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Abstract 1 

Pathogen genomic data is increasingly important in investigations of infectious disease 2 

outbreaks. The objective of this study is to develop methods for using large-scale genomic data 3 

to determine the type of the environment an outbreak pathogen came from. Specifically, this 4 

study focuses on assessing whether an outbreak strain came from a natural environment or 5 

experienced substantial laboratory culturing. The approach uses phylogenetic analyses and 6 

machine learning to identify DNA changes that are characteristic of laboratory culturing. The 7 

analysis methods include parallelized sequence read alignment, variant identification, 8 

phylogenetic tree construction, ancestral state reconstruction, semi-supervised classification, 9 

and random forests. These methods were applied to 902 Salmonella enterica serovar 10 

Typhimurium genomes from the NCBI Sequence Read Archive database.  The analyses 11 

identified candidate signatures of laboratory culturing that are highly consistent with genes 12 

identified in published laboratory passage studies. In particular, the analysis identified 13 

mutations in rpoS, hfq, rfb genes, acrB, and rbsR as strong signatures of laboratory culturing. In 14 

leave-one-out cross-validation, the classifier had an area under the receiver operating 15 

characteristic (ROC) curve of 0.89 for strains from two laboratory reference sets collected in the 16 

1940’s and 1980’s.  The classifier was also used to assess laboratory culturing in foodborne and 17 

laboratory acquired outbreak strains closely related to laboratory reference strain serovar 18 

Typhimurium 14028.  The classifier detected some evidence of laboratory culturing on the 19 

phylogeny branch leading to this clade, suggesting all of these strains may have a common 20 

ancestor that experienced laboratory culturing. Together, these results suggest that 21 

phylogenetic analysis and machine learning could be used to assess whether pathogens 22 
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collected from patients are naturally occurring or have been extensively cultured in 23 

laboratories. The data analysis methods can be applied to any bacterial pathogen species, and 24 

could be adapted to assess viral pathogens and other types of source environments.25 
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Introduction 26 

Genome sequencing plays an increasingly important role in identifying the origins of disease 27 

outbreaks. Disease strain origins are often determined by assessing the genetic relatedness to 28 

other strains via phylogenetic analysis or shared genetic markers, and by inferring that closely 29 

related strains originate in a common source (1–5).  DNA data could also potentially be used to 30 

identify the type of environment a strain came from based on adaptive DNA changes. Some 31 

environments impose strong selective pressures that tend to cause adaptive DNA changes in 32 

certain genes and pathways (6–10).  If genome sequence variations that are characteristic of 33 

strains adapting to certain environments can be identified, then these could potentially be used 34 

to assess which type of environment a strain came from.    35 

One situation where this could be beneficial is in differentiating outbreaks that arise from 36 

natural sources from those that have laboratory origins. Disease outbreaks that are the result 37 

of naturally circulating strains, due to laboratory accidents, or potentially deliberate events 38 

require different types of investigations and response. However, these scenarios are often hard 39 

to differentiate, and initially look the same. For example, in the European Escherichia coli O104 40 

outbreak in 2011, accidental microbiology lab infections, and infections from deliberate salad 41 

bar contamination in Oregon in 1984, the earliest indicator in each event was a sick patient 42 

(11–13). It would be advantageous to identify whether an infection was caused by a laboratory 43 

strain at this early stage, by analyzing bacterial DNA samples taken from infected patients for 44 

evidence of laboratory culturing.   45 
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There is substantial experimental evidence for similar DNA changes occurring repeatedly in 46 

laboratory culture and in other environments in pathogens, which could potentially be used as 47 

indicators of the environment the strains came from. Multiple studies have investigated the 48 

evolution of bacteria in laboratory conditions by sequencing DNA from strains before and after 49 

passaging in laboratory culture. These studies reveal that some DNA changes are characteristic 50 

of adaptation to laboratory culture, both in bacterial species (6,14–16) and in influenza (17–19). 51 

The best known of these in bacteria are mutations in the gene rpoS, which have been observed 52 

in many studies in E. coli and in Salmonella (16,20–22) . In addition, recent studies have found 53 

mutations in certain genes of Burkholderia dolosa (7) and Pseudomonas aeruginosa (23) that 54 

are associated with adaptation to patients .    55 

The combination of phylogenetic analysis and large scale genomic data presents an opportunity 56 

to discover DNA changes characteristic of certain environments. By determining where on 57 

phylogenies certain mutations arise, and how this correlates with environments experienced on 58 

those branches on phylogenies, studies can identify parallel DNA changes that are characteristic 59 

of certain adaptive pressures.  This convergence-based phylogenetic approach has been used to 60 

find mutations characteristic of influenza culturing methods (17), adaptive mutations in 61 

Burkholderia in cystic fibrosis patients (7), and drug resistance mutations in Mycobacterium 62 

tuberculosis (24).  In addition, recent studies have used genomic data from hundreds of 63 

pathogen strains to identify DNA polymorphisms affecting antibiotic resistance and virulence, 64 

and to predict these phenotypes with machine learning (25,26). 65 

In this study, we investigate whether phylogenetic and machine learning methods can identify 66 

genomic signatures of laboratory culturing using publicly available genomic data.  We test this 67 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 6, 2016. ; https://doi.org/10.1101/079541doi: bioRxiv preprint 

https://doi.org/10.1101/079541


6 
 

 
 

approach on 902 genomes of Salmonella enterica serovar Typhimurium, a common foodborne 68 

pathogen. Our results show that these methods detect signatures of laboratory culturing that are 69 

highly consistent with published laboratory passage experiments. Furthermore, a classifier built 70 

with these methods can identify a large portion of strains that have experienced substantial 71 

laboratory culturing. Finally, we show how these methods can be applied to assessing outbreak 72 

strains for laboratory culturing history, and present some evidence suggesting that a set of closely 73 

related Salmonella outbreak strains may be descended from a laboratory strain.  74 

 75 

Methods & Materials 76 

Approach for Identifying DNA Signatures of Laboratory Culturing    77 

Our approach is to identify genomic signatures of laboratory culturing based on mutational 78 

patterns across a phylogenetic tree (Fig 1). The first step is to recognize which branches of the 79 

phylogenetic tree are associated with time in natural conditions and which are associated with 80 

time in laboratory culture. If all strains were collected from natural sources, passaged in a 81 

laboratory, and subsequently sequenced, then the common ancestors of the strains originated 82 

in natural conditions. Consequently, all DNA changes that fall on internal branches of the 83 

phylogenetic tree arose in natural conditions. In contrast, DNA changes that fall on terminal 84 

branches of the phylogeny arose either in natural conditions (prior to the strain’s collection) or 85 

during laboratory passages (after the strain’s collection). Therefore, we expect that genome 86 

variants that fall disproportionately on terminal branches of the phylogeny are candidate 87 

signatures of laboratory culturing. Our approach is to identify genes, and sets of genes from the 88 
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same operon, that have excessive mutations on terminal branches of the phylogeny compared 89 

to internal branches as candidate signatures of laboratory culturing. 90 

 91 

 Fig 1.  Notional phylogeny branches with mutations that occur in nature (blue) and in 92 

laboratory culturing (red).  93 

 94 

Our approach includes the following steps: 95 

1) Identify and download sequence read data, and align to a reference strain 96 

2) Identify single nucleotide polymorphisms (SNPs) and deletions 97 

3) Build a phylogeny using the SNP data  98 

4) Map polymorphisms onto the phylogeny. First, reconstruct the ancestral states at the 99 

phylogeny nodes. Then map each of the SNPs and deletions onto one or more branches 100 

of the phylogeny where the change was most likely to have occurred.   101 

5) Identify candidate signature genes. First, identify the genes that have more mutations on 102 

terminal branches, particularly for extensively cultured strains, than on internal branches. 103 

Then use machine learning to identify which of these genes, and sets of genes from the 104 

same operon, are useful in classifying branches as terminal vs. internal.  Genes that 105 

contribute significantly to this classification are candidate signature genes of laboratory 106 

culturing. 107 

6) Build and test a classification algorithm using the selected genes and gene sets. 108 
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S1 Fig depicts an overview of the data analysis pipeline and software used to carry out these 109 

steps.  110 

Genome and Strain Data 111 

Salmonella enterica serovar Typhimurium was chosen to test this approach because there are a 112 

large number of serovar Typhimurium genomes publically available, and for many of these 113 

strains we were able to obtain some information about laboratory culturing history. 114 

Importantly, serovar Typhimurium has been involved in both naturally occurring and laboratory 115 

acquired outbreaks (2,11,13,27–29) . In order to facilitate analysis, we selected 948 samples 116 

that were associated with paired-end Illumina sequence read data in the NCBI Sequence Read 117 

Archive (SRA) and met read depth criteria (see Assembly methods section). The SRA identifiers 118 

for the genomes used are listed in S2 Table. Genomes included those generated by public 119 

health labs in North America and Europe and genomes which have been published in previous 120 

studies (2,27,30–32).  121 

Strains were assigned to culture collection sets in order to group strains that were likely to have 122 

experienced similar laboratory culturing histories. These culture collection sets were identified 123 

based on strain names, strain collection dates, and the organizations that passaged and housed 124 

the strains. We obtained this information through literature searches, from the NCBI BioSample 125 

database, and by contacting laboratories that maintained cultures and performed sequencing.  126 

Strain collection assignments are given in S2 Table. Information about the methods and the 127 

extent of laboratory culturing were obtained by contacting groups that sequenced and 128 

maintained the cultures and from publications (30,33,34); this information is given in S3 Table.  129 
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DNA Sequence Read Mapping and Genome Assembly 130 

Raw sequence read data was downloaded in sra format from NCBI SRA (35). Using the SRA 131 

toolkit’s fastq-dump (version 2.3.5), sequence reads were extracted to fastq files. Reads were 132 

aligned to a reference genome, Salmonella enterica serovar Typhimurium LT2 (NCBI reference 133 

sequence NC_003197) (36), with the Burrows-Wheeler Aligner (BWA) version 0.7.10 using the 134 

aln command (37).  See S4 Table for the complete set of parameters used for alignment. In 135 

order to ensure that only high-quality samples were used for downstream analyses, we utilized 136 

only samples with at least 75% of reads mapped, with at least 90% of the genome covered by 137 

reads, and with at least 20x mean read coverage per base.   138 

Single Nucleotide Polymorphism (SNP) and Deletion Calling 139 

Calls of single nucleotide polymorphisms (SNPs) were performed with the variant calling 140 

algorithms in SAMtools version 0.1.19 (38–40). Aligned reads generated with BWA were 141 

ordered by genome position and indexed with SAMTools sort and index; pileups and variant 142 

calls were generated using mpileup. Any variants with a genotype call Phred-scaled quality of 143 

less than 20 were removed unless that variant was present in another sample where it met this 144 

quality threshold.  All variant calls falling within known phage regions and duplicated genes 145 

were removed by filtering with BedTools (41). For each heterogeneous genotype call made by 146 

SAMTools, we quantified the number of reads with the reference allele, and the number of 147 

reads with the alternate allele. The alternate allele was called in cases where the number of 148 

reads with alternate bases was greater than two times the number of reads with reference 149 

bases. Otherwise, heterogeneous calls were eliminated from further analysis. 150 
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In order to identify deletions, we utilized the Pindel algorithm (42). Pindel identifies paired end 151 

reads with one unmapped read and attempts to identify breakpoints spanned by those 152 

unmapped reads in order to identify structural variants. We kept deletions identified by Pindel 153 

that were supported by 20 or more reads. During visual inspection of regions identified by 154 

Pindel, we found that Pindel sometimes identified regions of relatively high coverage as 155 

potential deletions. Because of this, we kept only those deletions with a coverage of 10% or less 156 

than the mean coverage across the whole genome. Identical deletions in different samples 157 

were kept as long as at least one sample contained that deletion such that it met both read 158 

support and coverage thresholds. Any variants identified by mpileup that were within the 159 

remaining deletions regions were removed from downstream analyses. Only deletions that 160 

impacted a single coding gene and/or a single small RNA were included in analyses. 161 

Phylogeny Construction 162 

After the identification of SNPs in each sample, a SNP matrix was generated and used to 163 

produce a FASTA file for each position with a variant in any sample. RAxML was used to 164 

generate a maximum-likelihood phylogenetic tree using the standard settings and the GTRCAT 165 

generalized time reversible model (43).  The tree with the highest likelihood of 20 replicate 166 

trees was chosen for further analysis. Strains were pruned from the tree prior to downstream 167 

analyses to eliminate replicate strains sharing the same name, laboratory experiment strains, 168 

and strain genomes with very long terminal branches, greater than 500 SNPs. Strains that were 169 

closely related to the laboratory strain 14028 were also pruned because they were used in a 170 
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later assessment. This resulted in a set of 902 genomes, plus an LT2 genome used in phylogeny 171 

construction.  172 

Mapping Variants to the Tree 173 

Ancestral reconstruction of variants was performed using the ACCTRAN method in the R 174 

package phangorn version 1.99-12 (44).  Variants were mapped to branches when the outer 175 

node of the branch had the variant state and the more internal node had the ancestral state. 176 

Steps were taken to reduce the possibility of variants being assigned to multiple branches due 177 

to shared ancestry and imperfect phylogeny construction, rather than to independent events. 178 

These cases are most likely when the same variant has been assigned to branches that are close 179 

to each other on the phylogenetic tree. To identify these cases, for all variants that were 180 

assigned to two or more branches, we calculated the patristic distance between those branches 181 

(distance along the tree) and the number of nodes separating them using custom R scripts. If 182 

two branches to which the same variant was assigned were separated by less than 0. 0.0012 183 

patristic distance or fewer than eight nodes, then each of the variant assignments to these 184 

branches were eliminated from the dataset.  The threshold of 0.0012 patristic distance (about 185 

20 SNPs) was chosen to encompass strains from the same outbreak that are closely related and 186 

for which the tree topology might be ambiguous.  The additional node threshold was selected 187 

to eliminate cases where SNPs may have been missed due to low coverage in the sequence 188 

data.  In addition, because indel variants were more frequently assigned to multiple branches, 189 

which could be due to missed indel identification with Pindel, only indels that were assigned to 190 

just one branch were kept in downstream analyses. Only internal branches with at least one 191 
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variant mapped to them were used in downstream analyses.  All terminal branches were used, 192 

including those with zero variants mapped to them, to incorporate classification of strains with 193 

no unique variants. These analyses were performed using custom R scripts. 194 

Assigning Mutations to Genes, Grouping Mutations by Operon, and Selection of Features 195 

To identify mutation effects at the gene level, we reduced the variant set to a maximum of one 196 

mutation per gene per branch. We utilized SnpEff (45) to predict which genes each of the 197 

identified genetic variants affected. Any deletion or nucleotide polymorphism, whether 198 

synonymous or non-synonymous, was considered to have an effect. Synonymous changes were 199 

included because of evidence that synonymous changes can impact mRNA stability and fitness 200 

(46).  We also identified mutations in small RNAs using the positions of small RNAs listed in 201 

Sittka et al.,  Table S3 (47).   Because we seek patterns associated with laboratory culturing and 202 

not environments that occur in nature, we used only genes that were rarely affected on 203 

internal branches and had substantially more mutations on terminal branches than on internal 204 

branches.  Specifically, we included genes that had mutations assigned to no more than four 205 

internal branches, had at least three mutations assigned to terminal branches, and had more 206 

than four times as many mutations assigned to terminal branches than to the internal 207 

branches.  208 

Mutations in genes that closely interact with each other can have similar lab-adaptive 209 

phenotype effects, such that a mutation in either gene could constitute a signature. Therefore, 210 

we sought a simple way to pool potentially interacting genes to create composite features.   211 

Because genes within the same operon are more likely to be involved in similar processes than 212 
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pairs of genes at random, we assigned genes to operons using ProOpDB (48).  We then pooled 213 

mutations at the operon level for genes that met the following criteria: gene had mutations 214 

assigned to no more than two internal branches, had at least four mutations assigned to 215 

terminal branches, and had more than four times as many mutations assigned to terminal 216 

branches than to the internal branches. Mutations in genes that did not meet these criteria 217 

were not included in the operon features. Only operons that had two or more genes that met 218 

these criteria were included as features (operons with one such gene were already covered by 219 

the individual gene criteria above.) As was done for individual genes, for operon gene sets we 220 

included a maximum of one mutation per operon gene set per branch. 221 

Analyses of Mutational Patterns in Strain Culture Collections and Selection of Strains for 222 

Building a Classifier 223 

Only two of the culture collections were known to have experienced substantial laboratory 224 

passage, and information about passage history was unavailable for multiple culture collections 225 

in our dataset. Therefore, we sought to identify additional strains that may have experienced 226 

substantial laboratory culturing in order to increase the number of samples for model building 227 

and identification of signatures. To identify additional strains that are likely to contain 228 

laboratory acquired mutations, we performed unsupervised clustering on all of the branches of 229 

the phylogeny, and examined assignments to clusters.  We first calculated proximities among all 230 

branches with unsupervised random forest classification using the randomForest package 231 

version 4.6-10 (49) in R version 3.1.3 (50). This was done using the gene and gene set features 232 

described above.  We then performed k-medoid analysis using the cluster package in R  (51,52).  233 
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Each strain was assigned to one of two clusters. We observed the cluster assignment patterns 234 

for terminal branches from the two old reference collections and for internal branches, and 235 

assessed the other culture collections for their similarity to each of these patterns.   236 

The strains used as positive examples in analyses for identifying candidate signature genes and 237 

classifier building met one of three criteria: 1) The strain belonged to one of the two laboratory 238 

reference collections dating back to the 1940’s or 1980’s. 2) The strain belonged to a culture 239 

collection that had a high percentage of its strains assigned to the cluster representative of the 240 

two reference culture collections and there were more than ten strains in the collection in our 241 

dataset. 3) The strain was assigned to the cluster representative of the two reference culture 242 

collections and was not from one of the culture collections reported to be passaged less than 243 

seven times and stored frozen. 244 

Identification of Candidate Signatures 245 

Candidate signatures were identified by using the R Boruta package version 4.0.0, which 246 

identifies features that significantly contribute to random forest classification (50). The 247 

standard Boruta settings were used, including p-value <0.01 for confirmation of features. The 248 

algorithm was used to classify internal branches versus terminal branches for the strains 249 

selected based on the unsupervised cluster analysis. The model included both individual genes 250 

and sets of genes from operons as features, which were selected using the criteria described 251 

above. For all genes and gene sets that were not rejected in any of the five Boruta runs, 252 

variable importance scores (mean decrease in accuracy) were calculated. This was done by 253 
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including all of the non-rejected genes and gene sets as features in a random forest model and 254 

calculating importance using the random forest package.  255 

Evaluation of Candidates by Comparison to Mutations Observed in Laboratory Experiments 256 

To compare candidate DNA signatures from our analyses to DNA changes observed in 257 

laboratory evolution experiments, data were assembled on genes that mutated in published 258 

laboratory passaging experiments (6,14,15,53–66). This included genes that mutated in any 259 

laboratory experiment in Salmonella enterica, and genes that were reported to have mutated in 260 

at least two independent replicates or studies in E. coli, which is closely related to Salmonella.  261 

A list of these genes is given in S5 Table. For candidate signature genes that were not on the list 262 

of genes that mutated in laboratory experiments, we used the STRING database (67) to 263 

investigate whether the candidate signature gene interacted with any of the genes identified in 264 

laboratory experiments.  We used an interaction score of 0.9 as the threshold.   265 

Building and Testing a Classifier 266 

We built classifiers using random forests with 2000 trees with the R package randomForest  267 

(49), using internal branches (negative examples) versus terminal branches from strains 268 

selected in the cluster analysis (positive examples). To test the ability of these methods to 269 

identify laboratory cultured-strains, we performed a leave-one-out cross-validation (LOOV) 270 

analysis using the caret package to create folds (68).  The LOOV analysis performed feature 271 

selection and classifier building on the training set, and tested on the left out branch. Feature 272 

selection used the same criteria as described above. Predictions for the left out branches were 273 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 6, 2016. ; https://doi.org/10.1101/079541doi: bioRxiv preprint 

https://doi.org/10.1101/079541


16 
 

 
 

compiled to calculate recall and false positive rates. In addition, predictions for the terminal 274 

branches for the 1940’s and 1980’s reference set strains and for the internal branches were 275 

used to build a receiver operating characteristic (ROC) curve using the AUC R package (69).  276 

Using the Classifier to Assess Outbreak Strains for Laboratory versus Natural Origins  277 

We applied the classifier to outbreak strains closely related to serovar Typhimurium laboratory 278 

reference strain 14028. This set included ten strains which were associated with acquired 279 

laboratory infections of Salmonella and ten strains associated with a 2009 foodborne outbreak 280 

associated with bagged lettuce (S6 Table).  All of these strains were indistinguishable from the 281 

strain 14028 by pulsed field gel electrophoresis (PFGE) and were sequenced on the Illumina 282 

MiSeq (Illumina Inc., San Diego, CA) using 2x250 bp chemistry. Sequence data for these strains 283 

is available in NCBI SRA; see S6 Table for the identifiers. We also identified eleven additional 284 

genomes in NCBI SRA that were closely related to these strains (S6 Table). For these 31 strains 285 

and several related strains used as outgroups, we identified variants using methods described 286 

above, except that a higher threshold for calling a SNP was used.  In order for a SNP to be called 287 

at a location, it had to have a phred-scaled quality score of at least 100 in at least one of the 288 

genomes in this set, and calls to no more than one nucleotide variant in the larger set of 289 

genomes used to build the classifier. We built a phylogeny using the methods described above, 290 

but used SNPs outside of coding genes in addition to SNPs within coding genes to incorporate 291 

additional variation. Variants were mapped to the phylogeny as described above. Each branch 292 

was then tested using a random forest classifier built from the original dataset of 902 genomes 293 

with the methods used in the LOOV analysis, which yielded a prediction value for each test 294 
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branch.   P-values for the test branches were then determined by calculating the fraction of 295 

internal branches in the LOOV analyses that had a higher prediction value than the test branch 296 

prediction value. 297 

 298 

Results 299 

Salmonella serovar Typhimurium Polymorphisms Mapped to Phylogeny Branches  300 

From 902 serovar Typhimurium genomes, the analysis pipeline identified 17,229 SNPs and 492 301 

deletions in coding genes and small RNAs, of which 17,058 SNPs and 402 deletions were 302 

mapped onto a phylogeny (tree in S7 File). Ninety-eight percent of the mapped SNPs were 303 

assigned to just one phylogeny branch, and 99.8% were assigned to three or fewer phylogeny 304 

branches, which suggests that the ancestral reconstruction and filtering steps resulted in a data 305 

set with few ambiguous SNP assignments to branches. In the set mapped to the phylogeny, 306 

polymorphisms occurred in 3,456 out of 4,620 annotated protein coding genes in the serovar 307 

Typhimurium LT2 reference genome and in 67 small RNA genes.  After reducing the mutations 308 

to a maximum of one mutation effect per gene per branch assignment, there were 17,177 gene 309 

mutation events on branches, which were used for identifying candidate signature genes in 310 

further analyses.  Sixty-two percent of these were on terminal phylogeny branches and 38% 311 

were on internal phylogeny branches.   312 

Mutation Patterns Consistent with Laboratory Culturing in Strain Culture Collections 313 
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To assess whether some strains showed distinctive mutation patterns that could be due to 314 

laboratory mutations, we performed unsupervised cluster analysis on all the phylogeny 315 

branches.  We asked whether terminal branches for some strains clustered separately from 316 

internal branches; internal branches in this phylogeny represent mutation patterns under 317 

natural conditions.  In the two strain collections known to have long laboratory histories, a 318 

reference collection originating from the 1940s (LT) and a reference collection originating from 319 

the 1980s (SARA), greater than 65% of the strain terminal branches were assigned to cluster 2, 320 

while only 1% of internal branches were assigned to this cluster (Fig 2). In contrast, for the six 321 

strain collections reported to have been experienced little laboratory culturing (passaged only 322 

few times and stored frozen), terminal branch clustering results more closely resembled 323 

internal branch patterns.  Strain collections with unknown laboratory histories had numbers 324 

that ranged from similar to internal branches to numbers similar to the extensively cultured 325 

strain collections. These results indicate that strains from collections known to be extensively 326 

cultured, as well as from a few collections with unknown lab passage history, exhibit mutational 327 

patterns that are consistent with the presence of distinctive, laboratory acquired mutations. All 328 

strains from the four culture collections that had at least 40% of their strains assigned to cluster 329 

2, which included the two reference strain collections and the collections N and O, shown in Fig 330 

2, were used in further analyses to identify candidate signature genes. In addition, strains from 331 

other collections that were assigned to cluster 2 and not from the six collections reported to 332 

have experience little laboratory culturing were also used in downstream analyses as positive 333 

examples. 334 

 335 
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Fig 2. Fraction of branches assigned to one of two clusters for strain collections and internal 336 

branches.  337 

Except for LT and SARA collections, only collections that contain at least 20 strains are shown. 338 

Results are from unsupervised random forest classification and k-medoids clustering.   339 
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 340 

Candidate Signatures of Laboratory Culturing 341 

Using a random forest classifier, we identified candidate signature genes and operon gene sets 342 

that are highly consistent with results from published laboratory experiments (Fig 3). These 343 

genes and operon gene sets were confirmed as significant in all five replicate Boruta, and 344 

ranked by the size of the contribution to differentiating internal branches and terminal 345 

branches from the strains selected in the unsupervised cluster analysis. The six top-ranked 346 

features contained genes that mutated in prior lab studies: rpoS, hfq, rfbJ, acrB, and rbsR. The 347 

genes that made the largest contributions were rpoS, a gene well-known to mutate during 348 

laboratory passaging, and hfq, which is known to interact with rpoS. Changes in rpoS occurred 349 

31 times on terminal branches of the phylogeny and were never observed on internal branches 350 

(S8 Table).  Two other genes that interact with rpoS were also identified as contributing:   dksA, 351 

which is an RNA polymerase-binding transcription factor, and nlpD, the gene that contains the 352 

promoter for rpoS.  In addition, a small RNA that upregulates rpoS, sraH, was identified as a 353 

potential, weaker candidate signature (S8 Table.)  Eight of the 34 genes (24%) in the top twenty 354 

candidate signatures have been identified in published laboratory studies, which is a far higher 355 

proportion than lab study genes in the genome at large (4.4%, 202 genes found in published lab 356 

studies out of 4621 annotated genes in serovar Typhimurium LT2; one-sided Fisher exact test, 357 

p<0.0001.)   In addition, seven other candidate signature features have strong relationships 358 

with genes identified in the lab studies (Fig 3).  An additional 51 genes and operon gene sets 359 

were not rejected as candidates in any of the Boruta runs, and may also include potential 360 
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candidate signatures (S8 Table).  Overall, these results indicate that the bioinformatic analyses 361 

of publicly available genomes successfully identified signature genes of laboratory culturing.  362 

 363 

Fig 3. Candidate signature genes and operon gene sets with variable importance scores.  364 

Red indicates gene mutated in a published laboratory passage experiment in Salmonella or E. 365 

coli. Blue indicates gene is strongly associated in the STRING database with another gene that 366 

mutated in a published laboratory passage experiment. Black indicates no association found 367 

with published laboratory study genes.  1 marks rpoS and genes that are known to interact with 368 

it.  369 

 370 

Performance of the Classifier 371 

We built random forest algorithms to classify strains as having experienced laboratory culturing 372 

versus natural origin, and assessed performance using leave-one-out cross-validation. For the 373 

culture collection with the most extensive laboratory passaging (LT), the classification algorithms 374 

detected half of the strains with a 2 % false positive rate (Table 1), and 78 % of LT strains were 375 

detected at a 10% false positive rate (Table 1). The ROC curve in Fig 4 shows results for the two 376 

old reference strain collections, and the area under the curve is 0.89.  Results for the two old 377 

reference collections and the two other collections identified in the unsupervised cluster analysis 378 

are in Table 1. The classifier performed better on branches with less than ~50 SNPs long than on 379 

longer branches, due to a high number of false positives for long internal branches (S9 Figure). 380 

For culture collections reported to have been lab-passaged very little, and other culture 381 

collections with unknown laboratory histories, results were similar to internal branches (Table 1).  382 
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Among these culture collections with at least twenty strains, results ranged from zero to 19 % 383 

being classified as lab-origin at a 10% false positive rate. Overall, these results indicate that a 384 

classifier can identify a substantial portion of strains from some culture collections that have 385 

experienced extensive laboratory culturing, and identifies few strains from culture collections 386 

with more minimal laboratory culturing.  387 

 388 

Fig 4.  ROC curve showing results for strains from the two old reference strain collections. 389 

Strains from LT and SARA collections are treated as true cases and internal branches as negative 390 

cases.  Results are from the LOOV analysis.   391 

 392 

  393 
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Table 1.  Results from Leave-one-out Cross-validation (LOOV). 394 

Strain Culture Collection 
Number 

of Strains 

Percent Predicted to 

Have Lab Origins at a 

2% False Positive 

Rate 

Percent Predicted to 

Have Lab Origins  at a 

10% False Positive 

Rate 

LT (collected in 1940’s) 18 50 78 

SARA (collected in 1980’s) 15 27 40 

Collection N 32 44 63 

Collection O 20 35 55 

Internal Branches (false positive rate) 452 2 10 

Collections Reported as Minimally Cultured 235 2 6 

Other Collections with Unknown Histories 582 4 10 

 395 

 396 

Assessment of Laboratory Culturing in Salmonella serovar Typhimurium Strains Closely 397 

Related to Laboratory Strain 14028 398 

We assessed evidence of laboratory culturing in strains closely related to laboratory stock strain 399 

serovar Typhimurium 14028 by constructing a phylogeny of these strains and applying the 400 

classifier built on the other set of strains. Phylogenetic analysis revealed that all of the 14028 401 

related strains were very closely related to each other, with little phylogenetic structure among 402 

them (Fig 5).  Notably, the strains associated with acquired laboratory infections were 403 

interspersed in the phylogeny with those associated with a 2009 foodborne outbreak.  In total, 404 

35 mutation events, including 31 SNPs and four deletions, were mapped to the branches within 405 
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this clade. The number of unique variants per strain ranged from zero to eight.  The small 406 

amount of variation among the strains in this clade suggests that all of these strains are 407 

descended from a recent common ancestor.   408 

The classifier detected some evidence of laboratory culturing on the internal branch leading to 409 

this clade (Fig 5), suggesting that the common ancestor of this clade may have experienced 410 

laboratory culturing. The prediction value generated by the algorithm corresponded to a false 411 

positive rate of 6.7%.  The 20 SNP mutations mapped to this branch included a mutation in the 412 

gene STM0725, a putative glycotransferase that is part of a candidate signature operon gene 413 

set, and pdxB, another candidate signature gene (Fig 3).  414 

The classifier also detected evidence of laboratory culturing in five individual strains within this 415 

clade (Fig 5).  All five strains had mutations in the highly ranked, interacting candidate signature 416 

genes rpoS, nlpD, and/or hfq. Two of these strains came from strain culture collection N, which 417 

exhibited strong evidence of laboratory culturing in the larger set of strains (Fig 2 and Table 1); 418 

therefore, these mutations may reflect passaging after strain isolation.  The three other 419 

mutations occurred in one strain associated with a laboratory acquired infection, one strain 420 

associated with a community college microbiology class (SRR1106158, personal 421 

communication, A. Perez Osorio, Washington State Department of Health) and one strain 422 

associated with a foodborne outbreak.   423 

 424 

Fig 5. Phylogeny of serovar Typhimurium strains closely related to strain 14028 with results from the 425 

classifier.   426 
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Symbols mark branches where the classifier detected some evidence of laboratory culturing.  *, 427 

false positive rate of less than 3%.  ǂ, false positive rate of less than 10%. 428 

 429 

Discussion  430 

The combination of large-scale DNA data and machine learning has recently been used to 431 

identify signatures of antibiotic resistance and predict virulence in pathogens (25,26). This study 432 

describes a way in which genomics and machine learning can also be used for insight into the 433 

origins of disease outbreaks. We present analysis methods that identify signatures of laboratory 434 

culturing by identifying parallel evolutionary changes in large-scale, publicly available genome 435 

sequence data. We show that these genetic signatures can be used to assess whether 436 

pathogens have experienced substantial lab culturing. While our analysis was performed on 437 

Salmonella genomes, our approach is generalizable and can be used for analyzing the origins of 438 

other pathogens.  439 

One potential use of these methods is in the investigation of outbreaks where laboratory 440 

acquired or deliberate infections may be suspected. In cases where there is circumstantial 441 

information suggesting that an outbreak may not be natural, these methods could be used to 442 

evaluate whether a pathogen collected from a patient shows signs of having come from a 443 

laboratory.  This could indicate whether an investigation of the outbreak as a potential 444 

laboratory exposure or other laboratory-origin event is warranted. Given that outbreaks of 445 

laboratory-origin are very rare, the classifier would have a low positive predictive value when 446 

applied to outbreaks at large and consequently this method would probably not be effective for 447 
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general screening of all outbreak pathogens without large increases in classifier precision.  448 

Another potential application of these methods is in identifying laboratory-acquired mutations 449 

in culture collections, in order to account for these in vaccine and drug development and in 450 

other scientific investigations.   451 

When we applied these methods to a set of Salmonella strains closely related to laboratory 452 

strain 14028, the classifier results detected some evidence of laboratory culturing in the 453 

ancestral strain of this set. Together, these classifier results, combined with the presence of 454 

known laboratory strains in this clade and the low variation within this clade, suggest that all of 455 

the strains in this clade may be descended from a laboratory strain.  The serovar Typhimurium 456 

strain 14028 was originally collected in 1960 and has been a laboratory stock strain for many 457 

decades (63).  It has been used as a reference strain in university laboratory classes and in 458 

diagnostics, has been associated with laboratory acquired infections, and was even used in a 459 

deliberate contamination of salad bars in 1984 (11,13,28).  Consequently, if these strains are all 460 

derived from the original laboratory strain, they may reflect multiple laboratory escape events 461 

over time.  462 

Comparisons to published laboratory passaging experiments in E. coli and Salmonella show that 463 

our method identifies genetic signatures of laboratory culturing. In particular, rpoS, and genes 464 

known to interact with it, were the strongest signatures in our set. This is consistent with many 465 

lab studies that have identified mutations in rpoS, and, to a lesser extent in hfq, that occur 466 

during lab culture (55,58,60,62–64). Our study expands this set to include the genes nlpD, 467 

which contains the rpoS promoter, and dksA, which interacts with both rpoS and hfq. We also 468 
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identified mutations in acrB as a strong signature of laboratory culturing, which is consistent 469 

with recently observed laboratory mutations in acrB and its interacting gene acrA (58). Other 470 

genes found in laboratory culturing experiments that made substantial contributions to 471 

classification are rfb genes and rbsR (15,54,61,63). Several genes not found in laboratory studies 472 

were also identified as strong candidate signatures, including a set of five putative glycosyl 473 

transferase genes from a single operon. The candidate signatures identified in this study would 474 

benefit from further experimental validation. 475 

It is likely that there are more genes characteristic of laboratory culturing that we were unable 476 

to detect.  First, the dataset included a diverse set of culture collections subject to a variety of 477 

culture methods, and experimental studies indicate that whether certain genes mutate or not is 478 

dependent on growth conditions, such as  stationary phase laboratory culturing and stab 479 

cultures (16).  Types of mutations that occur in growth conditions that were rare in our sample 480 

would be unlikely to be detected. Second, experiments indicate that gene mutations in 481 

laboratory culture depend heavily on the genetic background of that strain (16).  Thus it is likely 482 

that there are adaptive characteristic mutations the analysis did not identify because they are 483 

specific to certain backgrounds, or a small set of backgrounds such that they do not appear a 484 

sufficient number of times in our sample.   485 

The classifier identified many of the strains from extensively cultured collections as having been 486 

laboratory passaged, but also identified a much smaller portion of strains from some other 487 

collections. Results for strains from culture collections that experienced only isolation culturing 488 
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steps resembled internal phylogeny branches, suggesting that detection of only a small amount 489 

of laboratory culturing might not generally be possible by this method. 490 

There are several extensions that would likely identify additional DNA signatures of laboratory 491 

culturing and improve classification. First, our dataset contained only 33 genomes from culture 492 

collections known to have experienced substantial lab culturing and an additional 99 selected in 493 

the unsupervised cluster analysis. Inclusion of more genomes known to have experienced 494 

substantial laboratory culturing would increase the ability to identify genes that mutate less 495 

frequently as signatures. Second, our analyses only included DNA segments present in the 496 

reference genome chromosome and left out phage sequences. The inclusion of additional DNA 497 

segments, such as from plasmids and chromosomal regions present in some strains but not in 498 

the LT2 reference, should yield additional features that would also enhance recall and 499 

specificity.  In addition, use of a different reference strain that is more closely related to 500 

currently circulating serovar Typhimurium strains might also yield additional signatures. Finally, 501 

our analyses suggest that sets of interacting genes are potential candidate signatures, and 502 

feature creation that incorporates mutations at the level of sets of interacting genes, beyond 503 

operons, may enhance classification. Overall, a combination of more genetic data and improved 504 

feature engineering is likely to improve sensitivity and specificity. 505 

Our analysis also suggests that it may be possible to discover signatures of laboratory culturing 506 

and build a classifier even when there is no information available about the laboratory history 507 

of strains in the dataset.  By performing unsupervised classification on genes and operon gene 508 

sets that have mutated more on terminal than on internal branches, analyses can identify 509 
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strains that show patterns that are distinct from natural patterns for use in building a classifier. 510 

This is important because information about laboratory culturing history is rarely captured in 511 

publicly available databases, and this enables the use of more extensive data.  Nevertheless, 512 

test cases and information about mutations in laboratory culture in related strains are 513 

important to confirm that the model is identifying laboratory signatures, and not signatures of 514 

another environment type. 515 

Our analytical approach can be applied to any pathogen species, and could be adapted for 516 

identifying more than just a history of laboratory culture.  The data analysis pipeline can be 517 

readily applied to other bacterial species and adapted for viral species. The methods could also 518 

be modified for classification of other types of environmental sources, such as determining 519 

whether a pathogen came from cattle or chicken hosts. For this, source environments would be 520 

mapped onto the phylogeny differently than for laboratory culturing, but the other steps would 521 

apply.  With further development, this approach potentially offers a way to infer the type of 522 

environment a pathogen came from, and could be a useful complement to inferences based on 523 

DNA relatedness in disease outbreak investigations. 524 

 525 

Acknowledgements 526 

We thank D. Brown, D. Boxrud, J. Lahti, A. Mather, E. De Pinna, K. Sanderson of the Salmonella 527 

Genetic Stock Centre, D. Toney, and W. Wolfgang for laboratory culture history information.  528 

We also thank M. Colosimo for helpful review.  529 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 6, 2016. ; https://doi.org/10.1101/079541doi: bioRxiv preprint 

https://doi.org/10.1101/079541


30 
 

 
 

 530 

Funding Statement 531 

This work was supported by the MITRE Innovation Program. For the CDC sequenced strains, the 532 

work was made possible through support from the Advanced Molecular Detection (AMD) 533 

initiative at the Centers for Disease Control and Prevention. 534 

 535 

Disclaimer 536 

The findings and conclusions in this report are those of the authors and do not necessarily 537 

represent the official position of the Centers for Disease Control and Prevention. Use of trade 538 

names is for identification only and does not imply endorsement by the Centers for Disease 539 

Control and Prevention or by the U.S. Department of Health and Human Services. 540 

 541 

References 542 

1.  Chin C-S, Sorenson J, Harris JB, Robins WP, Charles RC, Jean-Charles RR, et al. The origin of the 543 
Haitian cholera outbreak strain. N Engl J Med. 2011;364(1):33–42.  544 

2.  Okoro CK, Kingsley RA, Connor TR, Harris SR, Parry CM, Al-Mashhadani MN, et al. Intracontinental 545 
spread of human invasive Salmonella Typhimurium pathovariants in sub-Saharan Africa. Nat 546 
Genet. 44(11):1215–21.  547 

3.  Lienau EK, Strain E, Wang C, Zheng J, Ottesen AR, Keys CE, et al. Identification of a salmonellosis 548 
outbreak by means of molecular sequencing. N Engl J Med. 2011;364(10):981–2.  549 

4.  Gire SK, Goba A, Andersen KG, Sealfon RSG, Park DJ, Kanneh L, et al. Genomic surveillance 550 
elucidates Ebola virus origin and transmission during the 2014 outbreak. Science. 2014 Sep 551 
12;345(6202):1369–72.  552 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 6, 2016. ; https://doi.org/10.1101/079541doi: bioRxiv preprint 

https://doi.org/10.1101/079541


31 
 

 
 

5.  Snitkin ES, Zelazny AM, Thomas PJ, Stock F, Program NCS, Henderson DK, et al. Tracking a hospital 553 
outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci 554 
Transl Med. 2012 Aug 22;4(148):148ra116.  555 

6.  Woods R, Schneider D, Winkworth CL, Riley MA, Lenski RE. Tests of parallel molecular evolution in 556 
a long-term experiment with Escherichia coli. Proc Natl Acad Sci. 2006 Jun 13;103(24):9107–12.  557 

7.  Lieberman TD, Michel J-B, Aingaran M, Potter-Bynoe G, Roux D, Davis MR, et al. Parallel bacterial 558 
evolution within multiple patients identifies candidate pathogenicity genes. Nat Genet. 559 
43(12):1275–80.  560 

8.  Conte GL, Arnegard ME, Peichel CL, Schluter D. The probability of genetic parallelism and 561 
convergence in natural populations. Proc R Soc Lond B Biol Sci. 2012 Dec 22;279(1749):5039–47.  562 

9.  Toprak E, Veres A, Michel J-B, Chait R, Hartl DL, Kishony R. Evolutionary paths to antibiotic 563 
resistance under dynamically sustained drug selection. Nat Genet. 2012 Jan;44(1):101–5.  564 

10.  Wood TE, Burke JM, Rieseberg LH. Parallel genotypic adaptation: when evolution repeats itself. In: 565 
Genetics of Adaptation [Internet]. Berlin/Heidelberg: Springer-Verlag; 2005 [cited 2015 Sep 21]. p. 566 
157–70. Available from: http://link.springer.com/10.1007/1-4020-3836-4_14 567 

11.  CDC. Investigation update: Human Salmonella Typhimurium infections associated with exposure to 568 
clinical and teaching microbiology laboratories. 2012.  569 

12.  Scheutz F MNE Frimodt-Møller J, Boisen N, Morabito S, Tozzoli R, Nataro JP, Caprioli A. 570 
Characteristics of the enteroaggregative Shiga toxin/verotoxin-producing Escherichia coli O104:H4 571 
strain causing the outbreak of haemolytic uraemic syndrome in Germany, May to June 2011. 572 
Eurosurveillance. 2011;16(24).  573 

13.  Torok TJ, Tauxe RV, Wise RP, Livengood JR, Sokolow R, Mauvais S, et al. A large community 574 
outbreak of salmonellosis caused by intentional contamination of restaurant salad bars. JAMA J 575 
Am Med Assoc. 1997 Aug 6;278(5):389–95.  576 

14.  Dettman JR, Rodrigue N, Melnyk AH, Wong A, Bailey SF, Kassen R. Evolutionary insight from whole-577 
genome sequencing of experimentally evolved microbes. Mol Ecol. 2012;21(9):2058–77.  578 

15.  Herron MD, Doebeli M. Parallel Evolutionary Dynamics of Adaptive Diversification in Escherichia 579 
coli. PLoS Biol. 2013 Feb 19;11(2):e1001490.  580 

16.  Eydallin G, Ryall B, Maharjan R, Ferenci T. The nature of laboratory domestication changes in 581 
freshly isolated Escherichia coli strains. Environ Microbiol. 16(3):813–28.  582 

17.  Bush RM, Smith CB, Cox NJ, Fitch WM. Effects of passage history and sampling bias on 583 
phylogenetic reconstruction of human influenza A evolution. Proc Natl Acad Sci. 2000 Jun 584 
20;97(13):6974–80.  585 

18.  Chambers BS, Li Y, Hodinka RL, Hensley SE. Recent H3N2 Influenza Virus Clinical Isolates Rapidly 586 
Acquire Hemagglutinin or Neuraminidase Mutations When Propagated for Antigenic Analyses. J 587 
Virol. 2014 Sep 15;88(18):10986–9.  588 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 6, 2016. ; https://doi.org/10.1101/079541doi: bioRxiv preprint 

https://doi.org/10.1101/079541


32 
 

 
 

19.  McWhite C, Meyer A, Wilke CO. Serial passaging causes extensive positive selection in seasonal 589 
influenza A hemagglutinin. bioRxiv. 2016 Feb 1;038364.  590 

20.  Ferenci T, Galbiati H, Betteridge T, Phan K, Spira B. The constancy of global regulation across a 591 
species: the concentrations of ppGpp and RpoS are strain-specific in Escherichia coli. BMC 592 
Microbiol. 11(1):62.  593 

21.  Bleibtreu A, Clermont O, Darlu P, Glodt Jã©, Branger C, Picard B, et al. The rpoS Gene Is 594 
Predominantly Inactivated during Laboratory Storage and Undergoes Source-Sink Evolution in 595 
Escherichia coli Species. J Bacteriol. 2014 Dec 15;196(24):4276–84.  596 

22.  Zambrano MM, Siegele DA, Almirón M, Tormo A, Kolter R. Microbial competition: Escherichia coli 597 
mutants that take over stationary phase cultures. Science. 1993 Mar 19;259(5102):1757–60.  598 

23.  Marvig RL, Damkiær S, Khademi SMH, Markussen TM, Molin S, Jelsbak L. Within-Host Evolution of 599 
Pseudomonas aeruginosa Reveals Adaptation toward Iron Acquisition from Hemoglobin. mBio. 600 
2014 Jul 1;5(3):e00966–14.  601 

24.  Farhat MR, Shapiro BJ, Kieser KJ, Sultana R, Jacobson KR, Victor TC, et al. Genomic analysis 602 
identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. 603 
Nat Genet. 2013 Oct;45(10):1183–9.  604 

25.  Niehaus KE, Walker TM, Crook DW, Peto TEA, Clifton DA. Machine learning for the prediction of 605 
antibacterial susceptibility in Mycobacterium tuberculosis. In 2014. p. 618–21.  606 

26.  Laabei M, Recker M, Rudkin JK, Aldeljawi M, Gulay Z, Sloan TJ, et al. Predicting the virulence of 607 
MRSA from its genome sequence. Genome Res. 2014 May 1;24(5):839–49.  608 

27.  Mather AE, Reid SWJ, Maskell DJ, Parkhill J, Fookes MC, Harris SR, et al. Distinguishable Epidemics 609 
of Multidrug-Resistant Salmonella Typhimurium DT104 in Different Hosts. Science. 2013 Sep 610 
27;341(6153):1514–7.  611 

28.  Alexander DC, Fitzgerald SF, DePaulo R, Kitzul R, Daku D, Levett PN, et al. Laboratory–Acquired 612 
Infection with Salmonella enterica serovar Typhimurium Exposed by Whole Genome Sequencing. J 613 
Clin Microbiol. 2015 Oct 28;JCM.02720–15.  614 

29.  Cavallaro E, Date K, Medus C, Meyer S, Miller B, Kim C, et al. Salmonella Typhimurium Infections 615 
Associated with Peanut Products. N Engl J Med. 2011 Aug 17;365(7):601–10.  616 

30.  Okoro CK, Kingsley RA, Quail MA, Kankwatira AM, Feasey NA, Parkhill J, et al. High-Resolution 617 
Single Nucleotide Polymorphism Analysis Distinguishes Recrudescence and Reinfection in 618 
Recurrent Invasive Nontyphoidal Salmonella Typhimurium Disease. Clin Infect Dis. 2012 Apr 619 
1;54(7):955–63.  620 

31.  Leekitcharoenphon P, Nielsen EM, Kaas RS, Lund O, Aarestrup FM. Evaluation of Whole Genome 621 
Sequencing for Outbreak Detection of Salmonella enterica. PLoS ONE. 9(2):e87991.  622 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 6, 2016. ; https://doi.org/10.1101/079541doi: bioRxiv preprint 

https://doi.org/10.1101/079541


33 
 

 
 

32.  Hawkey, J, Edwards, DJ, Dimovski, K, Hiley, L, Billman-Jacobe, L, Hogg, G, et al. Evidence of 623 
microevolution of Salmonella Typhimurium during a series of egg-associated outbreaks linked to a 624 
single chicken farm. BMC Genomics. 2013;14:800.  625 

33.  Zinder, ND, Lederberg, J. Genetic exchange in Salmonella. J Bacteriol. 1952;64(5):679–99.  626 

34.  Beltran, P, Plock, SA, Smith, NH, Whittam, TS, Old, DC, Selander, RK. Reference collection of strains 627 
of the Salmonella typhimurium complex from natural populations. J Gen Microbiol. 1991;137:601–628 
6.  629 

35.  Leinonen R, Sugawara H, Shumway M, and on behalf of the International Nucleotide Sequence 630 
Database Collaboration. The Sequence Read Archive. Nucleic Acids Res. 2010 Nov 9;(39):D19–21.  631 

36.  McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, et al. Complete genome 632 
sequence of Salmonella enterica serovar Typhimurium LT2. Nature. 2001 print;413(6858):852–6.  633 

37.  Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. 634 
Bioinformatics. 2009 Jul 15;25(14):1754–60.  635 

38.  Li H. Improving SNP discovery by base alignment quality. Bioinforma Oxf Engl. 2011 Apr 636 
15;27(8):1157–8.  637 

39.  Li H. A statistical framework for SNP calling, mutation discovery, association mapping and 638 
population genetical parameter estimation from sequencing data. Bioinforma Oxf Engl. 2011 Nov 639 
1;27(21):2987–93.  640 

40.  Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map 641 
format and SAMtools. Bioinformatics. 2009 Aug 15;25(16):2078–9.  642 

41.  Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. 643 
Bioinformatics. 2010 Mar 15;26(6):841–2.  644 

42.  Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth approach to detect break 645 
points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics. 646 
2009 Nov 1;25(21):2865–71.  647 

43.  Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large 648 
phylogenies. Bioinformatics. 2014 May 1;30(9):1312–3.  649 

44.  K. P. Schliep. phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27(4):592–3.  650 

45.  Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and 651 
predicting the effects of single nucleotide polymorphisms, SnpEff. Fly (Austin). 2012 Apr 1;6(2):80–652 
92.  653 

46.  Lind PA, Berg OG, Andersson DI. Mutational Robustness of Ribosomal Protein Genes. Science. 2010 654 
Nov 5;330(6005):825–7.  655 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 6, 2016. ; https://doi.org/10.1101/079541doi: bioRxiv preprint 

https://doi.org/10.1101/079541


34 
 

 
 

47.  Sittka A, Lucchini S, Papenfort K, Sharma CM, Rolle K, Binnewies TT, et al. Deep Sequencing 656 
Analysis of Small Noncoding RNA and mRNA Targets of the Global Post-Transcriptional Regulator, 657 
Hfq. Burkholder WF, editor. PLoS Genet. 2008 Aug 22;4(8):e1000163.  658 

48.  Taboada B, Ciria R, Martinez-Guerrero CE, Merino E. ProOpDB: Prokaryotic Operon DataBase. 659 
Nucleic Acids Res. 2012 Jan 1;40(D1):D627–31.  660 

49.  Liaw, Andy, Wiener, Matthew. Classification and regression by randomForest. R News. 2002;18–661 
22.  662 

50.  R_Core_Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, 663 
Austria: R Foundation for Statistical Computing; 2014. Available from: http://www.R-project.org 664 

51.  Kaufman, L., Rousseeuw, P.J. Clustering by means of Medoids. In: Statistical Data Analysis Based on 665 
the  –Norm and Related Methods,. 1987. p. 405–16.  666 

52.  Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K. cluster: Cluster Analysis Basics and 667 
Extensions. R   package version 201. 2015;  668 

53.  Koskiniemi S, Gibbons HS, Sandegren L, Anwar N, Ouellette G, Broomall S, et al. Pathoadaptive 669 
Mutations in Salmonella enterica Isolated after Serial Passage in Mice. PLoS ONE. 670 
2013;8(7):e70147.  671 

54.  Koskiniemi S, Sun S, Berg OG, Andersson DI. Selection-Driven Gene Loss in Bacteria. PLoS Genet. 672 
2012 Jun 28;8(6):e1002787.  673 

55.  Maharjan R, Ferenci T, Reeves P, Li Y, Liu B, Wang L. The multiplicity of divergence mechanisms in a 674 
single evolving population. Genome Biol C7 - R41. 2012;13(6):1–16.  675 

56.  Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D, et al. Genome evolution and adaptation in 676 
a long-term experiment with Escherichia coli. Nature. 2009;461(7268):1243–7.  677 

57.  Maharjan R, Seeto S, Notley-McRobb L, Ferenci T. Clonal Adaptive Radiation in a Constant 678 
Environment. Science. 2006 Jul 28;313(5786):514–7.  679 

58.  Saxer G, Krepps MD, Merkley ED, Ansong C, Deatherage Kaiser BL, Valovska M-T, et al. Mutations 680 
in Global Regulators Lead to Metabolic Selection during Adaptation to Complex Environments. 681 
PLoS Genet. 2014;10(12):e1004872.  682 

59.  Conrad TM, Lewis NE, Palsson BØ. Microbial laboratory evolution in the era of genome-scale 683 
science. Mol Syst Biol. 2012;7(1):509.  684 

60.  Gaffe J, McKenzie C, Maharjan R, Coursange E, Ferenci T, Schneider D. Insertion Sequence-Driven 685 
Evolution of Escherichia coli in Chemostats. J Mol Evol. 72(4):398–412.  686 

61.  Porwollik S, Wong RM-Y, Helm RA, Edwards KK, Calcutt M, Eisenstark A, et al. DNA Amplification 687 
and Rearrangements in Archival Salmonella enterica Serovar Typhimurium LT2 Cultures. J 688 
Bacteriol. 2004 Mar 15;186(6):1678–82.  689 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 6, 2016. ; https://doi.org/10.1101/079541doi: bioRxiv preprint 

https://doi.org/10.1101/079541


35 
 

 
 

62.  Maharjan RP, Liu B, Feng L, Ferenci T, Wang L. Simple phenotypic sweeps hide complex genetic 690 
changes in populations. Genome Biol Evol [Internet]. 2015 Jan 13; Available from: 691 
http://gbe.oxfordjournals.org/content/early/2015/01/13/gbe.evv004.abstract 692 

63.  Jarvik T, Smillie C, Groisman EA, Ochman H. Short-Term Signatures of Evolutionary Change in the 693 
Salmonella enterica Serovar Typhimurium 14028 Genome. J Bacteriol. 2010 Jan 15;192(2):560–7.  694 

64.  Davidson CJ, White AP, Surette MG. Evolutionary loss of the rdar morphotype in Salmonella as a 695 
result of high mutation rates during laboratory passage. ISME J. 2008;2(3):293–307.  696 

65.  Herring CD, Raghunathan A, Honisch C, Patel T, Applebee MK, Joyce AR, et al. Comparative 697 
genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory 698 
timescale. Nat Genet. 2006 Dec;38(12):1406–12.  699 

66.  Maharjan R, Zhou Z, Ren Y, Li Y, Gaffé J, Schneider D, et al. Genomic identification of a novel 700 
mutation in hfq that provides multiple benefits in evolving glucose-limited populations of 701 
Escherichia coli. J Bacteriol. 2010 Sep 1;192(17):4517–21.  702 

67.  Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9.1: protein-703 
protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013 Jan 704 
1;41(D1):D808–15.  705 

68.  Max Kuhn, Jed Wing, Steve Weston, Andre Williams, Chris Keefer, Allan Engelhardt, et al. caret: 706 
Classification and Regression Training. 2015; Available from: http://CRAN.R-707 
project.org/package=caret 708 

69.  Michel Ballings, Dirk Van den Poel. AUC: Threshold independent performance measures for 709 
probabilistic classifiers. 2013; Available from: http://CRAN.R-project.org/package=AUC 710 

711 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 6, 2016. ; https://doi.org/10.1101/079541doi: bioRxiv preprint 

https://doi.org/10.1101/079541


36 
 

 
 

Supporting Information 712 

S1 Figure. Schematic of the data analysis pipeline 713 

S2 Table. SRA identifiers for genomes in the large phylogeny 714 

S3 Table. Laboratory culturing histories of the strain collections 715 

S4 Table. Parameters used for BWA sequence alignment 716 

S5 Table. Genes that mutated in Salmonella and E. coli in published laboratory culturing experiments 717 

S6 Table. SRA identifiers for strains closely related to serovar Typhimurium 14028 718 

S7 File. Phylogeny of 902 serovar Typhimurium strains and LT2 719 

S8 Table. Genes and sets of genes identified as potential candidate signatures 720 

S9 Figure. Relationship between branch length and predicted probability of extensively lab culturing 721 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 6, 2016. ; https://doi.org/10.1101/079541doi: bioRxiv preprint 

https://doi.org/10.1101/079541


37 
 

 
 

 722 

 723 

 724 

 725 

Fig 1.  Notional phylogeny branches with mutations that occur in nature (blue) and in 726 

laboratory culturing (red).  727 
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 728 

Fig 2. Fraction of branches assigned to one of two clusters for strain collections and internal 729 

branches.  730 

Except for LT and SARA collections, only collections that contain at least 20 strains are shown. 731 

Results are from unsupervised random forest classification and k-medoids clustering. 732 
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 734 

Fig 3. Candidate signature genes and operon gene sets with variable importance scores.  735 
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Red indicates gene mutated in a published laboratory passage experiment in Salmonella or E. 736 

coli. Blue indicates gene is strongly associated in the STRING database with another gene that 737 

mutated in a published laboratory passage experiment. Black indicates no association found 738 

with published laboratory study genes.  1 marks rpoS and genes that are known to interact with 739 

it. 740 
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 741 

Fig 4.  ROC curve showing results for strains from the two old reference strain collections. 742 

Strains from LT and SARA collections are treated as true cases and internal branches as negative 743 

cases.  Results are from the LOOV analysis.  744 
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 746 

Fig 5. Phylogeny of serovar Typhimurium strains closely related to strain 14028 with results from the 747 

classifier.   748 

 749 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 6, 2016. ; https://doi.org/10.1101/079541doi: bioRxiv preprint 

https://doi.org/10.1101/079541

