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Abstract 

The RNA pseudoknot is a conserved secondary structure encountered in a number of 

ribozymes, which assume a central role in the RNA world hypothesis. However, RNA 

folding algorithms could not predict pseudoknots until recently. Analytic combinatorics – a 

newly arisen mathematical field – has introduced a way of enumerating different RNA 

configurations and quantifying RNA pseudoknot structure robustness and evolvability, two 

features that drive their molecular evolution. I will present a mathematician’s viewpoint of 

RNA secondary structures, and explain how analytic combinatorics applied on RNA 

sequence to structure maps can represent a valuable tool for understanding RNA secondary 

structure evolution. Analytic combinatorics can be implemented for the optimization of RNA 

secondary structure prediction algorithms, the derivation of molecular evolution 

mathematical models, as well as in a number of biotechnological applications, such as 

biosensors, riboswitches etc. Moreover, it showcases how the integration of biology and 

mathematics can provide a different viewpoint into the RNA world. 
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Introduction 

The RNA world hypothesis states that RNA is the first molecule to ever be able to store 

genetic information itself and, in the same time, have regulatory and catalytic activities 1. 

DNA and proteins later assumed the tasks of carrying the genetic information and catalyzing 

chemical reactions, respectively. These RNA molecules, that act as enzymes and are also 

capable of carrying genetic information to replicate themselves, are called ribozymes. Since 

their discovery 2, many ribozymes have been reported 3-5, and one common feature is their 

complex secondary structure 6. Understanding how ribozymes implement their double nature 

can help us explain how the RNA-based world evolved to then give rise to the DNA and 

protein-centered world that we live in.  

RNA molecules assume various structures - some of which rather different from the 

minimum free energy arrangement 7- depending on relatively unknown conditions. The 

catalytic activities of any RNA molecule depend on it structure 8; hence, different structures 

of the same sequence perform diverse functions 9. Moreover, the structure of an RNA 

molecule provides information about its genetic robustness and evolvability 10. A functional 

structure has to achieve a balance between its capacity to withstand and its flexibility to allow 

change when faced with structure-altering mutations. This can be achieved if the same 

structure may arise by different sequences. Depending on how these different sequences are 

distributed in the sequence space, a structure can be more or less robust and evolvable 11. 

Evidently, RNA structure, function and evolution are tightly correlated. 

Analytic combinatorics – a newly arisen mathematical tool - has been used lately to study 

RNA structures, as exemplified here in the case of RNA pseudoknots. I present here how the 

combination of analytic combinatorics with RNA sequence to structure maps and their 

neutral networks can provide new insight about the evolutionary history of different RNA 
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structures offering, at the same time, new parameters towards a more complete mathematical 

model of evolution 12.  

The RNA pseudoknot is a conserved conformation of specific RNA molecules 

The most common RNA structures consist of non-mutually crossing base pairs; these are 

defined as hairpin structures (Fig. 1A). RNA pseudoknots are formed when ribonucleotides 

that belong to the loop of the hairpin base-pair with ribonucleotides that do not belong to the 

hairpin (Fig. 1A). An RNA structure that contains one or more pseudoknots is defined as a 

pseudoknot structure. Furthermore, pseudoknot structures can be divided in ordinary and 

non-ordinary ones. Non-ordinary pseudoknots are more complex structures, rarely observed 

in nature (http://pseudobaseplusplus.utep.edu) and will only be briefly discussed (Fig. 1A). 

Obviously, both hairpin and pseudoknot structures can vary a lot in terms of ribonucleotide 

number, hairpin conformation, base-pairing topology etc, all these affecting their structure 

and function.  

Several molecules acquire ordinary pseudoknot structures 13, 14. Most of their structures and 

functions are conserved amongst all the organisms in which they are found, although their 

primary sequence may vary. It is rather intriguing to observe that most, if not all, RNA 

components of functional ribozymes exhibit a pseudoknot structure (23S rRNA, RNase P, 

Telomerase, group I introns, hepatitis delta virus ribozyme etc). Ribozymes assume an 

important role in the RNA world hypothesis, stating that biological systems have their origins 

in self-replicating molecules made of RNA; therefore, the evolution of these 

ribonucleoprotein complexes has received much attention 15, 16. Only recently, the prediction 

of pseudoknot structures by RNA structure prediction algorithms has become possible 17. 

Lately, mathematical biologists have studied pseudoknots extensively using analytic 
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combinatorics 18-20. Using their calculations, which are presented here, we may obtain 

information about the evolution of RNA secondary structures.  

Neutral networks of RNA structures 

To achieve this, we need to study the neutral networks of different RNA structures. Sequence 

to structure maps are valuable for studying RNA evolution. These maps consist of two sets, 

the set of sequences and the set of structures. Each sequence corresponds to one structure. 

Since sequences are more than the structures, many members of the sequence set are 

connected with one member of the structure set. The sequences that are connected to one 

structure form a subset, which is called neutral set. Neutral networks are the neutral sets in 

which all members are connected with each other with successive single mutations that do 

not lead to sequences with different structure (neutral neighbors). In the case of RNA 

sequence to structure maps, neutral sets are always coherent and, therefore, the two terms are 

interchangeable 21.  

The magnitude and the shape of the neutral network of a given structure can be correlated 

with its robustness - the capacity of the structure to resist change retaining its configuration - 

and its evolvability - its liability to change. Although, in nature, the sequences of a neutral 

network are not equally distributed, it is safe to assume that the larger a neutral network the 

more robust the structure, since single mutations are more likely to result in retention of the 

original structure.  

It is intuitive to perceive robustness and evolvability as two opposite traits, since they 

describe the structure’s resistance and liability to change, respectively. However, structure 

robustness is positively correlated to structure evolvability 10; a structure that is robust has a 

more extensive neutral network, which, in turn, neighbors more structures, enhancing the 

evolvability of the structure. System drift on a large genotype network is necessary for the 
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production of novel phenotypes, as this drift despite keeping the phenotype intact alters the 

neighborhood of the structure, potentially bringing it one mutation away from a novel 

structure 10, 22, 23. Therefore, a larger network is not only robust but also more evolvable by 

increasing the amount of different accessible phenotypes. The capability to evaluate the 

magnitude and/or the shape of the neutral network of a structure can offer an additional 

criterion when assessing its evolutionary history. 

Analytic combinatorics: another tool in our mathematical toolbox 

In this article, an RNA structure is defined as a molecule with a specific topology of base 

pairs between its ribonucleotides. If the identity of the ribonucleotides, whether forming base 

pairs or not, changes, a different (new) structure will not be considered to have formed as 

long as the base-pairing topology remains the same.  

Theory 

Analytic combinatorics 24 is a clade of mathematics used to estimate specific properties of 

large configurations, as - in the present case - the number of different structures an RNA 

molecule of a given size can acquire. The main mathematical tool is the generating function, 

which is described next. Analytic combinatorics unites two different disciplines. First, it uses 

combinatorics to translate the examined configuration into a generating function. 

Subsequently, analytical methods are deployed to extract information from these functions. 

The functions we are familiar with are of the type � � ����, where � can be easily 

determined by substituting � with the desired value. For instance, the formula for calculating 

the different sequences of RNA molecules of length � is the following:  

���� � 4�.  (1) 
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However, for most biological systems a simple explicit formula is impossible to be 

computed; therefore, to describe such systems, generating functions can be a valuable 

alternative. Generating functions are power series 

��	� � 
� � 
�	 � 
�	� � 
�	� � � � 
�	� (2) 

whose coefficients 
� are the answers to the problem in hand. This means that the 
� 

coefficient of a generating function corresponds to the ���� of an explicit formula.  

Generating functions should be used to approach a problem only if no explicit formula is 

available; they are not easy to handle, since the evaluation of the nth coefficient of the 

function (when � is large) can be very demanding and often can only be approximated. 

Process 

An important part of this analysis is the translation of the configuration to be studied to a 

combinatorial construction. This is performed using simple operators such as unions, 

Cartesian products and sequences, and operands such as unit sets (sets with only one 

member) or other constructions (Fig. 1B), as exemplified subsequently.  

Afterwards, the generating function can be calculated directly from the combinatorial 

construction, through an algorithm that translates the operands and the operators into 

mathematical expressions. The theorems, upon which these translations are founded, are 

called symbolic transfer theorems (Fig. 1B).  

Finally, the transfer from the generating function to the estimation of its coefficients relies 

upon a third algorithm. Depending on the type of the generating function, this algorithm 

utilizes certain theorems (analytic transfer theorems) to achieve the approximation of the 

coefficients of the generating function (Fig. 1B). The transfer theorems, the analytic ones in 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2016. ; https://doi.org/10.1101/079608doi: bioRxiv preprint 

https://doi.org/10.1101/079608
http://creativecommons.org/licenses/by-nc/4.0/


 8 

particular, are difficult to prove but easy to implement. Many transfer theorems are already 

available 24, 25 and the proof of new ones is an active area of study in analytic combinatorics. 

Example 

One can calculate the generating function of the different sequences of RNA molecules of 

length �, based on the process described earlier and the theorems summarized in Fig. 1B, and 

compare the result with the already known explicit formula (1).  

The set of the ribonucleotides R (a 4-member set consisting of the four possible 

ribonucleotides) is the union of the four unit sets, one of each nucleotide. Hence, its 

generating function is equal to four times the generating function of the unit set (�	� � 	): 

� �  �
� � ��� � ��� � ��� �  ��	�  �  	 �  	 �  	 �  	 �  4	 (3) 

The members of the set of the different sequences of RNA molecules, S, are sequences of 

members of the ribonucleotide set, therefore: 

� �  ������  �  ��	�  �  
�

�����	


 �  

�

���	
  (4) 

It is, afterwards, easy to verify that: 

��	�  �  
�

���	
 �  1 � 4	 � 16	� � �  (5) 

and compare the results of the explicit function (1) with the coefficients of the generating 

function (5): 

��0� � 
� � 1 

��1� � 
� � 4 

��2� � 
� � 16 
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etc. 

The calculated generating function (4) is of the type: 

1

�1 � �	�
 

where � � 4.Therefore, the corresponding analytic transfer theorem as indicated in Fig. 1B is 

the following:  

�	��
�

����	

� ��  (6) 

where �	��
�

����	

 symbolizes the nth coefficient of the generating function 

�

����	

. We can 

deduce that the coefficients of ��	� can be approximated by the following function: 

 ��� �  4� (7) 

which, in the present example, equals the exact number of the different sequences of RNA 

molecules of length �. 

The most intriguing part of analytic combinatorics is that it creates an interface of 

collaboration between different disciplines - mathematicians and biologists – and can be used 

to exploit beautiful mathematics, such as analysis, to assess exciting evolutionary questions. 

Nevertheless, it can also be helpful for biologists without mathematical background who can 

use the algorithm by simply applying proven transfer theorems.  

Neutral networks and evolution of RNA pseudoknots 

The use of analytic combinatorics for the enumeration of RNA configurations was introduced 

in the early ‘80s 26. Recently, the number of different structures of hairpins and pseudoknots 

was approximated 27-29 (Fig. 1C), indicating that ordinary pseudoknot structures exhibit large 
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neutral networks. Mutational robustness of large neutral networks offers an apparent selective 

advantage 21. Moreover, the base-pair number in pseudoknot structures follows a Gaussian 

distribution 30, designating that the majority of pseudoknot structures have a similar number 

of base pairs.  

The magnitude of neutral networks is inversely proportional to the number of different 

structures. Having this in mind as well as the numbers of different structures of each RNA 

type (Fig. 1C), one can estimate the extent of neutral networks and, hence, the robustness and 

evolvability of each different structure. Hairpins are, on average, more robust than ordinary 

pseudoknots, which in turn are more robust than the non-ordinary pseudoknots. Inversely, the 

ordinary pseudoknots can acquire more different structures than the hairpins. Analytic 

combinatorics could generate information about the relationship between robustness and 

evolvability of structures (robustness is influenced by the magnitude of the neutral networks, 

whereas evolvability depends on both magnitude and shape). Combined with research about 

the distribution of sequences that fold into a given structure 17, 31, 32, these studies can enhance 

our understanding regarding the production of evolutionary innovations in a robust 

environment.  

The mathematical framework presented earlier allows us to survey the prevalence of ordinary 

pseudoknot structures in ribozymes from a different viewpoint. Robustness and evolvability 

of RNA pseudoknots, alongside their presence in every known ribozyme, concur with the 

RNA world hypothesis, which requires robust RNA molecules able to acquire diverse 

structures. These neutral network characteristics are ideal for the rapid evolution of robust 

structures. 

Future applications for RNA structure and molecular evolution studies 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2016. ; https://doi.org/10.1101/079608doi: bioRxiv preprint 

https://doi.org/10.1101/079608
http://creativecommons.org/licenses/by-nc/4.0/


 11

Being able to assess the number of different structures of a given set of RNA molecules can 

assist the development of RNA secondary structure prediction algorithms. In this context, the 

set of biophysically relevant pseudoknot RNA structures (which satisfy certain minimum free 

energy prerequisites) has been enumerated, indicating this small set as a potential output class 

for future prediction algorithms 27. Moreover, consideration of the magnitude of a structure’s 

neutral network, as a meta-prediction procedure in RNA secondary structure computation 

algorithms, could serve as validation of the output structure. The aforementioned approach 

could thus generate one of the missing pieces for comprehending the principles of RNA 

folding. Moreover, since the implementation of algorithms for the prediction of the joint 

structure of two interacting RNA molecules, combinatorial analysis of interacting RNA 

molecules has been performed 33. 

Mutations occur in the level of genotype (sequence), while selection acts on the phenotypic 

output (structure). Therefore, the derivation of mathematical models that describe evolution 

as accurately as possible requires the integration of accurate representations of genotype-

phenotype maps. To add on this complexity, the phenotype may be manifested in different 

levels, from molecules to organelles, cells, tissues, organs, and organisms. Analytic 

combinatorics offers an alternative way of exploring the fitness landscape by evaluating the 

robustness and evolvability of different phenotypes. 

Lately, a number of biotechnological applications have resided in the use of ribozymes as 

biosensors for environmental monitoring 34, 35, as riboswitches for genetic engineering etc 36-

38. Many synthetic ribozymes have been produced using experimental evolution 39. Having a 

way to evaluate the robustness and evolvability of ribozyme structures is critical for the 

rational design of RNA molecules. Finally, understanding how ribozymes have evolved to 

exert their functions, we will be able to engineer catalytic RNA molecules, whose function 

may be controlled using chemical or physical signals, more efficiently 37, 40. 
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Conclusion 

Analytic combinatorics has offered a plausible explanation as to why RNA pseudoknot 

structures were recruited and retained until today in fundamental biological molecules and 

procedures. Analytic combinatorics can provide the foundation, upon which biologists can 

approach previously inaccessible fields of research. Moreover, by describing the landscape of 

RNA sequence to structure maps analytic combinatorics presents the opportunity to cover 

some of the gaps towards a mathematical model of evolution 12. 
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Figure 1 legend: Enumeration of structures with analytic combinatorics 

(A) In terms of base-pairing, a string of ribonucleotides can acquire three different forms. 

The most common one is the hairpin, where no mutually crossing base-pairs are observed. 

Underneath the structure, the RNA molecule is illustrated as a straight line, whereas curved 

lines represent base pairs between specific ribonucleotides, highlighting the absence of 

mutually crossing base pairs. The ordinary RNA pseudoknot is a structure that forms when a 

single-stranded nucleotide stretch of a hairpin loop base-pairs with nucleotides elsewhere in 

the same molecule. Nucleotide string a base-pairs with nucleotide string c and nucleotide 

string b with nucleotide string d, where 
 ! " ! � ! #. Non-ordinary, more complex 

pseudoknot structures are rarely observed in nature. These can carry more than two mutually 

crossing base pairs. (B) Using analytic combinatorics, one can approximate the number of 

different structures. Initially, the structures are translated into combinatorial constructions, 

using natural combinatorial operators, such as union (set A), Cartesian product (set D) and 

sequences (set G), between operands, such as empty sets (set E), unit sets (set M) or other 

constructions. Subsequently, through symbolic transfer equations, generating functions can 

be formed. The nth coefficient of a generating function ��	� (represented as �	����	�) can, 

in turn, be approximated through the use of analytic transfer equations. (C) The number of 

different structures of each of the aforementioned types of RNA secondary structure has been 

approximated using analytic combinatorics. 
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