
From Typical Sequences to Typical Genotypes

Omri Tal∗, Tat Dat Tran†, and Jacobus Portegies‡

Max-Planck-Institute for Mathematics in the Sciences, Leipzig, Germany
Inselstrasse 22, D-04103 Leipzig

October 6, 2016

Abstract

We demonstrate an application of a core notion of information theory, that of
typical sequences and their related properties, to analysis of population genetic data.
Based on the asymptotic equipartition property (AEP) for non-stationary discrete-
time sources producing independent symbols, we introduce the concepts of typical
genotypes and population entropy rate and cross-entropy rate. We analyze three
perspectives on typical genotypes: a set perspective on the interplay of typical sets
of genotypes from two populations, a geometric perspective on their structure in
high dimensional space, and a statistical learning perspective on the prospects of
constructing typical-set based classifiers. In particular, we show that such classifiers
have a surprising resilience to noise originating from small population samples, and
highlight the potential for further links between inference and communication.
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1 Introduction

We are drowning in information and starving for knowledge.
- John Naisbitt.

In this paper we identify several intrinsic properties of long stretches of genetic sequences
from multiple populations that justify an information theoretic approach in their analysis.
Our central observation is that long genotypes consisting of polymorphisms from a source
population may be considered as sequences of discrete symbols generated by a ‘source’
distribution, where the capacity to sequence long stretches of genomes is congruent with
the use of large block sizes in the design of communication channels. Rather than aris-
ing temporally as an ordered sequence of symbols in a communication channel, genetic
sequences are non-temporal linear outputs of a sequencing scheme. This perspective ul-
timately enables the utilization of important information-theoretic asymptotic properties
in the analysis of population genetic data.

Specifically, we introduce the concept of typical genotypes for a population, analogous
to the core notion of typical sequences in information theory. These are genotypes one
typically expects to encounter in a given population and are likely to represent the popu-
lation very well. We analyze these typical genotypes from various perspectives. We show
that it is possible that a genotype is typical to two different populations at once and give
an algorithm that can quickly decide whether mutual typicality occurs, given standard
models for two populations.

Crucially, we identify conditions in which it is likely that mutual typicality occurs
asymptotically, that is, for genotypes consisting of a very high number of variants. What
we observe, however, is that in this case, only a very small portion of typical genotypes
for the latter population is typical for the first. This immediately suggests a classification
scheme based on typical sets. We introduce two of such typical-set based classifiers and
show that their error rates decay exponentially fast, as one would expect from a good
classifier. Moreover, we show that such classifiers generally perform well even in the
presence of sampling noise arising from small training sets.

From a mathematical point of view, a recurring difficulty is the non-stationarity of
the source distribution, or in other words, that the markers vary in their frequency across
loci. This prevents us from directly utilizing some of the standard results in information
theory that apply to stationary sources, and required us to find more refined mathematical
arguments instead.
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1.1 Typical sequences and the asymptotic equipartition property

Information Theory is at core concerned with the transmission of messages through a
noisy channel as efficiently and reliably as possible1. This primarily involves two themes,
data compression (aka, source coding) and error correction (aka, channel coding). The
former theme is mainly concerned with the attainable limits to data compression, while
the latter involves the limits of information transfer rate for a particular source distribution
and channel noise level. Both themes rely intrinsically on the notion of ‘typical sequences’.

A key insight of Shannon, the asymptotic equipartition property (AEP) forms the basis
of many of the proofs in information theory. The property can be roughly paraphrased
as “Almost everything is almost equally probable”, and is essentially based on the law of
large numbers with respect to long sequences from a random source. Stated as a limit,
for any sequence of i.i.d. random variables Xi distributed according to X we have,

lim
n→∞

Pr

[∣∣∣− 1

n
log2 p(X1, X2, . . . , Xn)−H(X)

∣∣∣ < ε

]
= 1 ∀ε > 0. (1)

This property is expressed in terms of the information-theoretic notion of empirical
entropy. This denotes the negative normalized log probability of a sequence x, an entity
better suited for analysis than p(x). This property leads naturally to the idea of typical
sequences, which has its origins in Shannon’s original ground-breaking 1948 paper. This
notion forms the heart of the central insights of Shannon with respect to the possibility
of reliable signal communication, and features in the actual theorems and their formal
proofs. The definition of a typical set A(n)

ε with respect a distribution source X, its
entropy H(X), a (small) ε > 0 and a (large) n, entails the set of all sequences of length
n that may be generated by X such that,

2−n[H(X)+ε] ≤ p(x1, . . . , xn) ≤ 2−n[H(X)−ε] (2)

where p(x1, x2, . . . , xn) denotes the probability of any particular sequence from X.

If the source is binary and stationary it is intuitive to spot sequences that are possibly
typical. For instance, say we have a binary independent and identically distributed (i.i.d)
source with a probability for “1” of 0.1, then the sequence 0000100010000000000000100000
0011 seems very possibly typical (as it has roughly 10% 1s), while the sequence 0110100110
1100101111101001001011 is most probably not.2

The interesting and useful properties of typical sets are a result of the AEP, and are
thus asymptotic in nature: they obtain for large enough n, given any small arbitrary
’threshold’ ε. Formally, for any ε > 0 arbitrarily small, n can be chosen sufficiently large
such that:

1From both historical and engineering perspectives, this should more correctly be referred to as Com-
munication Theory ([Shannon, 1948]).

2Note that typical sequences are not the most probable ones; evidently, the most probable for this
source is 0000000000000000000000000000000.
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(a) the probability of a sequence from X being drawn from A
(n)
ε is greater than 1 − ε,

and

(b) (1− ε)2n(H(X)−ε) ≤ |A(n)
ε | ≤ 2n(H(X)+ε) .

Thus at high dimensionality (n� 1), the typical set has probability nearly 1, the number
of elements in the typical set is nearly 2nH(X), and consequently all elements of the typical
set are nearly equiprobable with a probability tending to 2−nH(X) ([Cover and Thomas, 2006]
Theorem 3.1.2).

The set of all sequences of length n is then commonly divided into two sets, the typical
set, where the sample entropy or the empirical entropy, denoting the negative normalized
log probability of a sequence, is in close proximity (ε) to the true entropy of the source
per Eq. (2), and the non-typical set, which contains the other sequences (Fig. 1). We shall
focus our attention on the typical set and any property that is true in high probability
for typical sequences will determine the behaviour of almost any long sequence sampled
from the distribution.

Typical set

Ω

)()( 2 XnHnA →ε

01101001101100101110
10000101101111101

00000001000100000001

11011110110110010011

Non-Typical Set

nn 2)( =Ω

Fig. 1: The universe of all possible sequences with respect to a source distribution in a high
dimensional space can be divided into two exclusive subsets, typical and non-typical. Here, we
illustrate one typical sequence and a few very non-typical sequences corresponding to an i.i.d.
source with probability of 0.1 for “1” for some small epsilon and high n.

1.2 The Population Model

We consider for simplicity two haploid populations P and Q that are in linkage equilib-
rium (LE) across loci, and where genotypes constitute in a sequence of Single Nucleotide
Polymorphisms (SNPs). A SNP is the most common type of genetic variant – a single
base pair mutation at a specific locus usually consisting of two alleles (the rare/minor
allele frequency is >1%). Each SNP Xi is coded 0 or 1 arbitrarily, and SNPs from pop-
ulation P have frequencies (probability that Xi = 1) pi while those from population
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Q have frequencies qi. Closely following practical settings, we assume some arbitrary
small cut-off frequency for SNP frequencies, such that frequencies in any population
cannot be arbitrarily close to fixation, 0 < δ < pi, qi < 1 − δ. Each genotype popu-
lation sample is essentially a long sequence of biallelic SNPs, e.g., GCGCCGGGCGC-
CGGCGCGGGGG, which is then binary coded according to the convention above, e.g.,
0101100010110010100000. The probability of such a genotype x = (x1, x2, . . . , xn) from
P is then p(x) = (1 − p1)p2(1 − p3)p4p5 . . . pn. We first assume the SNP frequencies
are fully known (as if an infinite population sample is used to learn), and later on re-
lax this assumption in the section on small-sample related noise. Finally, for analyzing
properties in expectation and deriving asymptotic statements we assume pi and qi are
sampled i.i.d. from frequency distributions. For making explicit calculations and nu-
merical simulations we employ a parameterized Beta distribution for SNP frequencies,
such that pi ∼ B(αP , βP ), qi ∼ B(αQ, βQ), as is standard in population genetic analy-
sis ([Rannala and Mountain, 1997]).3 In our numerical simulations, we sample the SNP
frequencies from these distributions and then sample long genotypes from the multivari-
ate Bernoulli distribution for populations P and Q that are parameterized by pi and qi,
i : 1 . . . n, respectively.4

1.3 Properties of sequences of genetic variants

Population SNP data have several interesting ‘set-typicality’ properties that may render
them amenable to information theoretic analysis:

(a) SNPs typically are bi-valued, simplifying modeling SNPs as sequences of binary
symbols from a communication source.

(b) The standard assumption of linkage equilibrium within local populations translates
to a statistical independence of Xi, which in turn enables the applicability of the
AEP (for a non-stationary source with independent symbols).

(c) SNPs have typically differing frequencies across loci (i.e., analogous to a ‘nonsta-
tionary’ source), resulting in statistical terms in deviations from i.i.d. samples; this
property makes an information theoretic analysis of SNP genotypes more challeng-
ing, being highly dependent on the existence of advanced forms of the AEP.

(d) The recent availability of very large number of SNPs from high-throughput sequenc-
ing of genomes enables the consideration of very long sequences (size n), or ‘block
sizes’ in information theoretic terms, with asymptotic qualities.

3The use of a common Beta model for allele frequencies was adopted for both its mathematical
simplicity and goodness of fit to empirical distributions from natural populations. It is however by no
means a prerequisite for arriving at our main results.

4The Mathematica code for generating the numerical simulations for the figures can be made available
by request from the corresponding author.
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(e) SNP frequencies are commonly above some arbitrary cut-off frequency, so that the
variance of log2(pi) is bounded, a requirement for a nonstationary form of the AEP
to hold (as we shall see).

(f) SNPs typically have low minor allele frequencies (MAF) in natural populations
(Fig. 2A). If we consider long sequences of SNPs as our genotypes, then the set of
typical sequences from a population will be small (of asymptotic size 2nH(X)) relative
to the ‘universe’ set (of size 2n) of all possible genotypes. This property enables
treating such typical sequences as effective proxies for their source population.

(g) Different populations often have different SNP-based genetic diversities (see the
wide variation in heterozygosities across human populations in Fig. 2C), and SNP
frequencies are often highly correlated between close populations (Fig. 2B). These
properties have particular interpretations when populations are seen as communi-
cation ‘sources’.

A B C

Fig. 2: Human populations typically exhibit predominately low SNP frequencies (and thus
commonly modeled by a Beta distribution highly skewed to the left), which are correlated between
close populations (due to a split from common ancestry), and of differing average frequencies
across worldwide populations. A: SNPs from the HapMap ENCODE regions according to minor
allele frequency (in blue) [Borrowed with permission from Nature 2005; 437(7063): 1299–1320,
Fig. 4]. | B: SNP frequencies from the HapMap ENCODE project between (the relatively close)
JPT and CHB populations are highly correlated between the two populations at each locus
[Borrowed with permission from Nature 2005; 437(7063): 1299–1320, Fig. 6]. | C: Differing SNP
heterozygosity across worldwide populations with most diversity occurring in Africa and least in
the Americas and Oceania. [Borrowed with permission from Nature Genetics 38, 1251 – 1260
(2006), Fig. 3].

1.4 AEPs for genotypes from multiple populations

To formulate AEP statements for genotypes comprised of long stretches of population
variants, we first define two central concepts: population entropy rate and cross-entropy
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rate. The entropy of a population with respect to a set of loci has been previously
invoked in formulating measures of population diversity or differentiation with respect to
a single locus ([Lewontin, 1972]). Since SNPs typically have differing frequencies across
loci, translating in information theoretic parlance to ‘non-stationarity’ of the source, one
cannot simply employ entropy H as a variation measure of a population. Instead, we
need to define a population entropy rate across loci. Thus, with respect to a set of SNP
frequencies in population P ,

Hn(P ) =
1

n
H(p1, p2, . . . , pn) =

1

n

n∑
i=1

H(pi) = − 1

n

n∑
i=1

(
pi log2 pi + (1− pi) log2(1− pi)

)
(3)

with the second equality due to independence across loci (absence of LD).5 We may now
extend this concept by incorporating a second population that serves as the source, while
the log-probabilities remain with respect to the first. In information theoretic terms, the
cross-entropy H(p, q) measures the average number of bits required to compress symbols
from a source distribution P if the coder is optimized for distribution Q, different than the
true underlying distribution. For univariate variables, the cross-entropy can be expressed
in terms of the Kullback Leibler divergence (also known as the relative entropy,6

H(q, p) = EQ(− logP ) = H(P ) +DKL(Q‖P ).

The population cross-entropy rate is then simply an average over n loci,

Hn(q, p) = EQ
[
− 1

n
log2 p(x1, . . . , xn)

]
− 1

n

n∑
i=1

(
qi log2 pi + (1− qi) log2(1− pi)

)
and similarly for Hn(p, q).

Formally, if genotypes originate from distribution P , then by the non-stationary ver-
sion of the AEP (see Appendix B.4.1 part 1) their log-probability with respect to P

converges to the entropy rate of P ,

lim
n→∞

Pr

[∣∣∣∣∣− 1

n
log2 p(X1, . . . , Xn)−Hn(P )

∣∣∣∣∣ < ε
∣∣∣X ∼ P

]
= 1 ∀ε > 0 (4)

whereas if genotypes originate from distribution Q, then their log-probability with respect
to P converges to the cross-entropy rate of Q with respect to P , essentially a ‘cross-entropy
AEP’ for non-stationary sources (see Appendix B.4.1 part 2),

lim
n→∞

Pr

[∣∣∣∣∣− 1

n
log2 p(X1, . . . , Xn)−Hn(q, p)

∣∣∣∣∣ < ε
∣∣∣X ∼ Q

]
= 1 ∀ε > 0. (5)

5Note that in probability theory, the entropy rate or source information rate of a stochastic process is
defined asymptotically, H(X) = limn→∞H(X1, X2, . . . , Xn)/n.

6Note that we use lower-case in H(p, q) to distinguish this notion from the joint entropy, commonly
denoted H(P,Q).
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1.5 Typical genotypes

This consideration of the ‘set-typicality’ properties along with AEPs for our genotypes
suggests that a notion of typical-genotypes may be fruitful for characterizing popula-
tion samples. We therefore extend the standard definition of a typical set to support a
non-stationary source, which better captures our population model. The set of typical
genotypes of length n with respect to the population entropy rate of P and some small
arbitrary ε, comprises of all genotypes whose frequency is within the bounds,7

2−n[Hn(P )+ε] ≤ p(x1, . . . , xn) ≤ 2−n[Hn(P )−ε]. (6)

For notational simplicity, we will denote by q(x1, x2, . . . , xn) the corresponding prob-
ability of a genotype from population Q. Since the definition of a typical set pertains for
any n and ε, our justification in invoking this concept in this context does not have to
rely on asymptotic properties only, but holds naturally by virtue of commonly large n for
SNPs.

1.6 Quantitative AEPs

It is beneficial to additionally formulate quantitative, non-stationary versions of the AEP
theorems. Given that a genotype of length n is sampled from population P , the probability
that it is not typical is bounded by

Pr

[∣∣∣∣∣− 1

n
log2 p(X1, . . . , Xn)−Hn(P )

∣∣∣∣∣ > ε
∣∣∣X ∼ P

]
≤ 2 exp

(
− 2nε2

log2 δ
1−δ

)
.

This estimate is proved in Appendix C.1. In the same way, the probability that the log
probability under P deviates more than ε from the cross-entropy rate, is estimated in the
following quantitative version of a ‘cross-entropy AEP’ for non-stationary sources,

Pr

[∣∣∣∣∣− 1

n
log2 p(X1, . . . , Xn)−Hn(q, p)

∣∣∣∣∣ > ε
∣∣∣X ∼ Q

]
≤ 2 exp

(
− 2nε2

log2 δ
1−δ

)
.

The corresponding non-quantitative versions of the AEPs in Eq. (4) and (5) are obtained
by letting n approach infinity.

Since the above inequalities hold for every n and ε > 0, we can for instance choose,

ε(n) =

√
log2

2
δ

1−δ log2 n

n

7Note that the related notion of ‘strong typicality’ is inapplicable in our framework where alleles
are not identically distributed across loci; it is only applicable for stationary sources where the sample
frequency of a symbol is closely linked to its underlying distribution (the additional power afforded by
‘strong typicality’ is useful in proving stronger result in universal coding, rate distortion theory, and large
deviation theory).
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to conclude that,

Pr

[∣∣∣∣∣− 1

n
log2 p(X1, . . . , Xn)−Hn(P )

∣∣∣∣∣ > ε(n)
∣∣∣X ∼ P

]
≤ 2

n
(7)

and similarly,

Pr

[∣∣∣∣∣− 1

n
log2 p(X1, . . . , Xn)−Hn(q, p)

∣∣∣∣∣ > ε(n)
∣∣∣X ∼ Q

]
≤ 2

n
. (8)

This shows that the deviation from the entropy rate practically scales as 1√
n
, which is

what one would expect also from a central limit theorem. A more careful analysis in
Appendix C.1 also shows that the scale log2 δ

1−δ may actually be replaced by the sum

1

n

n∑
i=1

log2 pi
1− pi

or
1

n

n∑
i=1

log2 qi
1− qi

which for large n will be close to their expectation value and therefore are usually smaller
for larger entropy rates. This may explain why the spread away from the entropy rate
seems smaller for higher entropy rates. Fig. 3 depicts numerical simulations of the con-
vergence rate of the AEPs under typical population scenarios.

A B

Fig. 3: Numerical simulation of the convergence rate of the AEPs under two scenarios of pop-
ulation parameters, around the entropy rate Hn(Q) (blue) and the cross-entropy rate Hn(p, q)

(green, dashed). A: Low entropy populations (Beta model w/ αP = 4/βP = 20, αQ = 2/βQ =

20;FST = 0.032). | B: high entropy populations (Beta model w/ αP = 24/βP = 20, αQ =

14/βQ = 20;FST = 0.032).

1.7 The log-probability space

The AEP theorems of Eqs. (4-8) manifest as increasingly dense clusters of population
samples on a log-probability space, centered on entropy and cross-entropy rates, depending
on their population of origin. To fully capture the interplay of genotype samples from the
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two source populations, and the information theoretic quantities of entropy and cross-
entropy rates, we take a two-dimensional perspective of the log-probability space. We
should expect samples from the two populations to cluster around the intersection of
the entropy and cross-entropy rates of their respective populations, with a concentration
that increases with the number of loci included in analysis. Crucially, typical genotypes
should cluster tighter than general samples around the entropy and cross-entropy rates
intersection, since typical sequences are by definition constrained by some ε > 0. These
results are illustrated in Fig. 4.

A B
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Log@qHXLD

0.2 0.4 0.6 0.8 1.0

-

1

n

Log@pHXLD0.2

0.4

0.6

0.8

1.0

-

1

n

Log@qHXLD

Fig. 4: Samples from two different populations become clearly distinguished on a 2D log-
probability plot when high number of loci are included in analysis, clustering around the in-
tersection of the entropy (wide lines) and cross-entropy (thin lines) rates of their respective
populations. The width of the entropy stripes is twice ε to reflect the typicality criteria of Eq.
(6), where here ε = 0.03. In this simulation, 200 genotype samples of 100 SNP loci (panel A)
and 600 SNP loci (panel B) were drawn from each of the two populations of similar entropy rates
and FST = 0.05, where allele frequencies were modeled on Beta distributions (α = 1, β = 8 for
both populations).

The divergent modes of concentration on the log-probability plot of samples from the
two populations suggest that the proximity of the entropy and cross-entropy rates is an
important metric in the context of population assignment for genotypic samples, as we
shall see in what follows.

2 Set perspective on typical genotypes

Before we approach the task of constructing classifiers for population genetic samples
based on the notion of typicality, we present two perspectives on the interplay of typical
sets: from their set-overlap and exclusivity, and from their geometric dispersion. In
particular, we will be interested in the asymptotic properties due to the high dimensional
nature of genotypes (with the inclusion of large number of SNPs). Our hope would be that
under expected population model of real population SNP data, sets of typical genotypes
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from diverse populations asymptotically become non-overlapping and good proxies for
their respective sources.

2.1 Mutual and exclusive typicality

We first define the concept of mutual typicality.8 Formally, given P , Q and small εp > 0

and εq > 0, we would like to know whether the two typical sets partially overlap, i.e., is
there at least one x = (x1, . . . , xn) such that x is mutually typical to both P and Q?9 Any
such sequence x would need to satisfy the two inequalities,

given P,Q and εP , εQ > 0{∣∣− 1
n

log2 p(x1, . . . , xn)−Hn(P )
∣∣ < εP ,∣∣− 1

n
log2 q(x1, . . . , xn)−Hn(Q)

∣∣ < εQ

(9)

or equivalently as a set of four linear programming inequalities of degree n,
−nHn(P )−

n∑
i=1

log2(1− pi) + nεP >
n∑
i=1

xi log2
pi

1−pi > −nHn(P )−
n∑
i=1

log2(1− pi)− nεP

−nHn(Q)−
n∑
i=1

log2(1− qi) + nεQ >
n∑
i=1

xi log2
qi

1−qi > −nHn(Q)−
n∑
i=1

log2(1− qi)− nεQ.

(10)

This formulation (for a finite n) is essentially a 0 − 1 integer programming with no
optimization problem: given n Boolean variables and m (= 4 in this case) linear con-
straints, the problem is to find an assignment of either 0 or 1 to the variables such that all
constraints are satisfied ([Impagliazzo et al., 2014]). The ‘no optimization’ qualification
reflects the omission of an objective function to be optimized that is usually an integral
part of a linear programming framework, while only considering the problem of deciding
if a set of constraints is feasible. This special case of an integer programming is a decision
rather than optimization problem, and as such is NP−complete rather than NP−hard.
In fact, 0−1 integer programming with no optimization is one of Karp’s 21 NP−complete
problems ([Zuckerman, 1996]). Crucially for our purposes, the NP completeness means
that it is not readily amenable to resolution for a large n, as our genotypic framework typi-
cally demands. Nevertheless, for small values of n one may solve the integer programming
problem and infer the existence of mutual or exclusive typicality.

8To our best knowledge, an analysis of mutual and exclusive typicality and generally the interplay of
multiple typical sets (from sources defined on the same space) is original and has not been attempted in
the information theory literature.

9Notice that our notion of mutual typicality is not the same as the standard the information theoretic
concept of ‘joint typicality’, which concerns whether two different sequences are each marginally typical
and at the same time typical with respect to the joint distribution (a central concept in Shannon’s channel
coding theorem).
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As with other NP-complete problems, high-dimensional instances are intractable and
so heuristic methods must be used instead. We shall see that for large n, an approximate
solution to the problem of mutual typicality can be found very efficiently, since the integer
programming problem is well approximated by a linear programming problem. We slightly
simplify the problem, making it effectively independent of the choice of εP and εQ. Thus,
we ask whether given any small εP and εQ there exists an overlap of the two typical sets
for high values of n. Next, we simulate the log-probability space with samples drawn from
a uniform (i.e., max entropy) distribution, so that a maximal set of different genotypes
from the total 2n universe is captured. The cross-entropy AEP of Eq. (5) directly implies
that asymptotically the density of this domain is concentrated at the intersection of two
cross-entropy rates, Hn(u, p) and Hn(u, q) , where U is the uniform distribution. This
coordinate may be expressed as a function of the SNP frequencies of P and Q,{

EU
[
− 1

n
log2 p(X1, . . . , Xn)

]
= Hn(u, p) = − 1

n
log2

∏n
i=1

√
pi(1− pi)

EU
[
− 1

n
log2 q(X1, . . . , Xn)

]
= Hn(u, q) = − 1

n
log2

∏n
i=1

√
qi(1− qi).

The contour of this domain is prescribed within boundaries which are the maximal
and minimal empirical entropy values with respect to P and Q for any of the possible 2n

genotypes,

maxP = max
x∈[0,1]n

[
− 1

n
log2 p(x1, . . . , xn)

]

=− 1

n

n∑
i=1

log2 min{pi, 1− pi},

minP = min
x∈[0,1]n

[
− 1

n
log2 p(x1, . . . , xn)

]

=− 1

n

n∑
i=1

log2 max{pi, 1− pi},

(11)

and similarly for population Q.

From Eq. (11) it is evident that these boundaries are an average across loci and there-
fore will depend on the parameters of the population model, rather than on the dimension-
ality n. However, since the domain inscribed by all possible samples on the log-probability
space does not include the whole rectangular area prescribed by the boundaries, knowl-
edge of these boundaries is insufficient for determining whether the intersection of the two
entropy rates (i.e., the location where samples are asymptotically mutually typical) lies
within the domain or is external to it.

In Theorem C.3.1 in the appendix we actually show that the domain converges (in
the so-called Hausdorff distance) to a fixed, convex set, and provide an expression for
the contour of this domain. The converge rate is approximately 1/

√
n, and therefore

even for relatively small values of n the convex set is already a good approximation for
the domain. This formulation, in conjunction with the entropy rates of P and Q, will

12
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then allow to immediately determine whether asymptotically there are mutually-typical
genotypes (a solution to Eq. (10) for high n): if the intersection of the two entropy rates
lies within the genotype domain then for any εP and εQ chosen as small as we wish, there
will be mutual typicality for some non-empty subset of genotypes; else, there will only be
exclusive typicality (a consequence of the convergence in the Hausdorff distance at the
given rate is that the domain is sufficiently non-porous, with porousness bounded by 1/n).
Fig. 5 depicts numerical simulations of this domain along with its computed contour at
the asymptotic limit, for two representative scenarios of mutual and exclusive typicality.

A B

Fig. 5: Instances of ‘source-less’ mutual and exclusive typicality scenarios for populations P
and Q at the asymptotic limit for n. A simulation of the analytic formulation of a contour of
the domain inscribed by all samples drawn from the uniform distribution over the space, was
overlaid on top of a simulation of a plot of samples from this uniform distribution, with respect
to their log-probability. The wide stripes represent the entropy rates of P (yellow) and Q (grey).
The thin border lines represent the minimum and maximum attainable values for samples from
the specific population distributions. A: the intersection of the two entropy rates lies within
the domain, implying existence of mutual typicality (populations modeled on Beta distributions
for SNP frequencies with αP = 6/βP = 18;αQ = 3/βQ = 18, and using n = 40 loci and
60K samples in the domain simulation). | B: the intersection lies outside the domain, implying
merely exclusive typicality (populations modeled on Beta distributions for SNP frequencies with
αP = 15/βP = 36;αQ = 4/βQ = 36, and using n = 40 loci and 60K samples in the domain
simulation). The intersection of the cross-entropy and entropy rates are marked as small dots
on the entropy rate lines, merely to indicate where highest density would be if genotypes were
sampled from P and Q, rather than from the maximum entropy distribution.

From a set perspective, this result translates into two scenarios for the interplay of
typical sets at the asymptotic limit: [a] if the intersection of the entropy rates lies within
the contour of the log-probability domain then the two typical sets will have some overlap,

13
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whereas [b] if the intersection lies outside the contour then the two typical sets will
completely separate. Since we assume arbitrarily small εP and εQ, the set overlap in case
[a] only depends on the density of the domain at the intersection of the entropy rates,
and is approximately given by 2nH(R), where R is the distribution given by frequencies
ri that yields the maximum entropy rate under the constraints that H(r, p) = H(P ) and
H(r, q) = H(Q).

To see that there could not be a third scenario in which one typical set is wholly
contained in the other (except trivially for the hypothetical case where one distribution is
uniform, i.e., pi = 1

2
), we show that the entropy rate cannot coincide with the minimal or

maximal bounds of the domain on the log-probability space. From a geometric perspective
on the log-probability space (see Fig. 5) this means that the two entropy rate lines are
never tangential to the genotype domain. Formally, with respect to the minimum for
population P from Eq. (11), the inequality,

min
P

= − 1

n

n∑
i=1

log2 max{pi, 1− pi} ≤ Hn(P ) = − 1

n

n∑
i=1

(
pi log2 pi + (1− pi) log2(1− pi)

)
,

obtains equality only for pi = 1/2 for all i : 1 . . . n, an impossible population scenario
(similarly for maxP ,minQ and maxQ. Fig. 6A depicts these possibilities in the form of
Venn diagrams.

2.2 Source-full mutual typicality

We would also like to analyze a modified definition of mutual typicality, which only con-
siders probable genotypes, i.e., those likely to originate from their respective populations
by a random sampling procedure. We also retain the original relevance of the choice of εP
and εQ, and again focus our inquiry at the asymptotic limit. This perspective on mutual
typicality is explicitly pertinent for our subsequent inquiry into typicality-based classifiers.
It is now necessary to introduce the concept of ‘cross-entropy criterion’, which measures
the proximity of the entropy and cross-entropy rates. There are two such criteria for our
two-population framework,

CP =
∣∣∣Hn(q, p)−Hn(P )

∣∣∣ and CQ =
∣∣∣Hn(p, q)−Hn(Q)

∣∣∣. (12)

Clearly, if the two populations are effectively a single population (P=Q) then both
cross-entropy criteria will be zero, since from basic definitions,{

CP =
∣∣Hn(q, p)−Hn(P )

∣∣ =
∣∣Dn(Q‖P ) +Hn(Q)−Hn(P )

∣∣ = 0

CQ =
∣∣Hn(p, q)−Hn(Q)

∣∣ =
∣∣Dn(P‖Q) +Hn(P )−Hn(Q)

∣∣ = 0,

where the KL-Divergence rate from P to Q is naturally defined as,

Dn(P‖Q) = − 1

n

n∑
i=1

pi log2

pi
qi

+ (1− pi) log2

1− pi
1− qi

. (13)
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(and similarly from Q to P ). However, one cross-entropy criterion may be asymptoti-
cally zero under a standard model for allele frequencies, even given differing populations;
population clusters are then inseparable on the corresponding log-probability plot along
the corresponding axis (Appendix B.2). Crucially, both criteria cannot asymptotically be
zero at the same time (Appendix B, Remark B.2.1 ),

max
(

lim
n→∞

CP , lim
n→∞

CQ

)
> 0

Now, from the AEP and the cross-entropy AEP of Eqs. with probability 1 (4) and (5)
it follows that the predominant asymptotic scenario is exclusive typicality with probability
1, given a choice of small typicality ε’s based on the cross-entropy criteria, such that
εP ≤ CP and εQ ≤ CQ. Otherwise, in case CP < εP or CQ < εQ, then asymptotically
one typical set will be with probability 1 fully contained in the other (i.e., all samples
originating from one population are mutually typical and all samples originating from the
other population are exclusively typical). These two cases are depicted in Fig. 6, under
large n to simulate the asymptotic behavior.

A B
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Fig. 6: With samples originating from populations P and Q, there is with probability 1 either
exclusivity of typicality (A) or complete one-sided mutual typicality (B). Entropy rates are
marked as wide strips according to respective epsilons and cross-entropy rates are the thin lines.
A: a typical scenario in which there is exclusivity of typicality (FST = 0.02, n = 1000, εP =

εQ = 0.02). | B: a highly uncommon scenario where one cross-entropy criterion is close to zero
although populations are distant (FST = 0.02, n = 1600, εP = εQ = 0.02), and therefore all
samples from Q are mutually typical but none of P are as such (a zoomed view to capture the
proximity of the entropy rate and cross-entropy rate for P , the latter accentuated as black line).

Let SmP and SmQ denote random samples of sizem from population P andQ respectively.
Define the sampled typical sets tmP and tmQ by,

tmP := TP ∩ (SmP ∪ SmQ )

tmQ := TQ ∩ (SmP ∪ SmQ )

If the sample size m is not too large, the Venn diagram associated to these two sets is
most likely equal to one of the two options depicted in Fig. 7B.
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Ω
tP

tQ

tP

tQ

or
tP

A B

 

n→∞ n→∞

oror

Fig. 7: A Venn diagram of the interplay of two typical sets (denoted TP and TQ) with respect
to populations P and Q, from low n to an asymptotic limit. A: In the general case where
we consider all possible genotypes from the universe, exclusive typicality at low dimensions
transforms into either complete separation (bottom) or a very slight overlap (top), depending on
the model parameters of the two populations. | B: In the case where genotypes are sampled from
their source populations, a possible overlap in low dimensions transforms into either complete
separation (top) or, rarely, a case where one typical set is wholly contained in the other (bottom).
Note that the size of the typical sets relative to the universe is asymptotically zero, an aspect
that that cannot be captured in this schematic.

3 A geometric perspective

We can gain more insight into the relation of typical genotypes to non-typical ones by
taking a geometric perspective, where long genotype sequences are seen as vectors in
n−dimensional space. Essentially, the genotypes all lie on the vertices of a hypercube of
dimension n (Fig. 8).

How are the typical genotypes dispersed with respect to hypercube space? From
the inequalities of Eqs. (10) it is evident that all typical genotypes are represented by
those vertices that lie inside an (n − 1)-dimensional hyperplane of width 2ε intersecting
the hypercube at some point, with an orientation and location fully determined by the
parameters of the population distribution.

More importantly, at high dimensions the set of typical genotypes disperses evenly
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A1

B1

A2
B2

A3

B3

Fig. 8: A geometric representation of the space of 3 SNP genotypes sampled from two popula-
tions. Genotype samples lie on the vertices of the (hyper)cube, where Ai is the “0” allele and Bi
the “1” allele for locus i, i : 1 . . . 3 (e.g., genotype samples on the bottom left vertex A1A2A3 are
000 genotypes). Here 40 samples were drawn from one population (blue) and 40 samples from
the other population (green), with respective population centroids represented by smaller dots
within the cube.

across the space occupied by population samples. The evidence for this comes from
two types of numerical simulations. First, a PCA plots, which are known to essentially
retain relative distances in the largest principal components, clearly indicate that typical
genotypes behave as a random sample from the population, as depicted for two different
populations in Fig. 9.

Second, an analysis of the average pairwise distance of typical genotype pairs compared
to that of the whole distribution, reveals that the former converges to the latter even
when only a small portion of the pairs are typical (see Appendix B.3 for the asymptotic
equidistance property; see [Granot et al., 2016] for the effect of LD on equidistance). Note
that trivially, if the whole sample becomes typical at some high dimension then the two
averages will by definition converge to the same value. Moreover, simulations at low
dimensions reveal that typical genotypes are slightly more densely clustered than samples
from the whole population, since the convergence to the total average distance is always
from below. These results are illustrated in Fig. 10.

Not very surprisingly, the higher the population entropy rate the higher the average
pairwise distance, since genotypes will tend to differ across more loci (see Appendix B.3).
Finally, the lower the ε we choose to define our typical set the lower the rate of conver-
gence: this suggests that genotypes which are essentially more ‘strongly typical’ (i.e., that
correspond to a greater proximity to the entropy rate) are more tightly clustered.
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Fig. 9: A PCA plot of two populations, blue and red, with typical genotypes of each in dark
blue and dark red respectively (with centroids in green), demonstrating the even dispersion of
typical samples in high dimensions. The simulation uses 120 samples of n=180 loci drawn from
each population and SNP frequencies modeled on Beta distributions (αP = 4, βP = 20, αQ =

2, βQ = 20, ε = 0.01).

4 Information-theoretic learning

The relation of information theory to statistical learning is currently a very active field
of inquiry. The use of information theoretic learning criteria in advanced learning models
such as neural networks and other adaptive systems have clearly demonstrated a number of
advantages that arise due to the increased information content of these criteria relative to
second-order statistics ([Erdogmus and Principe, 2006])10 The links between the two fields
goes back to Fano’s inequality ([Fano, 1961]). This result, central to information theory,
links the transmission error probability of a noisy communication channel to standard
information theoretic quantities such as conditional entropy and mutual information, and
can be used to determine a lower bound for the probability of classification error in terms
of the information transferred through the classifier.11

We propose taking a further step in this direction, by implementing classifiers for ge-
netic population data based on the principle and properties of typical sets, making use
of our notions of population entropy rate, cross-entropy rate, cross-entropy criteria and
typical genotypes. We derive our motivation by the preceding geometrical and mutual
typicality analyses. The former perspective indicates that typical genotypes are asymp-
totically good representatives of their source populations, while the latter perspective

10However, we note that notions of typical sets and typical sequences are almost absent from the main
textbook of the field, [Principe, 2010].

11A simple upper bound states that the Bayes error rate of a multi-class problem cannot exceed half
of the Shannon conditional entropy (of the class label given the feature vector).
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Fig. 10: Two runs of a numerical simulation for average pairwise distance for samples drawn
from a single population (in green), compared to a subset which comprises only of pairs of
typical genotypes (in black), with ε = 0.01. The two curves always converge at high number of
loci n even when only a small portion (in dashed blue) of the pairs are typical. We also convey
the variance (thin red) of the pairwise total distance to highlight the asymptotic equidistance
property. A: a scenario with population entropy rate = 0.41 (corresponding to very low MAFs)|
B: entropy rate = 0.73 (corresponding to medium MAFs). Simulated using 120 samples drawn
from a populations modeled on Beta distributions for SNP frequencies.

indicates that samples from different populations are asymptotically exclusively typical.
Crucially, we shall see that the performance of typicality-based classifiers is highly depen-
dent on the value of the cross-entropy criteria, specifically that,

max{CP , CQ} � 0.

It is also instructive to compare the performance of such information-theoretic clas-
sifiers against a standard Bayes classifier (or maximum-likelihood classifier if no prior is
available). This classifier is both conceptually simple in its definition, and optimal in its
performance under known class-conditional densities. The expected error or misclassifi-
cation rate of the Bayes classifier is called the Bayes error ([Hastie et al., 2009]). Our
standard assumption of linkage equilibrium within populations (absence of within-class
dependencies) motivates use of a naïve Bayes classifier, where class-conditional likelihoods
are expressed as the product of allele frequencies across the independent loci.

4.1 Classifiers based on set-typicality

According to the AEP, if a long genotype is not typical for population P , then it is very
unlikely that the genotype originated from population P . This suggests that a test of
typicality could classify genotypes to the two different populations: naively, a genotype is
classified to P if it is typical for P , and classified to Q if it is typical for Q. However, this
naïve formulation of the classifier does not specify what should happen in case a genotype
is typical to both P and Q, or if it is not typical to either population. Moreover, the
definition of typicality is associated with a parameter ε. The choice of this parameter
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is closely related to these issues. Nonetheless, our previous analysis shows us how we
may deal with these. Fig. 11 depicts a typical instance of the mapping of our population
clusters on a 2D log-probability plot, in relation to the entropy and cross-entropy rates,
and some ε parameters.
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Fig. 11: A typical instance of the location of the two population clusters on a 2D log-probability
plot, in relation to the entropy and cross-entropy rates, and a Bayes classifier (here Hn(P ) >

Hn(Q)). The centers of P and Q will always lie on opposite sides of the Bayes classifier diagonal
since the KL-Divergence is always positive when populations differ (in terms of the coordinates
of the two cluster centers, Hn(p, q) > Hn(P ) and Hn(q, p) > Hn(Q).

We now introduce two typicality-based classifiers. To assess the performance of such a
classifier, we estimate its error rates, which is the probability the classifier makes an error
under the following process. With probability half, a genotype is sampled from population
P , and with probability half, a genotype is sampled from population Q. Based on this
genotype, the classifier guesses whether it originates from population P or from population
Q. The error rate is the probability that the classifier guesses wrong. More precisely

En =
1

2
Pr
[
classify to P | sampled from Q

]
+

1

2
Pr
[
classify to Q | sampled from P

]
.

4.2 The naïve typicality classifier

The naïve typicality classifier is based on the idea of classification we have described
before, that is classify to P (to Q) if the genotype is typical for population P (Q). As
discussed before, we need to decide what the classifier should do when a genotype is
typical for both populations. We prescribe that in this case of mutual typicality, the
genotype will be classified to the population with the lower entropy rate, since the lower
entropy rate population has higher asymptotic genotype probability, p(x) = 2−nHn(X)
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([Cover and Thomas, 2006]). The classifier is then described by,

Classify to P if

∣∣∣∣∣− 1

n

n∑
i=1

log2 p(Xi)−Hn(P )

∣∣∣∣∣ ≤ εP and

∣∣∣∣∣− 1

n

n∑
i=1

log2 q(Xi)−Hn(Q)

∣∣∣∣∣ > εQ

or else,

Classify to Q if

∣∣∣∣∣− 1

n

n∑
i=1

log2 q(Xi)−Hn(Q)

∣∣∣∣∣ ≤ εQ and

∣∣∣∣∣− 1

n

n∑
i=1

log2 p(Xi)−Hn(P )

∣∣∣∣∣ > εP

or else, if a genotype is not typical to any population, the classifier assigns by proximity12,
that is, it classifies to P if∣∣∣∣∣− 1

n

n∑
i=1

log2 p(Xi)−Hn(P )

∣∣∣∣∣ ≤
∣∣∣∣∣− 1

n

n∑
i=1

log2 q(Xi)−Hn(Q)

∣∣∣∣∣,
and otherwise to Q.

Or else, if mutually typical classify to P if, Hn(P ) < Hn(Q), and otherwise to Q.

The choice of ε should not be arbitrary and also not necessarily equal between the two
populations. If we choose ε too large we may never have exclusivity (as from some low
dimension onwards all genotypes may be mutually typical), while if we choose ε too small
we will not have typicality at lower dimensions (low SNP count). A reasonable choice is to
base the two ε’s on the cross-entropy criteria, which consequently have to be determined
in the learning stage,

εP =
1

2
CP , εQ =

1

2
CQ.

This represents a balance between avoiding mutual typicality (by setting ε not too high)
while allowing for exclusive typicality (by setting ε not too low).

Based on the quantitative versions of the AEP and cross-entropy AEP, we derive the
following error bounds for the naïve typicality classifier (Appendix C.2),13

En ≤ 3 exp

(
−

nC2
Q

2 log2 δ
1−δ

)
.

4.3 The cross-entropy typicality classifier

In fact, our previous analysis of the cross-entropy criteria shows that a simpler classifier,
for which the selection of ε occurs implicitly and only one sample entropy is measured,

12We note that a seemingly simpler classifier that exclusively classifies by proximity to the entropy
rates would be implicitly assuming Hn(P ) = Hn(Q) and thus wrongly classify samples that are mutually
typical, consequently suffering a lower performance; e.g., some samples from the cluster of Q may lie
closer on the x-axis to H(P ) than on the y-axis to H(Q), and thus be wrongly classifier to P .

13We may also explicitly express the error rate of this classifier in a closed form (Appendix A.1).
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would suffice. Without loss of generality, assume that CQ > CP . Then classify to Q if the
sample entropy with respect to Q of a genotype is closer to the entropy rate of Q than to
the cross-entropy rate of P given Q, i.e.,∣∣∣∣∣− 1

n

n∑
i=1

log2 q(Xi)−Hn(Q)

∣∣∣∣∣ ≤
∣∣∣∣∣− 1

n

n∑
i=1

log2 q(Xi)−Hn(p, q)

∣∣∣∣∣
and classify to P otherwise.

Note that, without loss of generality, for any level of CQ, a higher convergence rate for
our entropy and cross-entropy AEPs implies that at any dimension n, samples from Q will
tend to map tighter around Hn(Q), while samples from P will tend to map tighter around
Hn(p, q) in the log-probability space. This immediately leads to stronger separation of
the clusters along the Q axis, and therefore better classification prospects.

The error rate of this classifier can again be estimated from the quantitative AEPs,
and is bounded by,14

En ≤ 2 exp

(
−

nC2
Q

2 log2 δ
1−δ

)
.

as shown in Appendix C.2.

The guiding principle behind this classifier is that the larger cross-entropy criterion
represents the empirical entropy dimension along which there is stronger separation be-
tween the clusters, a direct consequence of the AEP theorems of Eqs. (4) and (5). We
note here that it is generally not possible for this classifier to avoid the computation of
both CP and CQ, inferring their relation by examining some simpler proxy.15. Indeed,
the population entropy rates, which are generally more readily available, do not contain
enough information since, for example,

Hn(P ) > Hn(Q) &Hn(P ) > Hn(q, p)⇒ CQ > CP

otherwise it is also possible that CQ < CP (Appendix B, Corollary B.2.2).

Specifically, if without loss of generality CQ > CP then the classifier considers the
empirical entropy of samples from the two populations with respect to the Q distribution.
For any given level of the cross-entropy criterion (here CQ), a higher convergence rate
roughly implies that at any dimension n, samples from Q will tend to map tighter around
Hn(Q), while samples from P will tend to map tighter aroundHn(p, q). The two classifiers
are presented schematically in Fig. 12.

Crucially, we show that given any arbitrary thresholds on SNP frequencies, the error
rates are exponentially bounded and thus are asymptotically zero, as would be required

14As with the naïve typicality classifier, we may explicitly express the error rate of this classifier in a
closed form (Appendix A.2).

15Under a particular restrictive assumption on the underlying SNP frequency model and for large
enough n, the classifier may use the entropy rates as proxy, due to the following asymptotic result,
limn→∞Hn(P ) > limn→∞Hn(Q)⇒ limn→∞ CQ > limn→∞ CP (Appendix B, Corollary B.2.2)
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Fig. 12: The naïve typicality classifier works according to exclusive typicality (with classifi-
cation on min entropy in case of mutual typicality, and proximity to entropy rates in case of
non-typicality). B: The simpler cross-entropy classifier works by considering only the empirical
entropy with respect to one population and classifying according to proximity to entropy rate
vs. cross-entropy rate.

from any classifier on high dimensional data, and the rate of decrease is proportional
to the maximal of the two cross-entropy criteria. A numerical simulation of the log-
probability space and the resulting error rates in a scenario of differing population entropy
rates is depicted in Fig. 13 (real worldwide distant populations often have different SNP-
based diversities, as reflected by property ‘f’ in section Properties of sequences of genetic
variants).

Further simulations of the typicality classifiers reveal a low performance when the two
cross-entropy criteria are very similar (generally associated with similar population en-
tropy rates, but not necessarily). A log-probability plot with respect to the cross-entropy
classifier reveals that this phenomenon is due to a relatively weak vertical/horizontal
separation of the clusters (Fig. 14).

4.4 Sampling Noise

The typicality classification models have been thus far defined parametrically, using the
underlying frequencies of SNPs across the two populations. In practice, however, es-
timated frequencies from available data, rather than ‘true’ values must be used. This
introduces a source of stochastic noise into our system. The link of noise to uncertainty
was noted very early by [Shannon and Weaver, 1949], who stressed that: ‘If noise is in-
troduced, then the received message contains certain distortions? [and] exhibits, because
of the effects of the noise, an increased uncertainty.’ Fano’s Inequality ([Fano, 1961]) rep-
resents a more rigorous interpretation of communication noise and the resulting increase
in conditional entropy, in terms of a bound on the classification error.
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Fig. 13: The performance of the typicality-based classifiers vs. an optimal Bayes classifier when
population entropy rates differ (given known underlying allele frequencies). A: The error rates of
the typicality classifiers demonstrate a good performance even for close populations. | B: The two
clusters on the log-probability plot portray a strong horizontal separation (dotted line represents
the cross-entropy classification threshold), here at n = 300 SNPs (w/600 samples). In both
panels SNP frequencies were modeled on Beta distributions (αP = 4, βP = 20, αQ = 2, βQ = 20)
at each locus, with FST = 0.03,Hn(P ) = 0.6, Hn(Q) = 0.4.

Simulations of a variety of classification methods on genetic data show that perfor-
mance is degraded with smaller population samples, most notably for close populations
([Rosenberg, 2005]). Estimates of SNP frequencies computed at the training stage deviate
from their true population values due to ‘statistical sampling’.16 This is the case even
when genetic sequencing is 100% error free since it is purely a statistical effect.

Here we highlight a surprising feature of all typicality based classifiers under such
training noise. For scenarios of close populations (low FST ), differing entropy rates and
small training sample sizes, the typicality based classifiers consistently out-perform the
Bayes classifier when allele frequencies are estimated using a natural (naïve) or maximum-
likelihood estimator (MLE).17 Allele frequency estimates of zero are replaced with a small
constant proportional with the sample size, a common procedure to avoid zero geno-
type frequencies ([Rosenberg, 2005]; [Phillips et al., 2007]).18 The advantage of such an
estimator is that it makes no underlying assumptions on the ‘true’ distributions of the
parameters estimated (in particular, it makes no assumption on SNP frequencies being
distributed i.i.d. across loci), i.e., no prior is utilized. The performance of the typicality

16Note that this phenomenon is different from noise introduced by error in the sequencing of ‘test
samples’.

17A natural estimator, which simply counts the proportion of alleles of a particular type, and
a maximum likelihood estimator (MLE) give identical solutions when the sample consists of unre-
lated individuals. Thus maximum likelihood provides a justification for using the “natural” estimator
([Adrianto and Montgomery, 2012]).

18For a sample of size m, the naïve ML estimator sets frequencies to be 1/(2m+1) for counts of zero
alleles, and 1-1/(2m+1) for counts of m alleles (since we assume SNPs have some cut-off frequency), as
in [Phillips et al., 2007].
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Fig. 14: The performance of the typicality-based classifiers vs. an optimal Bayes classifier
when population entropy rates are very similar (given known underlying allele frequencies).
A: The error rates of the typicality classifiers demonstrate relatively poor performance. | B:
The two clusters on the log-probability plot portray a weak horizontal separation (dotted line
represents the cross-entropy classification threshold) even at n = 200 SNPs (w/600 samples),
while maintaining separation with respect to the Bayes classification line (thin blue). In both
panels SNP frequencies were modeled on Beta distributions (αP = 2, βP = 6, αQ = 2, βQ = 6)
at each locus, with FST = 0.05, Hn(P ) = 0.73, Hn(Q) = 0.76.

classifiers under MLE can also be formally captured (Appendix A.3). We may also incor-
porate a Bayesian approach to allele frequency estimation by using a prior based on some
justified model, effectively attenuating the sampling noise. A reasonable prior (close-to-
optimal) can be produced by updating a histogram across a large number of loci, given
the assumption of identically distributed frequencies across loci. In conjunction with the
binomial likelihood function this results in a posterior distribution.19 These phenomena
are illustrated in Fig. 15.

What is the underlying reason for the typicality classifiers’ resilience to training noise
under a naïve maximum likelihood estimation of allele frequencies? Note that from AEP
considerations, the noisy samples from population P will cluster in the log-probability
space around the coordinate

(
Ĥn(p, p̂), Ĥn(p, q̂)

)
, while the noisy samples from Q cluster

around the coordinate
(
Ĥn(q, p̂), Ĥn(q, q̂)

)
. Now, simulations indicate that the introduc-

tion of sampling noise causes the population clusters to disperse, and more importantly, to
shift towards the diagonal Bayesian separation line and therefore compromise the Bayes
classifier’s accuracy (as can be appreciated from comparing the two panels of Fig. 16).

19The standard approach is to take the mean of the posterior distribution. The beta distribution is
a conjugate prior for the binomial likelihood (which is our sampling distribution) since the posterior is
also a beta distribution, making the formulation of the posterior simple: Beta(z + α,N − z + β), where
Beta(α, β) is the prior, N is the size of the sample and z is the number of ‘1’ alleles in the sample at that
locus [Schervish, 1995]. We then take the mean of the posterior which is (z + α)/(N + α+ β).
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Fig. 15: With maximum likelihood estimation of allele frequencies under small training sets
(high sampling ‘noise’ level) and differing population entropy rates the typicality based classifiers
consistently out-perform a Bayes classifier (Panel A), an advantage which dissipates if the ‘true’
prior is known and a Bayesian posterior is employed (Panel B). In both panels SNP frequencies
were modeled on Beta distributions (αP = 4/βP = 20, αQ = 2/βQ = 20) at each locus, with
FST = 0.03, Hn(P ) = 0.6, Hn(Q) = 0.4, with a training set of 9 samples from each population,
averaged over 6 training runs.

Formally, from Jensen’s inequality we get,{
ETN [Hn(p, p̂)−Hn(P )] > 0,

ETN [Hn(q, q̂)−Hn(Q)] > 0,

where ETN denotes the expectation value with regard to a training scenario of sample size
N .

We now turn to the resilience of the typicality classifiers and consider the effect of
noise on the cross-entropy classifier, where without loss of generality, CQ > CP . Note
that,

lim
n→∞

ETN [Hn(p̂, q̂)− Ĥn(p, q̂)] = 0,

since p̂ is an unbiased estimator of p. Heuristically, the difference,

ETN [Hn(p, q̂)− Ĥn(p, q)] = E

[
− p1 log2

q̂1

q1

− (1− p1) log2

1− q̂1

1− q1

]
,

is likely to be much larger than the difference

ETN [Hn(q, q̂)− Ĥn(Q)] = E

[
− q1 log2

q̂1

q1

− (1− q1) log2

1− q̂1

1− q1

]
,

for the following reason: in both cases a large contribution to the difference comes from
where q1 is small and q̂1 provides an underestimate for q1, resulting in a large logarithm
log2

q̂1
q1
. However, in the second difference, this logarithm has a prefactor q1 which is small,

whereas in the first difference the prefactor p1 which on average is significantly larger.

A similar type of argument suggests that the difference ETN

[
Hn(Q̂) − Hn(Q)

]
is

relatively small compared to ETN [Hn(p̂, q̂) − Hn(p, q)]. These heuristics make plausible
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that the threshold of the cross-entropy classifier, calculated as the average of Hn(Q̂) and
Hn(p̂, q̂), still separates well the ‘noisy’ clusters, for which the vertical coordinates are
given by Hn(p, q̂) and Hn(q, q̂) .
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Fig. 16: The effect of training noise on genotype samples on the log-probability plot. A: a sce-
nario without sampling noise. | B: the same scenario when sampling noise is introduced (only 12
training samples from each population), resulting in better horizontal separation (cross-entropy
classifier) than a diagonal one (Bayes classifier). 1200 samples were drawn from each population
at n = 300 SNPs, where population SNP frequencies were modeled on Beta distributions for P
and Q with αP = 6/βP = 40, αQ = 3/βQ = 40, at each locus.

4.5 Relative-entropy typicality

A well-known extension of the concept of typical-set is the ‘relative entropy typical set’
([Cover and Thomas, 2006], Section 11.8). For any fixed n and ε > 0, and two distribu-
tions P1 and P2, the relative entropy typical set is defined as,

A(n)
ε (P1‖P2) =

{
xn1 : D(P1‖P2)− ε ≤ 1

n
log2

P1(x1, . . . , xn)

P2(x1, . . . , xn)
≤ D(P1‖P2) + ε

}
where (x1, . . . , xn) ∈ Ω(n).

Similar to standard set typicality, the relative entropy typical set asymptotically in-
cludes all the probability,

lim
n→∞

P1(A(n)
ε (P1‖P2)) = 1.

Crucially for our purposes there exists an associated AEP theorem for relative typi-
cality ([Cover and Thomas, 2006], Theorem 11.8.1): Let X1, X2, . . . , Xn be a sequence of
random variables drawn i.i.d. according to P1(x) and let P2(x) be any other distribution
on the same support, then,

1

n
log2

P1(x1, . . . , xn)

P2(x1, . . . , xn)
→ D(P1‖P2) in probability.
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However, to account for the non-stationary sources (i.e. the variation of SNP frequen-
cies across loci, a standard feature of population data), as in our treatment of entropy
typicality, we need to modify the definition of relative-entropy typicality and derive an
associated AEP theorem (Appendix B.4).

We may now construct a naïve classifier based on exclusive relative-typicality, with
some choice of an epsilon margin around the respective KL-Divergence rate, and some
means of resolution for the cases of mutual relative-typicality or lack of relative-typicality.
Alternatively, a more straightforward construction is to simply to classify by proximity
to the respective KL-Divergences,

Classify to P if

∣∣∣∣∣ 1n
n∑
i=1

log2

p(Xi)

q(Xi)
−Dn(P‖Q)

∣∣∣∣∣ <
∣∣∣∣∣ 1n

n∑
i=1

log2

q(Xi)

p(Xi)
−Dn(Q‖P )

∣∣∣∣∣
else, classify to Q.

Where the KL-Divergence rate is defined in Eq. (13). Fig. 17 is a schematic of such
classifiers with respect to the log-probability space. (see Appendix A.4 for a closed-form
formulation of the error rate).

Finally, note that this classifier can also be described as,

Classify to P if
n∑
i=1

log2

p(Xi)

q(Xi)
>
n

2

(
Dn(P‖Q)−Dn(Q‖P )

)
else, classify to Q.

While on the other hand, a Bayes classifier with prior α classifies as follows,

Classify to P if
n∑
i=1

log2

p(Xi)

q(Xi)
> log2

1− α
α

else, classify to Q.

Hence, the relative entropy classifier that classifies by proximity, as described above, is
exactly a Bayes classifier with prior α, where α satisfies,

log2

1− α
α

=
n

2

(
Dn(P‖Q)−Dn(Q‖P )

)
that is,

α =

(
1 + 2

n
2

(
Dn(P‖Q)−Dn(Q‖P )

))−1

where different choices of ‘ε’ would correspond to choosing different priors for the Bayes
classifier. Not surprisingly, the relative-entropy classifier is similarly not resilient to
learning-based noise.
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Fig. 17: A schematic representation of a straightforward implementation of a proximity-based
relative entropy typicality classifier (black diagonal line) and a naïve relative-entropy classifier
(dotted diagonal lines), with respect to some arbitrary epsilon (dark stripe margins, red for P
and grey for Q). The proximity-based relative entropy classifier merges in performance with a
Bayes classifier with an uninformative class prior (blue) line only when Dn(P‖Q) = Dn(Q‖P ),
and is represented by the line y = x−

(
Dn(Q‖P )−Dn(P‖Q)

)
/2.
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5 Discussion

Simplicity is the final achievement.
-- F. Chopin.

The availability of high-throughput SNP genotyping and the nature of polymorphisms
across loci and diverse populations suggest a fruitful application of one of the core ideas in
information theory, that of set-typicality and its associated properties. In this treatment,
we have employed conceptual and formal arguments along with evidence from numeri-
cal simulations to demonstrate that long sequences of genotype samples reveal properties
that are strongly suggestive of typical sequences. This allowed us to produce versions
of the asymptotic equipartition property that comply with population genetic data and
consequently define the notion of mutual typicality and describe information-theoretic
classification schemes. We do not claim here priority in invoking the concept of typi-
cal sets broadly in biology. For instance, in examining the fitness value of information,
[Donaldson-Matasci et al., 2010] have made use of the asymptotic properties of typical
sequences to capture properties of typical temporal sequences of selection environments
and their payoffs in evolution. However, our use of a typical-set framework to analyze
long sequences of genetic variants is, as far as we know, original.

The consideration of noise as a source of classification error, and a subsequent quan-
tification, is of course, not new. From a machine learning perspective, one of the early
insights of information theory was to consider a classification problem as a noisy channel.
Fano’s inequality provides a lower bound on the minimum error rate attainable by any
classifier on symbols through a noisy channel, in terms of entropies and conditional en-
tropies of the source and destination. Suppose that we know a random variable Y and we
wish to guess the value of a correlated random variable X. We expect to be able to esti-
mate X with a low probability of error only if the conditional entropy H(X|Y ) is small.
Assuming binary symbols as in our genetic framework, a simplified and slightly relaxed
quantification of this idea is the lower bound on the error ([Cover and Thomas, 2006]),
H(e) + e · log(χ) ≥ H(X)− I(X;Y ).

Shannon (1956) has famously cautioned against jumping on ‘the bandwagon’ of infor-
mation theory whose basic results were ‘aimed in very specific direction ... that is not
necessarily relevant to such fields as psychology, economics, and other social sciences’.
He stressed that while ‘Applications [of information theory] are being made to biology
. . . , A thorough understanding of the mathematical foundation and of its communication
application is surely a prerequisite to other applications . . . ’, finally concluding that, ‘I
personally believe that many of the concepts of information theory will prove useful in
these other fields – and, indeed, some results are already quite promising – but the estab-
lishing of such applications is not a trivial matter of translating words to a new domain,
but rather the slow tedious process of hypothesis and experimental verification.’

Notwithstanding Shannon’s concerns, there have been numerous attempts at borrow-
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ing both informational concepts and technical results from information theory in the
biosciences. While some are interesting and insightful, the conceptual and formal link
to information theory seems to mainly comprise of metaphoric use of otherwise techni-
cal information theoretic concepts and terms, such as communication channel and noise,
or the employment of quantitative measures of variation and dependency that originate
in information theory. For instance, [Ulanowicz et al., 2009] has ushered in the “return
of information theory” by using conditional entropy to quantify sustainability and bio-
diversity. [McCowan et al., 2002] had emphasized the prominent role of noise in “con-
straining the amount of information exchanged between signallers and perceivers” in
ecological and social contexts and for signal design and use. By applying quantitative
and comparative information-theoretic measures on animal communication, they hoped
to provide insights into the organization and function of “signal repertoires”. Similarly,
[Levchenko and Nemenman, 2014] have shown how cellular noise could be quantified us-
ing mutual information, and the implications of measuring such noise in bits. Even more
recently, [Lan and Tu, 2016] have focused on the ‘inherent noise in biological systems’
which they have argued can be analyzed by ‘using powerful tools and concepts from infor-
mation theory such as mutual information, channel capacity, and the maximum entropy
hypothesis’, with subsequent analysis mostly restricted to entropy and mutual information
in their capacity as statistical measures. Other authors have made strong claims, but ad-
mittedly of a conjectural nature, on the relevancy of core information theoretic results to
principles of evolution and genetic inheritance. For instance, [Battail, 2013] has claimed
that the trend of biological evolution towards increasing complexity and hereditary prin-
ciples requires the implementation of error correcting information-theoretic codes, which
are inevitable and ‘logically necessary’ once it is clear that ‘heredity is a communication
process’, while at the same time emphasizing that these are ‘merely speculations’.

5.1 Channel capacity

The concept of channel capacity, which also plays a central role in communication theory,
may serve to further highlight the shared properties identified here between long sequences
of symbols generated by a random source and communicated across a noisy channel, and
long genotypes originating from a natural population. The channel capacity is the tight
upper bound on the rate at which information can be reliably transmitted over a noisy
communications channel. The usefulness of this notion in other domains was famously
identified by [Kelly, 1956]. Kelly analyzed a scenario which seems to possess the essential
features of a communication problem: a gambler that utilizes the received symbols of a
noisy communication channel in order to make profitable bets on the transmitted sym-
bols. Kelly then demonstrated that, just as information can be transmitted over a noisy
communication channel at or near Shannon’s channel capacity with negligible error, so
can this gambler compound his net worth at a maximum rate with virtually no risk of
‘total loss’, equal to the mutual information of the source and receiver (by apportioning
his betting amount precisely according to the noise level for each symbol).
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More formally, the ‘information’ channel capacity C of a discrete memoryless channel
with respect to sources X with alphabets supported on χ and consequent outputs Y
with alphabets supported on y, is an inherent property of the channel such that, C =

maxP (X) I(X;Y ), where the maximum is taken over all possible distributions P (X) of
the source. The capacity is commonly interpreted as the highest rate in bits per channel
use at which information can be sent with arbitrarily low probability of error. Shannon’s
channel coding theorem then relates the maximum information rate possible across the
channel with its capacity ([Cover and Thomas, 2006], Ch.7).

The realization that communication noise detracts from the channel capacity whereas
sampling noise diminishes the accuracy of inference, may justify a certain analogy be-
tween communication and inference frameworks, which is centered around the mutual
information between an input and output signal. If we interpret X as a random variable
representing the n-SNP genotype from the pooled source populations and Y as a random
variable representing its source population, then the mutual information I(X;Y ) captures
the informativeness of the set of n markers for population assignment (see [Tal, 2012a],
[Tal, 2012b] for the multilocus formulation). This is also known as the Infomax principle
in feature selection, where a subset of features is chosen so that the mutual informa-
tion of the class label given the feature vector is maximized ([Rosenberg et al., 2003];
[Zhao et al., 2013]; see [Peng et al., 2005] for the Max-Dependency principle). If we now
take the informativeness I(X;Y ) to represent the maximal information extractable across
all possible classifiers, a workable analogy with communication-based channel capacity,
which is also expressed in terms of mutual information, becomes evident. Under this in-
terpretation, the inferential channel capacity is achievable by the optimal Bayes classifier,
under known distribution parameters ([Hastie et al., 2009]), i.e., in the absence of sam-
pling noise; otherwise, given any finite sample size at the learning stage, there may be no
single classification scheme that obtains maximal performance under all data scenarios.20

5.2 Dimensionality reduction

It is worthwhile highlighting an additional feature of our log-probability space, with pos-
sible pragmatic use. The mapping of genotype samples to the log-probability space shares
some core features with standard dimensionality reduction schemes such as PCA, which
are often deployed for visualization purposes or as pre-processing in the context of unsu-
pervised learning. Most prominently, [a] the effect of higher dimensionality (larger n) on
cluster separability, [b] the effect of population differentiation (FST ) on cluster proximity,
[c] the effect of distribution entropy rates on the cluster shape, and [d] the general effect of
a possible presence of LD given the explicit (implicit, in the case of PCA) assumption of

20Indeed, the lack of a universally best model for classification is sometimes called the no free lunch
theorem. The theorem broadly implies that one needs to develop different types of models to cover the
wide variety of data that occurs in the real world, since a set of assumptions that works well in one
domain may work poorly in another ([Murphy, 2012]).
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LE. At the same time, the log-probability perspective provides information with respect
to a supervised learning framework, most prominently by revealing the effect of noise in
the training stage on the clusters of ‘test samples’, and on the estimated quantities em-
ployed by an information-theoretic oriented classifier, such as our cross-entropy typicality
classifier.

5.3 Linkage Disequilibrium

When populations have some internal structure (deviation from panmixia) then loci are in
linkage disequilibrium (LD). In terms of the communication framework, LD is analogous
to time-dependency of symbols generated by the source, such that the channel is no longer
memoryless. How will our results fare when such dependencies are introduced into the
inferential framework?

Previous work on analogies and implementations of information theoretic concepts has
highlighted this difficulty. For instance, in his famous approach to betting strategies from
an information-rate perspective, [Kelly, 1956] has also emphasized that in the presence of
time-dependency of symbols the results he obtained may no longer be relevant, acknowl-
edging that ‘theorems remain to be proved’ if the symbol transmission entails dependency
on time or past events.

Since our results are intrinsically based on AEP theorems, we would be interested
to pursue some generalization of the AEP for (nonstationary) sources with dependent
symbols. The Shannon-McMillan-Breiman theorem ([Cover and Thomas, 2006]) is an ex-
tension of Shannon’s original AEP for discrete i.i.d. sources, and holds for discrete-time
finite-valued stationary ergodic sources, which in general have dependent symbols. How-
ever, the closest to general nonstationary sources with dependent symbols for which an
AEP holds are a class of nonstationary sources called ‘asymptotically mean stationary’
or AMS sources ([Gray, 2011]). These are sources which might not be stationary, but are
related to stationary sources in a specific way. Such sources are equivalent to sources for
which relative frequencies converge and bounded sample averages converge with probabil-
ity one, but not necessarily to simple expectations with respect to the source distributions.
They include, for example, sources with initial conditions that die out (asymptotically sta-
tionary sources) along with sources that are block-stationary, e.g., extensions of the source
are stationary.

Crucially for our purposes, general patterns of LD found in population SNP data
should not be expected to conform to the specific properties characteristic of AMS sources,
and therefore we cannot expect an AEP to hold for such data. Nevertheless, we would like
to see whether a ‘naïve’ approach to classification by typicality, akin to that taken by the
naïve Bayes, might still be productive. Adopting such ‘naïve’ approach means that we
employ the same expressions for genotype probabilities, empirical entropies, population
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entropy and cross-entropy rates, which had all assumed statistical independence.21

Numerical analysis shows that with various patterns of LD the typicality classifiers do
not account well for its presence, contrary to the naïve Bayes classifier. Under any type
of LD, clusters on the 2D log-probability plot tend to substantially disperse (elongating
diagonally), breaching the typicality threshold even for very large n where we would
expect substantial separation (Fig. 18).22 Interestingly, this diagonal elongation gives a
new perspective on the well-known phenomenon by which under LD naïve Bayes classifiers
still outperform far more sophisticated alternatives, and make it surprisingly useful in
practice even in the face of such dependencies ([Hastie et al., 2009] section 6.6.3).

A B
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Fig. 18: Clusters of genotype samples from the two populations are elongated diagonally as a
function of the amount of LD and its nature, substantially breaching the typicality classification
threshold (dotted line) while maintaining separation with respect to the Bayes classification line
(thin blue). Here 400 samples were drawn from two populations modeled under Beta distributions
with n = 600 SNPs, FST = 0.04, with differing population entropy rates, with ε = 0.02 for
typicality. A: No LD. | B: Moderate levels of LD.

21Otherwise, we would have to incorporate the full information from the joint distribution of SNPs
across loci, which is over and above the low-dimensional standard LD statistics.

22The dispersion of genotype samples on the log-probability plot under a population model with LD
cannot be taken as indicative of the well-known result that there is no AEP for nonstationary sources
with dependent symbols, since samples are mapped to this space according to ‘naïve’ independence
assumptions. Estimating the actual genotype probabilities (and joint entropies and cross-entropies under
these assumptions, for constructing the typicality classifier) is currently not feasible under the current
population LD model used in the simulations.

34

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted October 6, 2016. ; https://doi.org/10.1101/079491doi: bioRxiv preprint 

https://doi.org/10.1101/079491


6 Conclusion

There has recently been revived interest in employing various aspects of information
theory for characterizing manifestations of information in biology. Arguably, quantitative
analysis of biological information has thus far only superficially drawn from the ground-
breaking ideas and formal results of this highly influential theory. Here, we have ventured
beyond the mere utilization of information-theoretic measures such as entropy or mutual
information, to demonstrate deep links between a core notion of information theory, along
with its properties and related theorems, and intrinsic features of population genetic data.
We have demonstrated that genotypes consisting of long stretches of variants sampled
from different populations may be captured as typical sequences of nonstationary symbol
sources that have distributions associated with population properties. This perspective
has enabled us to treat typical genotypes as proxies for diverse source populations, analyse
their properties in high dimensions and consequently develop an information theoretic
application for the problem of ancestry inference. We hope that this work will open the
door for further inquiry into the prospects of rigorous implementation of both ideas and
technical results from information theory in the field of population genetics and biology
in general.
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A Appendix A

A.1 Closed-form formulation of the naïve typicality classifier er-
ror rate

The error rate of the naive typicality classifier can be expressed as,

En =
1

2

2n−1∑
k=0

(
hkdk + gk(1− dk)

)
. (A.1.1)

dk =



1, if


D

(P )
k > εP and D(Q)

k ≤ εQ, or
D

(P )
k > εP and D(Q)

k > εQ and D(P )
k > D

(Q)
k , or

D
(P )
k ≤ εP and D(Q)

k ≤ εQ and H̄(P )
n > H̄

(Q)
n

0, if


D

(P )
k ≤ εP and D(Q)

k > εQ, or
D

(P )
k > εP and D(Q)

k > εQ and D(P )
k ≤ D

(Q)
k , or

D
(P )
k ≤ εP and D(Q)

k ≤ εQ and H̄(P )
n ≤ H̄

(Q)
n

where

D
(P )
k =

∣∣∣∣∣− 1

n

n∑
i=1

log2

(
|1− fn(k, i)− pi|

)
− H̄n(P )

∣∣∣∣∣
D

(Q)
k =

∣∣∣∣∣− 1

n

n∑
i=1

log2

(
|1− fn(k, i)− qi|

)
− H̄n(Q)

∣∣∣∣∣
and where the genotype probabilities hk and gk and the indicator function fn are defined
as in ([Tal, 2012b], section 3.2),

hk =
n∏
i=1

|1− fn(k, i)− pi|, gk =
n∏
i=1

|1− fn(k, i)− qi|

fn(k, i) =

⌊
k

2i

⌋
mod 2( the ith bit of k).

(A.1.2)
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A.2 Closed-form formulation of the cross-entropy classifier error
rate

The error rate of the cross-entropy typicality classifier can be expressed using En of Eq.
(A.1.1) in conjunction with,

dk =



1, if

∣∣∣∣∣− 1
n

n∑
i=1

log2

(
|1− fn(k, i)− qi|

)
− H̄n(Q)

∣∣∣∣∣
<

∣∣∣∣∣− 1
n

n∑
i=1

log2

(
|1− fn(k, i)− qi|

)
− H̄n(p, q)

∣∣∣∣∣
0, otherwise

(A.2.1)

for the case where CQ > CP , and similarly expressed in terms of the parameters of P
when CQ ≤ CP .

A.3 Closed-form formulation of the generalization error of the
cross-entropy classifier under MLE

The expected test error En,m under all training samples of size m = {m1,m2} is an
expectation over the conditional (on a particular sample of size m) test error En(P̂ , Q̂) 23,

En,m = E(En(P̂ , Q̂)) =
1∑

X1=0

· · ·
1∑

Xn=0

1∑
Y1=0

· · ·
1∑

Yn=0

En(P̂ , Q̂)
n∏
i=1

f(p̂i) · f(q̂i)

where we denote P̂ = {p̂1, . . . , p̂n}, Q̂ = {q̂1, . . . , q̂n}.

Following the formulation in Eq. (A.1.1) we have,

En(P̂ , Q̂) =
1

2

2n−1∑
k=0

(hkdk + gk(1− dk))

where the cross-entropy classifier of Eq. (A.2.1) (for the case CQ > CP ) is expressed
as conditional on a particular sample,

dk =



1, if

∣∣∣∣∣− 1
n

n∑
i=1

log2

(
|1− fn(k, i)− q̂i|

)
− H̄n(Q̂)

∣∣∣∣∣
<

∣∣∣∣∣− 1
n

n∑
i=1

log2

(
|1− fn(k, i)− q̂i|

)
− H̄n(p̂, q̂)

∣∣∣∣∣
0, otherwise

23In simulating En,m we replace allele frequency estimates of zero with a small constant, 1/(m+ 1), a
common procedure to avoid zero genotype frequencies ([Rosenberg, 2005]l [Phillips et al., 2007]).
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where hk, gk, fn(k, i) are defined with respect to the true frequencies, as in Eq. (A.1.2).

A.4 Closed-form formulation of the error rate of the relative-
entropy classifier

Following the formulation in Eq. (A.1.1) the error rate of the relative-entropy classifier
can be expressed as,

En =
1

2

2n−1∑
k=0

(hkdk + gk(1− dk))

D
(P )
k =

∣∣∣∣∣ 1n
n∑
i=1

log2

(
|1− fn(k, i)− p̂i|
|1− fn(k, i)− q̂i|

)
− D̄n(P‖Q)

∣∣∣∣∣
D

(Q)
k =

∣∣∣∣∣ 1n
n∑
i=1

log2

(
|1− fn(k, i)− q̂i|
|1− fn(k, i)− p̂i|

)
− D̄n(Q‖P )

∣∣∣∣∣
dk =

{
1, if D(P )

k > D
(Q)
k

0, else

where the genotype probabilities hk and gk and the indicator function fn(k, i) are as
defined in Eq. (A.1.2).

Note that the counterpart classifier-expressions for a Bayes (or maximum likelihood)
classifier would in a corresponding formulation be expressed as a simple comparison of
genotype probabilities,

Dk(Bayes) =
n∑
i=1

log2

1− fn(k, i)− qi
1− fn(k, i)− pi

, dk =

{
1, if Dk > 0

0, if Dk ≤ 0
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B Appendix B

B.1 Entropy and cross-entropy rates

In this section we consider the expectation of entropy and cross-entropy rates and their
properties.

First, we recall some properties of a Beta distribution. Let Y ∼ B(α, β). Then

E(Y ) =
α

α + β
,

E(lnY ) = ψ(α)− ψ(α + β),

where ψ(x) = d
dx

ln(Γ(x)) = Γ′(x)
Γ(x)

is a digamma function. Moreover, we have

E(Y lnY ) =
β

(α + β)2
+

α

α + β

(
ψ(α)− ψ(α + β)

)
.

In fact, note that Y ∼ B(α, β) implies that 1− Y ∼ B(β, α). Therefore

Cov(Y, lnY ) = E
(
Y lnY

)
− E(Y )E

(
lnY

)
=

∫ 1

0

ln y
yα(1− y)β−1

B(α, β)
dy − α

α + β

∫ 1

0

ln y
yα−1(1− y)β−1

B(α, β)
dy

=
α

α + β

(∫ 1

0

ln y
yα(1− y)β−1

B(α + 1, β)
dy −

∫ 1

0

ln y
yα−1(1− y)β−1

B(α, β)
dy

)

=
α

α + β

((
ψ(α + 1)− ψ(α + β + 1)

)
−
(
ψ(α)− ψ(α + β)

))

=
α

α + β

(
1

α
− 1

α + β

)
=

β

(α + β)2
.

Therefore

E
(
Y lnY

)
=

β

(α + β)2
+

α

α + β

(
ψ(α)− ψ(α + β)

)
.

Suppose pi and qi are distributed i.i.d. according to B(αP , βP ) and B(αQ, βQ) respec-
tively. Then

E
(
Hn(Q)

)
= − 1

n

n∑
i=1

E
(
qi log2 qi + (1− qi) log2(1− qi)

)
= − log2(e)

(
1

αQ + βQ
+

αQ
αQ + βQ

(
ψ(αQ)− ψ(αQ + βQ)

))
,
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and similarly,

E
(
Hn(p, q)

)
= − log2(e)

(
αPψ(αQ)

αP + βP
+
βPψ(βQ)

αP + βP
− ψ(αQ + βQ)

)
.

B.2 Cross-entropy criteria

In this section of Appendix, we consider the cross-entropy criteria Cn
P and Cn

Q and its
asymptotic properties. First, we have

Cn
Q = |Hn(p, q)−Hn(Q)|

=

∣∣∣∣∣ 1n
n∑
i=1

(qi − pi) log2

qi
1− qi

∣∣∣∣∣.
Assume that pi, i = 1, 2, . . . , sampled by a random variable X with distribution

B(αP , βP ) and qi, i = 1, 2, . . . , sampled by another independent random variable Y with
distributionB(αQ, βQ). Then, by the law of large number we have the asymptotic property

CQ := lim
n→∞

Cn
Q =

∣∣∣∣∣E
(

(Y −X) log2

( Y

1− Y

))∣∣∣∣∣
= log2(e)

∣∣∣∣∣E(Y ln
( Y

1− Y

))
− EXE

(
ln
( Y

1− Y

))∣∣∣∣∣, (due to X, Y are independent)

= log2(e)

∣∣∣∣∣E(Y lnY
)
− E

(
Y ln(1− Y )

)
− E(X)

(
lnY − ln(1− Y )

)∣∣∣∣∣
= log2(e)

∣∣∣∣∣E(Y lnY
)

+ E
(

(1− Y ) ln(1− Y )
)
− E ln(1− Y )− E(X)

(
lnY − ln(1− Y )

)∣∣∣∣∣
It implies that

CQ = log2(e)

∣∣∣∣∣ 1

αQ + βQ
+

(
ψ(αQ)− ψ(βQ)

)(
αQ

αQ + βQ
− αP
αP + βP

)∣∣∣∣∣.
And similarly we also obtain

CP = log2(e)

∣∣∣∣∣ 1

αP + βP
+

(
ψ(αP )− ψ(βP )

)(
αP

αP + βP
− αQ
αQ + βQ

)∣∣∣∣∣.
Then we have immediately some corollaries:

Corollary B.2.1. CQ = 0 if and only if

αP
αP + βP

=
αQ

αQ + βQ
+

1

(αQ + βQ)(ψ(αQ)− ψ(βQ))
.

Note that this equation has a lot of solutions (e.g. αP = 2, βP = 10, αQ = 2, βQ = 4).
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Corollary B.2.2. If Hn(P ) > Hn(Q) and Hn(P ) > Hn(q, p) then Cn
Q > Cn

P .

Proof. In fact, we have

Hn(p, q)−Hn(Q)− (Hn(P )−Hn(q, p)) = Dn(P,Q) +Dn(Q,P ) > 0.

It implies that
Hn(p, q)−Hn(Q) > Hn(P )−Hn(q, p).

Moreover, due to the second condition, we have Hn(P )−Hn(q, p) > 0. Therefore,

Cn
Q = Hn(p, q)−Hn(Q) > Hn(P )−Hn(q, p) = Cn

P .

It completes the proof.

Corollary B.2.3. Assume that P ∼ B(αP , βP ) and Q ∼ B(αQ, βQ) satisfying cP =

αP + βP = αQ + βQ = cQ and P̄ = αP

cP
≤ 1

2
, Q̄ =

αQ

cQ
≤ 1

2
. If furthermore limn→∞ H̄n(P ) >

limn→∞ H̄n(Q), then CQ > CP .

Proof. In fact, it is enough to prove that for large enough n we have H̄n(p, q)− H̄n(Q) >

H̄n(q, p)− H̄n(P ). Indeed, note that

lim
n→∞

H̄n(P ) = − 1

cP
− P̄ψ(P̄ cP )− (1− P̄ )ψ(cP − P̄ cP ) + ψ(cP ).

Therefore, the condition H̄n(P )− H̄n(Q) > ε for all n implies that

−P̄ψ(P̄ cP )− (1− P̄ )ψ(cP − P̄ cP ) > −Q̄ψ(Q̄cQ)− (1− Q̄)ψ(cQ − Q̄cQ)

which implies that P̄ > Q̄.

Also we have

lim
n→∞

H̄n(p, q)− H̄n(Q) =
1

cQ
+ (Q̄− P̄ )

(
ψ(Q̄cQ)− ψ(cQ − Q̄cQ)

)
,

and ψ(Q̄cQ)− ψ(cQ − Q̄cQ) is decreasing with respect to Q̄. It implies the proof.

Remark B.2.1. If CP = CQ = 0 then

0 = Hn(p, q)−Hn(Q) = Dn(P‖Q) +Hn(P )−Hn(Q)

and
0 = Hn(q, p)−Hn(P ) = Dn(Q‖P ) +Hn(Q)−Hn(P )

This implies that Dn(P‖Q) = Dn(Q‖P ) = 0 which happens if and only if P = Q.
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B.3 Normalized pairwise distances

In this section, we first consider the average normalized pairwise distance in the set of all
sampled genotypes and in the set of typical ones. We consider both the stationary and
the non-stationary case.

B.3.1 Stationary case

In the stationary case pi = p for all i = 1, . . . , n we have some first geometric properties
of typical set as follows. Given ε > 0 and n ∈ N, denote by

In =

{
k :

⌈
n

(
p− ε

log |1−p
p
|

)⌉
≤ k ≤

⌊
n

(
p+

ε

log |1−p
p
|

)
,

⌋}
.

Then

(i)
A(n)
ε (P ) =

{
x ∈ Ωn : |x| ∈ In

}
.

(ii)

|A(n)
ε (P )| =

∑
k∈In

(
n

k

)
, it implies that

|A(n)
ε (P )|
2n

→ 0 as n→∞.

(iii)

P (A(n)
ε (P )) =

∑
k∈In

(
n

k

)
pk(1− p)n−k → 1 as n→∞.

(iv)

EP

(
1

n
d(X, Y )|X, Y ∈ A(n)

ε (P )

)
=

∑
k,l∈In

1
n

∑
|x|=k,|y|=l |x− y|pk+l(1− p)2n−k−l

P (A
(n)
ε (P ))2

(v)

EP

(
1

n
d(X, Y )

)
= 2p(1− p).

Let C be the centroid of Ωn corresponding to distribution P , i.e. ci = pi for all
i = 1, . . . , n. We also have a nice following property

Proposition B.3.1. The covariance between the normalized generalized Hamming (‖·‖1)
distance between X and C with respect to the Euclidean distance of their corresponding
points in log-probability coordinate is non-negative, i.e.
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(a)

Cov

(
1

n
dHam(X,C),

∣∣∣∣∣− 1

n
log2 P (X)−Hn(P )

∣∣∣∣∣
)
≥ 0;

(b) Equality holds if and only if p = 1
2
;

(c) as n goes to infinity, this covariance goes to zero;

(d) when the entropy rate increases, the covariance decreases;

(e) statements in (a)-(d) are also true for correlation.

Proof. First of all, note that in this case

dHam(X,C) =
n∑
i=1

|Xi − p| = |X|(1− p) + (n− |X|)p, for everyX.

Therefore, it is easy to obtain

Cov

(
1

n
dHam(X,C),

∣∣∣∣∣− 1

n
log2 P (X)−Hn(P )

∣∣∣∣∣
)

=

∣∣∣∣∣ log2

p

1− p

∣∣∣∣∣(1− 2p)
n∑
k=0

(k
n
− p
)∣∣∣k
n
− p
∣∣∣(n
k

)
pk(1− p)n−k.

Put

h(n, p) :=

∣∣∣∣∣ log2

p

1− p

∣∣∣∣∣(1− 2p)
n∑
k=0

(k
n
− p
)∣∣∣k
n
− p
∣∣∣(n
k

)
pk(1− p)n−k.

It is also easy to see that h(n, p) = h(n, 1− p). Without loss of generality, we assume
that p ≤ 1

2
. When p = 1

2
, the covariance is zero. Moreover, we can prove that h(n, p)

decreases in p ∈ (0, 1
2
] and in n.

It implies the proof.

B.3.2 Non-stationary case

Now we consider the non-stationary case. First, denote by Dn(X, Y ) the normalized
Hamming distance of two genotypes X and Y , i.e.

Dn(X, Y ) =
1

n

n∑
i=1

|Xi − Yi| =
1

n

n∑
i=1

|Zi|,
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where Zi is a random variable which is 1 with probability 2pi(1−pi) and 0 with probability
p2
i + (1− pi)2.

Then the expectation and variance of Dn can be easily calculated as

E(Dn(X, Y )|X, Y ∈ Ωn) =
2

n

n∑
i=1

pi(1− pi),

Var(Dn(X, Y )|X, Y ∈ Ωn) =
1

n2

n∑
i=1

V ar(Zi) =
1

n2

n∑
i=1

2pi(1− pi)(p2
i + (1− pi)2).

Corollary B.3.1. The variance of the normalized Hamming distance between two geno-
types will approach to zero with rate 1/4n as n→∞, i.e. there is an equidistance property
as n large for the set of total sampled genotypes.

Proof. The statement follows from

Var(Dn(X, Y )|X, Y ∈ Ωn) =
1

n2

n∑
i=1

2pi(1− pi)(p2
i + (1− pi)2) <

1

4n
→ 0 as n→∞.

This explains that when n large enough, even though the portion of the typical geno-
types is small, the normalized Hamming distance between two genotypes is close to the
normalized Hamming distance of two (n, ε)−typical genotypes.

Now, given ε > 0 and n ∈ N, we denote by E(Dn(X, Y )|X, Y ∈ A(n)
ε (P )) the average

normalized Hamming distance of two typical genotypes. Then

Proposition B.3.2. The following estimates holds for n large enough,

2
∑n

i=1 pi(1− pi)− (1− P(A
(n)
ε (P ))2)

nP(A
(n)
ε (P ))2

≤ E(Dn(X, Y )|X, Y ∈ A(n)
ε (P )) ≤ 2

∑n
i=1 pi(1− pi)

nP(A
(n)
ε (P ))2

.

Proof. We note that for n large then 1− ε ≤ P(A
(n)
ε (P )) ≤ 1. Therefore

EP

(
Dn(X, Y )

∣∣∣∣∣X, Y ∈ A(n)
ε (P )

)
=

∑
(x,y)∈A(n)

ε (P )2
1
n
dHam(x,y)P (x,y)∑

(x,y)∈A(n)
ε (P )2

P (x,y)

=

∑
(x,y)∈Ω2

n
dHam(x,y)P (x,y)−

∑
(x,y)/∈A(n)

ε (P )2
dHam(x,y)P (x,y)

nP(A
(n)
ε (P ))2

≥
2
∑n

i=1 pi(1− pi)− n
∑

(x,y)/∈A(n)
ε (P )2

P (x,y)

nP(A
(n)
ε (P ))2

.

It implies the proof.
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We then immediately have following corollaries:

Corollary B.3.2. We have for n large

EB(α,β)

(
EP
(
Dn(X, Y )

∣∣∣X,Y ∈ A(n)
ε (P )

))
≥ f(α, β) :=

2αβ

(α + β)(α + β + 1)
.

Corollary B.3.3. This lower bound f(α, β) is monotone along the average entropy rate
EB(α,β)H̄n(P ). It means that when the average entropy rate increases then the below bound
f(α, β) increases and vice verse.

We also have a nice following property

Theorem B.3.1. The correlation between the absolutely difference of logarithm with base
2 of probabilities of two arbitrary genotypes and their Hamming distance is always non-
negative, i.e.

corr
(
dH(X, Y ),

∣∣ log2 P (X)− log2 P (Y )
∣∣) ≥ 0.

Proof. First, by denoting

Sn := E
(∣∣ log2 P (X1, . . . , Xn)− log2 P (Y1, . . . , Yn)

∣∣), and

S
(i)
n−1 := E

(∣∣ log2 P (X1, . . . , Xi−1, Xi+1, . . . , Xn)− log2 P (Y1, . . . , Yi−1, Yi+1, . . . , Yn)
∣∣),

it is easy to see that

Sn ≥ S
(i)
n−1, for all i = 1, . . . , n.

Indeed, we have (for shorting the notations, we use here x̄i for (x1, . . . , xi−1, xi+1, . . . , xn))

E
(∣∣ log2 P (X)− log2 P (Y )

∣∣) =
∑

x,y∈Ωn

| log2 P (x)− log2 P (y)|P (x)P (y)

=
∑
xi,yi

∣∣ log2(piP (xi))− log2((1− pi)P (yi))
∣∣piP (xi)(1− pi)P (yi)

+
∑
xi,yi

∣∣ log2((1− pi)P (xi))− log2(piP (yi))
∣∣(1− pi)P (xi)piP (yi)

+
∑
xi,yi

∣∣ log2(piP (xi))− log2(piP (yi))
∣∣piP (xi)piP (yi)

+
∑
xi,yi

∣∣ log2((1− pi)P (xi))− log2((1− pi)P (yi))
∣∣(1− pi)P (xi)(1− pi)P (yi)

=
∑
xi,yi

∣∣∣ log2 P (xi)− log2 P (yi)
∣∣∣P (xi)P (yi)

= S
(i)
n−1.
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Therefore,

E
(
dH(X, Y )

∣∣ log2 P (X)− log2 P (Y )
∣∣) =

∑
x,y∈Ωn

dH(x,y)| log2 P (x)− log2 P (y)|P (x)P (y)

=
n∑
i=1

∑
xi,yi

|xi − yi|
∑
xi,yi

| log2 P (x)− log2 P (y)|P (x)P (y)

=
n∑
i=1

∑
xi,yi

∣∣ log2(piP (xi))− log2((1− pi)P (yi))
∣∣piP (xi)(1− pi)P (yi)

+
n∑
i=1

∑
xi,yi

∣∣ log2((1− pi)P (xi))− log2(piP (yi))
∣∣(1− pi)P (xi)piP (yi)

=
n∑
i=1

[
E
(∣∣ log2 P (X)− log2 P (Y )

∣∣)
−
(
p2
i + (1− pi)2

)∑
xi,yi

∣∣ log2 P (xi))− log2 P (yi))
∣∣P (xi)P (yi)

]
= nSn −

n∑
i=1

(
p2
i + (1− pi)2

)
S

(i)
n−1

≥
(
n−

n∑
i=1

(p2
i + (1− pi)2

)
Sn

=
n∑
i=1

2pi(1− pi)Sn

= E
(
dH(X, Y )

)
E
(∣∣ log2 P (X)− log2 P (Y )

∣∣).
This implies the proof.

B.4 Non-stationary AEP

In this section of the Appendix, we consider some AEP properties in the non-stationary
case:

Proposition B.4.1. 1. Given a sequence of binary independent random variables {Xn}
with the corresponding mass probability functions pn(·) sastifying

lim
n→∞

V arpn{− log2 pn(Xn)}
n

= 0.

Then, we have

lim
n→∞

P

{∣∣∣∣∣− 1

n
log2 P (X)−Hn(P )

∣∣∣∣∣ ≥ ε

}
= 0, ∀ε > 0,

where P = (p1, . . . , pn), X = (X1, . . . , Xn) and Hn(P ) is the entropy rate with
respect to P .
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2. Given a sequence of binary independent random variables {Xn} with the correspond-
ing mass probability functions qn(·) sastifying limn→∞

V arqn{− log2 pn(Xn)}
n

= 0. Then,
we have

lim
n→∞

Q

{∣∣∣∣∣− 1

n
log2 P (X)−Hn(q, p)

∣∣∣∣∣ ≥ ε

}
= 0, ∀ε > 0,

where Q = (q1, . . . , qn), X = (X1, . . . , Xn) and Hn(q, p) is the cross entropy rate of
Q with respect to P .

Proof. We will prove the second statement. The first one can be done similarly. Indeed,
we have

Q

{∣∣∣∣∣− 1

n
log2 P (X)−Hn(q, p)

∣∣∣∣∣ ≥ ε

}

= Q

{∣∣∣∣∣− 1

n
log2 P (X)− EQ

(
− 1

n
log2 P (X)

)∣∣∣∣∣ ≥ ε

}

≤
V arQ

(
− 1

n
log2 P (X)

)
ε2

(by Markov’s inequality)

=

EQ

(
n∑
i=1

(
log2 pi(Xi) +H(qi, pi)

))2

n2ε2

=

n∑
i=1

V arqi

(
log2 pi(Xi)

)
n2ε2

(by independency)

(B.4.1)

Therefore we obtain

lim
n→∞

Q

{∣∣∣∣∣− 1

n
log2 P (X)−Hn(q, p)

∣∣∣∣∣ ≥ ε

}
≤ lim

n→∞

n∑
i=1

V arqi

(
log2 pi(Xi)

)
n2ε2

= lim
n→∞

V arqn

(
log2 pn(Xn)

)
2nε2

= 0 (due to the condition).

It implies the proof.

Proposition B.4.2. Let {Xn}n be a sequence of mutual independent random variables
with given binomial distribution Xk ∼ Pk ∈ Bin(pk). Given any other sequence of bino-
mial distributions Qk ∈ Bin(qk) with assumption that 0 < δ ≤ pk, qk ≤ 1 − δ for all k.
Then

1

n
log2

P (X1, . . . , Xn)

Q(X1, . . . , Xn)
−Dn(P‖Q)

a.e.−−→ 0 (n→∞).
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Proof. Denote by Yk = log2
Pk(Xk)
Qk(Xk)

and its sample average Y n = 1
n

∑n
k=1 Yk. Note that

EP (Y n) = Dn(P‖Q).

Moreover, from the assumption of pk, qk we have

V arP (Yk) ≤

(
log2

(1− δ
δ

))2

.

Therefore by applying the strong law of large numbers we obtain the result.
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C Appendix C

C.1 Quantitative versions of the AEP

In this section of the appendix, we will show the following quantitative versions of the
AEP and the cross-entropy AEP. For all ε > 0 and n ∈ N, it holds that

Prp

[∣∣∣∣− 1

n
log p(X)− H̄n(p)

∣∣∣∣ > ε

]
< 2 exp

(
− 2nε2

log2 δ
1−δ

)
(C.1.1)

and

Prp

[∣∣∣∣− 1

n
log q(X)− H̄n(p, q)

∣∣∣∣ > ε

]
< 2 exp

(
− 2nε2

log2 δ
1−δ

)
, (C.1.2)

where by Prp we denote the probability given that the genotype X is distributed according
to P .

These estimates can be obtained as follows. Suppose Z1, . . . , Zn are independent, real-
valued random variables, with Zi taking values in the interval [ai, bi]. Then the Hoeffding
inequality states that

Pr

[∣∣∣∣∣− 1

n

n∑
i=1

Zi − E

[
1

n

n∑
i=1

Zi

]∣∣∣∣∣ ≥ ε

]
≤ 2 exp

(
− 2nε2

1
n

∑n
i=1(ai − bi)2

)
.

First, we apply the Hoeffding inequality to the random variables Zi taking on the
value − log pi with probability pi, and the value − log(1 − pi) with probability (1 − pi).
The Hoeffding inequality then implies

Prp

[∣∣∣∣− 1

n
log p(X)− H̄n(p)

∣∣∣∣ ≥ ε

]
≤ 2 exp

(
− 2nε2

1
n

∑n
i=1 log2 pi

1−pi

)
. (C.1.3)

Similarly, we could define Zi to be equal to − log qi with probability pi and equal to
− log(1− qi) with probability (1− pi). Then, the Hoeffding inequality reads

Prp

[∣∣∣∣− 1

n
log q(X)− H̄n(p, q)

∣∣∣∣ ≥ ε

]
≤ 2 exp

(
− 2nε2

1
n

∑n
i=1 log2 qi

1−qi

)
. (C.1.4)

Note that the above inequalities can be viewed as versions of the AEP with explicit,
exponential error bounds, for non-stationary sources.

C.2 Error bounds for typicality classifiers

In this section we explain how the quantitative versions of the AEP from the last section
imply exponential error bounds for the typicality classifiers introduced in the main text.

52

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted October 6, 2016. ; https://doi.org/10.1101/079491doi: bioRxiv preprint 

https://doi.org/10.1101/079491


C.2.1 Error bound for naive typicality classifier

We assume without loss of generality that H̄n(q) ≤ H̄n(p). We recall the definition of the
constants

CP := |H̄n(q, p)− H̄n(p)|, CQ := |H̄n(p, q)− H̄n(q)|. (C.2.1)

and the definition of the error rate

En =
1

2
Prp[X is classified to Q] +

1

2
Prq[X is classfied to P ].

We note that in the naive typicality classifier, given that a sample X comes from Q,
an error can only be made, that is it can only be assigned to P , if∣∣∣∣− 1

n
log q(X)− H̄n(q)

∣∣∣∣ ≥ CQ
2
.

The quantitative AEP bounds the probability of this event by

Prq

[∣∣∣∣− 1

n
log q(X)− H̄n(q)

∣∣∣∣ ≥ CQ
2

]
≤ 2 exp

(
−

nC2
Q

2 log2 δ
1−δ

)
.

Given that a sample is drawn from P , an error can be made in two situations, either∣∣∣∣− 1

n
log q(X)− H̄n(p, q)

∣∣∣∣ ≥ CQ
2

or ∣∣∣∣− 1

n
log p(X)− H̄n(p)

∣∣∣∣ ≥ CQ
2
.

The quantitative cross-entropy AEP bounds

Prp

[∣∣∣∣− 1

n
log q(X)− H̄n(p, q)

∣∣∣∣ ≥ CQ
2

]
≤ 2 exp

(
−

nC2
Q

2 log2 δ
1−δ

)
,

whereas the quantitative AEP implies

Prp

[∣∣∣∣− 1

n
log p(X)− H̄n(p)

∣∣∣∣ ≥ CQ
2

]
≤ 2 exp

(
−

nC2
Q

2 log2 δ
1−δ

)
.

Consequently,

En ≤ 3 exp

(
−

nC2
Q

2 log2 δ
1−δ

)
.
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C.2.2 Error bound for cross-entropy classifier

We now assume without loss of generality that CQ > CP . Note that given that a sample
X comes from distribution Q, it can only be assigned to P if∣∣∣∣− 1

n
log q(X)− H̄n(q)

∣∣∣∣ ≥ CQ
2
.

As in the previous section, the quantitative AEP bounds this probability of this event by

Prq

[∣∣∣∣− 1

n
log q(X)− H̄n(q)

∣∣∣∣ ≥ CQ
2

]
≤ 2 exp

(
−

nC2
Q

2 log2 δ
1−δ

)
.

Similarly, given that a sample X comes from distribution P , it can only be assigned to Q
if ∣∣∣∣− 1

n
log q(X)− H̄n(p, q)

∣∣∣∣ ≥ CQ
2
,

and the quantitative cross-entropy AEP estimates

Prp

[∣∣∣∣− 1

n
log q(X)− H̄n(p, q)

∣∣∣∣ ≥ CQ
2

]
≤ 2 exp

(
−

nC2
Q

2 log2 δ
1−δ

)
.

Combining these two estimates we obtain

En =
1

2
Pp[X is classified to Q] +

1

2
Pq[X is classfied to P ]

≤ 2 exp

(
nC2

Q

2 log2 δ
1−δ

)
.

In fact, by using one-sided Hoeffding inequalities (and corresponding one-sided AEPs),
one can actually replace the prefactor 2 by 1.

C.3 Domain in log-probability plane

In this section we consider the limiting behavior for n → ∞ of the sets Sn ⊂ R2 which
we define by

Sn :=
⋃

X∈{0,1}n

(
− 1

n
log p(X),− 1

n
log q(X)

)
.

These sets are the union of the image of all possible genotypes in the log-probability plane.

The claim is that (with probability one) these sets converge (in Hausdorff distance)
to a certain closed, convex set A. This set A is determined by the distribution of the
pi’s and the qi’s. Loosely speaking, for large n, for every point A there is a point in Sn
closeby, and for every point in Sn there is a point in A closeby.

54

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted October 6, 2016. ; https://doi.org/10.1101/079491doi: bioRxiv preprint 

https://doi.org/10.1101/079491


For simplicity, we assume that the gene frequences pi and qi can only attain a finite
number of values. We denote the possible values for pi by a1 . . . , aN and the possible
values for qi by b1, . . . , bN . We assume moreover that 0 < a1 < · · · < aN < 1 and
0 < b1 < · · · < bN < 1.

We denote by f(aj, bk) the probability that pi = aj and qi = bk.

By L(a, b) we denote the (unoriented) line segment between the points (− log(a),− log(b))

and (− log(1 − a),− log(1 − b)). Then the set A is the Minkowski linear combination of
the line segments L(aj, bk), that is

A :=
N∑
j=1

N∑
k=1

f(aj, bk)L(aj, bk), (C.3.1)

where the sums on the right-hand-side denote Minkowski sums.

Theorem C.3.1. With probability 1, the sequence of pi and qi is such that the set Sn
converges to the set A in the Hausdorff distance as n→∞.

A version of this theorem is also true when pi and qi are continuously distributed,
under some extra conditions on the distribution (specifically their behavior close to 0 and
1). The set A then has a description as a ‘Minkowski integral’ rather than a Minkowski
sum. We do not focus on this case to avoid technicalities.

The Hausdorff distance between two bounded and closed sets K1 and K2 is defined
as the smallest ε ≥ 0 such that K1 is contained in Tε(K2) and K2 is contained in Tε(K1),
where

Tε(Ki) = {z ∈ R2 | dist(z,Ki) ≤ ε}.

We will explain the proof of the theorem. We let Nn(aj, bk) denote the number of
indices i ∈ {1, . . . , n} such that pi = aj and qi = bk.

For the first part of the proof, we define auxiliary sets An by

An :=
N∑
j=1

N∑
k=1

Nn(aj, bk)

n
L(aj, bk),

and we will show that An → A in the Hausdorff distance. For instance by Sanov’s
theorem, it follows directly that with probability 1,

Nn(aj, bk)

n
→ f(aj, bk).

By the continuity properties for the Minkowski sum it follows that the sets An converge
in the Hausdorff distance to A.

With a bit more work (and an application of for instance Pinsker’s inequality and the
Borel-Cantelli Lemma), one can also extract that with probability one, the convergence
is faster than (log n)/

√
n.
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In the second part of the proof, we show that the Hausdorff distance between An and
Sn can be bounded by C/n, for some constant C. In fact, we will see that An is the
convex hull of Sn, while on the other hand Sn is a C/n-net in An, which means that for
every point in An, there is a point in Sn at distance less than C/n. First, we introduce
some additional notation.

For a line segment L in R2, we denote by B(L) and E(L) its endpoints, in such a
way that B(L)2 ≤ E(L)2, and if B(L)2 = E(L)2, then B(L)1 ≤ E(L)1. These conditions
uniquely define B(L) and E(L).

We will now give an equivalent description of the set Sn. We start with an important
observation. Given a string X ∈ {0, 1}n, the point(

− 1

n
log p(X),− 1

n
log q(X)

)
only depends on for how many indices i, Xi = 1 and pi = aj, qi = bk. This motivates the
following definition.

By Mn we denote the space of N ×N matrices x with integer entries that satisfy the
constraints

0 ≤ xjk ≤ Nn(aj, bk).

For x ∈Mn we denote by pnx the following point in R2

pnx :=
N∑
j=1

N∑
k=1

Nn(aj, bk)

n

(
xjk

Nn(aj, bk)
B(L(aj, bk)) +

Nn(aj, bk)− xjk
Nn(aj, bk)

E(L(aj, bk))

)
It is then clear that we may rewrite Sn as

Sn =
⋃

x∈Mn

pnx.

Moreover, it follows that Sn ⊂ An.

Using this representation of Sn, we can now check that as n → ∞, the Hausdorff
distance between Sn and An is bounded by C/n, thereby proving the theorem.

A line segment is the convex hull of its endpoints. For two sets B1 and B2, the convex
hull of B1 + B2 is equal to the convex hull of B1 plus the convex hull of B2. Therefore,
the set An is equal to the convex hull of the Minkowski sum

N∑
j=1

N∑
k=1

Nn(aj, bk)

n
{B(L(aj, bk)), E(L(aj, bk))} .

In other words, if we denote by MN the set of all N ×N matrices with entries either
zero or one, the set A can also be described as the convex hull of the points

qny :=
N∑
j=1

N∑
k=1

Nn(aj, bk)

n

(
yjkB(L(aj, bk)) + (1− yjk)E(L(aj, bk))

)
,
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for y ∈MN , that is

An = Conv.Hull

{ ⋃
y∈MN

qny

}
. (C.3.2)

Note that the set {qny }y∈MN
is a subset of {pnx}x∈Mn , while we established previously that

pnx ∈ An for every x ∈Mn. Hence, also

An = Conv.HullSn.

The final statement to check is that every point in An is within distance C/n to some
point pnx. Let therefore a ∈ An. Then

a =
∑
y∈MN

λyq
n
y

for some constants λy ≥ 0 with
∑

y λy = 1. If we plug in the definition of qny and switch
the order of summation, we may write a as

a =
N∑
j=1

N∑
k=1

Nn(aj, bk)

n

((∑
y

λyyjk

)
B(L(aj, bk)) +

(
1−

(∑
y

λyyjk

))
E(L(aj, bk))

)
,

where we used that
∑

y λy = 1. Then choose xjk such that

xjk
Nn(aj, bk)

≈
∑
y

λyyjk,

the error being bounded by at most 1/Nn(aj, bk).

The distance between a and

pnx =
N∑
j=1

N∑
k=1

Nn(aj, bk)

n

(
xjk

Nn(aj, bk)
B(L(aj, bk)) +

(
1−

(∑
y

xjk
Nn(aj, bk)

))
E(L(aj, bk))

)
,

is therefore bounded by C/n for some constant C depending on N and the distance of
the aj and bk to 0 and 1. This finishes the proof of the theorem.

C.3.1 A practical method to compute the accessible set A

The previous description (C.3.2) provides a way to compute the set An and a similar
formula can be derived for A. However, it is not very efficient. In this section we will
provide a more efficient way to calculate A, by specifying its boundary.

First we order the points (aj, bk) according to the angles

αjk = arccos
E(L(aj, bk))1 −B(L(aj, bk))1

length(L(aj, bk))
.
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In other words, for ` = 1, . . . , N2, we let j(`) and k(`) be such that

α` ≤ α`+1,

where we used shorthand α` = αj(`)k(`), and ` 7→ (j(`), k(`)) is surjective onto {1, . . . , N}2.

Next, with obvious abbreviations, we define vectors

v` := f`(E` −B`)

and

w` := f`B`, w :=
N2∑
`=1

w`.

It is immediate from the definitions that the set A can also be written as

A = w + Conv.Hull
⋃

y∈{0,1}N2

N2∑
`=1

y`v`

= w +
⋃

λ∈[0,1]N2

N2∑
`=1

λ`v`.

We claim that

A = w + Conv.Hull(v1, v1 + v2, . . . , v1 + · · ·+ vN2 , v2 + v3 + · · ·+ vN2 , . . . , vN2).

To see this, we first note that we may without loss of generality assume that w = 0, and
that the slopes of v`1 and v`2 are different when `1 6= `2.

By the definition of B` and E`, we know that for every `, the vector v` either points
to the right or lies in the upper halfplane. Note that the origin lies in A, as do the line
segments [0, v1] and [0, vN2 ]. Moreover, the set A lies in the smaller cone bounded by the
rays starting from the origin with the directions of v1 and vN2 respectively. It follows that
the origin is an extreme point of the convex polyhedron A.

Note that for k = 1, . . . , N2 − 1 we may alternatively write A as

A =
k∑
`=1

v` +
⋃

λ∈[0,1]N2

(
k∑
`=1

λ1(−v`) +
N2∑

`=k+1

λ`v`

)
.

This representation of A allows one to check that for every k = 1, . . . , N2,
k∑
`=1

v`

is an extreme point of A, while the line segments[
k∑
`=1

v`,
k+1∑
`=1

v`

]
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are faces of A. Indeed, it is clear that the points and line segments lie in A. On the other
hand, A is contained in the smaller cone bounded by the rays with starting point

k∑
`=1

v`

and directions −vk and vk+1 respectively. A similar argument shows that the points

N2∑
`=k

v`

are extreme points and the line segments[
N2∑
`=k

v`,
N2∑

`=k+1

v`

]

are faces. Hence, we have shown that

A = w + Conv.Hull(v1, v1 + v2, . . . , v1 + · · ·+ vN2 , v2 + v3 + · · ·+ vN2 , . . . , vN2).

This description allows for fast checks whether or not a point lies in A.
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