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Summary 
Recent advances in RNA sequencing enable the generation of genome-wide expression 
data at the single-cell level, opening up new avenues for transcriptomics and systems 
biology. A new application of single-cell whole-transcriptomics is the unbiased ordering of 
cells according to their progression along a dynamic process of interest. We introduce 
SCORPIUS, a method which can effectively reconstruct an ordering of individual cells 
without any prior information about the dynamic process. Comprehensive evaluation using 
ten scRNA-seq datasets shows that SCORPIUS consistently outperforms state-of-the-art 
techniques. We used SCORPIUS to generate novel hypotheses regarding dendritic cell 
development, which were subsequently validated in vivo. This work enables data-driven 
investigation and characterization of dynamic processes and lays the foundation for 
objective benchmarking of future trajectory inference methods. 

Introduction 
During the past three decades, flow cytometry and imaging techniques have been 
instrumental in profiling and characterizing single cells in a high-throughput manner. Recent 
advances in RNA sequencing now enable us to profile the whole transcriptome of individual 
cells, which allows studying rare cells 1,2 or unravelling heterogeneous cell populations 1,3,4. 
Single-cell RNA sequencing (scRNA-seq) has shed new lights on biology in many fields 
including microbiology, neurobiology, immunology and cancer research 5. One domain which 
has benefited greatly from advancements in single-cell transcriptomics is the study of 
dynamic processes 6, including cell development and differentiation 7–10, responses to stimuli 
3,11, and cyclic processes such as the cell cycle 12. 
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Dynamic processes are traditionally investigated by developing a time series model 13. Time 
series data are typically obtained by observing gene expression levels of bulk populations of 
cells at multiple time points. Despite their utility, time series experiments are still associated 
with several technical and biological challenges such as time-resolution, cellular 
heterogeneity and the need for synchronization conditions. As a result, researchers now 
flock to computational methods which derive models of dynamic processes from single-cell 
data. By modelling a dynamic process as a trajectory and mapping the cells to regions in the 
trajectory, the progression of a cell in the dynamic process of interest can be predicted. Such 
computational methods, referred to as trajectory inference (TI) methods, can then be used to 
identify new marker genes associated with specific transition states 14, or novel intermediate 
states 8, and infer regulatory networks underlying the dynamic process 15. 
 
Pioneering TI methods such as Monocle 16 and Wanderlust 17 have been instrumental in 
laying the foundations of the methodology, which typically consists of two main steps. In the 
dimensionality reduction step, the high-dimensional dataset (with thousands of genes) is 
converted to a low-dimensional representation using manifold learning techniques or graph-
based techniques. In the subsequent trajectory modeling step, a model is constructed from 
the cells in the reduced space, by predicting the different cell states, inferring a trajectory 
through them, and projecting the cells on to the trajectory. 
Wanderlust 17 requires a starting cell to be given as additional input. It creates a k-nearest-
neighbor (KNN) graph to reduce the dimensionality, and orders cells according to their 
shortest-path distances to the starting cell. In order to improve the robustness of this 
approach, Wanderlust calculates a consensus ordering from the orderings obtained from 
bootstrapped KNN graphs. 
 
Monocle (Trapnell et al., 2014) uses Independent Component Analysis (ICA) to reduce the 
dimensionality. As the time complexity of ICA scales poorly with the number of genes in the 
dataset, Monocle first selects the genes most differentially expressed between given cell 
states. By calculating a minimum spanning tree between the cells and finding the longest 
connected path therein, the cells are ordered by projecting them onto the closest point in the 
path. Waterfall 18 reduces the dimensionality with Principal Component Analysis (PCA). 
Subsequently, the cells are clustered and a minimum spanning tree is calculated between 
the cluster centers. The longest path starting from the leftmost cluster is used as a trajectory, 
and the cells are ordered by perpendicularly projecting them onto the closest point on the 
trajectory. 
 
Although these pioneering studies have shown that TI methods can be a powerful tool to 
improve our understanding of cellular dynamic processes 16,17 the relative advantages and 
weaknesses of particular TI methods are still unclear at this point. In this study, we designed 
a benchmarking strategy for TI methods, which uses the known ordering of cellular states to 
evaluate the quality of the inferred ordering. When we used this strategy to assess the 
performance of state-of-the-art TI methods on a wide range of datasets, we found that none 
of the current methods performed well on all datasets consistently. We reasoned that there 
are two causes for this observation. First, at the time of development of these methods, the 
technologies that enabled profiling the transcriptome of single cells had just been released, 
and scRNA-seq datasets investigating dynamic processes were a scarce commodity. 
Existing TI methods were therefore evaluated on only one or two datasets, and might 
perform suboptimally on new datasets. Second, these methods use prior knowledge in order 
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to obtain more robust models, while the methods were evaluated in an unsupervised setting. 
By providing the method with prior knowledge, bias towards existing knowledge is introduced 
into the model, which might preclude the researcher from discovering new information such 
as heterogeneities and hidden subpopulations in known cellular groupings. 
 

Results 
We introduce SCORPIUS, a novel method for inferring trajectories in a purely data-driven 
way, and we subsequently evaluate this method both computationally as well as biologically. 
To this end, we performed the first quantitative and extensive benchmark of TI methods on 
ten datasets. Subsequently, we demonstrate its practical usefulness by applying it to the 
dynamic process of dendritic cell development, and confirm the generated hypotheses in 
vivo. Compared to existing TI methods, SCORPIUS offers three main advantages. First, it 
produces accurate models in an extensive benchmark on a wide range of dynamic 
processes and predicts the progression of individual cells along those dynamic processes. 
Second, SCORPIUS does not require any user input and works in a purely data-driven 
fashion, which minimizes the amount of bias that may be introduced into the model and 
might lead to novel and unexpected findings. Finally, in order to improve the interpretability 
of the model, it is able to predict the involvement of genes in the dynamic process of interest, 
and visualize interesting gene expression patterns in an intuitive manner.  

SCORPIUS constructs data-driven models of dynamic processes 
Comparable to other TI methods, SCORPIUS assumes that a given dataset contains the 
genome-wide expression profiles of hundreds to thousands of cells, which were uniformly 
sampled from a linear dynamic process. Figure 1 presents the main steps of the SCORPIUS 
methodology: dimensionality reduction, trajectory modeling and gene prioritization. During 
the dimensionality reduction step (Figure 1b), the correlation distance between all pairs of 
cells is calculated. By default, SCORPIUS uses the spearman correlation as it is unit 
independent, and is typically more robust than other correlation distances when high levels 
of noise are contained within the dataset. Next, SCORPIUS removes outliers, as these could 
negatively impact the trajectory inference. Finally, multi-dimensional scaling (MDS) is used 
to reduce the dimensionality to n components. The reduced space highlights the main 
structure in the data and efficiently reduces technical noise, making it easier to infer a 
trajectory in the next step.  
 
In the second step, SCORPIUS reconstructs a trajectory through the data (Figure 1c). An 
initial trajectory is constructed by clustering the data with k-means clustering, and finding the 
shortest path through the cluster centers. This initial trajectory is subsequently refined in an 
iterative way using the principal curves algorithm 19. The individual cells can then be ordered 
by projecting the n-dimensional points onto the trajectory. In the third and final step, 
SCORPIUS infers the degree to which a gene and its expression is involved in the dynamic 
process of interest (Figure 1c). This is achieved by ranking the genes according to their 
ability to predict the ordering of cells from the expression data, using the Random Forest 
algorithm 20. The genes are then clustered into coherent modules, and visualized in order to 
improve the interpretability of the constructed model. 
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Extensive benchmarking shows SCORPIUS outperforms existing TI 
methods 
At the time of introduction of the pioneering TI methods, the number of publicly available 
scRNA-seq datasets usable for investigating dynamic processes was severely limited, and 
thus the evaluations of these methods have been restricted to using only one or two 
datasets. The increasing number of publicly available scRNA-seq datasets now allows to 
perform a first extensive benchmarking experiment and thus quantitatively assess the 
performance of existing TI methods. We collected ten scRNA-seq datasets from five studies 
3,8,12,16,21, representing several types of dynamic processes: cell differentiation, cell cycle and 
response upon external stimulus (See Table S1). For each of these datasets, labels 
regarding the state of cells in the dynamic process are available (e.g. using expression of 
known differentiation markers), which was used strictly only to evaluate a method, not to 
infer a model with. In this benchmark, SCORPIUS was compared with three state-of-the-art 
methods: Wanderlust 17, Monocle 16 and Waterfall 18. A detailed overview of the 
characteristics of each approach can be found in Table S2. 
 
Similarly to SCORPIUS, these alternative TI methods also first use a dimensionality 
reduction step and subsequently infer a trajectory in the reduced space (Supplementary 
Note). As shown in Figure 2a, we evaluated both these steps using two different metrics, 
respectively the accuracy and the consistency. The accuracy metric quantifies the 
performance of the dimensionality reduction step by measuring how accurate the cell labels 
are grouped together in the reduced space. To this end, the accuracy is calculated by 
predicting the label of each cell from its five nearest neighbors (5-NN), each time comparing 
the true cell label to the one predicted based on its five nearest neighbors. A good accuracy 
means that the reduced space has sufficient information to preserve cell state similarity. The 
consistency metric quantifies the performance of the trajectory inference step by comparing 
the predicted cell ordering to the known progression in the dynamic process. The 
consistency score is calculated by counting the number of consistent and inconsistent 
orderings for each cell in the trajectory with respect to the known progression, and is equal 
to the average percentage of consistent orderings per cell. Differences in scores due to 
stochastic components were removed by running each method on each dataset 100 times 
and averaging the scores. 
 
SCORPIUS significantly outperforms other TI methods both in terms of accuracy and 
consistency (Figure 2b). It outperforms all other methods for each of the datasets (Figure 
2c), except on dataset 5c, where Monocle achieved a higher consistency score in 
comparison to SCORPIUS. While the dimensionality reduction step of SCORPIUS generally 
performs well, its trajectory inference step performed worse on datasets 3c and 5d. Visual 
inspection of the inferred trajectories showed that dataset 3c contains a lot of heterogeneity 
between cells in the same time points, indicating the presence of subpopulations in the 
dataset, and that dataset 5d might contain a large systematic error, as each of the TI 
methods had ordered the ST-HSC and LT-HSC stages incorrectly.  
While all of the methods achieved a relatively high score on their dimensionality reduction 
steps, the performance of their trajectory inference steps is variable. For Monocle, this is to 
be expected, as calculating the longest connected path in a minimum spanning tree between 
cells is highly sensitive to noise 22. Calculating the shortest-path distance from a starting 
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node seemingly works well on some datasets and not on others, as the performances of 
Waterfall and Wanderlust are highly variable but very correlated. 

SCORPIUS highlights different functional modules in dendritic cell 
development 
In order to demonstrate the capability of SCORPIUS to generate testable hypothesis on real 
data, we applied the SCORPIUS algorithm on a recent scRNA-seq dataset of dendritic cell 
(DC) progenitors 8. Although dendritic cells play a critical role in the activation of the adaptive 
immune system in vertebrates, several key regulatory mechanisms involved in this process 
are still disputed 23,24. DC progenitors are derived from hematopoietic stem cells in the bone 
marrow, and transition through a plethora of cellular states before becoming fully developed 
DCs (Figure 3a) 25–30. The dataset contains 57 Monocyte and Dendritic cell Progenitors 
(MDPs), 95 Common Dendritic cell Progenitors (CDPs) and 96 Pre-Dendritic Cells (PreDCs). 
SCORPIUS correctly orders the cells with regard to their differentiation status, as indicated 
by comparing the inferred trajectory with the known transition states (Figure 3b).  
 
SCORPIUS then infers the degree to which a gene is involved in DC development, by using 
Random Forests 20 to predict the pseudotime ordering from the expression data and 
subsequently estimating the importance of each gene in this prediction. Empirical p-values 
were calculated by permutation testing (Figure 3c), and the most predictive genes (p < 10-4) 
were clustered into coherent gene modules (Figure 3d). The number of clusters was 
automatically determined with the Bayesian information criterion. We found that not only do 
the modules contain genes with very similar expression profiles, these genes also have very 
similar functions. In addition, further validation with bulk microarray expression data 31 shows 
a high similarity between the two data sources and gives insight into the expression of the 
selected genes for other cell types. 
 
Modules 1 and 2 primarily contain genes that are involved in early hematopoiesis (e.g. Cd27, 
Cd34) or the development of a different hematopoietic lineage branch (e.g. NK cells: Nkg7; 
myeloid: Mpo, Prtn3; B cell: Cd81, Gpr97, Hspd1; T cell: Nkg7, Cd81, Hspd1, Lgals9). We 
found that while the expression of these genes was relatively high in the progenitor cells, it 
rapidly decreased during DC differentiation. A possible explanation could be that a sufficient 
level of proteins (which these genes transcribe for) has been reached, and that the mRNA 
expression is reduced in order to decrease the synthesis levels of the respective proteins. 
 
Module 3 contains many genes related to protein synthesis (e.g. Ncl, Cdk4) which 
progressively decrease in expression during DC differentiation. As it is known that the 
protein synthesis rate gradually decreases during granulocyte and B-cell development 32, 
this module suggests that an analogous process exists during DC development. 
 
Module 4 contains mostly genes that are already known to be involved in dendritic cell 
development (e.g. Itgax, Cd209a and Lgals3), confirming the ability of SCORPIUS to recover 
drivers of DC development in a purely data-driven way. It comes as no surprise that these 
genes are upregulated in the PreDC stage as these cells are preparing to become fully 
developed DCs. 
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The genes in module 5 are involved in actin polymerization (e.g., Tmsb4x and Crip1) and 
contains additionally one actin isoform (Actb). DCs rely on a filamentous actin cytoskeleton 
to capture antigens and facilitate locomotion 33,34, the dynamics of which are determined by 
constant cycles of polymerization and depolymerization. While it is known actin 
polymerization plays a crucial role in the morphology, migratory behavior, and antigen 
internalization capacity of DCs, the upregulation of the genes in module 5 suggests that the 
synthesis of the proteins required for actin polymerization picks up during the CDP and 
PreDC stages. This shows the power of TI methods to exactly pinpoint the cellular states at 
which genes necessary for a particular cellular function get upregulated. 
 
Module 6 contains mostly genes that are involved in antigen presentation (Cd74, H2-Aa, H2-
Ab1, H2-Eb1), one of the major functions of DCs 35, as part of the major histocompatibility 
complex (MHC) class II. Whereas PreDCs have low MHC II expression on the cell surface, 
the high mRNA expression of these genes in late PreDCs indicates these cells are preparing 
to become developed DCs, to migrate and present antigen on their cell surface. 

A decrease in protein synthesis rate during dendritic cell 
development is confirmed in vivo 
The identification of module 3, containing genes related to protein synthesis, suggests that 
during DC development translation is decreased (Figure 4a), a novel hypothesis within the 
field of DC development. In order to verify whether translation indeed decreases during DC 
development, we quantified the protein synthesis rate of murine bone marrow cells in vivo. 
We intraperitoneally injected O-propargyl-puromycin (OP-Puro), an amino acid analogue, 
which enters ribosome acceptor sites and is incorporated into nascent polypeptide strands 
36. The subsequent fluorescent labeling of OP-Puro allows us to quantify the proteins 
synthesis rate on a single cell level using flow cytometry. 
 
While the OP-Puro fluorescence intensities varied across the five individual mice, the relative 
fluorescence levels are very similar across replicates (Figure 4b). As described previously 32, 
OP-Puro incorporation is significantly lower in HSCs and multipotent progenitors (MPPs) 
than in common myeloid progenitors (CMPs). In line with the decreasing transcript 
expression levels of protein translation genes, the OP-Puro fluorescence levels and thus 
also protein production levels progressively decrease during DC development. 
 
We summarize the results obtained by this work in the context of DC development by 
mapping the six coherent modules onto the DC lineage tree (Figure 5). We found that each 
of these modules corresponded to particular functions, which are up and down-regulated in 
different waves during DC development. While some of these functions have already been 
described as being important during DC differentiation 33,35, such as the late upregulation of 
antigen presentation genes, our finding that translation related genes become 
downregulated during DC development was more unexpected. The functional activity of this 
finding was further confirmed through quantification of OP-Puro incorporation, thus 
demonstrating the capacity of SCORPIUS to construct high-quality models and generate 
testable hypotheses therefrom. 
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Discussion 
New technological advances in the field of single-cell transcriptomics are revolutionizing the 
field of biotechnology, and classical clustering techniques are not designed to model 
dynamic processes that represent gradual changes in cell state. To better model such 
gradual changes, trajectory inference methods have recently been introduced to order single 
cells along a pseudo-temporal timeline implicitly present in the data. The resulting ordering 
can subsequently be used to infer novel dynamical properties of processes such as cellular 
development, differentiation and responses to stimuli. As most of the existing TI methods 
depend on prior biological knowledge, we propose SCORPIUS, a novel TI method that infers 
trajectories in a purely data driven way. In addition, as a large-scale quantitative evaluation 
of TI methods had hitherto been lacking, we developed a benchmarking strategy and found 
none of the existing TI methods performed well on all of the datasets consistently. 
 
SCORPIUS was shown to be able to accurately infer trajectories from single-cell expression 
data on a wide range of datasets. While self-assessment can lead to an overestimation of 
the general performance of a method 37, we attempted to reduce the bias due to selective 
reporting of performance by benchmarking the SCORPIUS and other TI methods on ten 
different scRNA-seq datasets. We showed that SCORPIUS is able to consistently infer 
accurate models for different dynamic processes, and statistically outperforms existing TI 
methods.  
 
We further validated the potential of SCORPIUS on real datasets by inferring an accurate 
model for the development of dendritic cells, a crucial type of antigen-presenting cells that 
bridge the innate and adaptive immune system. SCORPIUS identified well-known properties 
of DCs in a purely data-driven way, and using independent bulk microarray data we 
confirmed the up- and down-regulation of several modules during DC development. Through 
the observation of a decrease in mRNA expression of genes involved in translation, we 
hypothesized that protein synthesis levels progressively decrease throughout development, 
a new finding regarding DC development. We quantified the protein synthesis rates of 
various DC progenitors and confirmed high translational activity of MDPs which decreases 
steadily. Translation of proteins is a highly regulated process throughout the development of 
both hematopoietic and non-hematopoietic cells 32,38. Stem cells display low rates of protein 
synthesis, only increasing upon generation of rapidly cycling cell types such as common 
myeloid progenitor cells (CMPs) and MDPs to support their higher proliferative capacity 32. It 
is believed that this tight regulation of protein synthesis in stem cells, through the PERK-
eIF2a axis, is important for protection against stress associated with protein folding and to 
preserve stem cell longevity 38,39. Naik et al. reported reduced proliferative capacity of 
CD11c+ PreDCs compared to CD11c- MDPs and CDPs 30. Thus, our observations of 
reduced translational machinery in PreDCs can be interpreted along similar lines, suggesting 
that cells such as PreDCs reduce the translational capacity according to their needs. 
 
An apparent shortcoming of the inferred trajectories is the assumption that the dynamic 
process of interest is linear. The results obtained by this study also indicate the necessity of 
being able to infer branching or even more generalized models. While inferring a linear 
model is relatively simple in terms of the model complexity, inferring a branching or 
generalized model is considerably more complex, and thus requires a much greater number 
of cells. Up until recently it was only possible to sequence the transcriptomic profiles of 
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hundreds of single cells, but new developments in single cell RNA sequencing allow 
thousands or more single cells to be profiled and thus also the construction of more complex 
models. This has resulted in the introduction of novel branching TI methods 40–42. A large-
scale quantitative benchmarking of these methods is greatly warranted, but will require the 
development of novel performance metrics and collection of scRNA-seq datasets 
investigating branching trajectories. 
 
A second challenge highlighted by this study is the effect of simultaneous dynamic 
processes, for example maturation and cell cycle. While one approach could be to remove 
effects from cell cycle by correcting the expression levels 21, simultaneous dynamic 
processes are likely to interact with each other, and thus removing the effects of one of 
those processes can be detrimental to downstream analyses. A better approach would be to 
attempt to separate variation of expression into several dynamic processes, but this again 
requires larger datasets. 
 
Index sorting is an exciting new development when constructing computational models from 
single cell data. By sorting single cells into individual wells using a flow cytometer, index 
sorting allows to obtain a transcriptomic and proteomic profile of each cell. This is inter alia 
extremely useful when investigating dynamic processes, as this will improve accuracy of the 
model as increases in protein levels should be preceded by increases in mRNA levels. While 
the selection of cells in cytometry is defined by gating structures, index sorting also allows to 
capture cells throughout the whole spectrum of the dynamic process of interest, thereby 
removing gates as a potential source of bias in the experiment. 
 
In summary, this work introduces a novel approach for inferring computational models of 
linear dynamic processes in an accurate and data-driven approach. Careful design of the 
methodology and the quantitative evaluation play a crucial role in reducing bias in the 
models that are inferred. In doing so, this work enables de novo investigation and 
characterization of dynamic processes and lays the foundation for objective benchmarking of 
future trajectory inference methods. 

Methods 

Code availability 
All code used in this study is made publicly available allowing the replication of analyses and 
enabling easier and more robust benchmarking strategies. An open source implementation 
of SCORPIUS is available on GitHub: github.com/rcannood/SCORPIUS. 

Benchmark data sets 
We collected 10 scRNA-seq datasets representing several types of dynamic processes: cell 
differentiation, cell cycle and response upon external stimulus. An scRNA-seq dataset had to 
contain cells at different stages as part of a dynamic process for which the labels were 
experimentally determined, and at least 50 cells had to be present per progression stage. 
For each of the datasets, we downloaded expression data and extracted progression labels 
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from the respective accession codes listed in Table S1. Aside from log-transforming the 
expression values, no further preprocessing of the expression data was performed. 

Dimensionality reduction 
Define  as the collection of all cells. The distance between any two cells is defined as: 

 , 

where  is the Spearman’s rank correlation for tied ranks (Zar 2005). We define the 
outlierness of a cell as the mean distance to it and its 10 nearest neighbors: 
 

 
 
We assume the outlierness of all cells to be normally distributed. Thus, we iteratively remove 
cells with maximal outlierness and fit a normal distribution to the remaining values using the 
fitdistrplus R package. Finally, we ultimately retained those cells at which the log likelihood of 
the fit is maximal. In order to reduce a dataset to an n-dimensional space S, we perform 
classical Torgerson multi-dimensional scaling: 
 

 
 
where  is a vector containing the  largest eigenvalues of the double-centered distance 

matrix , and  is a matrix containing the corresponding eigenvectors. All results in this 
study were produced with . 

Trajectory inference 
First, the cells are clustered into  clusters with -means clustering within the reduced space 

. All results in this study were produced with . Next, an initial rough estimate of the 
trajectory is searched for by linking cell clusters through their shortest path using a custom 
distance function. The distance function takes into account the distance between two cluster 
centers, as well as the density of cells between the two cluster centers. It is defined as: 
 

 
 

with  defined as the Euclidean distance between clusters  and , and  

defined as the mean distance of evenly spread points between  and  and their 
respective 10 nearest neighbors (defined earlier as the outlierness): 

 
 
Finally, SCORPIUS further optimizes this initial path using the Hastie and Stuetzle principal 
curves algorithm 19 (implemented in the princurve R package). This algorithm iteratively 
smoothes the trajectory until convergence. Each iteration, the cells are projected onto a 
given curve, and a new curve is constructed by locally averaging the projected cells. 
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Feature selection and module inference 
We used the Random Forest 20 algorithm to assess the importance of a gene with respect to 
the inferred trajectory. By using a random forest to predict the pseudotime of a cell from its 
expression data, the importance of a gene’s expression with respect to the prediction made 
can be calculated. 
 
More specifically, a random forest consists of many decision trees in which non-leaf nodes 
represent decision splits based on one of the genes and leaf-nodes contain predictions for 
the orderings. The importance of a gene is then the mean decrease in mean squared error 
(MSE) each time that gene is used to create a split. The genes are ordered by importance. 
 
Gaussian mixture models were used to cluster the expression of the top genes into modules.  
These modules were initialized with hierarchical clustering, and were optimized with the 
Bayesian information criterion (BIC). The implementation of this approach is provided by the 
mclust R package 43. 

Evaluation metrics 
The dimensionality reduction and trajectory inference steps of a method were evaluated 
using the cross-validation accuracy (CVA) and the consistent ordering score (COS) metrics, 
respectively. Define  as the experimentally observed progression of a cell , and  
as its ordering along an inferred trajectory. 
 
The accuracy score is calculated by predicting the progression label of each cell from its 5 
nearest neighbors and calculating the percentage of correct predictions: 

, 

with  the modes of the 5-nearest-neighbor. For example, if , 

then the modes would be . 
The consistency score was defined as the percentage of pairwise orderings within the 
trajectory which is consistent with the known progression. Since the direction of the 
trajectory is not inferred, the absolute value of the consistency score is used. 

 

Performance comparison 
We compared SCORPIUS with three other TI methods: Wanderlust, Monocle, and Waterfall. 
The overall characteristics of these methods are listed in Table S2. For each of the methods, 
the default parameters were used (Wanderlust: num_landmarks = 20, num_graphs = 100, k 
= 30, l = 8; Monocle: num_genes = 1000, num_paths = 1; Waterfall: k = 5). In order to be 
able to compare the scores between methods, the same outlier filtering was used for each of 
the TI methods. Each TI method was executed 100 times on each dataset, and the mean 
CVA and COS was calculated. To determine the significance values of differences in 
performance, we performed a one-sided paired Wilcoxon rank test. 
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Measurement of protein synthesis 
O-Propargyl Puromycin (Jena Bioscience - NU-931-5) was dissolved in DMSO, further 
diluted in PBS (10 mg mL-1) and injected intraperitoneally (50 mg kg-1 mouse weight). 1 hour 
after injection mice were euthanized by cervical dislocation and hind bones were collected. 
Bone marrow cells were obtained by crushing of bones with pestle and mortar and 
subsequent lysis of red blood cells. The remaining cells were filtered through a 70 μm mesh 
and resuspended in a Ca2+ and Mg2+ free phosphate buffered solution (PBS; Gibco). Viable 
cell numbers were assessed with a FACS Verse (BD Biosciences).  
 
7 × 106 cells were stained with mixtures of antibodies directed against cell surface markers. 
Each staining lasted approximately 30 minutes and was performed on ice protected from 
direct light. Monoclonal antibodies labeled with fluorochromes or biotin recognizing following 
surface markers were used: CD3 (145-2C11; Tonbo), TCRb (H57-597; BD Pharmingen), 
CD4 (RM4-5; eBioscience), CD8a (53-6.7; BD Pharmingen), CD19 (1D3; Tonbo), CD45R 
(RA3-6B2; BD-Pharmingen), TER119 (TER119; eBioscience), Ly-6G (1A8; BD-
Pharmingen), NK1.1 (PK136; eBioscience), F4/80 (BM8; eBioscience), CD11c (N418; 
eBioscience), MHCII (M5/114.15.2; eBioscience), CD135 (A2F10; eBioscience), CD172a 
(P84; eBioscience), CD45 (30-F11; eBioscience), SiglecH (eBio440c; eBioscience), Ly-6C 
(HK1.4; eBioscience), CD115 (AFS98; eBioscience), CD117 (2B8; eBioscience), CD127 
(SB/199; BD-Pharmingen), Ly-6A/E (D7; eBioscience), CD34(RAM34; eBioscience), CD11b 
(M1/70; BD Pharmingen). Viable cells were discriminated by the use of the fixable viability 
dye eFluor506 or eFluor786 (eBioscience). 
 
Next, cells were fixed and permeabilized using the FoxP3 Fixation/Permeabilization kit 
(eBioscience, 00-5521-00). For OP-Puro labeling, Azide-AF647 is chemically linked to OP-
Puro through a copper-catalyzed azide–alkyne cyloaddition. In short, 2.5 μM azide-AF647 
(Invitrogen, A10277) is dissolved in the Click-iT Cell Reaction Buffer (Invitrogen, C10269) 
containing 400 μM CuSO4. Immediately after preparation, cells are incubated with this 
mixture on room temperature. After a 10 minute incubation, the reaction is quenched by 
addition of PBS supplemented with 5% heat-inactivated fetal calf serum (FCS; Sigma) and 5 
mM EDTA (Lonza; 51234). Cells are washed twice to remove unbound azide-AF647. A 
Fortessa X20 (BD Biosciences) was used for data acquisition and data was analyzed using 
FlowJo 10 (LLC). 
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Figures 

 
Figure 1: SCORPIUS infers trajectories in three steps. a) Dimensionality reduction 
involves calculating the correlation distance, optionally filtering out outliers, and performing 
multidimensional scaling. b) Trajectory inference creates an initial path by calculating the 
shortest path through k cluster centers, and by iteratively fitting this path to the data using 
the principal curves algorithm. c) During feature selection, a Random Forest is trained using 
the expression data to predict the ordering of cells as outputted by the principal curves. This 
Random Forest is used to select the most important genes in the dataset, cluster these, and 
check them for gene set enrichment. 
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Figure 2: The workflow and results of the benchmarking experiments.  
a) For each of the TI methods, we evaluated two steps common to all approaches using 10 
different datasets using the cross-validation accuracy (CVA) and consistent ordering score 
(COS). By predicting the progression stages of cells using a k-nearest-neighbors approach 
and calculating the accuracy of those predictions, the dimensionality reduction step is 
evaluated (left). A trajectory (right) is evaluated by counting which pairs of cells have an 
inferred pseudo-time consistent with the known progression. The consistency of a trajectory 
is the percentage of consistent orderings. b) SCORPIUS outperforms other state-of-the-art 
approaches, both in dimensionality reduction as well as the ordering of the cells (*: p-value < 
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0.05, **: p-value < 0.005). c) Accuracy and consistency scores for every method and dataset 
show that inferring accurate trajectories is more difficult for some methods. 
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Figure 3: SCORPIUS sheds new, data-driven light on dendritic cell development.  
a) Dendritic cell precursors are derived from bone marrow stem cells and transition through 
many cell stages before finally becoming developed dendritic cells. b) SCORPIUS creates 
an accurate model for DC development from scRNA-seq data. c) The top 120 most 
important genes (p < 10-4) were retained for further investigation. d) These genes are 
clustered into six gene modules. Each module is responsible for different aspects of DC 
development. Bulk microarray expression for other stages of dendritic cell development is 
shown. 
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Figure 4: Protein synthesis is an integral part of DC development. a) Expression of 
genes involved in protein synthesis decreases during DC development. b) The protein 
synthesis rate of several stages of dendritic cell progenitors was measured with OP-Puro, 
showing MDPs have a high protein synthesis rate which is reduced throughout the 
differentiation process. 

 
Figure 5: Gene dynamics during DC differentiation come in different functional waves. 
We mapped the activity of the processes related to each of the modules onto the dendritic 
cell lineage tree. Following the results from the OP-Puro experiment, we confirm that a 
dynamic protein synthesis rate is an integral part of DC development in CMPs, GMPs, MDPs 
and CDPs. The functional activity of other gene modules is in line with existing literature. 
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Supplementary Information 
# Ref. Accession Dynamic process Cells Progression stages Source # cells 

1 Schlitzer et al. 2015 GSE60783 Development Dev. 
DCs 

MDP > CDP > PreDC FACS 242 

2 Buettner et al. 2015 E-MTAB-2512 Cell cycle mESCs G1 > S > G2/M FACS 266 

3a-c Shalek et al. 2014 GSE48968 Response DCs 1h > 2h > 4h > 6h Time series 897 

4 Trapnell et al. 2014 GSE52529 Response HSMMs 0h > 24h > 48h > 72h Time series 285 

5a-d Kowalczyk et al. 2015 GSE59114 Development HSCs LT-HSC > ST-HSC > MPP FACS 1535 

 
Table S1: Overview of the scRNA-seq datasets used in this study. Datasets had to 
contain cells at different stages as part of a dynamic process for which the labels were 
experimentally determined, and each stage had to contain at least 50 cells. We used 10 
datasets originating from 5 different studies, for which the progression labels were 
determined through cell sorting or by sampling cells at different time points. Three different 
dynamic processes are investigated in these datasets: differentiation, cell cycle and 
response upon external stimulation. 
 

Method Wanderlust Monocle Waterfall SCORPIUS 

Biological validation in study + + + + 

Quantitative evaluation in study - - - + 

Consistent performance - - - + 

Uses no prior knowledge - - + + 

Easy to use - + - + 

# cell scalability - - ± ± 

# gene scalability + ± + + 

 
Table S2: The strengths and weaknesses of each of the TI methods. Biological 
validation in study: + yes, - no. Quantitative evaluation in study: + yes, - no. Consistent 
performance in benchmarks: + yes, - no. Uses no prior knowledge: + yes, - no. Easy to 
use: + high quality code and documentation was provided, - code and/or documentation 
was not provided. Scalability of the method with respect to the number of cells or genes was 
determined by executing each method on an increasing number of cells until the execution 
time exceeded 10 seconds: + >10.000, ± <10.000, - <1.000. 
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