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Abstract19

Duplicate or triplicate experimental replicates are commonplace in the high20

throughput literature. However, it has not been tested whether this is statistically21

defensible or not. To address this issue, we use probabilistic programming to22

develop a simple hierarchical model for analyzing high throughput measurement23

data. With the model and simulated data, we show that a small increase in24

replicate experiments can quantitatively improve accuracy in measurement. We25

also provide posterior densities for statistical parameters used in the evaluation26

of HT data. Finally, we provide an extensible open source implementation that27
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ingests data structured in a simple format and produces posterior densities of28

estimated measurement and assay evaluation parameters.29

Introduction30

High throughput (HT) screening experiments are necessary for systematically31

interrogating biology. However, there are a number of statistical issues that are32

widespread in the HT screening literature. Firstly, triplicate (or worse, duplicate)33

measurements are commonplace, with little statistical justification; conceivably,34

this is mostly cost driven, a practical reason but nonetheless detrimental for35

scientific accuracy. Secondly, t-tests with multiple hypothesis correction serves as36

the main vehicle for statistical analysis of HT data, potentially falsely identifying37

samples as negatives or non-hits. Thirdly, standard error of the mean (SEM)38

are commonly used as the reported error bars, not only in the HT literature39

but also in non-HT publications (Kemnitzer et al. 2005; Marion et al. 2009;40

Le Hellard et al. 2002; Fu et al. 2014), and this under-represents the variation41

in the data. Finally, statistical parameters for assay evaluation are computed42

without acknowledging the uncertainty that may arise because of uncertainty in43

the data.44

To address these problems, take an empirical approach. We use probabilistic45

programming to develop a simple Bayesian hierarchical model of a ‘generic’ HT46

assay (Figure 1, Supplementary Materials). Using this model, we are able to47

simultaneously provide Bayesian posterior distributions of measurement and48

statistical evaluation parameters. We show, using simulation studies, that49

increasing the number of replicates by one or two measurements can drastically50

reduce measurement inaccuracy. Using both simulation and real data, we51

show that the common practice of reporting mean ± SEM under-represents52

the uncertainty in measurement variation. We argue that the uncertainty in53

statistical assessment parameters can help guide more rational decision-making.54

Finally, we provide an extensible open source tool for the analysis of such data.55

Results56

Statistically Defensible Replicate Measurements57

In order to investigate how the number of replicates affected the accuracy, we58

simulated experimental runs of 100 samples with varying numbers replicate59

measurements (n=2 to n=20). For each n, 20 experimental runs were simulated.60

As shown in Figure 2, the baseline accuracy rate with duplicate (n=2) measure-61

ments, as measured by fraction of actual values inside the posterior density’s62

95% HPD, falls around the 70-75% range. This means that about 25% of the63
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Figure 1: Bayesian hierarchical model.
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final posterior 95% HPDs do not encompass the actual value. By contrast, by64

using n=5 replicates, the accurate HPD fraction falls around the 85-90% range.65

Roughly doubling the number of samples decreases the inaccurate fraction by up66

to 3-fold. Following the law of diminishing marginal returns, additional accuracy67

can be gained, but at a cost of increasing sample sizes.68
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Figure 2: Accuracy of 95% HPD as a function of number of replicate samples
taken.

Representation of Uncertainty69

Statistical software (e.g. GraphPad Prism) make it easy for researchers to70

visualize and compute frequentist confidence intervals and error bars. However,71

as a result of their ease of use, it is also easy to make statistical errors such as72

reporting error bars using the standard error of the mean (SEM), rather than73

95% confidence/credible intervals. Our analysis of simulation and experimental74

data show clearly what can be inferred from the mathematical form but is often75

ignored: that the SEM grossly under-represents the uncertainty in measurement76

and data variation compared to 95% confidence intervals and Bayesian 95%77

credible intervals (Figure 3). As such, it would be poor statistical practice to78

report SEM, and 95% credible/confidence intervals would be much preferable.79
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Figure 3: Bayesian 95% credible interval, Frequentist 95% confidence interval,
and SEM interval widths as compared to the actual data range. (left) Simulated
data. (right) Experimental measurement data measuring the influence of heat-
killed bacteria on influenza activity.

Posterior Densities of Assay Parameters80

Statistical parameters, such as the Z-factor, have been developed to evaluate81

the quality of HT assay data (J. Zhang, Chung, and Oldenburg 1999; Sui and82

Wu 2007). By taking a Bayesian view, we can compute not just the expected83

parameter values but also their posterior distributions (Figure 4). As such, given84

the uncertainty surrounding the measurements, the original 3-class system for85

classifying the quality of an hit can be extended to 5 classes (Figure 4).86

The actionable consequences of these Z-value distributions depends on the exper-87

imental context. There may be scenarios where downstream experimentation is88

expensive, and only “true hits” should be tested; in this case, the “probable large89

separation” samples may be chosen for exclusion, helping to reduce costs. On the90

other hand, if downstream experimentation is cheap, and it is desirable to have91

a large set of samples to be processed further, then samples in the “probable92

small separation” may be included in downstream testing, helping to reduce93

false negatives. The truism remains: statistics does not replace human judgment94

of the value of a sample, but can serve as a valuable tool in the decision-making95

process.96

We note that Z-factors are not the only statistical parameters that can be97

computed. Other deterministically calculated parameters, such as effect sizes,98

can be computed in a similar fashion, likewise yielding uncertainty estimates,99

given the data.100
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Figure 4: Z-score classes and simulation data. Circle/dot: HPD mean. Thick
lines: HPD inter-quartile range. Thin lines: 95% HPD range. (a) Five Z-score
classes based on the Z-score posterior density. (b) Forest plot of posterior
distributions from one simulation run. Samples 11 and 12 (respectively) are
the blank and the non-extreme positive control in this simulated experiment.
(top-left) Posterior density in fold change relative to blank. (top-right) Posterior
density of variance. (bottom-left) Deterministic posterior density of fold change
relative to positive control. (bottom-right) Deterministic posterior density of
Z-factor computed using the non-extreme positive control as the baseline.
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Discussion101

It is well-known that Bayesian analysis allows the uncertainty in parameter102

estimates to be explicitly modelled, with credibility (probability density) assigned103

to parameter estimate intervals. The provision of uncertainty can clarify close-104

to-call situations (e.g. Z-factors close to 0.5) and uncover potential false positives105

(e.g. large Z-factors close to 1.0 but with high variance), enabling better decision-106

making under uncertainty. Other merits and caveats of Bayesian analysis have107

been treated extensively in the literature as well (Kruschke 2013; Lin et al. 1999),108

and we do not go further into them here.109

Probabilistic programming approaches make Bayesian methods much more110

accessible than analytical methods (Salvatier, Wiecki, and Fonnesbeck 2015).111

By leveraging these tools, we are in turn able to make Bayesian methods112

more generally accessible for the generic researcher working in high throughput113

measurement. In aid of reproducible science, we have also released an open114

source command-line program available for analysis of this type of data (#cite:115

Zenodo).116

A key issue that has cropped up over the past half decade is the scientific117

“reproducibility crisis”, partly due to erroneous researcher reliance on p-values as118

a judgement device for “significance” (Wasserstein and Lazar 2016). Judgements119

of what “hits” to continue with downstream processing often relies on a calculated120

p-value rather than effect sizes; statistical significance has come to replace121

biological significance (Nuzzo 2014; Baker 2016). In light of this, we argue that122

by taking a Bayesian view of the data, we may replace p-value-based judgement123

calls with ones based on the distribution and uncertainty in estimated quality124

evaluation parameters (e.g. Z-factors & effect sizes), hence improving the quality125

of published results in the scientific literature.126

Materials and Methods127

Code & Data128

All code for simulation and analysis are available as Python scripts and Jupyter129

notebooks. The archived version used in this publication is released on Zen-130

odo (#TODO), while the source code and data (including that used for this131

manuscript) can be found on GitHub.132
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