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Abstract

New technologies for manipulating and recording the nervous system allow us to 1

perform unprecedented experiments. However, the influence of our experimental 2

manipulations on psychological processes must be inferred from their effects on 3

behavior. Today, quantifying behavior has become the bottleneck for large-scale, 4

high-throughput, experiments. The method presented here addresses this issue by using 5

deep learning algorithms for video-based animal tracking. Here we describe a reliable 6

automatic method for tracking head position and orientation from simple video 7

recordings of the common marmoset (Callithrix jacchus). This method for measuring 8

marmoset behavior allows for the estimation of gaze within foveal error, and can easily 9

be adapted to a wide variety of similar tasks in biomedical research. In particular, the 10

method has great potential for the simultaneous tracking of multiple marmosets to 11

quantify social behaviors. 12

Introduction 13

Recent technological developments allow us to record [10,12,61] and 14

manipulate [4, 42,47] the nervous system with unprecedented precision and scale. Yet, 15

the psychological relevance of our sophisticated manipulations and large-scale recordings 16

can only be inferred from their effects on behavior. Today, properly quantifying 17

behavior has become the main bottleneck for high-throughput experiments [7, 56]. It is 18

common practice to apply standard tests designed to measure psychological constructs 19

such as anxiety and spatial memory, for example, by using the Elevated Plus Maze [41] 20

or the Morris Water Maze [35]. Such testing requires animals to be individually 21

handled, making data acquisition labor intensive, increasing costs and reducing 22

experimental throughput. Alternatively, various simple detectors (e.g. capacitance 23

sensors or photo-beams) can be arranged to automatically acquire data at specific sites 24

(e.g. drinking [17] and feeding [14] stations). This type of automation allows for high 25

throughput behavioral quantification, but fails to capture complex or subtle behaviors 26

such as social interactions through gaze behaviors. A more promising approach is to 27

record high-dimensional data from sensor arrays (e.g. video) and extract relevant 28

information using computer vision algorithms. This approach has the potential to 29

provide a better characterization of behavior, capable of automatically capturing 30

complex and subtle behaviors, while simultaneously reducing both cost and labor 31

intensity [46]. Raw video frames are composed of a high number of pixels whose values 32

1/16

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 29, 2016. ; https://doi.org/10.1101/079566doi: bioRxiv preprint 

https://doi.org/10.1101/079566
http://creativecommons.org/licenses/by-nc/4.0/


do not straightforwardly correlate with an animal’s behavior. In order to reliably 33

measure behavior give such variability, many computer vision systems rely on 34

explicitly-designed dimensionality reduction methods that extract specific features (e.g. 35

to achieve illumination invariance [18]). The result of this preprocessing can then be 36

used to measure or classify behavior [24,62]. However, the explicit design of feature 37

extraction methods that are robust under a wide range of conditions is difficult and 38

time-consuming [2]. Deep learning algorithms, in contrast, automatically learn a 39

hierarchy of increasingly abstract representations, running from simple feature detectors 40

(e.g. edge detectors) to the final classification. This strategy obviates the need for 41

manually designed feature extraction and has proven successful in a great variety of 42

tasks [2, 30]. A particular group of deep learning algorithms, convolutional neural 43

networks (CNNs), is inspired by the local connectivity pattern of the visual cortex [63], 44

and are optimized for data organized in arrays like those produced by a digital camera. 45

The recent development of CNNs have led to impressive improvements on visual 46

recognition tasks [29], making them the most popular deep learning method in 47

computer vision and ideal for video-based tracking of behavior. 48

Most work on the automatic measurement of behavior has been done on fruit 49

flies [5, 51–53], zebra fish [39,40] and mice [36,38]. However, despite the importance of 50

non-human primates as research models in several areas of life sciences the methods 51

development is lagging behind. In particular, the common marmoset (Callithrix jacchus) 52

is becoming an increasingly important primate model in biomedical [21,37,45,54,64], 53

genetic [23,25,44], and neuroscience [28,49] research. The growing popularity of 54

marmosets stems from their similarity to humans regarding the disease susceptibility 55

profile [11, 55], their relative ease of handling, high fecundity and fast development [43], 56

and the recent development of key tools for genetic manipulations [44,48] and 57

neuroscience experiments [37]. To the best of our knowledge, only one publication has 58

reported on a preliminary method for automated behavioral tracking of marmosets [6]. 59

In contrast to rodents, primates in general have to orient their gaze precisely which 60

makes gaze direction informative of what they pay attention to [33,49]. Further, a 61

striking feature of the gaze behavior of small-headed primates such as marmosets is 62

their rapid head movements. When shifting their gaze, marmosets tend to move their 63

heads in quick jerks, similar to how bigger primates move their eyes when making 64

saccades. Although marmosets can and do make saccadic eye movements, they are 65

limited to the central 10◦ [33], with the result that head movements contribute 66

substantially to the final gaze shift [20,32]. This might be explained by these primates’ 67

small head and relatively large eyes [16,57]. The lesser head size results in lower 68

rotational inertia which in turn, lowers the muscular force required to produce rapid 69

head movements. Since rotational inertia decreases faster with size than muscle force 70

does, head movements become gradually more favorable with smaller head sizes. Thus, 71

the combination of a small fovea and a big contribution of head movement to the gaze 72

direction makes head tracking of marmosets remarkably informative, allowing gaze 73

estimation without eye measurements. For marmosets, head orientation alone indicates 74

marmosets’ gaze direction within ±10◦. By tracking a marmoset’s head position and 75

direction, we get a rich source of information about how it moves and what captures its 76

interest. We here present a video-based method that uses a CNN to track head position 77

and orientation (thus approximating gaze direction) in the common marmoset. 78

Results 79

We set out to develop a video-based method for automatic tracking of head position and 80

gaze direction of marmosets. To this end, we first recorded marmosets engaged in a 81

15-minute vocal learning experiment using a video camera mounted above the test box 82
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(Fig 1). We annotated a subset of the video frames with head direction and trained a 83

CNN on this data. Head direction was explicitly predicted by the model, whereas head 84

position was indirectly estimated from the model’s spatial activation pattern [65]. 85

Fig 1. Experimental setup.
Video was recorded by a camera
placed above the subject while it
was taking part in a vocal learn-
ing experiment. The device to the
right of the subject is the reward
dispenser with spout (light tube)
and recipient below (dark disc).

There were two sources of 86

uncertainty in the input data. First, humans 87

do not score the video frames in an entirely 88

consistent fashion, but will vary a bit from 89

frame to frame in their estimate of identical 90

head directions. Second, head direction 91

angles (0 to 360◦) were binned into 28 classes 92

resulting in a loss of precision. To provide 93

an estimate of the first source of uncertainty, 94

two investigators annotated the same 95

1,361 frames and the differences between 96

the estimated directions and positions were 97

measured. Between the two investigators, 98

the mean difference was 9.2◦ (median 7.2◦) 99

for direction, and 10 pixels (median 9 pixels) 100

for position. We refer to these differences 101

as the inter-human disagreement. Beyond 102

measuring the uncertainty in the input data, 103

the inter-human disagreement also provides 104

a reference to which the model’s performance 105

can be compared. We operationalized the 106

model error as the difference between a human scorer’s estimate of head direction and 107

position, and that of the model. 108

In order to address the limits of the input data and to contain the effects of 109

over-fitting, we used model averaging [50,51]. Unless otherwise noted, the results 110

presented below originate from the averaging of 30 models. Fig 2A shows an example 111

of predicted head direction and position in comparison with the human annotation in a 112

sequence of video frames. Note that although the manually marked position is shown, 113

this is only to evaluate the model’s performance and no explicit position information 114

was used in training the model. 115

To systematically test tracking performance we annotated 2,000 video frames with 116

head direction and position. This allowed us to compare the model’s predictions with 117

the inter-human disagreement. Randomly selecting the frames from the training set is 118

likely to overestimate performance since adjacent frames in these videos often are highly 119

correlated. Therefore, to test the model, we used labeled frames from five videos (400 120

frames from each video) that did not contribute to neither training nor validation data. 121

The five videos included all three subjects. Fig 2B shows the predicted head position 122

and orientation, as well as the associated errors, in one of the five videos. The 123

magnitude of the head direction error is reported degrees from 0 to 180◦ and the 124

position error is reported in pixels (640 × 480-pixel video frames). As an upper limit for 125

the errors they can be compared to chance, which is 90◦ for direction, and 277 pixels for 126

position. For the data in Fig 2B, the mean direction error was 9.1◦ (median 3.3◦), and 127

the mean position error was 24 pixels (median 16 pixels). 128
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t: 259.59 s
t: 259.86 s
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t: 260.73 s

A

B C

129

Fig 2. Head tracking. A, Four video frames illustrating the tracking of head direction 130

and position. The time of each frame is shown on the upper left corner. The orange line 131

and circle show the predicted head direction and position, respectively. The green line 132

and circle show the corresponding manual annotations. The CAM (see Materials and 133

Methods) is superimposed on the video frames as a heat map with more discriminative 134

image regions shown in warmer colors. The white circle and horizontal bar in the leftmost 135

frame show the location of the reward dispenser. B, Left panels show position (upper 136

panel) and direction (lower panel) tracking of 400 frames of the test data. Orange lines 137

show predicted head position coordinates in pixels (upper), and head direction in degrees 138

(lower). Green lines show the manual annotation, and gray shows the model’s error. In 139

the lower panel, the light green and red fields around frames 25 – 50 indicate agreement 140

(green) and disagreement (red), about frames where the animal’s gaze was directed out of 141

the horizontal plane. The right panels show histograms of the error from the left panels 142

(left and right panels share y-axis). C, Position (upper) and direction (lower) errors 143

across all test data. The model errors are shown in dark gray, and the corresponding 144

inter-human disagreements are shown in light gray. Black lines show mean (full lines) 145

and median (dotted) error, and the vertical gray lines indicate chance error. The x-axes 146

have been truncated for visual clarity. 147
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Fig 2C shows the direction and position error on all the test data compared with 148

the inter-human disagreement. The mean head direction error was 10.9◦ (median error 149

6.2◦), which is very close to the inter-human disagreement with a mean of 9.2◦ (median 150

7.2◦). The mean position error was 33 pixels (median 23 pixels), compared to the 151

inter-human disagreement with a mean of 10 pixels (median 9 pixels). To put the 152

position error in anatomical perspective, it can be compared to the marmosets’ head 153

size. The width of the head, measured as the inter-tuft-distance, was on average 47 154

pixels (20 to 80 pixels, varying with the distance to the camera). Thus, the median 155

position error is about 70% of the average head width. In comparison, the inter-human 156

disagreement was 10 pixels, that is, 22% of the average head width. Finally, in some 157

video frames the subjects looked out of the horizontal plane, or head was occluded. Such 158

frames were labeled as “angle-does-not-apply” and assigned a 29th class when training 159

the model. An example of this can be seen in the lower panel of Fig 2B. During an 160

interval around frames 25 – 50 the test data was labeled with angle-does-not-apply, and 161

except for a few frames right at the start and end of the interval predicted by the model 162

as such. Since this was a binary classification we report the error as the area under the 163

receiver operating characteristic curve (AUC). Perfect classification would result in an 164

AUC of 1, and chance classification would result in an AUC of 0.5. The AUC for 165

predicting angle-does-not-apply on the complete test set was 0.859. 166

The errors presented above were the results of averaging over the output of several 167

models. However, the gains made by this procedure were rather limited. The average 168

errors for individual models had a mean of 14.9◦ (median 7.9◦) for direction and 44.8 169

pixels (median 28.6 pixels) for position. The average angle-does-not-apply AUC for 170

individual models was 0.835. 171

Fig 3. Points of gaze and
head positions during two ex-
perimental sessions. The den-
sity of head positions is shown as
heat maps spanning the horizontal
plane of the test box. The white
horizontal bars and circles on the
right shows the locations of the re-
ward dispenser. Along the perime-
ter of the heat map (i.e. the test
box), points of gaze are shown as
gray histograms. The upper panel
shows an early session before the
subject was used to receiving re-
ward from the dispenser while the
lower panel shows a late session
where the subject’s positions and
points of gaze are dominated by
the reward dispenser.

Given information about 172

head direction and position, we investigated 173

where subjects spent most time and what they 174

looked most at (i.e. “point of gaze”). To provide 175

a coarse-grained picture of the most visited 176

locations during an experimental session we 177

calculated two-dimensional histograms of head 178

positions representing the horizontal plane of the 179

test box (see Fig 3). Similarly, we estimated the 180

points of gaze through combining direction and 181

position, extrapolating the resulting gaze lines 182

to the perimeter of the test box, and representing 183

them as histograms of looking time. Fig 3A 184

shows two examples from an early (upper panel) 185

and a late (lower panel) experimental session, 186

demonstrating how, the subject increasingly 187

directs its attention towards the reward 188

dispenser. This agrees with the fact that, during 189

the late session, the subject spent most time 190

looking at and/or sitting next to the dispenser. 191

However, for a more fine grained analysis 192

of the subject’s behavior during particular times 193

of interest we analyzed how the gaze and position 194

changed frame-by-frame. The video recordings were done during a vocal learning 195

experiment, in which the subjects received a reward two seconds after the end of a 196

contact phee call [58]. Fig 4A shows three examples of gaze and positions associated 197

with call and reward. Note how the subject looks toward the reward dispenser 198

immediately after the call and then moves to the dispenser. This behavior is further 199
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described in Fig 4B and C where we aligned the animal’s gaze behavior around the 200

time of call and reward. We limited the analysis to the first ten calls since the reward 201

motivation decreased during an experimental session, resulting in less time-locked 202

behavior. The figures demonstrates how the subject directs the gaze towards the 203

dispenser less than a second after the reward is delivered (Fig 4B) and soon after start 204

moving towards the dispenser. 205

A

B C

206

Fig 4. Gaze and head position associated with call and reward. A, Examples 207

of gaze direction and head position around the time of reward delivery represented in the 208

horizontal plane of the test box. The gaze and head position is indicated by the orange 209

lines and circles, respectively. The progression of time is indicated by color darkness. 210

For visual clarity, the lines representing gaze not directed at the dispenser are made 211

semi-transparent. Call onset, offset and reward delivery are indicated by arrows, and the 212

black circle and vertical bar to the right of each panel indicate the location of the reward 213

dispenser. B, Head direction relative to the reward dispenser from four seconds before 214

to five seconds after reward delivery. The top portion shows the angular distance of the 215

first ten rewards (warmer colors represent greater distance), and the bottom portion 216

shows the average (black trace) with 95% CI (light gray field). The dashed line indicates 217

the baseline (i.e. the average before call offset). The x-axis shows time in seconds, the 218

vertical light gray bar at -2 s indicates the time of call offset, and dark gray bar at 0 s 219

indicates the time of reward delivery. C, The spatial distance to the dispenser; otherwise 220

the figure layout follows B. 221

In order to visualize the pattern of movement associated with calls we aligned speed 222

data (i.e. the magnitude of change in direction and position) to the beginning and end 223

of calls. Since the call duration varies between calls, we re-sampled the data during the 224

calls to a common duration (2.67 s, which is the median call duration). This allowed us 225

to align call associated data across multiple calls. Fig 4 shows how the angular speed 226

(Fig 4A) and head speed (Fig 4A) change around and during a call. 227
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Fig 5. Speed around the
time of calls. A, Angular speed
of head rotation. The upper
panel show the average angular
speed around calls per session
(warmer colors indicate greater
speed). The lower panel show the
angular speed averaged over ses-
sions (black) ±95% CI (gray field).
Call start and end is indicated by
the two vertical grey bars. x-axis
show time in seconds. B, Head
speed; otherwise the figure layout
follows A.

Angular speed around call
A

B

Both the angular 228

speed and the head speed gradually 229

drop by approximately 50% during 230

the calls. This observation is similar 231

to the general decrease in body movement 232

during calls reported by [3]. They 233

also report a slower build-up of speed 234

preceding calls. However, that could not 235

be addressed in the current experiment 236

due to the confounding effect of the 237

reward. As can be seen in Fig 4A, the 238

marmosets slow down when consuming 239

the reward, and when finished speed 240

up again. This would create a spurious 241

appearance of a call-associated speed-up. 242

Discussion 243

Here we provided a demonstration of how deep learning can be used to track marmoset 244

gaze behavior. We trained a CNN on video data to predict a marmoset’s head direction 245

and position, giving an estimate of the marmoset’s location and where it was looking. 246

The tracking performance was good, especially for head direction for which the 247

disagreement between the model and human was close to the inter-human disagreement 248

(Fig 2C). For position, the disagreement between human and model was greater, but 249

still comparable to human performance. This level of performance was not unexpected 250

since deep learning algorithms applied to other complex tasks have been shown to 251

perform at [34], or above human levels [19]. 252

Vision is the dominant sensory modality of diurnal primates such as marmosets, 253

making gaze tracking essential to the study of their behavior. Their high acuity and 254

forward facing eyes provides them with excellent binocular vision for fast and accurate 255

guidance in a complex three-dimensional environment [27]. However, measuring gaze 256

behavior is fraught with difficulties. Gaze tracking in non-human primates requires the 257

head to be immobilized, in order to leave eye movements as the sole contributor to gaze 258

shift. Head restraint is generally achieved with an implanted metal head post [33], or in 259

a more recent and less invasive development for macaques, with thermo-plastic 260

helmets [13, 31]. Critically, due to the requirement of head restraint, these methods are 261

hard, if not impossible, to apply in several naturalistic settings where gaze tracking 262

would be desirable. In addition, head restraint might have adverse effects on the gaze 263

behavior of primates such as marmosets, where head movements make a big 264

contribution to the gaze shift. To our knowledge, the only alternative to head restrained 265

gaze tracking in non-human primates is to manually score video recordings to get a 266

coarse estimate of gaze direction [9, 15]. Beyond being time consuming and thus not 267

feasible to apply to hours of data, the method is very imprecise. In light of these 268

methodological limitations, we believe that the method presented here provides an 269

important tool for future studies of marmoset behavior. However, we would like to 270

reiterate that the method presented here relies on the great contribution of head 271

movements to the gaze shift of marmosets, and is thus not applicable to gaze tracking of 272

species where head-independent eye movements contribute more to the total gaze shift. 273

The method presented here is flexible and can easily be applied to similar tasks 274

without any changes to the source code (available at 275

https://github.com/kalleknast/head-tracker). To apply it to novel video 276
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recordings of isolated marmosets, one would merely need to label a subset of the sdata 277

and train the model. We annotated a total of 20,127 frames which took around 20 278

hours. However, a subset of those (5,000 frames) was used to select model architecture 279

and to evaluate performance. Thus, 15,000 frames (15 hours of work) are sufficient to 280

train the model. Since annotating video is the main time-sink when applying the model 281

to new data, it is worth to consider how to further minimize this effort. One possibility 282

would be to selectively label the more informative frames. Video frames are often highly 283

correlated, meaning that many of them are redundant, and thus do not contribute much 284

when optimizing the model. Through the selective sampling of less correlated frames 285

the model could probably be successfully trained using less labeled data [51]. It is thus 286

likely that not more than 10 hours needs to be spent on data labeling in order to apply 287

the method presented here to a novel set of video recordings. 288

Although our experiments were performed with isolated individuals, we believe that 289

the general method can be extended to recordings of multiple animals. Such 290

simultaneous tracking of multiple animals would provide a way to quantify social 291

behaviors, which are in general, complex and difficult to measure, typically requiring 292

sophisticated analysis of high dimensional data such as video. In the past, social 293

behaviors could only be measured by manually scoring videos, making this type of 294

analysis low-throughput [46], inconsistent, and subject to unconscious and/or conscious 295

bias [8]. However, deep learning based methods, such as the one presented here, hold 296

the promise of automating this task. Marmosets, like humans, look directly at regions of 297

social interest, particularly faces [33]. Thus, by tracking their gaze in a social 298

environment, we get a measure of their social interactions. Gaze and position tracking 299

would provide the time series data that could be used for automatic detection of such 300

behaviors as play and grooming. The method presented here provides a first step in 301

that direction. 302

The recordings were performed in a restricted environment that essentially only 303

enabled two-dimensional movement. The tracking was further constrained to only 304

concern directions and positions in the horizontal plane, thus decreasing the complexity 305

of our implementation. However, marmosets are not ground dwelling, and in most 306

naturalistic environments tracking in three dimensions is necessary for a meaningful 307

description of their activities. While three-dimensional tracking requires multiple 308

cameras synced by a common clock, the tracking algorithm would not require much 309

modification. The simplest way would be to train independent two dimensional models 310

on video from different cameras, and to reconstruct three-dimensional coordinates and 311

angles post hoc. Successful, multi-camera, three-dimensional tracking has been reported 312

for Drosophila [52, 53]. However, that method relies on background subtraction to 313

localize the target, and thus, requires a visually constant and unobstructed environment 314

which precludes extension to primate home-cage conditions. The utilization of deep 315

learning algorithms provides an alternative that is much more robust to the visually 316

messy environments of marmoset cages. 317

A model’s performance is constrained by the quality of the input data, which in our 318

case was limited by the precision of the direction labels (i.e. the width of the direction 319

bins) and the accuracy of the human-scored training data. However, in spite of these 320

limitations of the input data, the model’s performance was very close to the human 321

level. Since the error introduced by data binning is randomly distributed, it should be 322

reduced by prediction averaging. For example, averaging over 30 models resulted in a 323

direction error of 10.9◦, whereas the average error of individual models was 14.9◦, 324

significantly greater. Similarly, the error of individual models could also be decreased 325

(from 14.9◦ to 13.7◦) by computing the predicted direction as the sum over labels 326

weighted by the softmax activation. That is, treating the softmax output as a 327

probability distribution over the labels. However, none of these strategies are likely to 328
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reduce the error caused by the uncertainty in the human assigned labels, thus leaving 329

this as the lowest error a model can achieve. With this in mind the direction error 330

should be considered close to optimal. 331

The error in position was relatively greater, and most likely caused by the loss of 332

precision due to the down-sampling of the video frames by a factor of 16 (from 333

640 × 480 to 160 × 120 pixels). That is, an error of one pixel in the model’s output 334

translates to an error of 16 pixels in the full sized video frame. This limit is inherent to 335

the design of the current model, and is probably best dealt with through building an 336

explicit object detection model. 337

Materials and Methods 338

Dataset Description 339

The subjects were three captive-born adult common marmosets (two females and one 340

male), housed at the Instituto do Cérebro, Universidade Federal do Rio Grande do 341

Norte. The marmosets were housed socially in two wire mesh enclosures 342

(1.20 × 1.50 × 2.45 m), enriched with tree branches, ropes, plants, hammocks and 343

nesting tubes. The animals were fed twice daily with fresh and dried fruit, nuts, egg and 344

chicken, and had ad libitum access to water. The colony was maintained outdoors 345

protected by a roof while still allowing daily sunbaths in natural light. The animals 346

were housed in compliance with SISBIO permit #18394, and the experiment was 347

approved by the ethics committee of Universidade Federal do Rio Grande do Norte with 348

CEUA permit #028/2013. No animal was sacrificed at the end of the experiment. 349

We recorded video of marmosets taking part in a vocal learning experiment. During 350

an experimental session, an individual marmoset was kept acoustically isolated in a test 351

box measuring approximately 30 × 30 × 30 cm (Fig 1) for 15 minutes. The subjects 352

were trained to voluntarily leave their home-cage and enter the test box cage in return 353

for preferred food items. The subjects were rewarded for making contact phee calls [58]. 354

Sound was monitored online via a microphone streaming data to a computer running a 355

phee-detection program [59]. Two seconds after the end of a phee call, a dispenser 356

delivered a liquid reward (Yakult, Tokyo, Japan) via a spout to a reward recipient 357

placed below (Fig 1 and 2A). We recorded 70, 15-min videos (total of 17 hours and 30 358

min) over a period of six months. A total of 4002 phee calls were recorded. For a subset 359

of the experimental sessions (12 videos from one subject), the recordings allowed for 360

precise alignment of the video frames and the behavioral events. Video was recorded at 361

15 frames per second with a C920 Logitech HD Pro Webcam (Logitech, Lausanne, 362

Switzerland) placed 30 cm above the cage. The recording software was custom written 363

in Python 3.5 utilizing the GStreamer open-source multimedia framework 364

(https://gstreamer.freedesktop.org) and is available at 365

https://github.com/kalleknast/video-tools. 366

Subsequent to the data collection, a subset of the video frames were annotated with 367

the marmosets’ head position and orientation in the horizontal plane. In order to reduce 368

effort and improve consistency, we wrote software to aid the annotation process. 369

Annotation did not require any previous training since it only consisted of marking the 370

location of the marmoset’s forehead followed by the base of the two tufts. From these 371

three points, the head direction and position in the horizontal plane was calculated. 372

However, in some instances, frames could not be assigned any meaningful head direction 373

in the horizontal plane. For example, sometimes the subject looked out of the horizontal 374

plane (i.e. up or down), or its head was obscured. Such frames were annotated with 375

angle-does-not-apply. We annotated 18,127 frames from 15 different videos (1208 ±413 376

frames per video). These frames were split into a training set (15,127 frames) and a 377
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validation set (3,000 frames). The validation set was used to tune the model 378

architecture (e.g. to find the optimal number of classes, see below). Another 2,000 379

frames were annotated for the test data. Test data was taken from five videos, each 380

contributing 400 frames that were sampled in four randomly spaced batches of 100 381

consecutive frames. Since the temporal correlation between consecutive video frames is 382

high using randomly drawn frames from the same videos as used for training data would 383

probably overestimate the model’s ability to generalize to new data. Thus, in order 384

fairly assess the model’s performance, the videos used for test data were different from 385

those used for validation and training data. 386

Video annotation was done by two investigators. In order to estimate their 387

agreement and to get a reference to compare the model’s performance to, both 388

investigators annotated the same 1,361 video frames. There was a good agreement 389

about both head direction (mean 9.2◦ and median 7.2◦, 0 to 180◦ range), and position 390

(mean 10 pixels and median 9 pixels, 640× 480-pixel frames). It took approximately one 391

hour to label 1,000 video frames (3.6 s per frame), and around 20 h to annotate the 392

complete dataset. 393

Classification Algorithm 394

Our goal was to find a model able to predict both the head’s direction and its position 395

in the horizontal plane. In order to achieve this, we took advantage of the fact that the 396

units of a CNN have spatially restricted receptive fields [63], and thus, implicitly carry 397

information about the location of the source of their activation. That is, the units act as 398

object localizers despite not receiving any explicit information about the location of the 399

object in the image. However, most CNN architectures incorporate one or more layers 400

of fully-connected units in the final stages, thus losing the position information. Here, 401

we instead followed [65] and replaced the fully-connected layer with a global average 402

pooling layer, averaging over filter features while retaining spatial information [26,65]. 403

This layer was, in turn, connected to a softmax classification layer. In order to find the 404

discriminative image regions, the softmax output was mapped back to the last 405

convolutional layer resulting in a class activity map (CAM) [65] that, for head 406

localization, was up-sampled from 1024 units to 160 × 120, that is, to the same shape as 407

the input. 408

Following this strategy we built a CNN with six convolutional layers and two max 409

pool layers. Filter sizes in the convolutional layers decreased from 11 × 11 to 3 × 3. The 410

global average pooling had a size of 1024 and connected to a softmax layer with the 411

number of units equal to the number of classes. We used cross-entropy loss regularized 412

by the Euclidean (L2) norm of the weights the regularization parameter set to 0.0001. 413

Weights were initialized with random values drawn from a normal distribution with zero 414

mean and a standard deviation set to
√

2/nw where nw is the number of weights in a 415

layer [19]. The model was optimized with the Adam algorithm [26], and was trained for 416

80 epochs. Inputs to the model were video frames, whitened, down-sampled (from 417

640 × 480 to 160 × 120 pixels) and converted to gray-scale (averaged RGB color). 418

Over-fitting is a common problem for models built with a great number of tunable 419

parameters. We addressed this in two ways: through regularization (see above), and 420

model averaging [50,51]. 421

Head direction measured in degree of head rotation in the horizontal plane was 422

binned in n− 1 classes and the frames labeled as angle-does-not-apply were assigned to 423

an nth class. In order to select the optimal number of classes, and thus, the size of 424

direction bins, we trained multiple models configured to predict from five to 33 classes 425

(steps of four), and evaluated their performance on the direction error on the validation 426

set. The error decreased with an increasing number of classes until n = 29, where it 427

reached the inter-human disagreement. Based on this, the final model was trained to 428
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predict head direction angles converted into 28 classes (0 to 360◦ in 28 bins, each 429

≈ 12.9◦ wide) and a 29th class representing angle-does-not-apply . The head position 430

was approximated as the location of maximum activity of the up-sampled CAM (see 431

Fig 2A). 432

We used Python 3.5 to implement the head tracking algorithms. The core model was 433

written using GPU-enabled TensorFlow 0.10.0 [1], while NumPy, SciPy [60] and 434

Matplotlib [22] were used for additional functionality. The software is available at 435

https://github.com/kalleknast/head-tracker. Computations were done on a 436

Lenovo ThinkStation P900 running Ubuntu 16.10 with a 4 GB NVIDIA Quadro K2200 437

graphics card. 438

Data Analysis 439

We evaluated the model’s performance on both direction and position. The position 440

error was measured as the distance in pixels between the human-assigned position and 441

the coordinates of peak activity of the CAM, up-sampled to the same size as the 442

model’s input. However, the direction error had to be treated in two separate parts. 443

First, for angle-does-not-apply (i.e. presence/absence of a discernible head direction in 444

the horizontal plane), we report the area under the ROC-curve (AUC). This metric was 445

chosen instead of standard accuracy since the angle-does-not-apply label only occurs in 446

approximately 12% of the frames (i.e. the classes were unbalanced). Second, we report 447

the error in predicted direction as the angular distance between the human-assigned 448

label and the model’s prediction converted back from 28 classes to degrees of angle. Fig 449

2B demonstrates examples of the direction and position errors. We report both the 450

average errors of individual models, and the errors of all models combined (i.e. the 451

result of model averaging). 452

To investigate the subjects’ points of gazes during the experimental sessions, we 453

combined the head direction and position through extrapolating a ray beginning at the 454

estimated head position and having an angle given by the head direction. We computed 455

histograms of the end points of these “gaze-rays” along the perimeter of the test box 456

(see Fig 3A). Position preference was estimated by computing two-dimensional 457

histograms representing the density of head positions in the horizontal plane of the test 458

box (see Fig 3A). For visual clarity, the density map was smoothed with a Gaussian 459

kernel having a 10 × 10-pixel standard deviation. 460

Reward-associated behavior was analyzed by extracting data in an interval starting 461

four seconds before to five seconds after the rewards. We limited the analysis to the first 462

10 rewards delivered within an experimental sessions since the number of calls, and thus 463

rewards, varied between experimental sessions, and the subjects’ interest in the rewards 464

tended to decrease during a session. From this reward-aligned data we calculated the 465

distance in pixels between the head position and reward dispenser, and the angular 466

distance between the gaze-ray dispenser (i.e. how many degrees the head would need to 467

be rotated in order to be directed towards the dispenser). The time points where the 468

model predicted angle-does-not-apply were interpolated from neighboring values. For 469

both measures, we smoothed the 10 traces with a Gaussian kernel (13 ms SD) and 470

computed averages and 95% confidence intervals (CI) (see Fig 4B and C). 471

The movement speeds associated with the production of the contact phee calls were 472

analyzed similarly. We extracted the angular speed of head rotation (the magnitude of 473

change in head direction), as well as, the head speed (the magnitude of change in head 474

position) from five seconds before to 2.5 seconds after the calls. However, since the calls 475

varied in duration we re-sampled the data from the start to the end of the call to the 476

median call duration (2.67 s), allowing us to align the data across calls (see Fig 5). 477
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