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Protein structure prediction was for decades one of the grand un-
solved challenges in bioinformatics. A few years ago it was shown
that by using a maximum entropy approach to describe couplings
between columns in a multiple sequence alignment it was possi-
ble to significantly increase the accuracy of residue contact predic-
tions. For very large protein families with more than 1000 effective
sequences the accuracy is sufficient to produce accurate models of
proteins as well as complexes. Today, for about half of all Pfam do-
main families no structure is known, but unfortunately most of these
families have at most a few hundred members, i.e. are too small
for existing contact prediction methods. To extend accurate contact
predictions to the thousands of smaller protein families we present
PconsC3, an improved method for protein contact predictions that
can be used for families with as little as 100 effective sequence mem-
bers. We estimate that PconsC3 provides accurate contact predic-
tions for up to 4646 Pfam domain families. In addition, PconsC3 out-
performs previous methods significantly independent on family size,
secondary structure content, contact range, or the number of se-
lected contacts. This improvement translates into improved de-novo
prediction of three-dimensional structures. PconsC3 is available as
a web server and downloadable version at http://c3.pcons.net. The
downloadable version is free for all to use and licensed under the
GNU General Public License, version 2.
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In recent years great progress has been made in the area of
residue contact prediction. The vast amount of available

sequence data is utilized by direct coupling analysis (DCA)
methods to predict contacts between residues with unprece-
dented quality [1, 2]. This has enabled accurate blind pre-
dictions of the structure of soluble proteins [3–5], membrane
proteins [6–8], and protein complexes [9, 10]. However, the
widespread use of such methods has been limited to protein
families with more than 1000 members [11, 12]. Unfortunately,
the structure of at least one member of most large families is
known (see Fig. S1). This limits the practical usefulness of
DCA methods [13] and strongly suggests that methods that
accurately predict residue contacts for smaller protein families
would be of much greater utility.

Before the advent of DCA methods there has been a long-
standing effort in using machine learning techniques to predict
residue contacts [14–16]. These methods utilize covariance-
based evolutionary information (e.g. mutual information),
as well as knowledge based constraints as inputs to a ma-
chine learning algoritm. The best non-DCA methods are less
dependent on the size of the protein family and although
their predictive quality is easily outperformed by DCA on
large families, they perform significantly better on smaller
families, Figure 1 (a). We have earlier used an iterative ma-

chine learning approach, built on the observation that contacts
are not randomly distributed, to improve the performance of
DCA based contact prediction methods when we developed
PconsC2 [17]. Here we propose a way to substantially improve
the predictive power, by including state-of-the-art non-DCA
predictors among the method’s inputs.

For about half (53%) of the protein families in the Pfam
database [18] no structure that covers most of the length can
be found in the protein data bank (PDB) [19] (Figure 1b). The
distribution of family sizes in the Pfam database shows that
the median size of families with known structure (680 effective
sequences) is significantly (rank sum p-value < 2.2 ∗ 10−16)
larger than that of families without a known structure (134).
The number of potential target families (sufficiently many
members, but without known structure) would increase more
than three-fold from 1528 to 4973 if accurate predictions could
be made from a family with 100 effective sequences instead of
1000 (Supplementary Fig. S1).

PconsC3 combines two DCA methods with contacts pre-
dicted using a non-DCA machine learning approach. PconsC3
utilizes the iterative pattern recognition approach introduced
in PconsC2 [17]. We find that PconsC3 significantly out-
performs earlier methods independent on protein family size,
Figure 1 (a), as well as it yields better structural models. The
increased accuracy for small proteins leads to a substantial in-
crease in the number of potential targets, from 12% of all Pfam
families with unknown structure when using the best DCA
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Fig. 1. (a) Contact predictor performance on the benchmark dataset measured in Positive Predictive Value (PPV or precision). Performance of the top N/2 ranked contacts
against protein family size measured in effective sequences, where N denotes the number of contacts observed in the native structure. A native contact is defined as a pair
of Cβ -atoms within a spatial distance of 8Å. The horizontal dashed line marks a precision of 0.5. The vertical lines illustrate at which family size each method reaches this
threshold on average. (b) Number of Pfam 29.0 families with unknown structure. A family is defined to have a known structure if there is a significant hit to an entry in PDB that
covers more than 75% of the sequence length of the family. In color are shown the numbers of potential target families for each method. These families have at least the
number of effective sequences at which the corresponding method reaches an average PPV of 0.5 on our benchmark dataset.

method to 54% using PconsC3 instead. These predictions are
publically available at http://c3.pcons.net.

1. Results and Discussion

Improvement over all protein family sizes. The precision of
both DCA methods, plmDCA [20] and GaussDCA [21] as well
as that of PconsC2 [17] is strongly dependent on family size.
The average Precision (PPV) for PconsC2 for N/2 (N being
the number of native contacts) increases from 0.3 to 0.56 when
the average effective family size increases from 100 to 1000
sequences. In contrast, the performance of PhyCMAP [15]
is approximately 0.3 for families with between 50 and 2000
effective sequences, Fig. 1 (a). When including PhyCMAP
as well as other improvements (see methods) into PconsC3
the performance increases significantly for small families. The
average PPV for a 100 effective sequence protein family is
0.47, and increases to 0.60 for a 1000 member family. We have
noted that on average a PPV of 0.5 is needed for accurate
modeling using the PconsFold [22] pipeline. This average
precision is never reached for PhyCMAP, for plmDCA and
GaussDCA more than 1700 effective sequences are needed,
for PconsC2 314 and for PconsC3 only 115. Even below 100
effective sequences 23% of the benchmark proteins have a PPV
larger than 0.5 when using PconsC3.

There are 16295 domains in Pfam 29.0 out of which 8562
do not have a significant match to PDB covering most of
the domain length. This means 7733 Pfam domains have at
least one representative in PDB and could thus be modeled
by homology modelling. If we apply the measurements from
Fig. 1 (a) there would be 1043 Pfam domains of unknown
structure that could potentially be predicted by the best DCA
method. This means these many domains have more than
1700 effective sequences in their alignment. Lowering the
threshold of alignment size leads to an increase in the number
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Fig. 2. Direct performance comparison between PconsC3 and other methods on the
benchmark dataset. Proteins were assigned secondary structural classes based on
their ECOD architecture assignment. Symbols represent the class of a protein.

of potential target domains. With PconsC2 2778 domains
could be predicted. This number increases to 4646 when using
a method such as PconsC3 that is able to accurately predict
contacts from even smaller alignments.

Performance by type of secondary structure. Figure 2 shows
a direct comparison between PconsC3 and other contact pre-
dictors. PconsC3 outperforms DCA methods on 207 proteins
and PhyCMAP on 195 proteins independent on the type of sec-
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Fig. 3. (a) PPV on the top N/2 contacts at a specific sequence separation (number of residues between those participating in a contact). A minimum sequence separation of
five residues was used to filter out local interactions of neighboring residues or helices. Long-range contacts have a separation of at least 24 residues (everything to the right of
the dashed line). (b) Long range contact predictor performance in PPV against protein family size measured in effective sequences.

Table 1. Average PPV of top N/2 predicted contacts on the bench-
mark dataset for different secondary structural classes.

all mainly-α mainly-β α− β
PconsC3 0.57 0.49 0.59 0.62
PconsC2 0.48 0.44 0.45 0.51
plmDCA 0.36 0.34 0.32 0.38
GaussDCA 0.34 0.33 0.31 0.36
PhyCMAP 0.32 0.23 0.34 0.36
counts 210 55 35 110

ondary structure. Compared to PconsC2, PconsC3 performs
better in 166 out of 210 proteins of the benchmark dataset.
Some of the largest improvements are made for α− β (cross
in Fig. 2) and mainly-β proteins (triangle), whereas PconsC2
performs exceptionally well for one short α-helical protein
(PDB: 1ediA).

Table 1 shows the performance of contact predictors on
different types of secondary structure. The first column lists
performance on all proteins of the test set. Overall PconsC3
performs best for all classes independent on rank (Supplemen-
tary Fig. S2). On average it predicts more than 57% of N/2
contacts correctly, compared to 48% for PconsC2, 36% for the
best DCA method, and 32% for PhyCMAP. The improvement
is largest on mainly-β proteins with a 31% increase in PPV
of PconsC3 over PconsC2 and 84% over plmDCA. This can
be attributed mostly to PhyCMAP performing better than
DCA in this particular class. In the α− β class PhyCMAP is
worse than DCA, while for mainly-α proteins both DCA meth-
ods clearly outperform PhyCMAP. Within the DCA methods
plmDCA always performs better than GaussDCA. Although
shown in Fig. 2, the class of few secondary structural ele-
ments was omitted in the table due to a small sample size (see
Methods).

Predicting long range contacts. structure prediction [23].
There is a striking difference between PhyCMAP and DCA

based methods for long-range contacts. PhyCMAP predicts
short to medium ranged contacts (with a sequence separation
from 5 up to 23 residues) with higher quality than long-range
contacts (Fig. 3a). For short-range contacts (up to 12 residues
separation) PhyCMAP is actually on par with PconsC2 and
significantly better than DCA methods, while it is significantly
worse for long-range contacts. Although PconsC3 outperforms
DCA methods independently of the sequence separation of
contacting residues (Fig. 3a), it is clear that the increase in
precision of PconsC3 in relation to PconsC2 and DCA meth-
ods is gradually larger for shorter contact ranges, suggesting
that it benefits from the good performance of PhyCMAP in
this range. On long-range contacts PconsC3 performs best for
smaller protein families (Fig. 3b). This and the fact that the
gap between PconsC2 and DCA methods decreases for long-
range contacts in small families indicate the value of including
a non-DCA method to PconsC3.

Estimation of contact map quality. The average PconsC3 con-
tact scores can be used as a good indicator for contact map
quality. Figure 4 (a) shows that the average contact score of
the top ranked contacts has a Pearson correlation r of 0.61
against PPV. However, we noted the test dataset also includes
alleged multi-domain proteins, i.e. proteins where most of the
sequences in the alignments does not cover the entire domain,
such as 2csmA and 2ejnA, Supplementary Fig. S3 (a and b).
Most of the proteins with high average contact score and low
PPV fall into that category (gray dots in the lower right region
of Figure 4 (a)). This leads to the assumption that PconsC3 is
overestimating the predictions in such cases. When ensuring
proteins are mostly covered by at least half of all sequences
(black dots) r increases to 0.83 (rcovered) showing that the
average PconsC3 score is an excellent estimator of the contact
map quality in single domain proteins.

Structure prediction. The more accurate contact maps of
PconsC3 improve structure prediction, confirming earlier ob-
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servations [22], Fig. 5 (a). The small improvement in average
TM-score [24] when using PconsC3 contacts is significant (t-
test p-value < 1.5 · 10−2) and independent of the family size of
the target protein. However, there are still many proteins with
large families and supposedly good contact maps, for which
PconsFold fails to converge properly (Supplementary Fig. S4).
Using a more elaborate folding protocol [25] or generating
more than 2000 Rosetta decoys might improve this situation.
Anyhow, when using predicted contacts from PconsC3 the
number of proteins with a TM-score of 0.5 or higher, meaning
the fold has most likely been correctly identified, increases
from 55 to 75.

The main advantage of PconsC3 over PconsC2 and DCA
methods is that it can accurately predict the contacts for
smaller protein families. The Diol dehydratase reactivase
ATPase-like domain (PF08841) only contains 139 effective
sequences but both the contact map and the model are in ex-
cellent agreement with the native structure (2d0pB), Fig. 5(b).
The TM-score of the model is 0.61 while a model based on
PconsC2 only has a TM-score of 0.40. The PI31 proteasome
regulator N-terminal (PF11566) has 146 effective sequences
and for this protein a TM-score of 0.61 is reached, Fig. 5(c).

Blind prediction of T0872 in CASP12. The submission phase
for the twelfth Critical Assessment of Techniques for Protein
Structure Prediction (CASP12) recently finished and the of-
ficial evaluations are running as of writing this manuscript.
Initial evaluation of CASP12 targets that can already be found
in PDB revealed that the combination of PconsC3 and Pcons-
Fold successfully predicted the structure of Target T0872.
Model 3 (Pcons-net_TS3) has the highest TM-score of 0.74
followed by Pcons-net_TS1. All five Pcons-net submissions
rank among the top 10 models for this target. Figure 6 shows
the predicted contact map as well as the structure of Model
3, both overlaid on the native contacts (gray) and structure

Fig. 5. Structure prediction. (a) TM-score of PconsFold when using PconsC2 (red) or
PconsC3 (black) contact predictions. (b) Contact map for Diol dehydratase reactivase
ATPase-like domain (Pfam: PF08841, PDB: 2d0pB) in the upper left triangle. Grey
dots indicate native contacts in the PDB structure, green are correctly predicted
contacts while yellow to red are false positive predictions. Left the sequence coverage
measured in effective sequences. The lower right triangle shows the structure pre-
dicted with PconsFold using PconsC3 contacts (black) superimposed onto the native
structure from PDB (light gray) (c) Contact map and structure for the PI31 proteasome
regulator N-terminal (PF11566, 2vt8A).
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Fig. 6. Blind prediction of target T0872 in CASP12. Predicted contact map on top
of the native in the upper left triangle. The lower right triangle shows the structure
predicted with PconsFold using PconsC3 contacts (black) superimposed onto the
native structure from PDB (light gray).

(white), respectively. The high precision of the predicted con-
tacts can be attributed to the large sequence coverage of 3817
effective sequences in the alignment. Furthermore, PconsFold
was able to converge to a near native structure most likely
due to the small size of the protein. For some larger targets
this was not the case.

Materials and Methods

Datasets. PconsC3 has been trained on a set of 180 protein families
(supplementary Table S1). This training set comprises of 150 protein
families from the original PSICOV dataset [26] plus 30 additional
families with a small number of members from the test set as
described in [17].

All evaluation has been made on a dataset of 210 (supplementary
Table S2) proteins without any homology to any protein in the
training set. All PDB IDs were matched against the ECOD [27]
domain assignment from 2016-03-28. This set was obtained from the
set used in the development of PconsC2 [17] and homology reduced
such that no protein included in the test set shared an ECOD
H-class with any of the proteins in the new training dataset. This
homology reduction is much more stringent than using sequence
information alone. The final list of proteins used as well as their
ECOD H-class number and number of effective sequences are found
in Tables S1 and S2. Alignments were created using HHblits [28]
version 2.0.15 on the uniprot20 database bundled with HHsuite
(date: 2016-02-26) with an e-value of 1. In order for HHblits to
output and align all sequences the parameter -all has been used
and -maxfilt and -realign_max were both set to 999999. These
alignments were used as input for the DCA methods.

For the evaluation of Pfam domains the HHsuite database of
Pfam 29.0 (date: 2016-05-03) was used to scan Uniprot at an e-value
threshold of 1 using HHblits. The resulting set of alignments was
then analyzed for effective number of sequences. For each domain
the sequence that was highest ranked by HHblits has been defined
as the domain representative. The length of a domain has been
set to the length of its representative sequence. HHsearch version
3.0.0 was used to scan each family against the HHsuite database of
protein data bank (PDB) sequences (date: 2016-03-02) to determine
whether a given Pfam family has known or unknown structure. A
hit has been considered significant if its E-value was below 10−3

and if it covered at least 75% of the length of the family.

Secondary structural classes. To classify the dataset into the sec-
ondary structural classes mainly-α, mainly-β, and α− β, we used

the architecture assignment of ECOD for the PDB IDs of our bench-
mark set. ECOD uses a scheme with seven structural classes that
we mapped into three in order to increase sample size and thus
statistical significance of each class. The following mapping was ap-
plied: α/β, α−β and α+β to α−β; α to mainly-α; β and extended
to mainly-β. The secondary structural class few was omitted as it
only contained 10 proteins. Supplement Figure S3 shows a table
analogous to 1, but with the original ECOD classification (including
few).

Contact prediction. Julia implementations have been used
for both plmDCA and GaussDCA, which are available
on GitHub at https://github.com/pagnani/plmDCA and
https://github.com/carlobaldassi/GaussDCA.jl, respectively.
Both require Julia 0.3 or higher. PhyCMAP was obtained at
http://raptorx.uchicago.edu/download/. Regularization strength
of plmDCA was set to 0.02. GaussDCA and PhyCMAP were run
with default parameters. The DCA methods were directly run
on the alignments described above, whereas PhyCMAP runs its
own workflow and thus uses its own alignment as described in [15].
PconsC2 was run as described before [17].

PconsC3. Figure S6 illustrates the workflow of PconsC3. Input
features comprise contact predictions by plmDCA, GaussDCA as
well as PhyCMAP, secondary structure prediction by PSIPRED
3.0 [29], and solvent accessibility prediction by NetSurfP 1.1 [30]. In
PconsC3 PhyCMAP can be replaced by another contact predictor
and we have successfully used CMapPro [16] with similar accuracy,
data not shown.

Additionally, CD-HIT is run to generate statistics about the
alignment (i.e. alignment depth at different sequence similarity
cut-offs). The initial layer of PconsC3 takes these features as
input and uses a random forest to predict a score for each possible
contact. In contrast to previous work, PconsC3 applies pattern
recognition already in the first layer. This results in an intermediate
contact map. Every following layer uses all the initial features
plus the output from the previous layer, given as a window of 11
by 11 residues around the current contact. Note that the pattern
recognition method used in PconsC3 is analogous to convolutional
layers of deep learning, as described in detail earlier [17].

The initial layer of PconsC3 (PconsC3-l0) shows an increased
precision over PconsC2 independent of the number of top-ranked
predicted contacts used for evaluation (Fig. S2). The precision
increases for each layer to saturate at the third layer. In con-
trast to PconsC2 the fourth and fifth layers does not increase the
performance.

Each of the Random Forests comprising PconsC3 consists of
100 trees trained based on optimization of Gini impurity, with a
constraint on node split with at least 100 samples per leaf. To
reduce the memory footprint of training, as well as to prevent
overfitting, starting from layer 1, we have disregarded a randomly
chosen subset of 30% of the training samples, which appears to
improve the generalizability of resulting statistical models.

At https://github.com/mskwark/PconsC3/ instructions on how
to setup and run PconsC3 locally are found. PconsC3 can also be
used from a web-server at http://c3.pcons.net/, where predictions
for ≈ 14000 of the sufficiently large Pfam domain families also can
be found.

Selecting top ranked contacts. We analyzed the top ranked contacts
using half of the number of observed contacts (N/2, dashed vertical
line in Figure S2). This number roughly corresponds to the length
of the protein (L) (Supplementary Fig. S7), i.e. the same number
of contacts used to analyze precision (PPV) earlier [17].

A native contact between two residues is present if their Cβ-
atoms is within 8Å. The contact score was used to rank predicted
contacts and the top N/2 contacts were used for evaluation. This
allows for a fair comparison between the methods, while being easy
to interpret, e.g. if a method has a PPV of 0.5 at N/2 contacts,
one can say that this method correctly predicts 25% of all observed
contacts. Thereby, false and true negatives are implicitly taken into
account. For this reason we decided to choose a cut-off based on N
instead of the widely used cut-off based on the length of the input
sequence L.
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Metrics. Effective sequences is defined in analogy to [31] as:

Beff =
B∑
b=1

1
mb

[1]

where mb is the number of sequences with at least 90% sequence
identity mb = |{a ∈ {1, . . . , B} : id(σ(a)σ(b)) ≥ 0.9}|.

The quality of a predicted contact map is measured in positive
predictive value (PPV), or precision:

PPV =
TP

TP + FP
[2]

where TP is the number of predicted contacts that match a
contact in the native structure (true positives) and FP the number
of predicted contacts that don’t (false positives).

TM-score [24] is used to measure the similarity between predicted
and native structure. To enable fair comparison with PconsC2, we
used the same cut-off (top 1.5 ·L contacts, where L denotes sequence
length) as in [17] to select contacts for PconsFold. Preliminary ob-
servations clearly indicate that better performance can be obtained
using another scheme, but we have not systematically evaluated
this.
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Fig. S1. Pfam family sizes measured in effective sequences. (a) Histogram over the size of all families with at least one hit in PDB that covers more than 80% and (b) of all
families without such hit. (c) Cumulative counts of Pfam families over their size measured in effective sequences of the underlying alignment. There are 16295 protein families
in Pfam 29.0 out of which 8562 do not have a significant hit to a structure in PDB, which would cover more than 75% of their length. The vertical line segments represent 100
and 1000 effective sequences. Horizontal line segments connect these to the corresponding number of Pfam families.
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Fig. S2. Contact predictor performance on the independent test set measured in Positive Predictive Value (PPV or precision). Performance against the number of top ranked
predicted contacts measured as a fraction of contacts observed in the native structure N . The dashed vertical line indicates the number of contacts used further on.
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Fig. S3. Example proteins where most of the aligned sequences do not cover the entire length. The alignment coverage is indicated by the vertical panel on the left-hand side,
where the width of the gray area represents the number of effective sequences at that position. (a) PDB: 2csmA is only covered in the terminal region (b) PDB: 2ejnA is mostly
covered by only half of the sequences, thus consists of two separate parts.
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Fig. S4. TM-score of PconsFold against family size when using PconsC3 (black) or PconsC2 (red) contact predictions. Pearson correlation coefficient is denoted r and the
lines indicate moving average with a window size of 50.
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Fig. S5. Structure prediction. (a) Contact map for Diol dehydratase reactivase ATPase-like domain (Pfam: PF08841, PDB: 2d0pB) in the upper left triangle. The lower right
triangle shows the structure predicted with PconsFold using PconsC3 contacts (black) superimposed onto the native structure from PDB (light gray) (b) Contact map and
structure for the PI31 proteasome regulator N-terminal (PF11566, 2vt8A).
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DRAFT
Fig. S6. PconsC3 workflow. GaussDCA and PlmDCA are combined with the non-DCA method PhyCMAP and additional secondary structure and solvent accessibility features.
PconsC3 combines all features and iteratively predicts intermediate contact maps. In every iteration predictions from the previous layer are used as additional input providing a
description of the contact pattern.
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Fig. S7. Sequence length against the number of contacts observed in the native structure (N ) for all proteins in both training and test set. Native contacts are defined as
Cβ -atoms closer than 8Å. Counted are all native contacts with a sequence separation above 5 residues.

14 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Skwark et al.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2016. ; https://doi.org/10.1101/079673doi: bioRxiv preprint 

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX
https://doi.org/10.1101/079673
http://creativecommons.org/licenses/by-nc-nd/4.0/


DRAFT

Supplementary Tables

Skwark et al. PNAS | October 7, 2016 | vol. XXX | no. XX | 15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2016. ; https://doi.org/10.1101/079673doi: bioRxiv preprint 

https://doi.org/10.1101/079673
http://creativecommons.org/licenses/by-nc-nd/4.0/


DRAFT

Table S1. Training dataset

PDB H-class Beff PDB H-class Beff PDB H-class Beff

1A3AA 311.1 1726.20 1GUUA 101.1 2574.43 1P90A 2484.4 1058.83
1A6MA 106.1 548.31 1GZ2A 209.1 1965.15 1PCHA 322.1 931.28
1A70A 221.1 2131.21 1GZCA 10.1 486.72 1PKOA 11.1 2431.66
1AAPA 384.1 2533.09 1H0PA 75.1 2318.65 1Q67A 220.1 181.24
1ABAA 2485.1 1779.91 1H2EA 2111.21 2703.07 1QBEC 265.1 11.57
1AG6A 3156.1 1866.60 1H4XA 2496.1 3083.53 1QF9A 2004.1 1402.59
1AGQC 385.1 560.20 1H98A 205.1 3937.00 1QJPA 5084.1 2617.32
1AOEA 2111.5 2052.75 1HDOA 2003.1 1560.05 1QL0A 378.1 470.79
1ATLA 2498.1 1609.51 1HFCA 2498.1 3282.86 1R26A 2485.1 5975.54
1ATZA 2006.1 3776.10 1HH8A 109.4 10459.26 1ROAA 243.3 576.15
1AVSA 108.1 5753.10 1HLQA 374.1 108.53 1RW1A 2485.1 2142.18
1BDOA 325.1 2160.40 1HTWA 2004.1 3782.36 1RW7A 2007.1 2612.90
1BEBA 9.1 487.69 1HXNA 5.1 678.23 1RYBA 2011.5 1574.55
1BEHA 11.1 1059.91 1I1JA 4.1 4950.19 1SMXA 2.1 2655.35
1BKRA 193.1 373.66 1I1NA 2003.1 4807.76 1SVYA 224.1 726.59
1BRFA 375.1 662.92 1I4JA 218.2 1097.73 1T8KA 132.1 4159.78
1BSGA 4019.1 1344.14 1I58A 225.1 6851.76 1TIFA 221.2 2258.24
1BSGA 223.3 1344.14 1I5GA 2485.1 6276.14 1TQGA 601.3 1660.68
1C44A 268.1 1794.10 1I71A 380.1 619.65 1TQHA 2111.78 3066.46
1C52A 107.1 5049.41 1IHZA 2.6 1309.48 1TZVA 195.1 932.36
1C9OA 2.1 2237.31 1IIBA 2009.1 1094.72 1VFYA 376.1 1961.35
1CC8A 304.3 2589.60 1IM5A 2111.61 721.27 1VHUA 2111.27 1273.41
1CHDA 2111.46 1731.08 1IWDA 219.1 1357.38 1VJKA 221.1 2306.80
1CJWA 213.1 3763.54 1J3AA 2490.2 874.59 1VMBA 304.12 1052.12
1CKEA 2004.1 3060.75 1JBEA 2007.4 7297.65 1VP6A 10.12 5097.18
1CNT1 150.3 65.52 1JBKA 2004.1 838.09 1VZHB 11.1 984.69
1COMF 301.7 2454.76 1JFUA 2485.1 6465.70 1VZHB 375.1 984.69
1CTFA 308.1 695.64 1JFXA 2002.1 675.18 1W0HA 2484.1 1883.19
1CXYA 243.7 1466.56 1JKXA 2111.71 1451.61 1WHIA 3174.1 626.14
1CZNA 2007.2 2841.11 1JL1A 2484.1 4281.69 1WJXA 2.21 1107.79
1D0QA 375.1 1105.01 1JO0A 328.4 491.88 1WKCA 2003.1 1544.73
1D1QA 2009.1 635.49 1JO8A 4.1 3064.00 1XDZA 2003.1 4498.06
1D4OA 2003.1 670.45 1JOSA 327.1 1022.17 1XFFA 210.1 838.00
1DBXA 299.1 429.50 1JVWA 284.1 3418.06 1XKRA 866.1 371.41
1DEVC 73.1 140.51 1JWQA 2011.1 1670.13 1YWYA 220.2 24.52
1DIXA 280.1 327.30 1JYHA 886.1 1283.65 2ARCA 10.12 3209.89
1DLWA 106.1 617.75 1K6KA 148.1 1335.33 2AYGB 304.15 195.51
1DMGA 2111.59 1010.39 1K7CA 2007.5 3846.59 2BPA2 10.2 16.09
1DQGA 6.1 2673.29 1K7JA 297.1 969.61 2CUAA 3156.1 2523.73
1DSXA 226.1 978.15 1KIDA 2487.1 579.41 2FPNA 331.13 135.98
1EAZA 220.1 1650.07 1KQ6A 277.1 2218.74 2FQOA 309.1 184.86
1EJ0A 2003.1 1775.19 1KQRA 10.1 99.08 2HS1A 1.1 567.34
1EJ8A 11.1 1018.15 1KTGA 221.4 3856.80 2IVFC 11.1 390.09
1EK0A 2004.1 2405.08 1KU3A 101.1 4640.25 2MHRA 601.14 939.66
1F6BA 2004.1 2712.01 1KW4A 102.1 2361.74 2PHYA 223.1 9261.12
1FCYA 188.1 784.59 1LM4A 289.1 1699.33 2TPSA 2002.1 1447.57
1FK5A 185.1 577.92 1LO7A 222.1 1482.62 2VXNA 2002.1 2530.14
1FL0A 2.1 1034.68 1LPYA 235.1 908.37 3BORA 2004.1 4543.74
1FNAA 11.1 1652.63 1M4JA 224.1 317.28 3C5NA 844.1 159.49
1FQTA 66.1 1153.06 1M8AA 4.9 357.62 3DQGA 511.1 1707.22
1FQTA 4294.1 1153.06 1MK0A 821.1 1807.97 3HHWC 4069.1 57.58
1FVGA 304.3 1167.98 1MUGA 2111.69 362.56 3II6B 719.1 121.03
1FVKA 3009.1 4101.17 1NB9A 1.1 1813.25 3II6B 101.1 121.03
1FVKA 2485.1 4101.17 1NE2A 2003.1 3797.34 3II6B 3939.1 121.03
1FX2A 304.48 3084.82 1NFHB 328.1 173.63 3M0ZB 2002.1 986.14
1G2RA 377.4 633.50 1NPSA 72.1 562.18 3NRHB 601.3 89.23
1G9OA 7.1 4435.82 1NRVA 214.1 1293.21 3PG6B 3169.1 227.15
1GBSA 235.1 2845.60 1NY1A 2002.3 3174.29 4KHBB 220.1 205.13
1GMIA 11.2 3279.27 1O1ZA 2002.1 1888.28 5MSFA 265.1 19.64
1GMXA 2009.1 4207.94 1O27A 842.1 356.44 5PTPA 1.1 3576.88
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Table S2. Test dataset

PDB H-class Beff PDB H-class Beff PDB H-class Beff PDB H-class Beff

1AHSC 10.5 34.00 1S3FB 2007.15 1884.35 2GVIA 298.2 764.12 3D2QD 906.1 1817.19
1C2YD 2111.74 2168.53 1S68A 206.1 1800.90 2GVIA 377.1 764.12 3DBYF 633.7 128.52
1C9YA 2111.2 1221.71 1SUDA 2499.1 2223.17 2H44A 131.1 3577.44 3DKXB 101.39 429.61
1CCTA 62.1 752.72 1SWXA 631.1 239.76 2HGHA 386.1 11605.96 3DKXB 304.55 429.61
1COZA 2005.1 1080.17 1SYHA 2111.17 2415.38 2HI7B 633.13 251.74 3EB6B 216.1 800.93
1DBRA 2111.73 2030.74 1TD4A 70.4 224.67 2HJJA 330.7 357.31 3EW1A 9.2 128.29
1DCHF 305.2 865.16 1TFKB 601.5 184.56 2HL0A 2494.1 108.21 3G74B 3068.1 190.29
1EDIA 632.2 55.36 1TJLD 192.1 794.31 2I9LI 3607.1 25.47 3GUVA 2111.66 2017.55
1EFDN 2111.15 1805.37 1TJLD 377.1 794.31 2IA9E 4180.1 393.40 3GYVA 4096.1 275.15
1F46B 331.7 232.82 1UWZB 2492.1 1970.16 2II9B 10.7 318.61 3GZFC 3084.1 21.41
1F68A 633.1 1717.59 1VCRA 5077.1 633.76 2J1KQ 5092.1 54.19 3H8DB 3091.1 519.89
1FHIA 312.1 2333.52 1VJNA 247.1 4292.73 2J3WA 223.2 223.52 3H90A 5082.1 1958.14
1FJRB 4.12 177.71 1VQZA 244.3 1528.59 2J8WB 601.2 319.49 3H90A 327.7 1958.14
1FS0G 2111.9 855.74 1VQZA 314.1 1528.59 2JOVA 4328.1 328.17 3HPGL 611.3 73.67
1G61A 232.1 196.34 1W8AA 207.1 6190.19 2JYNA 6060.1 114.75 3HTYJ 9.23 833.89
1GJJA 130.1 656.04 1W9GB 4326.1 103.72 2KYSA 632.1 26.35 3I9OB 2007.15 125.06
1GLGA 2111.16 2004.75 1WD5A 2111.73 1863.72 2KZSA 611.1 47.96 3IQZF 2111.24 4633.67
1GPSA 387.1 314.45 1WIGA 377.1 1968.97 2M0MB 3640.1 68.44 3K43B 63.1 709.16
1H68A 5001.1 568.60 1WPVB 849.1 66.97 2NQ2A 5065.1 1748.96 3K8RB 719.2 456.28
1I95E 212.1 783.50 1X0PJ 304.11 469.63 2NR9A 5081.1 1059.50 3KZLA 2111.45 277.09
1I95E 330.1 783.50 1X48A 330.1 3012.74 2OF5H 110.1 867.09 3LW5L 5064.1 75.87
1I97T 604.9 787.23 1X8HA 247.1 1597.12 2OGFD 283.3 96.68 3M71A 109.37 370.08
1IMBB 4018.1 1385.68 1X91A 633.4 625.66 2OHCA 242.2 331.23 3MEZA 5.3 1575.83
1IMBB 2111.88 1385.68 1XBAA 206.1 5230.81 2OHCA 2008.2 331.23 3N1GA 307.1 1041.02
1IMXA 367.1 207.66 1XQFA 5049.1 623.56 2OJ5C 5092.1 715.72 3NJSA 292.1 193.91
1IR1S 302.2 73.15 1XS6A 70.2 687.67 2ONKC 5080.1 2270.61 3O7JA 4110.1 482.11
1IS9A 109.2 282.98 1Y4HD 9.6 12.00 2OPIA 281.1 678.62 3OFEB 3122.1 63.28
1JGPR 616.1 732.71 1Y60C 212.1 52.63 2PAVP 223.2 260.82 3OQIA 2005.1 73.13
1JH0L 5037.1 134.95 1YG6F 2486.1 1123.12 2PLSF 217.2 1103.38 3P45J 2111.76 778.97
1K6LH 4.6 1016.07 1YHQO 2490.3 891.82 2Q7RA 5038.2 821.17 3PC7B 2111.68 1936.04
1K6LH 5002.1 1016.07 1YQFF 897.1 216.01 2QQDE 303.1 69.18 3PJZA 5054.1 944.04
1KNVB 2008.1 20.67 1YWSA 375.3 1079.05 2QYFD 859.1 55.61 3QE7A 3226.1 370.60
1KNYB 601.7 2040.19 1Z7ME 2111.17 1897.10 2RDOL 2490.3 585.50 3QNQA 3227.1 569.01
1KNYB 316.1 2040.19 1ZD7B 69.1 1495.32 2RMRA 509.1 566.75 3RBYB 9.14 113.56
1KQPA 2005.1 1056.26 1ZJ0A 2111.6 1949.71 2RTBB 9.2 83.57 3T3TB 241.2 408.23
1LDIA 5048.1 1899.20 1ZWYC 2111.12 403.64 2VGRA 867.1 94.10 3UD2B 12.5 272.08
1LQKB 211.1 3040.40 2A84A 283.1 3238.54 2VT8A 241.15 146.08 3UWSA 2111.76 217.06
1M12A 198.1 766.88 2A84A 2005.1 3238.54 2WNKA 3156.3 76.57 3UYUB 207.1 267.03
1MB6A 387.1 35.30 2A9KB 237.1 589.37 2WNYA 882.1 119.93 3V3LB 4357.1 536.71
1MFRP 150.1 744.09 2AMCA 314.1 1733.67 2XVTF 3720.1 64.58 3VHHB 9.2 78.49
1MR7A 208.1 3352.63 2AV5D 304.57 295.77 2Y9PB 2111.117 50.40 3VX6A 3351.1 190.61
1N2ZB 2111.15 1925.17 2B9NX 304.109 1066.80 2YADB 3417.1 72.14 3ZNUG 304.4 523.53
1N5BA 241.1 444.92 2BWEL 103.1 2810.14 2YZOA 2111.103 260.46 3ZUXA 3236.1 1456.61
1N60C 244.3 3107.13 2C2OA 2111.76 1918.39 2ZITD 237.1 786.86 4A5ZB 300.1 3792.17
1N60C 217.1 3107.13 2CB6A 237.1 308.72 3A1JB 227.1 317.70 4AI3A 5095.1 1016.49
1NQLB 389.1 7548.37 2CCCA 872.1 310.24 3ANZW 11.13 37.83 4ARDB 170.1 57.99
1OAGA 136.1 415.92 2CDMC 304.55 521.63 3AXGI 231.1 425.06 4AU0B 2002.2 144.62
1OTFF 315.1 710.96 2CJRB 808.1 31.34 3B2UB 207.1 647.54 4DLHB 3445.1 268.16
1P3HE 236.1 1042.04 2CSMA 164.1 681.45 3B71B 601.16 64.17 4E1YB 109.2 1032.43
1PCFA 295.1 292.73 2D0PB 2111.13 139.29 3B7AA 108.2 633.86 4E6FA 331.3 121.05
1PDFE 3019.1 27.23 2D2CN 5069.1 557.87 3BLAB 519.1 1314.23 4F0DA 609.1 772.37
1PDFE 877.1 27.23 2DIOC 9.13 362.20 3BLAB 312.1 1314.23 4F0DA 237.1 772.37
1PS1A 141.1 760.75 2E2AB 604.1 674.11 3BP9B 170.1 120.60 4HBRC 809.2 980.47
1RD9D 2.2 1362.36 2EJNA 173.1 28.49 3CPWT 377.1 709.72 4IOSH 5092.1 217.32
1RH7C 929.1 345.56 2F0RA 216.1 1722.59 3CVZC 3237.1 31.96 4IZJC 212.1 785.61
1RL9A 199.1 347.74 2FEEB 5053.1 1029.91 3CVZC 302.3 31.96 4IZJC 3010.1 785.61
1RL9A 321.1 347.74 2FJCO 150.1 341.80 3CXJC 241.1 34.73 4J32B 3368.1 99.71
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DRAFT
Table S3. Average PPV of top N/2 predicted contacts on the independent test set for the original ECOD secondary structure classes.

method all α/β α+β α β extended few mixed
PconsC3 0.57 0.62 0.61 0.49 0.59 0.46 0.54 0.77
PconsC2 0.48 0.55 0.49 0.44 0.46 0.39 0.44 0.78
PlmDCA 0.36 0.43 0.35 0.34 0.32 0.36 0.37 0.61
GaussDCA 0.34 0.40 0.33 0.33 0.31 0.36 0.36 0.60
PhyCMAP 0.32 0.34 0.37 0.23 0.35 0.00 0.39 0.45
counts 210 40 69 55 34 1 10 1
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