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Abstract 

 Large-scale cross-sectional and cohort studies have transformed our 

understanding of the genetic and environmental determinants of health outcomes. 

However, the representativeness of these samples may be limited – either through 

selection into studies, or by attrition from studies over time. Here we explore the 

potential impact of this selection bias on results obtained from these studies. While it 

is acknowledged that selection bias will have a strong effect on representativeness 

and prevalence estimates, it is often assumed that it should not have a strong impact 

on estimates of associations. We argue that because selection can induce collider 

bias (which occurs when two variables independently influence a third variable, and 

that variable is conditioned upon), selection can lead to biased estimates of 

associations. In particular, selection related to phenotypes can bias associations with 

genetic variants associated with those phenotypes. In simulations, we show that 

even modest influences on selection into or attrition from a study can generate 

biased and potentially misleading estimates of both phenotypic and genotypic 

associations. Our results highlight the value of representative birth cohorts. Having 

DNA available on most participants at birth at least offers the possibility of 

investigating the extent to which polygenic scores predict subsequent participation, 

which in turn would enable sensitivity analyses of the extent to which bias might 

distort estimates. 
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Collider Scope: 

How selection bias can induce spurious associations 

 

Introduction 

 Understanding the impact of genetic and environmental factors on physical 

and mental health outcomes is critical if we are to develop effective preventive and 

treatment interventions. Large-scale cross-sectional and cohort studies provide an 

invaluable resource to support these efforts, in particular with respect to genetic 

influences, where the small effects associated with common genetic variants require 

very large samples to achieve adequate statistical power. However, achieving these 

very large sample sizes in population-based studies may come at the cost of 

representativeness – participants who volunteer to participate in studies may not be 

representative of the general population (1). 

While some studies may be relatively representative at inception, through 

rigorous efforts to ensure representative recruitment (e.g., birth cohort studies), as 

they mature the likelihood is that attrition from the study will be non-random, so that 

the cohort becomes less representative of the general population as time goes on. 

There is already clear evidence from existing large-scale population studies that they 

are subject to a degree of selection bias. For example, higher genetic risk scores for 

schizophrenia are consistently associated with non-completion of questionnaires by 

study mothers and children, as well as non-attendance at data collection clinics, in 

the Avon Longitudinal Study of Parents and Children (ALSPAC) (2) (see Box 1). 

Attrition from cohort studies may result in biased estimates of socioeconomic 

inequalities, and the degree of bias may worsen as participation rates decrease (3). 

However, it is often argued that representativeness is not necessary in studies of this 

kind (4-8), although this is not universally accepted (9). In particular, for genetic 

variants, where conventional confounding is low (10), it has been argued, even by 

those concerned about selection bias, that any problems associated with a lack of 
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representativeness may be modest (9, 11). Here we ask: What is the impact of 

selection bias on the results obtained from these studies? 

 

Insert Box 1 about here. 

 

Collider Bias 

It is widely acknowledged selection bias will distort prevalence estimates. 

This can be clearly seen in differences between participants in the original ALSPAC 

sample and those that attended later clinics (see Box 1), as well as in the UK 

Biobank study relative to the general population (see Box 2). However, it is often 

assumed that whilst selection bias will have a strong effect on representativeness 

and prevalence estimates, it should not have a strong impact on observed 

associations (4). This overlooks the fact that selection bias can in turn induce collider 

bias (see Figure 1), which can lead to spurious observational and genetic 

associations. 

 

Insert Figure 1 and Box 2 about here. 

 

Collider bias occurs when two variables (X and Y) independently cause a 

third variable (Z). In this situation, Z is a collider, and statistical adjustment for Z will 

bias the estimated causal association of X (exposure) on Y (outcome) (see Figure 2). 

Statistical adjustment of the XY association for a variable Z is equivalent to observing 

this association in a sub-population where all individuals share the same value of Z 

(1, 12). Hence if both X and Y cause participation in a study (Z), then investigating 

associations in the selected sample (i.e., with Z = 1, indicating participation in) is 

equivalent to conditioning on Z, which in turn may induce collider bias. 

 

Insert Figure 2 about here. 
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Put simply, statistical control is not equivalent to experimental control (1), and 

so sample selection can induce spurious associations between variables that 

influence participation or retention in a study, when no such association exists in the 

wider general population from which the sample is drawn. Alternatively, if two 

variables are correlated in the wider population, and both cause selection, then 

estimated correlation in the selected sample may be biased. Moreover, this selection 

bias will apply to the genetic correlates (or other ancestors) of these variables, unless 

the phenotypes are also controlled for. So if genes Gx and Gy cause X (exposure) 

and Y (outcome) respectively, then in the selected sample Gx will appear to be 

associated with Y (unless X is also controlled for). More complex situations can also 

give rise to collider bias, such as when the outcome (Y) doesn’t directly cause 

selection into the study (i.e., it is a downstream consequence of something else that 

is causing selection into the study). However, it is necessary that the exposure (X) 

either directly or indirectly (such as in the situation described above) causes 

selection into the study. 

 In other words, traits that are entirely unrelated in the general population may 

appear to be correlated in selected samples, if both traits influence participation (and 

therefore contribute to selection), as a result of implicitly conditioning on their 

common effect (1, 13). There are exceptions to this depending on the distribution of 

the outcome and the parametric analysis model used. For example, if the outcome 

(Y) is a binary phenotype, and logistic regression is used, then the odds ratio for the 

association between the SNP and outcome may be unbiased even when the 

outcome causes selection (14). 

We have previously argued that these effects may be greater in case-control 

studies than prospective studies, and that since genetic associations have been 

similar across study designs, the impact of selection bias may in fact be modest (11). 

We have also previously argued that because conventional confounding is typically 

low for single genetic variants, problems of selection bias will be less in this context 
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(9). However, given the rapid growth in studies using data from highly selected 

samples such as UK Biobank, and the use of genetic scores rather than single 

genetic variants, we revisited this question, and used simulation to explore the 

potential impact of even relatively weak effects on participation. Given empirical 

evidence of selection in cross-sectional and cohort studies, what is the potential 

impact of this on observed phenotypic and genotypic associations? 

 

Simulations 

 We simulated data on an allele score, a phenotype and an outcome, where 

both the phenotype and outcome influence selection into the study, but there was no 

association between the allele score and the outcome in the underlying population 

(see Figure 2). The simulation scenario was based on the UK Biobank. All variables 

were Normally distributed, with standard deviation of 1, and the sample size of the 

underlying complete population was 9,000,000. We assumed that phenotype and 

outcome had independent effects (i.e., no interaction on the additive scale) on the 

odds of selection into the sample, and for convenience we set these effects to be 

equal, and examined a weak association (OR of 1.2 for missingness for a 1 SD 

increase in phenotype/outcome) and two stronger associations (ORs of 1.5 and 1.8). 

These odds ratios are similar to estimates of the likelihood of participation in UK 

Biobank for individuals with any educational or vocational qualifications and for non–

smokers, respectively (see Box 2), and indicate a difference in mean 

phenotype/outcome of 0.2 SD, 0.4 SD and 0.6 SD between those participating and 

those not participating. We varied the correlation between the allele score and the 

phenotype (between r = 0.05 and r = 0.30) to simulate genetic instruments explaining 

between 0.25% and 9% of the variance in phenotypes. These values are in the 

typical range for the association between common genetic variants, or polygenic risk 

scores comprising multiple common variants, and complex phenotypes. For example, 

the rs16969968 variant accounts for approximately 1% of the phenotypic variance in 
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cigarette consumption (15), while the polygenic risk score for height captures 

approximately 9% of phenotypic variance (16). We controlled the baseline risk of 

selection into the sample, resulting in a selected sample of approximately 500,000 

people. The analysis was an unadjusted regression of outcome on allele score not 

adjusting for the phenotype). In the whole population, the regression coefficient for 

outcome on allele score is zero, and the confidence interval contains zero 95% of the 

time. We simulated each scenario 100 times. 

The results of this simulation are shown in Table 1, and indicate that the 

effects of selection bias are strongest for stronger independent selection effects, and 

also where the allele score is more strongly associated with the phenotype. However, 

even for moderate associations between missingness and both phenotype and 

outcome (OR = 1.5 for both phenotype and outcome) and between allele score and 

phenotype (r = 0.1, 1% variance explained by allele score) the confidence intervals 

contains zero only 89% of the time, and this continues to decrease with both greater 

strength of association between phenotype, outcome and missingness, and stronger 

association between allele score and phenotype. 

 

Insert Table 1 about here. 

 

Conclusions 

Our results indicate the potential for unrepresentative samples to generate 

biased and potentially misleading estimates of both phenotypic and genotypic 

associations. In particular, when polygenic scores associated with a phenotype that 

combine many genetic variants are used, association between the phenotype and 

participation will cause the score to be more strongly related to participation than 

each individual variant is. This, in turn, can potentially lead to serious bias. For this 

reason, studies using polygenic scores, genome-wide allelic scores (17), and/or 
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whole-genome genetic correlations (18, 19) in highly unrepresentative studies are 

most at risk of producing biased and potentially misleading results. 

The magnitude of effects we observed in our simulations, based on credible 

estimates of associations between both a phenotype or outcome and missingness, 

and between a polygenic score and a phenotype, are comparable with many 

reported associations derived from large but unrepresentative samples, such as 

between personality and cognitive function, and a range of physical and mental 

health outcomes (20, 21), and between chronotype (i.e., “morningness”) and years of 

education (22). An appreciation of the potential impact of selection bias may also 

resolve inconsistencies in the literature, and help to explain apparently paradoxical 

findings. For example, genetic correlations between cognitive ability and a range of 

psychiatric disorders have been reported to differ in childhood and older age (23). 

One possible interpretation is that this is due to age-dependent pleiotropy, but 

another is that this is an artefact of different selection bias pressures at different ages. 

An example serves to illustrate this. Polygenic risk scores that maximally capture 

schizophrenia liability are associated with increased psychotic experiences in 

ALSPAC participants, but scores that use more stringent thresholds for including 

genetic variants are associated with reduced psychotic experiences (24). Since 

missing data are likely to be greater for participants who report psychotic 

experiences, as well as for those at higher genetic risk of a psychotic disorder, , 

psychotic experiences may be relatively under-represented in participants with higher 

genetic risk, compared to those with lower genetic risk (24).  

A related issue is the use of case-control studies to examine associations 

with “secondary” outcomes – that is, phenotypes other than the case/control outcome 

(25, 26). In such studies, the association between genotype and secondary 

phenotype will be biased if both genotype and secondary phenotype are associated 

with case-control status. Case-control studies condition on case-control status, and 

thus again collider bias can bias the association between genotype and secondary 
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phenotype. Various methods have been proposed to overcome this bias, including 

maximum likelihood and inverse probability weighting. This latter method requires 

some knowledge about the prevalence of case/control status in the underlying 

population, or the assumption that the disease is rare (25, 26). 

We have discussed one important way in which selection into or out of a 

study can induce collider bias and spurious associations. There are other ways in 

which ascertainment can generate biases (27). For example, Figure 3 (panel B) 

shows a situation in which entry into a study is conditional upon the value of the 

phenotype (but not the outcome of interest) and where the phenotype does not 

cause the outcome, but the phenotype and outcome are correlated in unselected 

samples (i.e., due to genetic and/or environmental factors U). In this situation, 

collider bias occurs because conditioning on selection induces an association 

between SNPs related to the phenotype and the polygenic and/or environmental 

factors that influence the outcome. Therefore SNPs that cause the phenotype only 

(i.e. do not in truth cause the outcome), may now show spurious relationships with 

the outcome variable. Figure 3 (panels C to E) also shows examples where selection 

will bias the estimation of the causal effects of SNPs on the outcome. In these 

examples, SNPs that do cause the outcome directly via the phenotype will either 

show increased or decreased association in the selected sample, depending on the 

underlying genetic and environmental aetiology of both traits. Other, more complex, 

situations can also lead to selection bias – we have not attempted to outline every 

possible case here. Algorithms for deciding whether a given causal analysis is biased 

by selection have been described (28), and could be used to decide whether bias is 

likely in a given case. 

 

Insert Figure 3 about here. 
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Our results highlight the value of representative birth cohorts. Having DNA 

available on all participants at birth at least offers the possibility of investigating the 

extent to which polygenic scores predict subsequent participation. Without this 

knowledge, studies in large, unrepresentative samples run the risk of providing 

biased and misleading results. In our opinion these important caveats should be 

borne in mind when interpreting the results of such studies. 
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Box 1. The Avon Longitudinal Study of Parents and Children. 

Birth cohort studies are also not immune to problems of selection bias, where 

retention in the study may be related to a variety of participant characteristics. The 

Avon Longitudinal Study of Parents and Children (ALSPAC) recruited pregnant 

women living in the administrative county of Avon with expected delivery dates 

between 1st April 1991 and 31st December 1992. These women, their partners and 

their offspring have been followed up ever since via questionnaires and clinics. 

ALSPAC originally captured data on 14,541 pregnancies (75% of eligible women) (29, 

30), but inevitably retention in subsequent data collection sweeps (postal 

questionnaires and clinic assessments) was less than 100%. We see that higher 

body mass index (BMI) is associated with lower odds of subsequent retention in both 

mothers (N = 11,319, OR per SD increase in BMI 0.85, 95% CI 0.81 to 0.88), for 

retention between 2008 and 2011 using pre-pregnancy BMI as a predictor, and 

offspring (N = 7,954, OR 0.91, 95% CI 0.87 to 0.96), for retention at age 18 using 

BMI at age 7 as a predictor. Similarly, among smoking mothers in ALSPAC, 

heaviness of smoking is associated with lower odds of retention (N = 3,534, OR per 

additional cigarette smoked per day just prior to pregnancy 0.97, 95% CI 0.96 to 

0.98). If low BMI and maternal non-smoking are both related to continuing 

participation in ALSPAC, this would tend to lead to the association between BMI and 

maternal smoking being negatively biased (i.e., we would expect to see a more 

negative association between genetic variants positively associated with smoking 

and BMI in ALSPAC than in the true underlying population).
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Box 2. UK Biobank. 

The UK Biobank is a cross sectional study, which recruited over 500,000 

individuals aged between 40 and 69 years between 2006 and 2010 (see 

http://www.ukbiobank.ac.uk/). Individuals in this age group living within a 25 mile 

radius of any of the 22 assessment centres across the UK were identified from NHS 

patient registers (31). In total, around 9 million individuals were invited to participate. 

However, UK Biobank was only able to achieve a 5% response rate (~500,000 

participants recruited from ~9,000,000 invited, personal communication, UK Biobank, 

8th July 2016), and the resulting sample is not representative of the UK population as 

a whole. For example, the proportion of current smokers is relatively low in UK 

Biobank (11% vs 19% in the general population, equivalent to an OR of 1.89) (32), 

as is the proportion with no qualifications (18% vs 25%, equivalent to an OR of 1.50) 

(33). Unsurprisingly, therefore, participants in UK Biobank have far lower rates of 5-

year mortality than the UK population as a whole (34). Clearly, agreeing to take part 

in UK Biobank study is associated with a number of characteristics that will reflect, 

for example, health status and social position. If non-smoking and having 

qualifications are both causally related to participation in UK Biobank, we would 

expect the association between smoking and having qualifications to be positively 

biased (i.e., we would expect to see a more positive association between genetic 

variants positively associated with smoking and whether participants had educational 

qualifications in UK Biobank than in the true population). The problem is possibly 

compounded in genetic studies using the first release of genomewide association 

data in UK Biobank, which used two genotyping arrays, one of which was applied to 

a nested case-control study of smoking and lung function (UK BiLEVE) (35). The first 

release genetic data are therefore further subject to selection bias relative to UK 

Biobank as a whole (although this will no longer be the case when the full release of 

genomewide association data becomes available). 
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Table 1. Results of simulation study showing the selection bias in estimating an 
association which is null in the underlying population.  
 
Simulation settings Results – association between allele 

score and outcome 
Association between 
missingness and both 
phenotype and 
outcome (OR) 

Association 
between allele 
score and 
phenotype (r) 

Mean 
regression 
coefficient 
(SD) 

Mean 
z-score 
(SD) 

Number of 
95% CIs 
containing 
zero 

OR = 1.8 0.05  
(0.25% variance) 

-0.001 
(0.001) 

-1.04 
(1.00) 

83 

0.10 
(1.00% variance) 

-0.003 
(0.001) 

-2.06 
(0.98) 

45 

0.15 
(2.25% variance) 

-0.004 
(0.001) 

-3.07 
(0.98) 

9 

0.20 
(4.00% variance) 

-0.006 
(0.001) 

-4.10 
(0.98) 

0 

0.30 
(9.00% variance) 

-0.008 
(0.001) 

-6.18 
(1.06) 

0 

OR = 1.5 0.05  
(0.25% variance) 

-0.001 
(0.001) 

-0.42 
(0.95) 

94 

0.10 
(1.00% variance) 

-0.001 
(0.001) 

-0.80 
(0.96) 

89 

0.15 
(2.25% variance) 

-0.001 
(0.001) 

-1.22 
(0.96) 

77 

0.20 
(4.00% variance) 

-0.002 
(0.001) 

-1.64 
(0.97) 

61 

0.30 
(9.00% variance) 

-0.003 
(0.001) 

-2.44 
(0.94) 

35 

OR=1.2 0.05  
(0.25% variance) 

-0.0002 
(0.001) 

-0.16 
(0.92) 

97 

0.10 
(1.00% variance) 

-0.0003 
(0.001) 

-0.25 
(0.94) 

97 

0.15 
(2.25% variance) 

-0.0005 
(0.001) 

-0.38 
(0.95) 

93 

0.20 
(4.00% variance) 

-0.0006 
(0.001) 

-0.47 
(0.95) 

91 

0.30 
(9.00% variance) 

-0.0009 
(0.001) 

-0.66 
(0.96) 

89 

 
OR: odds ratio; r: correlation coefficient; SD: standard deviation; CI: confidence 
interval. Each scenario was simulated 100 times. 
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Figure 1. Illustration of collider bias. 
 

 
 
The basic premise of collider bias is shown. In this example, a bell is sounded 
whenever either coin come up ‘heads’. The result of one coin toss is independent of 
the other. However, if we hear the bell ring (i.e., we condition on the bell ringing), 
then if you see a tail on one coin you know there must be a head on the other – the 
two coin results are no longer independent and a spurious inverse correlation has 
been induced. Reproduced from Gage SH, Davey Smith G, Ware JJ, Flint J, Munafò 
MR (2016) G = E: What GWAS Can Tell Us about the Environment. PLoS Genet 
12(2): e1005765. doi:10.1371/journal.pgen.1005765 
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Figure 2. Illustration of selection bias simulation.  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
In the entire population there is no association between allele score and outcome. 
Selection into the study (either through voluntary participation at baseline, or attrition 
over time) induces an association between allele score and outcome (collider bias). 
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Figure 3. Scenarios where selection bias would occur. 
 
A. In truth the SNP is not causally associated with the outcome; selection will induce 
an association (which could be positive or negative). 
 

 
 
B. In truth the SNP is not causally associated with the outcome; selection will induce 
an association (which could be positive or negative). 
 

 
 
 
C. In truth the SNP is causally associated with the outcome; selection could make 
this larger or attenuate it. 
 

 
 
D In truth the SNP is causally associated with the outcome; selection could make this 
larger or attenuate it. 
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E. In truth the SNP is causally associated with the outcome; selection will bias this 
association (which could be positive or negative). 
 

 
 
SNP: single nucleotide polymorphism; P: Phenotype; O: Outcome; S: Selection. 
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