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Abstract6

We demonstrate an application of a core notion of information theory, that of typical sequences7

and their related properties, to analysis of population genetic data. Based on the asymptotic8

equipartition property (AEP) for non-stationary discrete-time sources producing independent sym-9

bols, we introduce the concepts of typical genotypes and population entropy rate and cross entropy10

rate. We analyze three perspectives on typical genotypes: a set perspective on the interplay of11

typical sets of genotypes from two populations, a geometric perspective on their structure in high12

dimensional space, and a statistical learning perspective on the prospects of constructing typical-set13

based classifiers. In particular, we show that such classifiers have a surprising resilience to noise14

originating from small population samples, and highlight the potential for further links between15

inference and communication.16
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1 Introduction19

We are drowning in information and starving for knowledge.20

- John Naisbitt.21

In this paper we identify several intrinsic properties of long stretches of genetic sequences from multiple22

populations that justify an information theoretic approach in their analysis. Our central observation23

is that long genotypes consisting of polymorphisms from a source population may be considered as24

sequences of discrete symbols generated by a ‘source’ distribution, where the capacity to sequence25

long stretches of genomes is congruent with the use of large block sizes in the design of communica-26

tion channels. Rather than arising temporally as an ordered sequence of symbols in a communication27

channel, genetic sequences are non-temporal linear outputs of a sequencing scheme. This perspec-28

tive ultimately enables the utilization of important information-theoretic asymptotic properties in the29

analysis of population genetic data.30
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Specifically, we introduce the concept of typical genotypes for a population, analogous to the core31

notion of typical sequences in information theory. These are genotypes one typically expects to en-32

counter in a given population and are likely to represent the population very well. We analyze these33

typical genotypes from various perspectives. We show that it is possible that a genotype is typical34

to two different populations at once and give an algorithm that can quickly decide whether mutual35

typicality occurs, given standard models for two populations.36

Crucially, we identify conditions in which it is likely that mutual typicality occurs asymptotically,37

that is, for genotypes consisting of a very high number of variants. What we observe, however, is that38

in this case, only a very small portion of typical genotypes for the latter population is typical for the39

first. This immediately suggests a classification scheme based on typical sets. We introduce two of40

such typical-set based classifiers and show that their error rates decay exponentially fast, as one would41

expect from a good classifier. Moreover, we show that such classifiers generally perform well even in42

the presence of sampling noise arising from small training sets.43

From a mathematical point of view, a recurring difficulty is the non-stationarity of the source44

distribution, or in other words, that the markers vary in their frequency across loci. This prevents45

us from directly utilizing some of the standard results in information theory that apply to stationary46

sources, and required us to find more refined mathematical arguments instead.47

1.1 Typical sequences and the asymptotic equipartition property48

Information Theory (historically, Communication Theory) is at core concerned with the transmission49

of messages through a noisy channel as efficiently and reliably as possible. This primarily involves two50

themes, data compression (aka, source coding) and error correction (aka, channel coding). The former51

theme is mainly concerned with the attainable limits to data compression, while the latter involves the52

limits of information transfer rate for a particular source distribution and channel noise level. Both53

themes rely intrinsically on the notion of ‘typical sequences’.54

A key insight of Shannon, the asymptotic equipartition property (AEP) forms the basis of many of55

the proofs in information theory. The property can be roughly paraphrased as “Almost everything is56

almost equally probable”, and is essentially based on the law of large numbers with respect to long57

sequences from a random source. Stated as a limit, for any sequence of i.i.d. random variables Xi58

distributed according to X we have,59

lim
n→∞

Pr

[∣∣∣− 1

n
log2 p(X1, X2, . . . , Xn)−H(X)

∣∣∣ < ε

]
= 1 ∀ε > 0. (1)

This property is expressed in terms of the information-theoretic notion of empirical entropy. This60

denotes the negative normalized log probability of a sequence x, an entity better suited for analysis61

than p(x). This property leads naturally to the idea of typical sequences, which has its origins in62

Shannon’s original ground-breaking 1948 paper [Shannon, 1948]. This notion forms the heart of the63

central insights of Shannon with respect to the possibility of reliable signal communication, and features64

in the actual theorems and their formal proofs. The definition of a typical set A(n)
ε with respect65

a distribution source X, its entropy H(X), a (small) ε > 0 and a (large) n, entails the set of all66

sequences of length n that may be generated by X such that,67

2−n[H(X)+ε] ≤ p(x1, . . . , xn) ≤ 2−n[H(X)−ε] (2)

where p(x1, x2, . . . , xn) denotes the probability of any particular sequence from X.68
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If the source is binary and stationary it is intuitive to spot sequences that are possibly typical. For69

instance, say we have a binary independent and identically distributed (i.i.d) source with a probability70

for “1” of 0.1, then the sequence 0000100010000000000000100000 0011 seems very possibly typical (as71

it has roughly 10% 1s), while the sequence 0110100110 1100101111101001001011 is most probably not.72

Note that typical sequences are not the most probable ones; evidently, the most probable for this source73

is 0000000000000000000000000000000.74

The interesting and useful properties of typical sets are a result of the AEP, and are thus asymptotic75

in nature: they obtain for large enough n, given any small arbitrary ’threshold’ ε. Formally, for any76

ε > 0 arbitrarily small, n can be chosen sufficiently large such that:77

(a) the probability of a sequence from X being drawn from A
(n)
ε is greater than 1− ε, and78

(b) (1− ε)2n(H(X)−ε) ≤ |A(n)
ε | ≤ 2n(H(X)+ε) .79

Thus at high dimensionality (n� 1), the typical set has probability nearly 1, the number of elements in80

the typical set is nearly 2nH(X), and consequently all elements of the typical set are nearly equiprobable81

with a probability tending to 2−nH(X) ([Cover and Thomas, 2006] Theorem 3.1.2).82

The set of all sequences of length n is then commonly divided into two sets, the typical set, where83

the sample entropy or the empirical entropy, denoting the negative normalized log probability of a84

sequence, is in close proximity (ε) to the true entropy of the source per Eq. (2), and the non-typical85

set, which contains the other sequences (Fig. 1). We shall focus our attention on the typical set and86

any property that is true in high probability for typical sequences will determine the behaviour of87

almost any long sequence sampled from the distribution.88

Typical set

Ω

)()( 2 XnHnA →ε

01101001101100101110
10000101101111101

00000001000100000001

11011110110110010011

Non-Typical Set

nn 2)( =Ω

Fig. 1: The universe of all possible sequences with respect to a source distribution in a high dimensional space can

be divided into two exclusive subsets, typical and non-typical. Here, we illustrate one typical sequence and a few very

non-typical sequences corresponding to an i.i.d. source with probability of 0.1 for “1” for some small epsilon and high n.

1.2 The Population Model89

We consider for simplicity two haploid populations P and Q that are in linkage equilibrium (LE)90

across loci, and where genotypes constitute in a sequence of Single Nucleotide Polymorphisms (SNPs).91

A SNP is the most common type of genetic variant – a single base pair mutation at a specific locus92

usually consisting of two alleles (the rare/minor allele frequency is >1%). Each SNP Xi is coded 093

or 1 arbitrarily, and SNPs from population P have frequencies (probability that Xi = 1) pi while94

those from population Q have frequencies qi. Closely following practical settings, we assume some95
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arbitrary small cut-off frequency for SNP frequencies, such that frequencies in any population cannot96

be arbitrarily close to fixation, 0 < δ < pi, qi < 1− δ. Each genotype population sample is essentially97

a long sequence of biallelic SNPs, e.g., GCGCCGGGCGCCGGCGCGGGGG, which is then binary98

coded according to the convention above, e.g., 0101100010110010100000. The probability of such a99

genotype x = (x1, x2, . . . , xn) from P is then p(x) = (1 − p1)p2(1 − p3)p4p5 . . . pn. We first assume100

the SNP frequencies are fully known (as if an infinite population sample is used in the learning stage),101

and later on relax this assumption in the section on small-sample related noise. Finally, for analyzing102

properties in expectation and deriving asymptotic statements we assume pi and qi are sampled i.i.d.103

from frequency distributions. For making explicit calculations and numerical simulations we employ a104

parameterized Beta distribution for SNP frequencies, such that pi ∼ B(αP , βP ), qi ∼ B(αQ, βQ), as is105

standard in population genetic analysis ([Rannala and Mountain, 1997]). The use of a common Beta106

model for allele frequencies was adopted for both its mathematical simplicity and goodness of fit to107

empirical distributions from natural populations, and is by no means a prerequisite for arriving at our108

main results. Finally, to simulate our results, we sample SNP frequencies from these distributions and109

then sample long genotypes from the multivariate Bernoulli distribution for populations P and Q that110

are parameterized by pi and qi, i : 1 . . . n, respectively.111

1.3 Properties of sequences of genetic variants112

Population SNP data have several interesting ‘set-typicality’ properties that may render them amenable113

to information theoretic analysis:114

(a) SNPs typically are bi-valued, simplifying modeling SNPs as sequences of binary symbols from a115

communication source.116

(b) The standard assumption of linkage equilibrium within local populations translates to a statistical117

independence of Xi, which in turn enables the applicability of the AEP (for a non-stationary118

source with independent symbols).119

(c) SNPs have typically differing frequencies across loci (i.e., analogous to a ‘nonstationary’ source),120

resulting in statistical terms in deviations from i.i.d. samples; this property makes an information121

theoretic analysis of SNP genotypes more challenging, being highly dependent on the existence122

of advanced forms of the AEP.123

(d) The recent availability of very large number of SNPs from high-throughput sequencing of genomes124

enables the consideration of very long sequences (size n), or ‘block sizes’ in information theoretic125

terms, with asymptotic qualities.126

(e) SNP frequencies are commonly above some arbitrary cut-off frequency, so that the variance of127

log2(pi) is bounded, a requirement for a nonstationary form of the AEP to hold (as we shall see).128

(f) SNPs typically have low minor allele frequencies (MAF) in natural populations (Fig. 2A). If129

we consider long sequences of SNPs as our genotypes, then the set of typical sequences from a130

population will be small (of asymptotic size 2nH(X)) relative to the ‘universe’ set (of size 2n) of131

all possible genotypes. This property enables treating such typical sequences as effective proxies132

for their source population.133

(g) Different populations often have different SNP-based genetic diversities (see the wide variation134

in heterozygosities across human populations in Fig. 2C), and SNP frequencies are often highly135

correlated between close populations (Fig. 2B). These properties have particular interpretations136

when populations are seen as communication ‘sources’.137
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A B C

Fig. 2: Human populations typically exhibit predominately low SNP frequencies (and thus commonly modeled by a

Beta distribution highly skewed to the left), which are correlated between close populations (due to a split from common

ancestry), and of differing average frequencies across worldwide populations. A: SNPs from the HapMap ENCODE

regions according to minor allele frequency (in blue) [Consortium, 2005] [Borrowed with permission from Nature 2005;

437(7063): 1299–1320, Fig. 4]. | B: SNP frequencies from the HapMap ENCODE project between (the relatively close)

JPT and CHB populations are highly correlated between the two populations at each locus [Borrowed with permission

from Nature 2005; 437(7063): 1299–1320, Fig. 6]. | C: Differing SNP heterozygosity across worldwide populations with

most diversity occurring in Africa and least in the Americas and Oceania. [Borrowed with permission from Nature

Genetics 38, 1251 – 1260 (2006), Fig. 3].

1.4 AEPs for genotypes from multiple populations138

To formulate AEP statements for genotypes comprised of long stretches of population variants, we139

first define two central concepts: population entropy rate and cross entropy rate. The entropy of140

a population with respect to a set of loci has been previously invoked in formulating measures of141

population diversity or differentiation with respect to a single locus ([Lewontin, 1995]). Since SNPs142

typically have differing frequencies across loci, translating in information theoretic parlance to ‘non-143

stationarity’ of the source, one cannot simply employ entropy H as a variation measure of a population.144

Instead, we need to define a population entropy rate across loci. Thus, with respect to a set of SNP145

frequencies in population P ,146

Hn(P ) =
1

n
H(p1, p2, . . . , pn) =

1

n

n∑
i=1

H(pi) = − 1

n

n∑
i=1

(
pi log2 pi + (1− pi) log2(1− pi)

)
(3)

with the second equality due to independence across loci (absence of LD).1 We may now extend this147

concept by incorporating a second population that serves as the source, while the log-probabilities148

remain with respect to the first. In information theoretic terms, the cross entropy H(p, q) measures149

the average number of bits required to compress symbols from a source distribution P if the coder is150

optimized for distribution Q, different than the true underlying distribution. For univariate variables,151

the cross entropy can be expressed in terms of the Kullback Leibler divergence (also known as relative152

entropy),153

H(q, p) = EQ(− logP ) = H(P ) +DKL(Q‖P ).

where we use lower-case in H(p, q) to distinguish this notion from the joint entropy, commonly denoted154

H(P,Q). The population cross entropy rate is then simply an average over n loci,155

Hn(q, p) = EQ
[
− 1

n
log2 p(x1, . . . , xn)

]
− 1

n

n∑
i=1

(
qi log2 pi + (1− qi) log2(1− pi)

)
1Note that in probability theory, the entropy rate or source information rate of a stochastic process is defined asymp-

totically, H(X) = limn→∞H(X1, X2, . . . , Xn)/n, when this limit exists.
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and similarly for Hn(p, q).156

Formally, if genotypes originate from distribution P , then by the non-stationary version of the AEP157

(see Appendix B.4.1 part 1) their log-probability with respect to P converges to the entropy rate of158

P ,159

lim
n→∞

Pr

[∣∣∣∣∣− 1

n
log2 p(X1, . . . , Xn)−Hn(P )

∣∣∣∣∣ < ε
∣∣∣X ∼ P] = 1 ∀ε > 0 (4)

whereas if genotypes originate from distribution Q, then their log-probability with respect to P con-160

verges to the cross entropy rate of Q with respect to P , essentially a ‘cross entropy AEP’ for non-161

stationary sources (see Appendix B.4.1 part 2),162

lim
n→∞

Pr

[∣∣∣∣∣− 1

n
log2 p(X1, . . . , Xn)−Hn(q, p)

∣∣∣∣∣ < ε
∣∣∣X ∼ Q] = 1 ∀ε > 0. (5)

1.5 Typical genotypes163

This consideration of the ‘set-typicality’ properties along with AEPs for our genotypes suggests that a164

notion of typical-genotypes may be fruitful for characterizing population samples. We therefore extend165

the standard definition of a typical set to support a non-stationary source, which better captures our166

population model. The set of typical genotypes of length n with respect to the population entropy rate167

of P and some small arbitrary ε, comprises of all genotypes whose frequency is within the bounds,168

2−n[Hn(P )+ε] ≤ p(x1, . . . , xn) ≤ 2−n[Hn(P )−ε]. (6)

For notational simplicity, we will denote by q(x1, x2, . . . , xn) the corresponding probability of a169

genotype from population Q. Since the definition of a typical set pertains for any n and ε, our170

justification in invoking this concept in this context does not have to rely on asymptotic properties171

only, but holds naturally by virtue of commonly large n for SNPs.172

1.6 Quantitative AEPs173

It is beneficial to additionally formulate quantitative, non-stationary versions of the AEP theorems.174

Given that a genotype of length n is sampled from population P , the probability that it is not typical175

is bounded by176

Pr

[∣∣∣∣∣− 1

n
log2 p(X1, . . . , Xn)−Hn(P )

∣∣∣∣∣ > ε
∣∣∣X ∼ P] ≤ 2 exp

(
− 2nε2

log2 δ
1−δ

)
.

This estimate is proved in Appendix C.1. In the same way, the probability that the log probability177

under P deviates more than ε from the cross entropy rate, is estimated in the following quantitative178

version of a ‘cross entropy AEP’ for non-stationary sources,179

Pr

[∣∣∣∣∣− 1

n
log2 p(X1, . . . , Xn)−Hn(q, p)

∣∣∣∣∣ > ε
∣∣∣X ∼ Q] ≤ 2 exp

(
− 2nε2

log2 δ
1−δ

)
.

The corresponding non-quantitative versions of the AEPs in Eq. (4) and (5) are obtained by letting n180

approach infinity.181

Since the above inequalities hold for every n and ε > 0, we can for instance choose,182

ε(n) =

√
log2

2
δ

1−δ log2 n

n

6

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 13, 2016. ; https://doi.org/10.1101/079491doi: bioRxiv preprint 

https://doi.org/10.1101/079491


to conclude that,183

Pr

[∣∣∣∣∣− 1

n
log2 p(X1, . . . , Xn)−Hn(P )

∣∣∣∣∣ > ε(n)
∣∣∣X ∼ P] ≤ 2

n
(7)

and similarly,184

Pr

[∣∣∣∣∣− 1

n
log2 p(X1, . . . , Xn)−Hn(q, p)

∣∣∣∣∣ > ε(n)
∣∣∣X ∼ Q] ≤ 2

n
. (8)

This shows that the deviation from the entropy rate practically scales as 1√
n
, which is what one would185

expect also from a central limit theorem. A more careful analysis in Appendix C.1 also shows that the186

scale log2 δ
1−δ may actually be replaced by the sum187

1

n

n∑
i=1

log2 pi
1− pi

or
1

n

n∑
i=1

log2 qi
1− qi

which for large n will be close to their expectation value and therefore are usually smaller for larger188

entropy rates. This may explain why the spread away from the entropy rate seems smaller for higher189

entropy rates. Fig. 3 depicts numerical simulations of the convergence rate of the AEPs under typical190

population scenarios.

A B

Fig. 3: Numerical simulation of the convergence rate of the AEPs under two scenarios of population parameters,

around the entropy rate Hn(Q) (blue) and the cross entropy rate Hn(p, q) (green, dashed). A: Low entropy populations

(Beta model w/ αP = 4/βP = 20, αQ = 2/βQ = 20;FST = 0.032). | B: high entropy populations (Beta model w/

αP = 24/βP = 20, αQ = 14/βQ = 20;FST = 0.032).

191

1.7 The log-probability space192

The AEP theorems of Eqs. (4-8) manifest as increasingly dense clusters of population samples on193

a log-probability space, centered on entropy and cross entropy rates, depending on their population194

of origin. To fully capture the interplay of genotype samples from the two source populations, and195

the information theoretic quantities of entropy and cross entropy rates, we take a two-dimensional196

perspective of the log-probability space. We should expect samples from the two populations to cluster197

around the intersection of the entropy and cross entropy rates of their respective populations, with a198

concentration that increases with the number of loci included in analysis. Crucially, typical genotypes199

should cluster tighter than general samples around the entropy and cross entropy rates intersection,200

since typical sequences are by definition constrained by some ε > 0. These results are illustrated in201

Fig. 4.202

The divergent modes of concentration on the log-probability plot of samples from the two popula-203

tions suggest that the proximity of the entropy and cross entropy rates is an important metric in the204

context of population assignment for genotypic samples, as we shall see in what follows.205
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Fig. 4: Samples from two different populations become clearly distinguished on a 2D log-probability plot when high

number of loci are included in analysis, clustering around the intersection of the entropy (wide lines) and cross entropy

(thin lines) rates of their respective populations. The width of the entropy stripes is twice ε to reflect the typicality

criteria of Eq. (6), where here ε = 0.03. In this simulation, 200 genotype samples of 100 SNP loci (panel A) and 600

SNP loci (panel B) were drawn from each of the two populations of similar entropy rates and FST = 0.05, where allele

frequencies were modeled on Beta distributions (α = 1, β = 8 for both populations).

2 Set perspective on typical genotypes206

Before we approach the task of constructing classifiers for population genetic samples based on the207

notion of typicality, we present two perspectives on the interplay of typical sets: from their set-208

overlap and exclusivity, and from their geometric dispersion. In particular, we will be interested in209

the asymptotic properties due to the high dimensional nature of genotypes (with the inclusion of large210

number of SNPs). Our hope would be that under expected population model of real population SNP211

data, sets of typical genotypes from diverse populations asymptotically become non-overlapping and212

good proxies for their respective sources.213

2.1 Mutual and exclusive typicality214

We first define the concept of mutual typicality. Formally, given P , Q and small εp > 0 and εq > 0,215

we would like to know whether the two typical sets partially overlap, i.e., is there at least one x =216

(x1, . . . , xn) such that x is mutually typical to both P and Q? Any such sequence x would need to217

satisfy the two inequalities,218

given P,Q and εP , εQ > 0{∣∣− 1
n log2 p(x1, . . . , xn)−Hn(P )

∣∣ < εP ,∣∣− 1
n log2 q(x1, . . . , xn)−Hn(Q)

∣∣ < εQ

(9)

or equivalently as a set of four linear programming inequalities of degree n,219 
−nHn(P )−

n∑
i=1

log2(1− pi) + nεP >
n∑
i=1

xi log2
pi

1−pi > −nHn(P )−
n∑
i=1

log2(1− pi)− nεP

−nHn(Q)−
n∑
i=1

log2(1− qi) + nεQ >
n∑
i=1

xi log2
qi

1−qi > −nHn(Q)−
n∑
i=1

log2(1− qi)− nεQ.
(10)

8

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 13, 2016. ; https://doi.org/10.1101/079491doi: bioRxiv preprint 

https://doi.org/10.1101/079491


Notice that our notion of mutual typicality is conceptually different to the standard informa-220

tion theoretic concept of ‘joint typicality’, which concerns whether two different sequences are each221

marginally typical and at the same time typical with respect to the joint distribution (a central concept222

in Shannon’s channel coding theorem).223

The above formulation (for a finite n) is essentially a 0 − 1 integer programming with no opti-224

mization problem: given n Boolean variables and m (= 4 in this case) linear constraints, the prob-225

lem is to find an assignment of either 0 or 1 to the variables such that all constraints are satisfied226

([Impagliazzo et al., 2014]). The ‘no optimization’ qualification reflects the omission of an objective227

function to be optimized that is usually an integral part of a linear programming framework, while only228

considering the problem of deciding if a set of constraints is feasible. This special case of an integer229

programming is a decision rather than optimization problem, and as such is NP−complete rather than230

NP−hard. In fact, 0− 1 integer programming with no optimization is one of Karp’s 21 NP−complete231

problems ([Zuckerman, 1996]). Crucially for our purposes, the NP completeness means that it is not232

readily amenable to resolution for a large n, as our genotypic framework typically demands. Never-233

theless, for small values of n one may solve the integer programming problem and infer the existence234

of mutual or exclusive typicality.235

As with other NP-complete problems, high-dimensional instances are intractable and so heuristic236

methods must be used instead. We shall see that for large n, an approximate solution to the problem237

of mutual typicality can be found very efficiently, since the integer programming problem is well238

approximated by a linear programming problem. We slightly simplify the problem, making it effectively239

independent of the choice of εP and εQ. Thus, we ask whether given any small εP and εQ there exists240

an overlap of the two typical sets for high values of n. Next, we simulate the log-probability space241

with samples drawn from a uniform (i.e., max entropy) distribution, so that a maximal set of different242

genotypes from the total 2n universe is captured. The cross entropy AEP of Eq. (5) directly implies243

that asymptotically the density of this domain is concentrated at the intersection of two cross entropy244

rates, Hn(u, p) and Hn(u, q) , where U is the uniform distribution. This coordinate may be expressed245

as a function of the SNP frequencies of P and Q,246 {
EU
[
− 1

n log2 p(X1, . . . , Xn)
]

= Hn(u, p) = − 1
n log2

∏n
i=1

√
pi(1− pi)

EU
[
− 1

n log2 q(X1, . . . , Xn)
]

= Hn(u, q) = − 1
n log2

∏n
i=1

√
qi(1− qi).

The contour of this domain is prescribed within boundaries which are the maximal and minimal247

empirical entropy values with respect to P and Q for any of the possible 2n genotypes,248

maxP = max
x∈[0,1]n

[
− 1

n
log2 p(x1, . . . , xn)

]

=− 1

n

n∑
i=1

log2 min{pi, 1− pi},

minP = min
x∈[0,1]n

[
− 1

n
log2 p(x1, . . . , xn)

]

=− 1

n

n∑
i=1

log2 max{pi, 1− pi},

(11)

and similarly for population Q.249

From Eq. (11) it is evident that these boundaries are an average across loci and therefore will250

depend on the parameters of the population model, rather than on the dimensionality n. However,251

since the domain inscribed by all possible samples on the log-probability space does not include the252
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whole rectangular area prescribed by the boundaries, knowledge of these boundaries is insufficient for253

determining whether the intersection of the two entropy rates (i.e., the location where samples are254

asymptotically mutually typical) lies within the domain or is external to it.255

In Theorem C.3.1 in the appendix we actually show that the domain converges (in the so-called256

Hausdorff distance) to a fixed, convex set, and provide an expression for the contour of this domain.257

The converge rate is approximately 1/
√
n, and therefore even for relatively small values of n the258

convex set is already a good approximation for the domain. This formulation, in conjunction with the259

entropy rates of P and Q, will then allow to immediately determine whether asymptotically there are260

mutually-typical genotypes (a solution to Eq. (10) for high n): if the intersection of the two entropy261

rates lies within the genotype domain then for any εP and εQ chosen as small as we wish, there will be262

mutual typicality for some non-empty subset of genotypes; else, there will only be exclusive typicality263

(a consequence of the convergence in the Hausdorff distance at the given rate is that the domain is264

sufficiently non-porous, with porousness bounded by 1/n). Fig. 5 depicts numerical simulations of this265

domain along with its computed contour at the asymptotic limit, for two representative scenarios of266

mutual and exclusive typicality.267

A B

Fig. 5: Instances of ‘source-less’ mutual and exclusive typicality scenarios for populations P and Q at the asymptotic

limit for n. A simulation of the analytic formulation of a contour of the domain inscribed by all samples drawn from the

uniform distribution over the space, was overlaid on top of a simulation of a plot of samples from this uniform distribution,

with respect to their log-probability. The wide stripes represent the entropy rates of P (yellow) and Q (grey). The thin

border lines represent the minimum and maximum attainable values for samples from the specific population distributions.

A: the intersection of the two entropy rates lies within the domain, implying existence of mutual typicality (populations

modeled on Beta distributions for SNP frequencies with αP = 6/βP = 18;αQ = 3/βQ = 18, and using n = 40 loci

and 60K samples in the domain simulation). | B: the intersection lies outside the domain, implying merely exclusive

typicality (populations modeled on Beta distributions for SNP frequencies with αP = 15/βP = 36;αQ = 4/βQ = 36, and

using n = 40 loci and 60K samples in the domain simulation). The intersection of the cross entropy and entropy rates

are marked as small dots on the entropy rate lines, merely to indicate where highest density would be if genotypes were

sampled from P and Q, rather than from the maximum entropy distribution.

From a set perspective, this result translates into two scenarios for the interplay of typical sets at the268

asymptotic limit: [a] if the intersection of the entropy rates lies within the contour of the log-probability269

domain then the two typical sets will have some overlap, whereas [b] if the intersection lies outside the270

contour then the two typical sets will completely separate. Since we assume arbitrarily small εP and271
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εQ, the set overlap in case [a] only depends on the density of the domain at the intersection of the272

entropy rates, and is approximately given by 2nH(R), where R is the distribution given by frequencies ri273

that yields the maximum entropy rate under the constraints that H(r, p) = H(P ) and H(r, q) = H(Q).274

To see that there could not be a third scenario in which one typical set is wholly contained in the275

other (except trivially for the hypothetical case where one distribution is uniform, i.e., pi = 1
2), we276

show that the entropy rate cannot coincide with the minimal or maximal bounds of the domain on277

the log-probability space. From a geometric perspective on the log-probability space (see Fig. 5) this278

means that the two entropy rate lines are never tangential to the genotype domain. Formally, with279

respect to the minimum for population P from Eq. (11), the inequality,280

minP = − 1

n

n∑
i=1

log2 max{pi, 1− pi} ≤ Hn(P ) = − 1

n

n∑
i=1

(
pi log2 pi + (1− pi) log2(1− pi)

)
,

obtains equality only for pi = 1/2 for all i : 1 . . . n, an impossible population scenario (similarly for281

maxP ,minQ and maxQ). Fig. 6A depicts these possibilities in the form of Venn diagrams.282

2.2 Source-full mutual typicality283

We would also like to analyze a modified definition of mutual typicality, which only considers probable284

genotypes, i.e., those likely to originate from their respective populations by a random sampling pro-285

cedure. We also retain the original relevance of the choice of εP and εQ, and again focus our inquiry at286

the asymptotic limit. This perspective on mutual typicality is explicitly pertinent for our subsequent287

inquiry into typicality-based classifiers. It is now necessary to introduce the concept of ‘cross entropy288

criterion’, which measures the proximity of the entropy and cross entropy rates. There are two such289

criteria for our two-population framework,290

CP =
∣∣∣Hn(q, p)−Hn(P )

∣∣∣ and CQ =
∣∣∣Hn(p, q)−Hn(Q)

∣∣∣. (12)

Clearly, if the two populations are effectively a single population (P=Q) then both cross entropy291

criteria will be zero, since from basic definitions,292 {
CP =

∣∣Hn(q, p)−Hn(P )
∣∣ =

∣∣Dn(Q‖P ) +Hn(Q)−Hn(P )
∣∣ = 0

CQ =
∣∣Hn(p, q)−Hn(Q)

∣∣ =
∣∣Dn(P‖Q) +Hn(P )−Hn(Q)

∣∣ = 0,

where the KL-Divergence rate from P to Q is naturally defined as,293

Dn(P‖Q) = − 1

n

n∑
i=1

pi log2

pi
qi

+ (1− pi) log2

1− pi
1− qi

. (13)

(and similarly from Q to P ). However, one cross entropy criterion may be asymptotically zero under294

a standard model for allele frequencies, even given differing populations; population clusters are then295

inseparable on the corresponding log-probability plot along the corresponding axis (Appendix B.2).296

Crucially, both criteria cannot asymptotically be zero at the same time (Appendix B, Remark B.2.1 ),297

max
(

lim
n→∞

CP , lim
n→∞

CQ

)
> 0

Now, from the AEP and the cross entropy AEP of Eqs. (4) and (5) it follows that the predominant298

asymptotic scenario is exclusive typicality with probability 1, given a choice of small typicality ε’s based299
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on the cross entropy criteria, such that εP ≤ CP and εQ ≤ CQ. Otherwise, in case CP < εP or300

CQ < εQ, then asymptotically one typical set will be with probability 1 fully contained in the other301

(i.e., all samples originating from one population are mutually typical and all samples originating from302

the other population are exclusively typical). These two cases are depicted in Fig. 6, under large n to303

simulate the asymptotic behavior.304

A B
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Fig. 6: With samples originating from populations P and Q, there is with probability 1 either exclusivity of typicality

(A) or complete one-sided mutual typicality (B). Entropy rates are marked as wide strips according to respective epsilons

and cross entropy rates are the thin lines. A: a typical scenario in which there is exclusivity of typicality (FST = 0.02, n =

1000, εP = εQ = 0.02). | B: a highly uncommon scenario where one cross entropy criterion is close to zero although

populations are distant (FST = 0.02, n = 1600, εP = εQ = 0.02), and therefore all samples from Q are mutually typical

but none of P are as such (a zoomed view to capture the proximity of the entropy rate and cross entropy rate for P , the

latter accentuated as black line).

Let SmP and SmQ denote random samples of size m from population P and Q respectively. Define305

the sampled typical sets tmP and tmQ by,306

tmP := TP ∩ (SmP ∪ SmQ )

307

tmQ := TQ ∩ (SmP ∪ SmQ )

If the sample size m is not too large, the Venn diagram associated with these two sets is most likely308

equal to one of the two options depicted in Fig. 7B.309
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ΩTP

TQ

ΩTP

TQ

ΩTP

TQ

ΩtQ

ΩtP

tQ

Ω
tP

tQ

tP

tQ

or
tP

A B

 

n→∞ n→∞

oror

Fig. 7: A Venn diagram of the interplay of two typical sets (denoted TP and TQ) with respect to populations P and Q,

from low n to an asymptotic limit. A: In the general case where we consider all possible genotypes from the universe,

exclusive typicality at low dimensions transforms into either complete separation (bottom) or a very slight overlap (top),

depending on the model parameters of the two populations. | B: In the case where genotypes are sampled from their

source populations, a possible overlap in low dimensions transforms into either complete separation (top) or, rarely, a

case where one typical set is wholly contained in the other (bottom). Note that the size of the typical sets relative to

the universe is asymptotically zero, an aspect that that cannot be captured in this schematic.

3 A geometric perspective310

We can gain more insight into the relation of typical genotypes to non-typical ones by taking a geo-311

metric perspective, where long genotype sequences are seen as vectors in n-dimensional genotype space312

[Huggins et al., 2007]. Essentially, the genotypes all lie on a subset of the vertices of a hypercube of313

dimension n (Fig. 8).314
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A1

B1

A2
B2

A3

B3

Fig. 8: A geometric representation of the space of 3 SNP genotypes sampled from two populations. Genotype samples

lie on the vertices of the (hyper)cube, where Ai is the “0” allele and Bi the “1” allele for locus i, i : 1 . . . 3 (e.g., genotype

samples on the bottom left vertex A1A2A3 are 000 genotypes). Here 40 samples were drawn from one population (blue)

and 40 samples from the other population (green), with respective population centroids represented by smaller dots

within the cube.

How are the typical genotypes dispersed with respect to hypercube space? From the inequalities315

of Eqs. (10) it is evident that all typical genotypes are represented by those vertices that lie inside316

an (n − 1)-dimensional hyperplane of width 2ε intersecting the hypercube at some point, with an317

orientation and location fully determined by the parameters of the population distribution.318

More importantly, at high dimensions the set of typical genotypes disperses evenly across the space319

occupied by population samples. The evidence for this comes from two types of numerical simulations.320

First, a PCA plots, which are known to essentially retain relative distances in the largest principal321

components, clearly indicate that typical genotypes behave as a random sample from the population,322

as depicted for two different populations in Fig. 9.323

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-2

-1

0

1

2

PC1

P
C

2

Fig. 9: A PCA plot of two populations, blue and red, with typical genotypes of each in dark blue and dark red

respectively (with centroids in green), demonstrating the even dispersion of typical samples in high dimensions. The

simulation uses 120 samples of n=180 loci drawn from each population and SNP frequencies modeled on Beta distributions

(αP = 4, βP = 20, αQ = 2, βQ = 20, ε = 0.01).
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Second, an analysis of the average pairwise distance of typical genotype pairs compared to that324

of the whole distribution, reveals that the former converges to the latter even when only a small325

portion of the pairs are typical (see Appendix B.3 for the asymptotic equidistance property; see326

[Granot et al., 2016] for the effect of LD on equidistance). Note that trivially, if the whole sample327

becomes typical at some high dimension then the two averages will by definition converge to the same328

value. Moreover, simulations at low dimensions reveal that typical genotypes are slightly more densely329

clustered than samples from the whole population, since the convergence to the total average distance330

is always from below. These results are illustrated in Fig. 10.331

Not very surprisingly, the higher the population entropy rate the higher the average pairwise332

distance, since genotypes will tend to differ across more loci (see Appendix B.3). Finally, the lower the333

ε we choose to define our typical set the lower the rate of convergence: this suggests that genotypes334

which are essentially more ‘strongly typical’ (i.e., that correspond to a greater proximity to the entropy335

rate) are more tightly clustered.336

A B

0 20 40 60 80 100 120 140
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Loci

N
o
rm

al
iz
ed

p
ai
rw

is
e
d
is
ta
n
ce

Total SD

Typicality portion

Typicality distance

Total distance

0 20 40 60 80 100 120 140
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Loci

N
o
rm

al
iz
ed

p
ai
rw

is
e
d
is
ta
n
ce

Total SD

Typicality portion

Typicality distance

Total distance

Fig. 10: Two runs of a numerical simulation for average pairwise distance for samples drawn from a single population

(in green), compared to a subset which comprises only of pairs of typical genotypes (in black), with ε = 0.01. The

two curves always converge at high number of loci n even when only a small portion (in dashed blue) of the pairs are

typical. We also convey the variance (thin red) of the pairwise total distance to highlight the asymptotic equidistance

property. A: a scenario with population entropy rate = 0.41 (corresponding to very low MAFs)| B: entropy rate = 0.73

(corresponding to medium MAFs). Simulated using 120 samples drawn from a populations modeled on Beta distributions

for SNP frequencies.

4 Information-theoretic learning337

The relation of information theory to statistical learning is currently a very active field of inquiry.338

The use of information theoretic learning criteria in advanced learning models such as neural networks339

and other adaptive systems have clearly demonstrated a number of advantages that arise due to the in-340

creased information content of these criteria relative to second-order statistics ([Erdogmus and Principe, 2006]).341

From a machine learning perspective, one of the early insights of information theory was to consider a342

classification problem as a noisy channel. Fano’s inequality ([Fano, 1961]), central to information the-343

ory, links the transmission error probability of a noisy communication channel to standard information344

theoretic quantities such as conditional entropy and mutual information.345

We propose taking a further step in this direction, by implementing classifiers for genetic population346

data based on the principle and properties of typical sets, making use of our notions of population347

entropy rate, cross entropy rate, cross entropy criteria and typical genotypes. We derive our motivation348

by the preceding geometrical and mutual typicality analyses. The former perspective indicates that349

typical genotypes are asymptotically good representatives of their source populations, while the latter350
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perspective indicates that samples from different populations are asymptotically exclusively typical.351

Crucially, we shall see that the performance of typicality-based classifiers is highly dependent on the352

value of the cross entropy criteria, specifically that,353

max{CP , CQ} � 0.

It is also instructive to compare the performance of such information-theoretic classifiers against354

a standard Bayes classifier (or maximum-likelihood classifier if no prior is available). This classifier is355

both conceptually simple in its definition, and optimal in its performance under known class-conditional356

densities. The expected error or misclassification rate of the Bayes classifier is called the Bayes error357

([Hastie et al., 2009]). Our standard assumption of linkage equilibrium within populations (absence of358

within-class dependencies) motivates use of a naïve Bayes classifier, where class-conditional likelihoods359

are expressed as the product of allele frequencies across the independent loci.360

4.1 Classifiers based on set-typicality361

According to the AEP, if a long genotype is not typical for population P , then it is very unlikely362

that the genotype originated from population P . This suggests that a test of typicality could classify363

genotypes to the two different populations: naively, a genotype is classified to P if it is typical for364

P , and classified to Q if it is typical for Q. However, this naïve formulation of the classifier does not365

specify what should happen in case a genotype is typical to both P and Q, or if it is not typical to366

either population. Moreover, the definition of typicality is associated with a parameter ε. The choice367

of this parameter is closely related to these issues. Nonetheless, our previous analysis shows us how we368

may deal with these. Fig. 11 depicts a typical instance of the mapping of our population clusters on a369

2D log-probability plot, in relation to the entropy and cross entropy rates, and some ε parameters.370
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Fig. 11: A typical instance of the location of the two population clusters on a 2D log-probability plot, in relation to

the entropy and cross entropy rates, and a Bayes classifier (here Hn(P ) > Hn(Q)). The centers of P and Q will always

lie on opposite sides of the Bayes classifier diagonal since the KL-Divergence is always positive when populations differ

(in terms of the coordinates of the two cluster centers, Hn(p, q) > Hn(P ) and Hn(q, p) > Hn(Q).

We now introduce two typicality-based classifiers. To assess the performance of such a classifier,371

we estimate its error rates, which is the probability the classifier makes an error under the following372

process. With probability half, a genotype is sampled from population P , and with probability half,373

a genotype is sampled from population Q. Based on this genotype, the classifier guesses whether it374
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originates from population P or from population Q. The error rate is the probability that the classifier375

guesses wrong. More precisely376

En =
1

2
Pr
[
classify to P | sampled from Q

]
+

1

2
Pr
[
classify to Q | sampled from P

]
.

4.2 The naïve typicality classifier377

The naïve typicality classifier is based on the idea of classification we have described before, that is378

classify to P (to Q) if the genotype is typical for population P (Q). As discussed before, we need to379

decide what the classifier should do when a genotype is typical for both populations. We prescribe380

that in this case of mutual typicality, the genotype will be classified to the population with the lower381

entropy rate, since the lower entropy rate population has higher asymptotic genotype probability,382

p(x) = 2−nHn(X) ([Cover and Thomas, 2006]). The classifier is then described by,383

Classify to P if

∣∣∣∣∣− 1

n

n∑
i=1

log2 p(Xi)−Hn(P )

∣∣∣∣∣ ≤ εP and

∣∣∣∣∣− 1

n

n∑
i=1

log2 q(Xi)−Hn(Q)

∣∣∣∣∣ > εQ

or else,384

Classify to Q if

∣∣∣∣∣− 1

n

n∑
i=1

log2 q(Xi)−Hn(Q)

∣∣∣∣∣ ≤ εQ and

∣∣∣∣∣− 1

n

n∑
i=1

log2 p(Xi)−Hn(P )

∣∣∣∣∣ > εP

or else, if a genotype is not typical to any population, the classifier assigns by proximity, that is, it385

classifies to P if386 ∣∣∣∣∣− 1

n

n∑
i=1

log2 p(Xi)−Hn(P )

∣∣∣∣∣ ≤
∣∣∣∣∣− 1

n

n∑
i=1

log2 q(Xi)−Hn(Q)

∣∣∣∣∣,
and otherwise to Q.387

Or else, if mutually typical classify to P if, Hn(P ) < Hn(Q), and otherwise to Q.388

The choice of ε should not be arbitrary and also not necessarily equal between the two populations.389

If we choose ε too large we may never have exclusivity (as from some low dimension onwards all390

genotypes may be mutually typical), while if we choose ε too small we will not have typicality at lower391

dimensions (low SNP count). A reasonable choice is to base the two ε’s on the cross entropy criteria,392

which consequently have to be determined in the learning stage,393

εP =
1

2
CP , εQ =

1

2
CQ.

This represents a balance between avoiding mutual typicality (by setting ε not too high) while allowing394

for exclusive typicality (by setting ε not too low).395

Based on the quantitative versions of the AEP and cross entropy AEP, we derive the following396

error bounds for the naïve typicality classifier (Appendix C.2),2397

En ≤ 3 exp

(
−

nC2
Q

2 log2 δ
1−δ

)
.

We note that a classifier which only classifies by proximity to the entropy rates amounts to the398

implicit assumption of equal entropy rates. This may lead to wrong classification of mutually typical399

samples, especially at lower dimensions; e.g., with differing entropy rates and with respect to the log-400

probability space, some samples from the cluster of Q may lie closer on the x-axis to Hn(P ) than on401

the y-axis to Hn(Q), and thus be wrongly classified to P .402

2We may also explicitly express the error rate of this classifier in a closed form (Appendix A.1).
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4.3 The cross entropy typicality classifier403

In fact, our previous analysis of the cross entropy criteria shows that a simpler classifier, for which the404

selection of ε occurs implicitly and only one sample entropy is measured, would suffice. Without loss405

of generality, assume that CQ > CP . Then classify to Q if the sample entropy with respect to Q of a406

genotype is closer to the entropy rate of Q than to the cross entropy rate of P given Q, i.e.,407 ∣∣∣∣∣− 1

n

n∑
i=1

log2 q(Xi)−Hn(Q)

∣∣∣∣∣ ≤
∣∣∣∣∣− 1

n

n∑
i=1

log2 q(Xi)−Hn(p, q)

∣∣∣∣∣
and classify to P otherwise.408

Note that, without loss of generality, for any level of CQ, a higher convergence rate for our entropy409

and cross entropy AEPs implies that at any dimension n, samples from Q will tend to map tighter410

around Hn(Q), while samples from P will tend to map tighter around Hn(p, q) in the log-probability411

space. This immediately leads to stronger separation of the clusters along the Q axis, and therefore412

better classification prospects.413

The error rate of this classifier can again be estimated from the quantitative AEPs, and is bounded414

by,3415

En ≤ 2 exp

(
−

nC2
Q

2 log2 δ
1−δ

)
.

as shown in Appendix C.2.416

The guiding principle behind this classifier is that the larger cross entropy criterion represents the417

empirical entropy dimension along which there is stronger separation between the clusters, a direct418

consequence of the AEP theorems of Eqs. (4) and (5). We note here that it is generally not possible419

for this classifier to avoid the computation of both CP and CQ, inferring their relation by examining420

some simpler proxy.4. Indeed, the population entropy rates, which are generally more readily available,421

do not contain enough information since, for example,422

Hn(P ) > Hn(Q) &Hn(P ) > Hn(q, p)⇒ CQ > CP

otherwise it is also possible that CQ < CP (Appendix B, Corollary B.2.2).423

Specifically, if without loss of generality CQ > CP then the classifier considers the empirical entropy424

of samples from the two populations with respect to the Q distribution. For any given level of the425

cross entropy criterion (here CQ), a higher convergence rate roughly implies that at any dimension n,426

samples from Q will tend to map tighter around Hn(Q), while samples from P will tend to map tighter427

around Hn(p, q). The two classifiers are presented schematically in Fig. 12.428

3As with the naïve typicality classifier, we may explicitly express the error rate of this classifier in a closed form
(Appendix A.2).

4Under a particular restrictive assumption on the underlying SNP frequency model and for large enough n, the
classifier may use the entropy rates as proxy, due to the following asymptotic result, limn→∞Hn(P ) > limn→∞Hn(Q)⇒
limn→∞ CQ > limn→∞ CP (Appendix B, Corollary B.2.2)
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Fig. 12: The naïve typicality classifier works according to exclusive typicality (with classification on min entropy in case
of mutual typicality, and proximity to entropy rates in case of non-typicality). B: The simpler cross entropy classifier
works by considering only the empirical entropy with respect to one population and classifying according to proximity
to entropy rate vs. cross entropy rate.

Crucially, we show that given any arbitrary thresholds on SNP frequencies, the error rates are429

exponentially bounded and thus are asymptotically zero, as would be required from any classifier on430

high dimensional data, and the rate of decrease is proportional to the maximal of the two cross entropy431

criteria. A numerical simulation of the log-probability space and the resulting error rates in a scenario432

of differing population entropy rates is depicted in Fig. 13 (real worldwide distant populations often433

have different SNP-based diversities, as reflected by property ‘f’ in section Properties of sequences of434

genetic variants).435
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Fig. 13: The performance of the typicality-based classifiers vs. an optimal Bayes classifier when population entropy
rates differ (given known underlying allele frequencies). A: The error rates of the typicality classifiers demonstrate a good
performance even for close populations. | B: The two clusters on the log-probability plot portray a strong horizontal
separation (dotted line represents the cross entropy classification threshold), here at n = 300 SNPs (w/600 samples). In
both panels SNP frequencies were modeled on Beta distributions (αP = 4, βP = 20, αQ = 2, βQ = 20) at each locus, with
FST = 0.03, Hn(P ) = 0.6, Hn(Q) = 0.4.

Further simulations of the typicality classifiers reveal a low performance when the two cross entropy436

criteria are very similar (generally associated with similar population entropy rates, but not necessar-437

ily). A log-probability plot with respect to the cross entropy classifier reveals that this phenomenon is438

due to a relatively weak vertical/horizontal separation of the clusters (Fig. 14).439

19

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 13, 2016. ; https://doi.org/10.1101/079491doi: bioRxiv preprint 

https://doi.org/10.1101/079491


A B

0 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5

Number of Loci

Er
ro
r
ra
te

Bayes Classifier

Cross-Ent Typicality

Naive Typicality

0.5 0.6 0.7 0.8 0.9 1.0 1.1

-

1

n

Log@pHXLD0.5

0.6

0.7

0.8

0.9

1.0

1.1

-

1

n

Log@qHXLD

Fig. 14: The performance of the typicality-based classifiers vs. an optimal Bayes classifier when population entropy rates
are very similar (given known underlying allele frequencies). A: The error rates of the typicality classifiers demonstrate
relatively poor performance. | B: The two clusters on the log-probability plot portray a weak horizontal separation (dotted
line represents the cross entropy classification threshold) even at n = 200 SNPs (w/600 samples), while maintaining
separation with respect to the Bayes classification line (thin blue). In both panels SNP frequencies were modeled on
Beta distributions (αP = 2, βP = 6, αQ = 2, βQ = 6) at each locus, with FST = 0.05, Hn(P ) = 0.73, Hn(Q) = 0.76.

4.4 Sampling Noise440

The typicality classification models have been thus far defined parametrically, using the underlying441

frequencies of SNPs across the two populations. In practice, however, estimated frequencies from442

available data, rather than ‘true’ values must be used. This introduces a source of stochastic noise into443

our system. The link of noise to uncertainty was noted very early by [Shannon and Weaver, 1949], who444

stressed that: ‘If noise is introduced, then the received message contains certain distortions . . . [and]445

exhibits, because of the effects of the noise, an increased uncertainty’. Fano’s inequality provides a446

lower bound on the minimum error rate attainable by any classifier on symbols through a noisy channel,447

in terms of entropies and conditional entropies of the source and destination. Suppose that we know448

a random variable Y and we wish to guess the value of a correlated random variable X. We expect to449

be able to estimate X with a low probability of error only if the conditional entropy H(X|Y ) is small.450

Assuming binary symbols as in our genetic framework, a simplified and slightly relaxed quantification451

of this idea is the lower bound on the error, e ≥ H(X)− I(X;Y )− 1 ([Cover and Thomas, 2006]).452

Simulations of a variety of classification methods on genetic data show that performance is degraded453

with smaller population samples, most notably for close populations ([Rosenberg, 2005]). Estimates454

of SNP frequencies computed at the training stage deviate from their true population values due to455

statistical sampling, a source of noise different from that introduced by error in the sequencing of ‘test456

samples’. This is the case even when genetic sequencing is 100% error free since it is purely a statistical457

effect.458

Here we highlight a surprising feature of all typicality based classifiers under such training noise.459

For scenarios of close populations (low FST ), differing entropy rates and small training sample sizes,460

the typicality based classifiers consistently out-perform the Bayes classifier when allele frequencies are461

estimated using a natural (naïve) or maximum-likelihood estimator (MLE).5 Allele frequency estimates462

of zero are replaced with a small constant proportional with the sample size, a common procedure to463

avoid zero genotype frequencies ([Rosenberg, 2005]; [Phillips et al., 2007]). Specifically, for a sample464

5A natural estimator, which simply counts the proportion of alleles of a particular type, and a maximum likelihood
estimator (MLE) give identical solutions when the sample consists of unrelated individuals. Thus maximum likelihood
provides a justification for using the “natural” estimator ([Adrianto and Montgomery, 2012]).
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of size m, the naïve ML estimator sets frequencies to be 1/(2m + 1) for counts of zero alleles, and465

1 − 1/(2m + 1) for counts of m alleles (since we assume SNPs have some cut-off frequency), as in466

[Phillips et al., 2007]. The advantage of such an estimator is that it makes no underlying assumptions467

on the ‘true’ distributions of the parameters estimated (in particular, it makes no assumption on SNP468

frequencies being distributed i.i.d. across loci), i.e., no prior is utilized.6 We may also incorporate469

a Bayesian approach to allele frequency estimation by using a prior based on some justified model,470

effectively attenuating the sampling noise. A reasonable prior (close-to-optimal) can be produced by471

updating a histogram across a large number of loci, given the assumption of identically distributed472

frequencies across loci. In conjunction with the binomial likelihood function this results in a posterior473

distribution.7 These phenomena are illustrated in Fig. 15.474

A B

0 20 40 60 80 100 120
0.0

0.1

0.2

0.3

0.4

0.5

Number of Loci

E
rr

o
r

ra
te

Bayes Classifier

Cross-Ent Typicality

Naive Typicality

0 20 40 60 80 100 120
0.0

0.1

0.2

0.3

0.4

0.5

Number of Loci

E
rr

o
r

ra
te

Bayes Classifier

Cross-Ent Typicality

Naive Typicality

Fig. 15: With maximum likelihood estimation of allele frequencies under small training sets (high sampling ‘noise’
level) and differing population entropy rates the typicality based classifiers consistently out-perform a Bayes classifier
(Panel A), an advantage which dissipates if the ‘true’ prior is known and a Bayesian posterior is employed (Panel B).
In both panels SNP frequencies were modeled on Beta distributions (αP = 4/βP = 20, αQ = 2/βQ = 20) at each locus,
with FST = 0.03, Hn(P ) = 0.6, Hn(Q) = 0.4, with a training set of 9 samples from each population, averaged over 6
training runs.

What is the underlying reason for the typicality classifiers’ resilience to training noise under a naïve475

maximum likelihood estimation of allele frequencies? From AEP considerations, the noisy samples from476

population P will cluster in the log-probability space around the coordinate
(
Ĥn(p, p̂), Ĥn(p, q̂)

)
, while477

the noisy samples from Q cluster around the coordinate
(
Ĥn(q, p̂), Ĥn(q, q̂)

)
, where p̂ denotes the vector478

of length n such that p̂i is the maximum-likelihood estimate of pi, and a similarly for q̂. Simulations479

indicate that the introduction of sampling noise causes the population clusters to disperse, and more480

importantly, to shift towards the diagonal Bayesian separation line and therefore compromise the Bayes481

classifier’s accuracy (as can be appreciated from comparing the two panels of Fig. 16). Formally, from482

Jensen’s inequality we get,483 {
ETN [Hn(p, p̂)−Hn(P )] > 0,

ETN [Hn(q, q̂)−Hn(Q)] > 0,

where ETN denotes the expectation value with regard to a training scenario of sample size N .484

We now turn to the resilience of the typicality classifiers and consider the effect of noise on the485

cross entropy classifier, where without loss of generality, CQ > CP . Note that,486

lim
n→∞

ETN [Hn(p̂, q̂)− Ĥn(p, q̂)] = 0,

6The performance of the typicality classifiers under MLE can also be formally captured (Appendix A.3).
7The standard approach is to take the mean of the posterior distribution. The beta distribution is a conjugate prior

for the binomial likelihood (which is our sampling distribution) since the posterior is also a beta distribution, making the
formulation of the posterior simple: Beta(z + α,N − z + β), where Beta(α, β) is the prior, N is the size of the sample
and z is the number of ‘1’ alleles in the sample at that locus [Schervish, 1995]. We then take the mean of the posterior
which is (z + α)/(N + α+ β).
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since p̂ is an unbiased estimator of p. Note that because both pi and qi are distributed i.i.d., it holds487

for all i : 1, . . . , n that488

ETN [Hn(p, q̂)− Ĥn(p, q)] = E

[
− pi log2

q̂i
qi
− (1− pi) log2

1− q̂i
1− qi

]
.

Heuristically, this difference is likely to be much larger than the difference489

ETN [Hn(q, q̂)− Ĥn(Q)] = E

[
− qi log2

q̂i
qi
− (1− qi) log2

1− q̂i
1− qi

]
for the following reason: in both cases a large contribution to the difference comes from where qi is490

small and q̂i provides an underestimate for qi, resulting in a large logarithm log2
q̂i
qi
. However, in the491

second difference, this logarithm has a prefactor qi which is small, whereas in the first difference the492

prefactor pi which on average is significantly larger.493

A similar type of argument suggests that the difference ETN
[
Hn(Q̂) −Hn(Q)

]
is relatively small494

compared to ETN [Hn(p̂, q̂)−Hn(p, q)]. These heuristics make plausible that the threshold of the cross495

entropy classifier, calculated as the average of Hn(Q̂) and Hn(p̂, q̂), still separates well the ‘noisy’496

clusters, for which the vertical coordinates are given by Hn(p, q̂) and Hn(q, q̂) .497
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Fig. 16: The effect of training noise on genotype samples on the log-probability plot. A: a scenario without sampling
noise. | B: the same scenario when sampling noise is introduced (only 12 training samples from each population), resulting
in better horizontal separation (cross entropy classifier) than a diagonal one (Bayes classifier). 1200 samples were drawn
from each population at n = 300 SNPs, where population SNP frequencies were modeled on Beta distributions for P
and Q with αP = 6/βP = 40, αQ = 3/βQ = 40, at each locus.

4.5 Relative-entropy typicality498

A well-known extension of the concept of typical-set is the ‘relative entropy typical set’ ([Cover and Thomas, 2006],499

Section 11.8). For any fixed n and ε > 0, and two distributions P1 and P2, the relative entropy typical500

set A(n)
ε (P1‖P2) entails all sequences of length n such that,501

D(P1‖P2)− ε ≤ 1

n
log2

P1(x1, . . . , xn)

P2(x1, . . . , xn)
≤ D(P1‖P2) + ε.

Similar to standard set typicality, the relative entropy typical set asymptotically includes all the502

probability,503

lim
n→∞

P1(A(n)
ε (P1‖P2)) = 1.

22

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 13, 2016. ; https://doi.org/10.1101/079491doi: bioRxiv preprint 

https://doi.org/10.1101/079491


Crucially for our purposes there exists an associated AEP theorem for relative typicality ([Cover and Thomas, 2006],504

Theorem 11.8.1): Let X1, X2, . . . , Xn be a sequence of random variables drawn i.i.d. according to P1(x)505

and let P2(x) be any other distribution on the same support, then,506

1

n
log2

P1(x1, . . . , xn)

P2(x1, . . . , xn)
→ D(P1‖P2) in probability.

However, to account for the non-stationary sources (i.e. the variation of SNP frequencies across loci,507

a standard feature of population data), as in our treatment of entropy typicality, we need to modify508

the definition of relative-entropy typicality and derive an associated AEP theorem (Appendix B.4).509

We may now construct a naïve classifier based on exclusive relative-typicality, with some choice510

of an epsilon margin around the respective KL-Divergence rate, and some means of resolution for the511

cases of mutual relative-typicality or lack of relative-typicality. Alternatively, a more straightforward512

construction is to simply to classify by proximity to the respective KL-Divergences,513

Classify to P if

∣∣∣∣∣ 1n
n∑
i=1

log2

p(Xi)

q(Xi)
−Dn(P‖Q)

∣∣∣∣∣ <
∣∣∣∣∣ 1n

n∑
i=1

log2

q(Xi)

p(Xi)
−Dn(Q‖P )

∣∣∣∣∣
else, classify to Q.

Where the KL-Divergence rate is defined in Eq. (13). Fig. 17 is a schematic of such classifiers514

with respect to the log-probability space. (see Appendix A.4 for a closed-form formulation of the error515

rate).516

Finally, note that this classifier can also be described as,517

Classify to P if
n∑
i=1

log2

p(Xi)

q(Xi)
>
n

2

(
Dn(P‖Q)−Dn(Q‖P )

)
else, classify to Q.

While on the other hand, a Bayes classifier with prior α classifies as follows,518

Classify to P if
n∑
i=1

log2

p(Xi)

q(Xi)
> log2

1− α
α

else, classify to Q.

Hence, the relative entropy classifier that classifies by proximity, as described above, is exactly a Bayes519

classifier with prior α, where α satisfies,520

log2

1− α
α

=
n

2

(
Dn(P‖Q)−Dn(Q‖P )

)
that is,521

α =

(
1 + 2

n
2

(
Dn(P‖Q)−Dn(Q‖P )

))−1

where different choices of ‘ε’ would correspond to choosing different priors for the Bayes classifier. Not522

surprisingly, the relative-entropy classifier is similarly not resilient to learning-based noise.523
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Fig. 17: A schematic representation of a straightforward implementation of a proximity-based relative entropy typicality
classifier (black diagonal line) and a naïve relative-entropy classifier (dotted diagonal lines), with respect to some arbitrary
epsilon (dark stripe margins, red for P and grey for Q). The proximity-based relative entropy classifier merges in
performance with a Bayes classifier with an uninformative class prior (blue) line only when Dn(P‖Q) = Dn(Q‖P ), and
is represented by the line y = x−

(
Dn(Q‖P )−Dn(P‖Q)

)
/2.
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5 Discussion524

Simplicity is the final achievement.525

-- F. Chopin.526

The availability of high-throughput SNP genotyping and the nature of polymorphisms across loci527

and diverse populations suggest a fruitful application of one of the core ideas in information theory,528

that of set-typicality and its associated properties. In this treatment, we have employed conceptual529

and formal arguments along with evidence from numerical simulations to demonstrate that long se-530

quences of genotype samples reveal properties that are strongly suggestive of typical sequences. This531

allowed us to produce versions of the asymptotic equipartition property that comply with population532

genetic data and consequently define the notion of mutual typicality and describe information-theoretic533

classification schemes. We do not claim here priority in invoking the concept of typical sets broadly in534

biology. In examining the fitness value of information, [Donaldson-Matasci et al., 2010] have made use535

of the asymptotic properties of typical sequences to capture properties of typical temporal sequences536

of selection environments and their payoffs in evolution. However, our use of a typical-set framework537

to analyze long sequences of genetic variants is, as far as we know, original. Moreover, to the best538

of our knowledge, a general analysis of mutual and exclusive typicality and the interplay of multiple539

typical sets (from sources defined on the same space) is another original contribution. In this context,540

we note that the related notion of ‘strong typicality’ is only applicable for stationary sources where the541

sample frequency of a symbol is closely linked to its underlying distribution, and therefore not directly542

applicable in our framework, where alleles are not identically distributed across loci.543

The consideration of noise as a source of classification error, and a subsequent quantification, is of544

course, not new. From a machine learning perspective, one of the early insights of information theory545

was to consider a classification problem as a noisy channel. Fano’s inequality provides a lower bound546

on the minimum error rate attainable by any classifier on symbols through a noisy channel, in terms547

of entropies and conditional entropies of the source and destination. Suppose that we know a random548

variable Y and we wish to guess the value of a correlated random variable X. We expect to be able to549

estimate X with a low probability of error only if the conditional entropy H(X|Y ) is small. Assuming550

binary symbols as in our genetic framework, a simplified and slightly relaxed quantification of this idea551

is the lower bound on the error ([Cover and Thomas, 2006]), H(e) + e · log(χ) ≥ H(X)− I(X;Y ).552

Shannon (1956) has famously cautioned against jumping on ‘the bandwagon’ of information theory553

whose basic results were ‘aimed in very specific direction . . . that is not necessarily relevant to such554

fields as psychology, economics, and other social sciences’. He stressed that while ‘Applications [of555

information theory] are being made to biology . . . , A thorough understanding of the mathematical556

foundation and of its communication application is surely a prerequisite to other applications . . . ’,557

finally concluding that, ‘I personally believe that many of the concepts of information theory will558

prove useful in these other fields – and, indeed, some results are already quite promising – but the559

establishing of such applications is not a trivial matter of translating words to a new domain, but560

rather the slow tedious process of hypothesis and experimental verification.’561

Notwithstanding Shannon’s concerns, there have been numerous attempts at borrowing both in-562

formational concepts and technical results from information theory in the biosciences. In a recent563

illuminating review, [Vinga, 2014] highlights several information-theoretic measures that have been564

applied widely, e.g., to compare sequences in an alignment-free context, provide block-entropy and565

complexity estimation, and assess DNA sequence compression limits. [Ulanowicz et al., 2009] has ush-566

ered in the “return of information theory” by using conditional entropy to quantify sustainability and567

biodiversity. [McCowan et al., 2002] had emphasized the prominent role of noise in “constraining the568
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amount of information exchanged between signallers and perceivers” in ecological and social contexts569

and for signal design and use. By applying quantitative and comparative information-theoretic mea-570

sures on animal communication, they hoped to provide insights into the organization and function of571

“signal repertoires”. Similarly, [Levchenko and Nemenman, 2014] have shown how cellular noise could572

be quantified using mutual information, and the implications of measuring such noise in bits. Even573

more recently, [Lan and Tu, 2016] have focused on the “inherent noise in biological systems’ which they574

have argued can be analyzed by ‘using powerful tools and concepts from information theory such as575

mutual information, channel capacity, and the maximum entropy hypothesis”, with subsequent anal-576

ysis mostly restricted to entropy and mutual information in their capacity as statistical measures.577

Other authors have made claims, admittedly of a conjectural nature, on the relevancy of information578

theoretic results to principles of evolution and genetic inheritance. For instance, [Battail, 2013] has579

claimed that the trend of biological evolution towards increasing complexity and hereditary principles580

requires the implementation of error correcting information-theoretic codes, which are inevitable and581

‘logically necessary’ once it is clear that ‘heredity is a communication process’, while at the same time582

emphasizing that these are ‘merely speculations’.583

While some of these and other approaches have been interesting and insightful, the conceptual and584

formal link to information theory mainly comprises of metaphoric use of otherwise technical informa-585

tion theoretic concepts and terms, such as communication channel and noise, or the employment of586

quantitative measures of variation and dependency that originate in information theory. Indeed, in a587

review of the contribution of information theory to molecular biology, [Fabris, 2009] concludes that the588

evidence indicates the contribution is “no more than [on] a purely syntactic level” and wherever use589

of a statistical framework is required, then “tools such as mutual information, entropy and informa-590

tional divergence, can be used with profit”. The author further conjectures that this is due to a naive591

“assumption of a substantial equivalence between the Shannon unidirectional transmission system and592

the DNA-to-protein communication system.”593

5.1 Channel capacity594

The concept of channel capacity, which also plays a central role in communication theory, may serve595

to further highlight the shared properties identified here between long sequences of symbols generated596

by a random source and communicated across a noisy channel, and long genotypes originating from a597

natural population. The channel capacity is the tight upper bound on the rate at which information598

can be reliably transmitted over a noisy communications channel. The usefulness of this notion in other599

domains was famously identified by [Kelly, 1956]. Kelly analyzed a scenario which seems to possess600

the essential features of a communication problem: a gambler that utilizes the received symbols of a601

noisy communication channel in order to make profitable bets on the transmitted symbols. Kelly then602

demonstrated that, just as information can be transmitted over a noisy communication channel at or603

near Shannon’s channel capacity with negligible error, so can this gambler compound his net worth at604

a maximum rate with virtually no risk of ‘total loss’, equal to the mutual information of the source and605

receiver (by apportioning his betting amount precisely according to the noise level for each symbol).606

More formally, the “information” channel capacity C of a discrete memoryless channel with respect607

to sources X with alphabets supported on χ and consequent outputs Y with alphabets supported on608

y, is an inherent property of the channel such that, C = maxP (X) I(X;Y ), or for nonstationary sources609

representing our population model,610

C = lim inf maxP (X1),P (X2),...

n∑
i=1

1

n
I(Xi;Yi)

where the maximum is taken over all possible distributions P (Xi) of the source ([Verdu and Han, 1994]).611
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The capacity is commonly interpreted as the highest rate in bits per channel use at which information612

can be sent with arbitrarily low probability of error. Shannon’s channel coding theorem then relates the613

maximum information rate possible across the channel with its capacity ([Cover and Thomas, 2006],614

Ch.7).615

We now propose an analogy between the effect of communication noise on channel capacity and the616

effect of sampling noise on classification accuracy, centered on the mutual information between inputs617

and outputs. If we interpret X as a random variable representing the n-SNP genotype from the pooled618

source populations and Y as a random variable representing its source population„ then the mutual619

information I(X;Y ) captures the informativeness of the set of n markers for population assignment620

(see [Tal, 2012a], [Tal, 2012b] for the multilocus formulation). This is also known as the Infomax621

principle in feature selection, where a subset of features is chosen so that the mutual information of622

the class label given the feature vector is maximized ([Rosenberg et al., 2003]; [Zhao et al., 2013]; see623

[Peng et al., 2005] for the Max-Dependency principle). If we now take the informativeness I(X;Y )624

to represent the maximal information extractable across all possible classifiers, a workable analogy625

with communication-based channel capacity, which is also expressed in terms of mutual information,626

becomes evident. Under this interpretation, the inferential channel capacity is achievable by the optimal627

Bayes classifier, under known distribution parameters ([Hastie et al., 2009]), i.e., in the absence of628

sampling noise; otherwise, given any finite sample size at the learning stage, there may be no single629

classification scheme that obtains maximal performance under all data scenarios. Indeed, the lack of a630

universally best model for classification is sometimes called the no free lunch theorem, which broadly631

implies that one needs to develop different types of models for different data, since a set of assumptions632

that works well in one domain may work poorly in another ([Murphy, 2012]).633

5.2 Dimensionality reduction634

It is worthwhile highlighting an additional feature of our log-probability space, with possible pragmatic635

use. The mapping of genotype samples to the log-probability space shares some core features with636

standard dimensionality reduction schemes such as PCA, which are often deployed for visualization637

purposes or as pre-processing in the context of unsupervised learning. Most prominently, [a] the effect of638

higher dimensionality (larger n) on cluster separability, [b] the effect of population differentiation (FST )639

on cluster proximity, [c] the effect of distribution entropy rates on the cluster shape, and [d] the general640

effect of a possible presence of LD given the explicit (implicit, in the case of PCA) assumption of LE.641

At the same time, the log-probability perspective provides information with respect to a supervised642

learning framework, most prominently by revealing the effect of noise in the training stage on the643

clusters of ‘test samples’, and on the estimated quantities employed by an information-theoretic oriented644

classifier, such as our cross entropy typicality classifier.645

5.3 Linkage Disequilibrium646

When populations have some internal structure (deviation from panmixia) then loci are in linkage647

disequilibrium (LD). In terms of the communication framework, LD is analogous to time-dependency648

of symbols generated by the source, such that the channel is no longer memoryless. How will our649

results fare when such dependencies are introduced into the inferential framework?650

Previous work on analogies and implementations of information theoretic concepts has highlighted651

this difficulty. For instance, in his famous approach to betting strategies from an information-rate652

perspective, [Kelly, 1956] has also emphasized that in the presence of time-dependency of symbols the653

results he obtained may no longer be relevant, acknowledging that ‘theorems remain to be proved’ if654
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the symbol transmission entails dependency on time or past events.655

Since our results are intrinsically based on AEP theorems, we would be interested to pursue656

some generalization of the AEP for (nonstationary) sources with dependent symbols. The Shannon-657

McMillan-Breiman theorem ([Cover and Thomas, 2006]) is an extension of Shannon’s original AEP658

for discrete i.i.d. sources, and holds for discrete-time finite-valued stationary ergodic sources, which in659

general have dependent symbols. However, the closest to general nonstationary sources with depen-660

dent symbols for which an AEP holds are a class of nonstationary sources called ‘asymptotically mean661

stationary’ or AMS sources ([Gray, 2011]). These are sources which might not be stationary, but are662

related to stationary sources in a specific way. Such sources are equivalent to sources for which relative663

frequencies converge and bounded sample averages converge with probability one, but not necessarily664

to simple expectations with respect to the source distributions. They include, for example, sources665

with initial conditions that die out (asymptotically stationary sources) along with sources that are666

block-stationary, e.g., extensions of the source are stationary.667

Crucially for our purposes, general patterns of LD found in population SNP data should not be668

expected to conform to the specific properties characteristic of AMS sources, and therefore we cannot669

expect an AEP to hold for such data. Nevertheless, we would like to see whether a ‘naïve’ approach to670

classification by typicality, akin to that taken by the naïve Bayes, might still be productive. Adopting671

such ‘naïve’ approach means that we employ the same expressions for genotype probabilities, empirical672

entropies, population entropy and cross entropy rates, which had all assumed statistical independence.8673

Numerical analysis shows that with various patterns of LD the typicality classifiers do not account674

well for its presence, contrary to the naïve Bayes classifier. Under any type of LD, clusters on the675

2D log-probability plot tend to substantially disperse (elongating diagonally), breaching the typicality676

threshold even for very large n where we would expect substantial separation (Fig. 18). Interestingly,677

this diagonal elongation gives a new perspective on the well-known phenomenon by which under LD678

naïve Bayes classifiers still outperform far more sophisticated alternatives, and make it surprisingly679

useful in practice even in the face of such dependencies ([Hastie et al., 2009] section 6.6.3). We stress680

here that the increased dispersion of samples when LD is introduced cannot be taken as indicative of681

the well-known result that there is no AEP for nonstationary sources with dependent symbols, since682

samples are mapped to this space according to ‘naïve’ independence assumptions. Estimating the683

actual genotype probabilities (along with joint entropies and cross-entropies under these assumptions684

for constructing the typicality classifier) is beyond the scope of the models used in these simulations.685

8Otherwise, we would have to incorporate the full information from the joint distribution of SNPs across loci, which
is over and above the low-dimensional standard LD statistics.
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Fig. 18: Clusters of genotype samples from the two populations are elongated diagonally as a function of the amount
of LD and its nature, substantially breaching the typicality classification threshold (dotted line) while maintaining
separation with respect to the Bayes classification line (thin blue). Here 400 samples were drawn from two populations
modeled under Beta distributions with n = 600 SNPs, FST = 0.04, with differing population entropy rates, with ε = 0.02

for typicality. A: No LD. | B: Moderate levels of LD.

6 Conclusion686

There has recently been revived interest in employing various aspects of information theory for char-687

acterizing manifestations of information in biology. Arguably, quantitative analysis of biological infor-688

mation has thus far only superficially drawn from the ground-breaking ideas and formal results of this689

highly influential theory. Here, we have ventured beyond the mere utilization of information-theoretic690

measures such as entropy or mutual information, to demonstrate deep links between a core notion of691

information theory, along with its properties and related theorems, and intrinsic features of population692

genetic data. We have demonstrated that genotypes consisting of long stretches of variants sampled693

from different populations may be captured as typical sequences of nonstationary symbol sources that694

have distributions associated with population properties. This perspective has enabled us to treat695

typical genotypes as proxies for diverse source populations, analyse their properties in high dimensions696

and consequently develop an information theoretic application for the problem of ancestry inference.697

We hope that this work will open the door for further inquiry into the prospects of rigorous implemen-698

tation of both ideas and technical results from information theory in the field of population genetics699

and biology in general.700

The Mathematica code for generating the numerical simulations for the figures can be made avail-701

able by request from the corresponding author.702

Acknowledgements: We would like to thank Jürgen Jost for his interest and constructive feedback on these ideas.703

We appreciate the input of Robert M. Gray on AMS sources. Special thanks also to Slava Matveev, Guido Montúfar704

and Michael Lachmann for some fruitful technical discussions. Finally, we acknowledge the Max Planck Institute for705

Mathematics in the Sciences for the platform to present these ideas in an internal seminar and for its generous support.706

29

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 13, 2016. ; https://doi.org/10.1101/079491doi: bioRxiv preprint 

https://doi.org/10.1101/079491


References707

[Adrianto and Montgomery, 2012] Adrianto, I. and Montgomery, C. (2012). Estimating Allele Fre-708

quencies, pages 59–76. Humana Press, Totowa, NJ.709

[Battail, 2013] Battail, G. (2013). Biology needs information theory. Biosemiotics, 6(1):77–103.710

[Consortium, 2005] Consortium, T. I. H. (2005). A haplotype map of the human genome. Nature,711

437(7063):1299–1320.712

[Cover and Thomas, 2006] Cover, T. and Thomas, J. (2006). Elements of Information Theory. Wiley-713

Interscience [John Wiley & Sons], Hoboken, NJ, second edition.714

[Donaldson-Matasci et al., 2010] Donaldson-Matasci, M. C., Bergstrom, C. T., and Lachmann, M.715

(2010). The fitness value of information. Oikos (Copenhagen, Denmark), 119(2):219–230.716

[Erdogmus and Principe, 2006] Erdogmus, D. and Principe, J. C. (2006). From linear adaptive filtering717

to nonlinear information processing - the design and analysis of information processing systems.718

IEEE Signal Processing Magazine, 23(6):14–33.719

[Fabris, 2009] Fabris, F. (2009). Shannon information theory and molecular biology. Journal of Inter-720

disciplinary Mathematics, 12(1):41–87.721

[Fano, 1961] Fano, R. M. (1961). Transmission of information: A statistical theory of communications.722

The M.I.T. Press, Cambridge, Mass.; John Wiley & Sons, Inc., New York-London.723

[Granot et al., 2016] Granot, Y., Tal, O., Rosset, S., and Skorecki, K. (2016). On the apportionment724

of population structure. PLoS ONE, 11(8):1–24.725

[Gray, 2011] Gray, R. M. (2011). Entropy and information theory. Springer, New York, second edition.726

[Hastie et al., 2009] Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical727

learning. Springer Series in Statistics. Springer, New York, second edition. Data mining, inference,728

and prediction.729

[Huggins et al., 2007] Huggins, P., Pachter, L., and Sturmfels, B. (2007). Toward the Human Geno-730

tope. Bulletin of Mathematical Biology, 69(8):2723–2735.731

[Impagliazzo et al., 2014] Impagliazzo, R., Lovett, S., Paturi, R., and Schneider, S. (2014). 0-1 integer732

linear programming with a linear number of constraints. Technical report, Electronic Colloquium733

on Computational Complexity, Report No. 24.734

[Kelly, 1956] Kelly, Jr., J. L. (1956). A new interpretation of information rate. Bell. System Tech. J.,735

35:917–926.736

[Lan and Tu, 2016] Lan, G. and Tu, Y. (2016). Information processing in bacteria: Memory, compu-737

tation, and statistical physics: a key issues review. Rep Prog Phys., 79(5):052601.738

[Levchenko and Nemenman, 2014] Levchenko, A. and Nemenman, I. (2014). Cellular noise and infor-739

mation transmission. Current Opinion in Biotechnology, 28:156–164.740

[Lewontin, 1995] Lewontin, R. C. (1995). The Apportionment of Human Diversity, pages 381–398.741

Springer US, Boston, MA.742

[McCowan et al., 2002] McCowan, B., Doyle, L., and Hanser, S. (2002). Using information theory to743

assess the diversity, complexity, and development of communicative repertoires. J. Comp. Psychol.,744

116(2):166–72.745

30

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 13, 2016. ; https://doi.org/10.1101/079491doi: bioRxiv preprint 

https://doi.org/10.1101/079491


[Murphy, 2012] Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. The MIT Press.746

[Peng et al., 2005] Peng, H., Long, F., and Ding, C. (2005). Feature selection based on mutual in-747

formation criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on748

Pattern Analysis and Machine Intelligence, 27(8):1226–1238.749

[Phillips et al., 2007] Phillips, C., Salas, A., Sanchez, J., Fondevila, M., Gomez-Tato, A., Alvarez-750

Dios, J., Calaza, M., Casares de Cal, M., Ballard, D., Lareu, M., and Carracedo, A. (2007). Inferring751

ancestral origin using a single multiplex assay of ancestry-informative marker SNPs. Forensic Science752

International: Genetics, 1(3-4):273–280.753

[Rannala and Mountain, 1997] Rannala, B. and Mountain, J. L. (1997). Detecting immigration by754

using multilocus genotypes. Proceedings of the National Academy of Sciences, 94(17):9197–9201.755

[Rosenberg, 2005] Rosenberg, N. A. (2005). Algorithms for selecting informative marker panels for756

population assignment. Journal of Computational Biology, 12(9):1183–1201.757

[Rosenberg et al., 2003] Rosenberg, N. A., Li, L. M., Ward, R., and Pritchard, J. K. (2003). Infor-758

mativeness of genetic markers for inference of ancestry. American Journal of Human Genetics,759

73(6):1402–1422.760

[Schervish, 1995] Schervish, M. J. (1995). Theory of statistics. Springer Series in Statistics. Springer-761

Verlag, New York.762

[Shannon, 1948] Shannon, C. E. (1948). A mathematical theory of communication. The Bell System763

Technical Journal, 27(3):379–423.764

[Shannon and Weaver, 1949] Shannon, C. E. and Weaver, W. (1949). The Mathematical Theory of765

Communication. The University of Illinois Press, Urbana, Ill.766

[Tal, 2012a] Tal, O. (2012a). The cumulative effect of genetic markers on classification performance:767

Insights from simple models. Journal of Theoretical Biology, 293:206–218.768

[Tal, 2012b] Tal, O. (2012b). Towards an information-theoretic approach to population structure. In769

Turing-100. The Alan Turing Centenary, volume 10 of EasyChair Proceedings in Computing, pages770

353–369. EasyChair.771

[Tal, 2013] Tal, O. (2013). Two complementary perspectives on inter-individual genetic distance.772

Biosystems, 111(1):18 – 36.773

[Ulanowicz et al., 2009] Ulanowicz, R. E., Goerner, S. J., Lietaer, B., and Gomez, R. (2009). Quantify-774

ing sustainability: Resilience, efficiency and the return of information theory. Ecological Complexity,775

6(1):27–36.776

[Verdu and Han, 1994] Verdu, S. and Han, T. (1994). A general formula for channel capacity. IEEE777

Trans. Inf. Theor., 40(4):1147–1157.778

[Vinga, 2014] Vinga, S. (2014). Information theory applications for biological sequence analysis. Brief-779

ings in Bioinformatics, 15(3):376–389.780

[Zhao et al., 2013] Zhao, M., Edakunni, N., Pocock, A., and Brown, G. (2013). Beyond Fano’s In-781

equality: Bounds on the Optimal F-Score, BER, and Cost-Sensitive Risk and Their Implications.782

Journal of Machine Learning Research, 14:1033–1090.783

[Zuckerman, 1996] Zuckerman, D. (1996). On Unapproximable Versions of NP-Complete Problems.784

SIAM Journal on Computing, 25(6):1293–1304.785

31

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 13, 2016. ; https://doi.org/10.1101/079491doi: bioRxiv preprint 

https://doi.org/10.1101/079491


A Appendix A786

A.1 Closed-form formulation of the naïve typicality classifier error rate787

The error rate of the naive typicality classifier can be expressed as,788

En =
1

2

2n−1∑
k=0

(
hkdk + gk(1− dk)

)
. (A.1.1)

dk =



1, if


D

(P )
k > εP and D(Q)

k ≤ εQ, or
D

(P )
k > εP and D(Q)

k > εQ and D(P )
k > D

(Q)
k , or

D
(P )
k ≤ εP and D(Q)

k ≤ εQ and H̄(P )
n > H̄

(Q)
n

0, if


D

(P )
k ≤ εP and D(Q)

k > εQ, or

D
(P )
k > εP and D(Q)

k > εQ and D(P )
k ≤ D(Q)

k , or

D
(P )
k ≤ εP and D(Q)

k ≤ εQ and H̄(P )
n ≤ H̄(Q)

n

where789

D
(P )
k =

∣∣∣∣∣− 1

n

n∑
i=1

log2

(
|1− fn(k, i)− pi|

)
− H̄n(P )

∣∣∣∣∣
D

(Q)
k =

∣∣∣∣∣− 1

n

n∑
i=1

log2

(
|1− fn(k, i)− qi|

)
− H̄n(Q)

∣∣∣∣∣
and where the genotype probabilities hk and gk and the indicator function fn are defined as in790

([Tal, 2012b], section 3.2),791

hk =
n∏
i=1

|1− fn(k, i)− pi|, gk =
n∏
i=1

|1− fn(k, i)− qi|

fn(k, i) =

⌊
k

2i

⌋
mod 2( the ith bit of k).

(A.1.2)

A.2 Closed-form formulation of the cross-entropy classifier error rate792

The error rate of the cross-entropy typicality classifier can be expressed using En of Eq. (A.1.1) in793

conjunction with,794

dk =



1, if

∣∣∣∣∣− 1
n

n∑
i=1

log2

(
|1− fn(k, i)− qi|

)
− H̄n(Q)

∣∣∣∣∣
<

∣∣∣∣∣− 1
n

n∑
i=1

log2

(
|1− fn(k, i)− qi|

)
− H̄n(p, q)

∣∣∣∣∣
0, otherwise

(A.2.1)

for the case where CQ > CP , and similarly expressed in terms of the parameters of P when CQ ≤ CP .795
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A.3 Closed-form formulation of the generalization error of the cross-entropy clas-796

sifier under MLE797

The expected test error En,m under all training samples of size m = {m1,m2} is an expectation over798

the conditional (on a particular sample of size m) test error En(P̂ , Q̂) 9,799

En,m = E(En(P̂ , Q̂)) =
1∑

X1=0

· · ·
1∑

Xn=0

1∑
Y1=0

· · ·
1∑

Yn=0

En(P̂ , Q̂)
n∏
i=1

f(p̂i) · f(q̂i)

where we denote P̂ = {p̂1, . . . , p̂n}, Q̂ = {q̂1, . . . , q̂n}.800

Following the formulation in Eq. (A.1.1) we have,801

En(P̂ , Q̂) =
1

2

2n−1∑
k=0

(hkdk + gk(1− dk))

where the cross-entropy classifier of Eq. (A.2.1) (for the case CQ > CP ) is expressed as conditional802

on a particular sample,803

dk =



1, if

∣∣∣∣∣− 1
n

n∑
i=1

log2

(
|1− fn(k, i)− q̂i|

)
− H̄n(Q̂)

∣∣∣∣∣
<

∣∣∣∣∣− 1
n

n∑
i=1

log2

(
|1− fn(k, i)− q̂i|

)
− H̄n(p̂, q̂)

∣∣∣∣∣
0, otherwise

where hk, gk, fn(k, i) are defined with respect to the true frequencies, as in Eq. (A.1.2).804

A.4 Closed-form formulation of the error rate of the relative-entropy classifier805

Following the formulation in Eq. (A.1.1) the error rate of the relative-entropy classifier can be expressed806

as,807

En =
1

2

2n−1∑
k=0

(hkdk + gk(1− dk))

808

D
(P )
k =

∣∣∣∣∣ 1n
n∑
i=1

log2

(
|1− fn(k, i)− p̂i|
|1− fn(k, i)− q̂i|

)
− D̄n(P‖Q)

∣∣∣∣∣
809

D
(Q)
k =

∣∣∣∣∣ 1n
n∑
i=1

log2

(
|1− fn(k, i)− q̂i|
|1− fn(k, i)− p̂i|

)
− D̄n(Q‖P )

∣∣∣∣∣
810

dk =

{
1, if D(P )

k > D
(Q)
k

0, else

where the genotype probabilities hk and gk and the indicator function fn(k, i) are as defined in Eq.811

(A.1.2).812

9In simulating En,m we replace allele frequency estimates of zero with a small constant, 1/(m+1), a common procedure
to avoid zero genotype frequencies ([Rosenberg, 2005]l [Phillips et al., 2007]).
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Note that the counterpart classifier-expressions for a Bayes (or maximum likelihood) classifier would813

in a corresponding formulation be expressed as a simple comparison of genotype probabilities,814

Dk(Bayes) =
n∑
i=1

log2

1− fn(k, i)− qi
1− fn(k, i)− pi

, dk =

{
1, if Dk > 0

0, if Dk ≤ 0
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B Appendix B815

B.1 Entropy and cross-entropy rates816

In this section we consider the expectation of entropy and cross-entropy rates and their properties.817

First, we recall some properties of a Beta distribution. Let Y ∼ B(α, β). Then818

E(Y ) =
α

α+ β
,

819
E(lnY ) = ψ(α)− ψ(α+ β),

where ψ(x) = d
dx ln(Γ(x)) = Γ′(x)

Γ(x) is a digamma function. Moreover, we have820

E(Y lnY ) =
β

(α+ β)2
+

α

α+ β

(
ψ(α)− ψ(α+ β)

)
.

In fact, note that Y ∼ B(α, β) implies that 1− Y ∼ B(β, α). Therefore821

Cov(Y, lnY ) = E
(
Y lnY

)
− E(Y )E

(
lnY

)
=

∫ 1

0
ln y

yα(1− y)β−1

B(α, β)
dy − α

α+ β

∫ 1

0
ln y

yα−1(1− y)β−1

B(α, β)
dy

=
α

α+ β

(∫ 1

0
ln y

yα(1− y)β−1

B(α+ 1, β)
dy −

∫ 1

0
ln y

yα−1(1− y)β−1

B(α, β)
dy

)

=
α

α+ β

((
ψ(α+ 1)− ψ(α+ β + 1)

)
−
(
ψ(α)− ψ(α+ β)

))

=
α

α+ β

(
1

α
− 1

α+ β

)

=
β

(α+ β)2
.

Therefore822

E
(
Y lnY

)
=

β

(α+ β)2
+

α

α+ β

(
ψ(α)− ψ(α+ β)

)
.

Suppose pi and qi are distributed i.i.d. according to B(αP , βP ) and B(αQ, βQ) respectively. Then823

E
(
Hn(Q)

)
= − 1

n

n∑
i=1

E
(
qi log2 qi + (1− qi) log2(1− qi)

)
= − log2(e)

(
1

αQ + βQ
+

αQ
αQ + βQ

(
ψ(αQ)− ψ(αQ + βQ)

))
,

and similarly,824

E
(
Hn(p, q)

)
= − log2(e)

(
αPψ(αQ)

αP + βP
+
βPψ(βQ)

αP + βP
− ψ(αQ + βQ)

)
.
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B.2 Cross-entropy criteria825

In this section of Appendix, we consider the cross-entropy criteria CnP and CnQ and its asymptotic826

properties. First, we have827

CnQ = |Hn(p, q)−Hn(Q)|

=

∣∣∣∣∣ 1n
n∑
i=1

(qi − pi) log2

qi
1− qi

∣∣∣∣∣.
Assume that pi, i = 1, 2, . . . , sampled by a random variable X with distribution B(αP , βP ) and828

qi, i = 1, 2, . . . , sampled by another independent random variable Y with distribution B(αQ, βQ).829

Then, by the law of large number we have the asymptotic property830

CQ := lim
n→∞

CnQ =

∣∣∣∣∣E
(

(Y −X) log2

( Y

1− Y

))∣∣∣∣∣
= log2(e)

∣∣∣∣∣E(Y ln
( Y

1− Y

))
− EXE

(
ln
( Y

1− Y

))∣∣∣∣∣, (due to X,Y are independent)

= log2(e)

∣∣∣∣∣E(Y lnY
)
− E

(
Y ln(1− Y )

)
− E(X)

(
lnY − ln(1− Y )

)∣∣∣∣∣
= log2(e)

∣∣∣∣∣E(Y lnY
)

+ E
(

(1− Y ) ln(1− Y )
)
− E ln(1− Y )− E(X)

(
lnY − ln(1− Y )

)∣∣∣∣∣
It implies that831

CQ = log2(e)

∣∣∣∣∣ 1

αQ + βQ
+

(
ψ(αQ)− ψ(βQ)

)(
αQ

αQ + βQ
− αP
αP + βP

)∣∣∣∣∣.
And similarly we also obtain832

CP = log2(e)

∣∣∣∣∣ 1

αP + βP
+

(
ψ(αP )− ψ(βP )

)(
αP

αP + βP
−

αQ
αQ + βQ

)∣∣∣∣∣.
Then we have immediately some corollaries:833

Corollary B.2.1. CQ = 0 if and only if834

αP
αP + βP

=
αQ

αQ + βQ
+

1

(αQ + βQ)(ψ(αQ)− ψ(βQ))
.

Note that this equation has a lot of solutions (e.g. αP = 2, βP = 10, αQ = 2, βQ = 4).835

Corollary B.2.2. If Hn(P ) > Hn(Q) and Hn(P ) > Hn(q, p) then CnQ > CnP .836

Proof. In fact, we have837

Hn(p, q)−Hn(Q)− (Hn(P )−Hn(q, p)) = Dn(P,Q) +Dn(Q,P ) > 0.

It implies that838

Hn(p, q)−Hn(Q) > Hn(P )−Hn(q, p).

Moreover, due to the second condition, we have Hn(P )−Hn(q, p) > 0. Therefore,839

Cn
Q = Hn(p, q)−Hn(Q) > Hn(P )−Hn(q, p) = CnP .

It completes the proof.840
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Corollary B.2.3. Assume that P ∼ B(αP , βP ) and Q ∼ B(αQ, βQ) satisfying cP = αP + βP =841

αQ + βQ = cQ and P̄ = αP
cP
≤ 1

2 , Q̄ =
αQ

cQ
≤ 1

2 . If furthermore limn→∞ H̄n(P ) > limn→∞ H̄n(Q), then842

CQ > CP .843

Proof. In fact, it is enough to prove that for large enough n we have H̄n(p, q) − H̄n(Q) > H̄n(q, p) −844

H̄n(P ). Indeed, note that845

lim
n→∞

H̄n(P ) = − 1

cP
− P̄ψ(P̄ cP )− (1− P̄ )ψ(cP − P̄ cP ) + ψ(cP ).

Therefore, the condition H̄n(P )− H̄n(Q) > ε for all n implies that846

−P̄ψ(P̄ cP )− (1− P̄ )ψ(cP − P̄ cP ) > −Q̄ψ(Q̄cQ)− (1− Q̄)ψ(cQ − Q̄cQ)

which implies that P̄ > Q̄.847

Also we have848

lim
n→∞

H̄n(p, q)− H̄n(Q) =
1

cQ
+ (Q̄− P̄ )

(
ψ(Q̄cQ)− ψ(cQ − Q̄cQ)

)
,

and ψ(Q̄cQ)− ψ(cQ − Q̄cQ) is decreasing with respect to Q̄. It implies the proof.849

850

Remark B.2.1. If CP = CQ = 0 then851

0 = Hn(p, q)−Hn(Q) = Dn(P‖Q) +Hn(P )−Hn(Q)

and852

0 = Hn(q, p)−Hn(P ) = Dn(Q‖P ) +Hn(Q)−Hn(P )

This implies that Dn(P‖Q) = Dn(Q‖P ) = 0 which happens if and only if P = Q.853

B.3 Normalized pairwise distances854

In this section, we first consider the average normalized pairwise distance [Tal, 2013] in the set of855

all sampled genotypes and in the set of typical ones. We consider both the stationary and the non-856

stationary case.857

B.3.1 Stationary case858

In the stationary case pi = p for all i = 1, . . . , n we have some first geometric properties of typical set859

as follows. Given ε > 0 and n ∈ N, denote by860

In =

{
k :

⌈
n

(
p− ε

log |1−pp |

)⌉
≤ k ≤

⌊
n

(
p+

ε

log |1−pp |

)
,

⌋}
.

Then861

(i)
A(n)
ε (P ) =

{
x ∈ Ωn : |x| ∈ In

}
.
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(ii)

|A(n)
ε (P )| =

∑
k∈In

(
n

k

)
, it implies that

|A(n)
ε (P )|
2n

→ 0 as n→∞.

(iii)

P (A(n)
ε (P )) =

∑
k∈In

(
n

k

)
pk(1− p)n−k → 1 as n→∞.

(iv)

EP

(
1

n
d(X,Y )|X,Y ∈ A(n)

ε (P )

)
=

∑
k,l∈In

1
n

∑
|x|=k,|y|=l |x− y|pk+l(1− p)2n−k−l

P (A
(n)
ε (P ))2

(v)

EP

(
1

n
d(X,Y )

)
= 2p(1− p).

Let C be the centroid of Ωn corresponding to distribution P , i.e. ci = pi for all i = 1, . . . , n. We862

also have a nice following property863

Proposition B.3.1. The covariance between the normalized generalized Hamming (‖ · ‖1) distance864

between X and C with respect to the Euclidean distance of their corresponding points in log-probability865

coordinate is non-negative, i.e.866

(a)

Cov

(
1

n
dHam(X,C),

∣∣∣∣∣− 1

n
log2 P (X)−Hn(P )

∣∣∣∣∣
)
≥ 0;

(b) Equality holds if and only if p = 1
2 ;867

(c) as n goes to infinity, this covariance goes to zero;868

(d) when the entropy rate increases, the covariance decreases;869

(e) statements in (a)-(d) are also true for correlation.870

Proof. First of all, note that in this case871

dHam(X,C) =

n∑
i=1

|Xi − p| = |X|(1− p) + (n− |X|)p, for everyX.

Therefore, it is easy to obtain872

Cov

(
1

n
dHam(X,C),

∣∣∣∣∣− 1

n
log2 P (X)−Hn(P )

∣∣∣∣∣
)

=

∣∣∣∣∣ log2

p

1− p

∣∣∣∣∣(1− 2p)
n∑
k=0

(k
n
− p
)∣∣∣k
n
− p
∣∣∣(n
k

)
pk(1− p)n−k.

Put873

h(n, p) :=

∣∣∣∣∣ log2

p

1− p

∣∣∣∣∣(1− 2p)

n∑
k=0

(k
n
− p
)∣∣∣k
n
− p
∣∣∣(n
k

)
pk(1− p)n−k.
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It is also easy to see that h(n, p) = h(n, 1− p). Without loss of generality, we assume that p ≤ 1
2 .874

When p = 1
2 , the covariance is zero. Moreover, we can prove that h(n, p) decreases in p ∈ (0, 1

2 ] and in875

n.876

It implies the proof.877

B.3.2 Non-stationary case878

Now we consider the non-stationary case. First, denote byDn(X,Y ) the normalized Hamming distance879

of two genotypes X and Y , i.e.880

Dn(X,Y ) =
1

n

n∑
i=1

|Xi − Yi| =
1

n

n∑
i=1

|Zi|,

where Zi is a random variable which is 1 with probability 2pi(1−pi) and 0 with probability p2
i +(1−pi)2.881

Then the expectation and variance of Dn can be easily calculated as882

E(Dn(X,Y )|X,Y ∈ Ωn) =
2

n

n∑
i=1

pi(1− pi),

883

Var(Dn(X,Y )|X,Y ∈ Ωn) =
1

n2

n∑
i=1

V ar(Zi) =
1

n2

n∑
i=1

2pi(1− pi)(p2
i + (1− pi)2).

Corollary B.3.1. The variance of the normalized Hamming distance between two genotypes will ap-884

proach to zero with rate 1/4n as n→∞, i.e. there is an equidistance property as n large for the set of885

total sampled genotypes.886

Proof. The statement follows from887

Var(Dn(X,Y )|X,Y ∈ Ωn) =
1

n2

n∑
i=1

2pi(1− pi)(p2
i + (1− pi)2) <

1

4n
→ 0 as n→∞.

888

This explains that when n large enough, even though the portion of the typical genotypes is small,889

the normalized Hamming distance between two genotypes is close to the normalized Hamming distance890

of two (n, ε)−typical genotypes.891

Now, given ε > 0 and n ∈ N, we denote by E(Dn(X,Y )|X,Y ∈ A(n)
ε (P )) the average normalized892

Hamming distance of two typical genotypes. Then893

Proposition B.3.2. The following estimates holds for n large enough,894

2
∑n

i=1 pi(1− pi)− (1− P(A
(n)
ε (P ))2)

nP(A
(n)
ε (P ))2

≤ E(Dn(X,Y )|X,Y ∈ A(n)
ε (P )) ≤

2
∑n

i=1 pi(1− pi)
nP(A

(n)
ε (P ))2

.

Proof. We note that for n large then 1− ε ≤ P(A
(n)
ε (P )) ≤ 1. Therefore895
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EP

(
Dn(X,Y )

∣∣∣∣∣X,Y ∈ A(n)
ε (P )

)
=

∑
(x,y)∈A(n)

ε (P )2
1
ndHam(x,y)P (x,y)∑

(x,y)∈A(n)
ε (P )2

P (x,y)

=

∑
(x,y)∈Ω2

n
dHam(x,y)P (x,y)−

∑
(x,y)/∈A(n)

ε (P )2
dHam(x,y)P (x,y)

nP(A
(n)
ε (P ))2

≥
2
∑n

i=1 pi(1− pi)− n
∑

(x,y)/∈A(n)
ε (P )2

P (x,y)

nP(A
(n)
ε (P ))2

.

It implies the proof.896

We then immediately have following corollaries:897

Corollary B.3.2. We have for n large898

EB(α,β)

(
EP
(
Dn(X,Y )

∣∣∣X,Y ∈ A(n)
ε (P )

))
≥ f(α, β) :=

2αβ

(α+ β)(α+ β + 1)
.

Corollary B.3.3. This lower bound f(α, β) is monotone along the average entropy rate EB(α,β)H̄n(P ).899

It means that when the average entropy rate increases then the below bound f(α, β) increases and vice900

verse.901

We also have a nice following property902

Theorem B.3.1. The correlation between the absolutely difference of logarithm with base 2 of proba-903

bilities of two arbitrary genotypes and their Hamming distance is always non-negative, i.e.904

corr
(
dH(X,Y ),

∣∣ log2 P (X)− log2 P (Y )
∣∣) ≥ 0.

Proof. First, by denoting905

Sn := E
(∣∣ log2 P (X1, . . . , Xn)− log2 P (Y1, . . . , Yn)

∣∣), and

906

S
(i)
n−1 := E

(∣∣ log2 P (X1, . . . , Xi−1, Xi+1, . . . , Xn)− log2 P (Y1, . . . , Yi−1, Yi+1, . . . , Yn)
∣∣),

it is easy to see that907

Sn ≥ S(i)
n−1, for all i = 1, . . . , n.
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Indeed, we have (for shorting the notations, we use here x̄i for (x1, . . . , xi−1, xi+1, . . . , xn))908

E
(∣∣ log2 P (X)− log2 P (Y )

∣∣) =
∑

x,y∈Ωn

| log2 P (x)− log2 P (y)|P (x)P (y)

=
∑
xi,yi

∣∣ log2(piP (xi))− log2((1− pi)P (yi))
∣∣piP (xi)(1− pi)P (yi)

+
∑
xi,yi

∣∣ log2((1− pi)P (xi))− log2(piP (yi))
∣∣(1− pi)P (xi)piP (yi)

+
∑
xi,yi

∣∣ log2(piP (xi))− log2(piP (yi))
∣∣piP (xi)piP (yi)

+
∑
xi,yi

∣∣ log2((1− pi)P (xi))− log2((1− pi)P (yi))
∣∣(1− pi)P (xi)(1− pi)P (yi)

=
∑
xi,yi

∣∣∣ log2 P (xi)− log2 P (yi)
∣∣∣P (xi)P (yi)

= S
(i)
n−1.

Therefore,909

E
(
dH(X,Y )

∣∣ log2 P (X)− log2 P (Y )
∣∣) =

∑
x,y∈Ωn

dH(x,y)| log2 P (x)− log2 P (y)|P (x)P (y)

=

n∑
i=1

∑
xi,yi

|xi − yi|
∑
xi,yi

| log2 P (x)− log2 P (y)|P (x)P (y)

=

n∑
i=1

∑
xi,yi

∣∣ log2(piP (xi))− log2((1− pi)P (yi))
∣∣piP (xi)(1− pi)P (yi)

+
n∑
i=1

∑
xi,yi

∣∣ log2((1− pi)P (xi))− log2(piP (yi))
∣∣(1− pi)P (xi)piP (yi)

=
n∑
i=1

[
E
(∣∣ log2 P (X)− log2 P (Y )

∣∣)
−
(
p2
i + (1− pi)2

)∑
xi,yi

∣∣ log2 P (xi))− log2 P (yi))
∣∣P (xi)P (yi)

]
= nSn −

n∑
i=1

(
p2
i + (1− pi)2

)
S

(i)
n−1

≥
(
n−

n∑
i=1

(p2
i + (1− pi)2

)
Sn

=
n∑
i=1

2pi(1− pi)Sn

= E
(
dH(X,Y )

)
E
(∣∣ log2 P (X)− log2 P (Y )

∣∣).
This implies the proof.910

B.4 Non-stationary AEP911

In this section of the Appendix, we consider some AEP properties in the non-stationary case:912
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Proposition B.4.1. 1. Given a sequence of binary independent random variables {Xn} with the913

corresponding mass probability functions pn(·) sastifying914

lim
n→∞

V arpn{− log2 pn(Xn)}
n

= 0.

Then, we have915

lim
n→∞

P

{∣∣∣∣∣− 1

n
log2 P (X)−Hn(P )

∣∣∣∣∣ ≥ ε
}

= 0, ∀ε > 0,

where P = (p1, . . . , pn), X = (X1, . . . , Xn) and Hn(P ) is the entropy rate with respect to P .916

2. Given a sequence of binary independent random variables {Xn} with the corresponding mass917

probability functions qn(·) sastifying limn→∞
V arqn{− log2 pn(Xn)}

n = 0. Then, we have918

lim
n→∞

Q

{∣∣∣∣∣− 1

n
log2 P (X)−Hn(q, p)

∣∣∣∣∣ ≥ ε
}

= 0, ∀ε > 0,

where Q = (q1, . . . , qn), X = (X1, . . . , Xn) and Hn(q, p) is the cross entropy rate of Q with919

respect to P .920

Proof. We will prove the second statement. The first one can be done similarly. Indeed, we have921

Q

{∣∣∣∣∣− 1

n
log2 P (X)−Hn(q, p)

∣∣∣∣∣ ≥ ε
}

= Q

{∣∣∣∣∣− 1

n
log2 P (X)− EQ

(
− 1

n
log2 P (X)

)∣∣∣∣∣ ≥ ε
}

≤
V arQ

(
− 1

n log2 P (X)

)
ε2

(by Markov’s inequality)

=

EQ

(
n∑
i=1

(
log2 pi(Xi) +H(qi, pi)

))2

n2ε2

=

n∑
i=1

V arqi

(
log2 pi(Xi)

)
n2ε2

(by independency)

(B.4.1)

Therefore we obtain922

lim
n→∞

Q

{∣∣∣∣∣− 1

n
log2 P (X)−Hn(q, p)

∣∣∣∣∣ ≥ ε
}
≤ lim

n→∞

n∑
i=1

V arqi

(
log2 pi(Xi)

)
n2ε2

= lim
n→∞

V arqn

(
log2 pn(Xn)

)
2nε2

= 0 (due to the condition).

It implies the proof.923

Proposition B.4.2. Let {Xn}n be a sequence of mutual independent random variables with given924

binomial distribution Xk ∼ Pk ∈ Bin(pk). Given any other sequence of binomial distributions Qk ∈925

Bin(qk) with assumption that 0 < δ ≤ pk, qk ≤ 1− δ for all k. Then926

1

n
log2

P (X1, . . . , Xn)

Q(X1, . . . , Xn)
−Dn(P‖Q)

a.e.−−→ 0 (n→∞).
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Proof. Denote by Yk = log2
Pk(Xk)
Qk(Xk) and its sample average Y n = 1

n

∑n
k=1 Yk. Note that927

EP (Y n) = Dn(P‖Q).

Moreover, from the assumption of pk, qk we have928

V arP (Yk) ≤

(
log2

(1− δ
δ

))2

.

Therefore by applying the strong law of large numbers we obtain the result.929
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C Appendix C930

C.1 Quantitative versions of the AEP931

In this section of the appendix, we will show the following quantitative versions of the AEP and the932

cross-entropy AEP. For all ε > 0 and n ∈ N, it holds that933

Prp

[∣∣∣∣− 1

n
log p(X)− H̄n(p)

∣∣∣∣ > ε

]
< 2 exp

(
− 2nε2

log2 δ
1−δ

)
(C.1.1)

and934

Prp

[∣∣∣∣− 1

n
log q(X)− H̄n(p, q)

∣∣∣∣ > ε

]
< 2 exp

(
− 2nε2

log2 δ
1−δ

)
, (C.1.2)

where by Prp we denote the probability given that the genotype X is distributed according to P .935

These estimates can be obtained as follows. Suppose Z1, . . . , Zn are independent, real-valued936

random variables, with Zi taking values in the interval [ai, bi]. Then the Hoeffding inequality states937

that938

Pr

[∣∣∣∣∣− 1

n

n∑
i=1

Zi − E

[
1

n

n∑
i=1

Zi

]∣∣∣∣∣ ≥ ε
]
≤ 2 exp

(
− 2nε2

1
n

∑n
i=1(ai − bi)2

)
.

First, we apply the Hoeffding inequality to the random variables Zi taking on the value − log pi939

with probability pi, and the value − log(1 − pi) with probability (1 − pi). The Hoeffding inequality940

then implies941

Prp

[∣∣∣∣− 1

n
log p(X)− H̄n(p)

∣∣∣∣ ≥ ε] ≤ 2 exp

(
− 2nε2

1
n

∑n
i=1 log2 pi

1−pi

)
. (C.1.3)

Similarly, we could define Zi to be equal to − log qi with probability pi and equal to − log(1− qi)942

with probability (1− pi). Then, the Hoeffding inequality reads943

Prp

[∣∣∣∣− 1

n
log q(X)− H̄n(p, q)

∣∣∣∣ ≥ ε] ≤ 2 exp

(
− 2nε2

1
n

∑n
i=1 log2 qi

1−qi

)
. (C.1.4)

Note that the above inequalities can be viewed as versions of the AEP with explicit, exponential error944

bounds, for non-stationary sources.945

C.2 Error bounds for typicality classifiers946

In this section we explain how the quantitative versions of the AEP from the last section imply947

exponential error bounds for the typicality classifiers introduced in the main text.948

C.2.1 Error bound for naive typicality classifier949

We assume without loss of generality that H̄n(q) ≤ H̄n(p). We recall the definition of the constants950

CP := |H̄n(q, p)− H̄n(p)|, CQ := |H̄n(p, q)− H̄n(q)|. (C.2.1)

and the definition of the error rate951

En =
1

2
Prp[X is classified to Q] +

1

2
Prq[X is classfied to P ].
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We note that in the naive typicality classifier, given that a sample X comes from Q, an error can952

only be made, that is it can only be assigned to P , if953 ∣∣∣∣− 1

n
log q(X)− H̄n(q)

∣∣∣∣ ≥ CQ
2
.

The quantitative AEP bounds the probability of this event by954

Prq

[∣∣∣∣− 1

n
log q(X)− H̄n(q)

∣∣∣∣ ≥ CQ
2

]
≤ 2 exp

(
−

nC2
Q

2 log2 δ
1−δ

)
.

Given that a sample is drawn from P , an error can be made in two situations, either955 ∣∣∣∣− 1

n
log q(X)− H̄n(p, q)

∣∣∣∣ ≥ CQ
2

or956 ∣∣∣∣− 1

n
log p(X)− H̄n(p)

∣∣∣∣ ≥ CQ
2
.

The quantitative cross-entropy AEP bounds957

Prp

[∣∣∣∣− 1

n
log q(X)− H̄n(p, q)

∣∣∣∣ ≥ CQ
2

]
≤ 2 exp

(
−

nC2
Q

2 log2 δ
1−δ

)
,

whereas the quantitative AEP implies958

Prp

[∣∣∣∣− 1

n
log p(X)− H̄n(p)

∣∣∣∣ ≥ CQ
2

]
≤ 2 exp

(
−

nC2
Q

2 log2 δ
1−δ

)
.

Consequently,959

En ≤ 3 exp

(
−

nC2
Q

2 log2 δ
1−δ

)
.

C.2.2 Error bound for cross-entropy classifier960

We now assume without loss of generality that CQ > CP . Note that given that a sample X comes961

from distribution Q, it can only be assigned to P if962 ∣∣∣∣− 1

n
log q(X)− H̄n(q)

∣∣∣∣ ≥ CQ
2
.

As in the previous section, the quantitative AEP bounds this probability of this event by963

Prq

[∣∣∣∣− 1

n
log q(X)− H̄n(q)

∣∣∣∣ ≥ CQ
2

]
≤ 2 exp

(
−

nC2
Q

2 log2 δ
1−δ

)
.

Similarly, given that a sample X comes from distribution P , it can only be assigned to Q if964 ∣∣∣∣− 1

n
log q(X)− H̄n(p, q)

∣∣∣∣ ≥ CQ
2
,

and the quantitative cross-entropy AEP estimates965

Prp

[∣∣∣∣− 1

n
log q(X)− H̄n(p, q)

∣∣∣∣ ≥ CQ
2

]
≤ 2 exp

(
−

nC2
Q

2 log2 δ
1−δ

)
.
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Combining these two estimates we obtain966

En =
1

2
Pp[X is classified to Q] +

1

2
Pq[X is classfied to P ]

≤ 2 exp

(
nC2

Q

2 log2 δ
1−δ

)
.

In fact, by using one-sided Hoeffding inequalities (and corresponding one-sided AEPs), one can actually967

replace the prefactor 2 by 1.968

C.3 Domain in log-probability plane969

In this section we consider the limiting behavior for n→∞ of the sets Sn ⊂ R2 which we define by970

Sn :=
⋃

X∈{0,1}n

(
− 1

n
log p(X),− 1

n
log q(X)

)
.

These sets are the union of the image of all possible genotypes in the log-probability plane.971

The claim is that (with probability one) these sets converge (in Hausdorff distance) to a certain972

closed, convex set A. This set A is determined by the distribution of the pi’s and the qi’s. Loosely973

speaking, for large n, for every point A there is a point in Sn closeby, and for every point in Sn there974

is a point in A closeby.975

For simplicity, we assume that the gene frequences pi and qi can only attain a finite number of976

values. We denote the possible values for pi by a1 . . . , aN and the possible values for qi by b1, . . . , bN .977

We assume moreover that 0 < a1 < · · · < aN < 1 and 0 < b1 < · · · < bN < 1.978

We denote by f(aj , bk) the probability that pi = aj and qi = bk.979

By L(a, b) we denote the (unoriented) line segment between the points (− log(a),− log(b)) and980

(− log(1− a),− log(1− b)). Then the set A is the Minkowski linear combination of the line segments981

L(aj , bk), that is982

A :=
N∑
j=1

N∑
k=1

f(aj , bk)L(aj , bk), (C.3.1)

where the sums on the right-hand-side denote Minkowski sums.983

Theorem C.3.1. With probability 1, the sequence of pi and qi is such that the set Sn converges to the984

set A in the Hausdorff distance as n→∞.985

A version of this theorem is also true when pi and qi are continuously distributed, under some986

extra conditions on the distribution (specifically their behavior close to 0 and 1). The set A then has987

a description as a ‘Minkowski integral’ rather than a Minkowski sum. We do not focus on this case to988

avoid technicalities.989

The Hausdorff distance between two bounded and closed sets K1 and K2 is defined as the smallest990

ε ≥ 0 such that K1 is contained in Tε(K2) and K2 is contained in Tε(K1), where991

Tε(Ki) = {z ∈ R2 | dist(z,Ki) ≤ ε}.

We will explain the proof of the theorem. We let Nn(aj , bk) denote the number of indices i ∈992

{1, . . . , n} such that pi = aj and qi = bk.993
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For the first part of the proof, we define auxiliary sets An by994

An :=
N∑
j=1

N∑
k=1

Nn(aj , bk)

n
L(aj , bk),

and we will show that An → A in the Hausdorff distance. For instance by Sanov’s theorem, it follows995

directly that with probability 1,996

Nn(aj , bk)

n
→ f(aj , bk).

By the continuity properties for the Minkowski sum it follows that the sets An converge in the Hausdorff997

distance to A.998

With a bit more work (and an application of for instance Pinsker’s inequality and the Borel-Cantelli999

Lemma), one can also extract that with probability one, the convergence is faster than (log n)/
√
n.1000

In the second part of the proof, we show that the Hausdorff distance between An and Sn can be1001

bounded by C/n, for some constant C. In fact, we will see that An is the convex hull of Sn, while on1002

the other hand Sn is a C/n-net in An, which means that for every point in An, there is a point in Sn1003

at distance less than C/n. First, we introduce some additional notation.1004

For a line segment L in R2, we denote by B(L) and E(L) its endpoints, in such a way that1005

B(L)2 ≤ E(L)2, and if B(L)2 = E(L)2, then B(L)1 ≤ E(L)1. These conditions uniquely define B(L)1006

and E(L).1007

We will now give an equivalent description of the set Sn. We start with an important observation.1008

Given a string X ∈ {0, 1}n, the point1009 (
− 1

n
log p(X),− 1

n
log q(X)

)
only depends on for how many indices i, Xi = 1 and pi = aj , qi = bk. This motivates the following1010

definition.1011

By Mn we denote the space of N ×N matrices x with integer entries that satisfy the constraints1012

0 ≤ xjk ≤ Nn(aj , bk).

For x ∈Mn we denote by pnx the following point in R2
1013

pnx :=
N∑
j=1

N∑
k=1

Nn(aj , bk)

n

(
xjk

Nn(aj , bk)
B(L(aj , bk)) +

Nn(aj , bk)− xjk
Nn(aj , bk)

E(L(aj , bk))

)
It is then clear that we may rewrite Sn as1014

Sn =
⋃

x∈Mn

pnx.

Moreover, it follows that Sn ⊂ An.1015

Using this representation of Sn, we can now check that as n→∞, the Hausdorff distance between1016

Sn and An is bounded by C/n, thereby proving the theorem.1017

A line segment is the convex hull of its endpoints. For two sets B1 and B2, the convex hull of1018

B1 +B2 is equal to the convex hull of B1 plus the convex hull of B2. Therefore, the set An is equal to1019

the convex hull of the Minkowski sum1020

N∑
j=1

N∑
k=1

Nn(aj , bk)

n
{B(L(aj , bk)), E(L(aj , bk))} .
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In other words, if we denote by MN the set of all N ×N matrices with entries either zero or one,1021

the set A can also be described as the convex hull of the points1022

qny :=
N∑
j=1

N∑
k=1

Nn(aj , bk)

n

(
yjkB(L(aj , bk)) + (1− yjk)E(L(aj , bk))

)
,

for y ∈MN , that is1023

An = Conv.Hull

 ⋃
y∈MN

qny

 . (C.3.2)

Note that the set {qny }y∈MN
is a subset of {pnx}x∈Mn , while we established previously that pnx ∈ An for1024

every x ∈Mn. Hence, also1025

An = Conv.HullSn.

The final statement to check is that every point in An is within distance C/n to some point pnx.1026

Let therefore a ∈ An. Then1027

a =
∑
y∈MN

λyq
n
y

for some constants λy ≥ 0 with
∑

y λy = 1. If we plug in the definition of qny and switch the order of1028

summation, we may write a as1029

a =
N∑
j=1

N∑
k=1

Nn(aj , bk)

n

((∑
y

λyyjk

)
B(L(aj , bk)) +

(
1−

(∑
y

λyyjk

))
E(L(aj , bk))

)
,

where we used that
∑

y λy = 1. Then choose xjk such that1030

xjk
Nn(aj , bk)

≈
∑
y

λyyjk,

the error being bounded by at most 1/Nn(aj , bk).1031

The distance between a and1032

pnx =
N∑
j=1

N∑
k=1

Nn(aj , bk)

n

(
xjk

Nn(aj , bk)
B(L(aj , bk)) +

(
1−

(∑
y

xjk
Nn(aj , bk)

))
E(L(aj , bk))

)
,

is therefore bounded by C/n for some constant C depending on N and the distance of the aj and bk1033

to 0 and 1. This finishes the proof of the theorem.1034

C.3.1 A practical method to compute the accessible set A1035

The previous description (C.3.2) provides a way to compute the set An and a similar formula can be1036

derived for A. However, it is not very efficient. In this section we will provide a more efficient way to1037

calculate A, by specifying its boundary.1038

First we order the points (aj , bk) according to the angles1039

αjk = arccos
E(L(aj , bk))1 −B(L(aj , bk))1

length(L(aj , bk))
.

In other words, for ` = 1, . . . , N2, we let j(`) and k(`) be such that1040

α` ≤ α`+1,
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where we used shorthand α` = αj(`)k(`), and ` 7→ (j(`), k(`)) is surjective onto {1, . . . , N}2.1041

Next, with obvious abbreviations, we define vectors1042

v` := f`(E` −B`)

and1043

w` := f`B`, w :=
N2∑
`=1

w`.

It is immediate from the definitions that the set A can also be written as1044

A = w + Conv.Hull
⋃

y∈{0,1}N2

N2∑
`=1

y`v`

= w +
⋃

λ∈[0,1]N2

N2∑
`=1

λ`v`.

We claim that1045

A = w + Conv.Hull(v1, v1 + v2, . . . , v1 + · · ·+ vN2 , v2 + v3 + · · ·+ vN2 , . . . , vN2).

To see this, we first note that we may without loss of generality assume that w = 0, and that the1046

slopes of v`1 and v`2 are different when `1 6= `2.1047

By the definition of B` and E`, we know that for every `, the vector v` either points to the right or1048

lies in the upper halfplane. Note that the origin lies in A, as do the line segments [0, v1] and [0, vN2 ].1049

Moreover, the set A lies in the smaller cone bounded by the rays starting from the origin with the1050

directions of v1 and vN2 respectively. It follows that the origin is an extreme point of the convex1051

polyhedron A.1052

Note that for k = 1, . . . , N2 − 1 we may alternatively write A as1053

A =
k∑
`=1

v` +
⋃

λ∈[0,1]N2

 k∑
`=1

λ1(−v`) +
N2∑

`=k+1

λ`v`

 .

This representation of A allows one to check that for every k = 1, . . . , N2,1054

k∑
`=1

v`

is an extreme point of A, while the line segments1055 [
k∑
`=1

v`,

k+1∑
`=1

v`

]
are faces of A. Indeed, it is clear that the points and line segments lie in A. On the other hand, A is1056

contained in the smaller cone bounded by the rays with starting point1057

k∑
`=1

v`

and directions −vk and vk+1 respectively. A similar argument shows that the points1058

N2∑
`=k

v`
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are extreme points and the line segments1059  N2∑
`=k

v`,

N2∑
`=k+1

v`


are faces. Hence, we have shown that1060

A = w + Conv.Hull(v1, v1 + v2, . . . , v1 + · · ·+ vN2 , v2 + v3 + · · ·+ vN2 , . . . , vN2).

This description allows for fast checks whether or not a point lies in A.1061
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