ψ(Ai,τ)f(ci) ;eAiτGi)⊕βε, (18)

where βε can be computed iteratively as proposed in [33]. We use the zonotopic set rep-
resentation to obtain a tight estimate of the effect of nonlinearity. Consider the error
function ε(x) = |f(x)− [Ai(x− ci) + f(ci)]| – using a substitution of x by (ci + dx), we ob-
tain ε as a function of dx, the distance between a point and the centre. We define an
upper bound for dx, as in Eq. (14): {|dx|max}i = ∑p

k=1 |{gk}i|, and approximate ε(x) with
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Figure 1: Reachable states of the stochastic gene expression system with controlled transcription
and additional uncertainty. Blue shaded regions show projection of the final reachable set to (a)
the mRNA mean–protein mean plane and (b) the protein mean–protein variance plane. Dark and
light blue shades indicate reachable sets without andwith 5%uncertainty in parameter k4. Red and
green example trajectories are calculated from 10000exact simulations, under the input sequences
u1 = [1,0,1,1,1,0,1,0,1,0] and u2 = [1,1,1,1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,1,1], respectively,
with protein degradation values as indicated in legend.

a function monotonously increasing with dx. Hence we obtain an estimation for which
ε(x)≤ ε̂(|dx|max) and construct a generator set

Gl = diag{ε̂(|dx|max)}, (19)

which represents a bound on the nonlinearity of the system.
To obtain the reach set of the time-interval [iτ,(i+1)τ], further approximations have

to be applied to enclose all trajectories between the two time-points. As the piece-wise
linear system is time-varying, the estimation of the time-interval [0,τ] is not sufficient.
Instead, as mentioned before, the convex hull of two delimiting reach sets is calculated
and bloated, the bloating factor for which can be derived in several ways, e.g. as in [14] or
[33]. Alternatively, we could replace the linearisation with a more flexible description of
the stochasticity than the LNA, such as moment closures [27] or finite–state projection
methods [34].

Example Applications

Control of gene expression noise

The first example considered is controlled stochastic gene expression system [35, 25]. De-
spite its simplicity, thismodel is one of themost important examples in practice as protein
production is a necessary and elementary building module in real and synthetic biological
systems. Many applications might rely on the steady operation of such a unit, hence it is
of great practical interest to know what the achievable noise levels and possible states
of operation are. The original stochastic model has two variables (mRNA and protein
copy numbers, m and p respectively) and four reactions (transcription, mRNA degrada-
tion, translation and protein degradation), characterised by the set of reaction propensi-

8

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 7, 2016. ; https://doi.org/10.1101/079723doi: bioRxiv preprint 

https://doi.org/10.1101/079723
http://creativecommons.org/licenses/by/4.0/


ties and stoichiometry matrix

S=

[
1 −1 0 0
0 0 1 −1

]
;

a1 = k1µ; a2 = k2m; a3 = k3m; a4 = k4p,

where the multiplier in the first reaction, µ, represents our control over the transcription
rate, assuming either discreet (µ = 0 or µ = 1) or continuous (µ ∈ [0,1]) values. A typical
control signal would be a sequence of zeros and ones, switching transcription on and off
for some time period. After performing the LNA, we obtain a set of five ordinary differ-
ential equations, determining the time evolution of the mean of m and p, the variance of
m, the covariance of the two species and finally the variance of the protein abundance.
The system is started from I = 0 and we investigate the reachable sets up to time T = 10
minutes with time-step τ = 0.01 and reaction rates k= [100,5,100,1].

Figure 1 shows projections of the final reachable set together with two sample trajec-
tories. The samples are computed as the mean and variance of the population consisted
of 10000 direct realisations of the original stochastic system. Input signal µ(t) is defined
as a piece-wise constant function with values randomly drawn from {0,1} and switching
every 60 or 30 seconds (u1 and u2, respectively); the signal is kept the same for all real-
isations contributing to a particular trajectory in fig 1. We also take into account some
uncertainty regarding the protein degradation rate, i.e. that the value of k4 is unknown or
controllable to within 5% of the nominal value, 1. The light blue regions in figure 1 show
the estimate of the reachable set under such uncertainty. Interestingly, while a substan-
tial part of the mRNA–protein mean space can be covered, the reachable states on the
protein mean–variance plane are limited to a very narrow band. Therefore, if relying on
the production of a protein with this module we will have to make a compromise: either
have a low number of proteins produced, or a high amount but with great variability (as
may be expected given the Poisson nature of this process).

Model validation

In the our second application we consider a chain of three molecules effecting each others
production and aim to demonstrate how our reachability analysis can contribute to model
validation [36] for stochastic systems. The molecules A, B and C in Figure 2 can repre-
sent any chain of interacting species with similar reaction networks; for example a simple
model of transcription factors, where only protein levels are modelled explicitly. The reg-
ulatory effect of these molecules is through the production rate of their target species.
Three different wiring schemes are considered: (i) molecule A induces molecule B that in
turn activates the production of C; (ii) molecule A also activatesmolecule C, such that this
effect is more profound than the activation via B; (iii) molecule C feeds back and induces
the production of A. In each model we simplify the mathematical description by assuming
equal degradation rates for all species; hence the models can be summarised by 5 param-
eters: kAB, kBC, kAC, kCA and kdeg, where the subscript XY refers to the activation of Y by
X. In all models kAB = 1 and kdeg = 0.8 and the other parameters are chosen to reflect the
connections of the model and produce similar maximal values in the output, C.

In order to model measurements, we generate five individual stochastic trajectories
from Model (i), with parameter values kBC = 1, kAC = kCA = 0 and an initial A value ran-
domly chosen from the range [80,120]. We then sample the amount of molecule C – as the
assumed output is experimentally measurable – from these simulations at six time-points;
and evaluate the distance of each measurement point from the reachable set of mean val-
ues at that specific time. The distance is normalised by the maximum reachable value
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Figure 2: Model evaluation by comparing reachable sets and single measurements. (a)
Schematics of the three reaction chain models. Models differ in rates corresponding to
dashed arrows. (i): kBC = 1, kAC = kCA = 0. (ii): kBC = 0.1, kAC = 0.9, kCA = 0. (iii):
kBC = 1, kAC = 0, kCA = 0.2. (b) Reachable region over time of the output (molecule C)
starting from the initial set 80 ≤ A0 ≤ 120, B0 = C0 = 0. Dark areas represent reachable
values of themean, light blue shades are the± 1 standard deviation region computed with
the maximal reachable value of the variance. Coloured circles are sample points taken
from single exact simulations of Model (i). (c) Distance of observation points from the
reachable set of mean values. Lines show the average distance of observed data at each
time point for each model (colours as indicated in legend), the top of error bars depict the
maximal distance at the evaluation points.

of standard deviation and zero for all points within the reachable set. As Figure 2(b)-(c)
shows, it is very unlikely the observations would arise fromModel (ii). Although the true
model shows the best correspondence to the data, Model (iii) — representing a feedback
system—cannot be discarded due to thewide range of valuesmolecule C can reach in that
specific wiring scheme. If the relative noise level is reduced by raising the average initial
abundance (to∼ 300molecules), or measurements from another species (e.g. molecule A)
is also available, the distinction between different models becomes clear with Model (ii)
unambiguously fitting the data best.

Discussion

In this work we have introduced a method to compute the states a stochastic biochemical
network can access under a control input signal. The method is particularly applicable to
determine reachablemean-variance values of the investigated species, andhence estimate
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noise levels of a system. Our aim is to provide a computationally efficient tool that could
be used in the search for the best modelling description or regulatory design of stochastic
networks.

Here we used the Linear Noise and Moment Expansion Approximations to extract de-
terministic equations of the mean and covariance matrix that served as a basis for our
reachable set computation. Both can be accessed on github as parts of our Python pack-
age, MEANS [28]. Then we have presented a general algorithm for linear and nonlinear
reachability analysis based on zonotopes, together with formulae for handling relevant in-
put types: addition of molecules and control of a reaction rate. All steps are implemented
inMatlab to semi-automatically generate the reachable sets for a problemdefined in terms
of a transition function, input matrix and bounds, and parameter uncertainty. The algo-
rithm can be executed on any given set of ODEs describing some characteristics of the
system, hence it is applicable regardless of the approximation method used for the gener-
ation of equations and also to deterministic biological models.

We demonstrate themethod on two schematic models of biological macromolecules: a
controlled gene expression system and a cascade of modifying molecules, e.g. transcrip-
tion factors. In both examples the approximation is conservative, hence trajectories ran-
domly generated from a set of admissible signals and initial values are confined within the
set our method predicts. In linear cases, if we have precise knowledge of the parameter
values and input bounds, the predicted reachable set will be exact as well, i.e. each point
in it can be actually accessed by an appropriate input sequence. This cannot be ensured
for nonlinear systems (or uncertain rate values) as the conservative estimates used for the
nonlinearity (or reaction rate effect) are obtained from approximations the system might
note take. However, our estimation reflects the general characteristics of the system –
e.g. if some variables of a generally nonlinear system have linear equations – and hence
unnecessary over-approximations are avoided to provide a tight estimate. This is crucial
in the evaluation of various control designs on the basis ofmean-variance values reachable
through them.

Our method is based on a zonotope representation of reachable, initial and parameter
sets. Set operations can be efficiently computed using this representation method, which
allows us to apply our reachability analysis to many-variable, complicated biological net-
works. However, the number of generator vectors in the reachable set increases in every
iteration, and for a long time horizon or small time step the algorithm can become expen-
sive regarding memory space. In smaller systems, such as our examples, this effect is
still negligible, but for high-dimensional cases the increase is more significant. For such
cases, one can turn to the zonotope-reduction technique presented by Girard [14] to limit
the size of zonotopes to an adjustable value.

Note also that zonotopes, and hence the sets in our analysis, are by definition con-
vex and centrally symmetric. Therefore systems where the actual reachable set is con-
cave or consisted of multiple sets — especially networks with bi- and multi-stability —
will be largely over-approximated. We tested the algorithm on a bistable model of stem
cell differentiation. As the two expression level states in such cases are typically of dif-
ferent magnitudes, our method is forced to enclose a high proportion of negative values
besides also incorporating a non-accessible region between the two states. However, we
also found that this drop in approximation quality is a good indicator of the system enter-
ing a bistable regime of initial conditions/input signal. A similar over-approximation case
can arise for imprecise parameter values of the transition matrix: although admissible pa-
rameter sets are symmetric sets given as a nominal value with error bounds, the influence
of parameters is usually not symmetric on the reachable set. Therefore zonotopes lead to
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a rough approximation when some rates show high uncertainty. Just like in the case of
multi-stability, a preliminary analysis using our general method can reveal these issues,
and point one towards a more exhaustive study using a series of reachable sets for fixed
values (or small intervals) of initial values or rate parameters to cover the range of interest
and extrapolate for tighter approximation.

As often the case in the analysis of biochemical systems, incomplete information about
the model structure and crucial constants of the systemmakes a detailed and informative
analysis impossible. Our method is not applicable for the exploration of differences in
model structures; this problem can be treated implicitly by either doing independent anal-
ysis of all candidate models or choosing rate parameter uncertainty such that zero (i.e. no
interaction) is amongst the admissible values. The latter is likely to give rise to an over-
generalised approximation, as described above; while the first one is only advisable for a
small number of possible models, like in our second example. Furthermore, limited mea-
surements and high levels of noise can also influence the method’s power for validation,
as Figure 2(c) demonstrates: in such cases flexible models might be favoured even over
the truemodel. Therefore we advise the use of other tools, such as Topological Sensitivity
Analysis [37] coupled with our method for a more thorough investigation of model space.
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