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Abstract (250 words)

Various models describe asexual evolution by mutation, selection and drift. Some focus directly on
fitness, typically modelling drift but ignoring or simplifying both epistasis and the distribution of
mutation effects (travelling wave models). Others follow the dynamics of quantitative traits determining
fitness (Fisher’s geometrical model), imposing a complex but fixed form of mutation effects and
epistasis, and often ignoring drift. In all cases, predictions are typically obtained in high or low mutation
rate limits and for long-term stationary regimes, thus loosing information on transient behaviors and the
effect of initial conditions. Here, we connect fitness-based and trait-based models into a single
framework, and seek explicit solutions even away from stationarity. The expected fitness distribution is
followed over time via its cumulant generating function, using a deterministic approximation that
neglects drift. In several cases, explicit trajectories for the full fitness distribution are obtained, for
arbitrary mutation rates and standing variance. For non-epistatic mutation, especially with beneficial
mutations, this approximation fails over the long term but captures the early dynamics, thus
complementing stationary stochastic predictions. The approximation also handles several diminishing
return epistasis models (e.g. with an optimal genotype): it can then apply at and away from equilibrium.
General results arise at equilibrium, where fitness distributions display a ‘phase transition” with mutation
rate. Beyond this phase transition, in Fisher’s geometrical model, the full trajectory of fitness and trait
distributions takes simple form, robust to details of the mutant phenotype distribution. Analytical
arguments are explored for why and when the deterministic approximation applies.

Significance statement: How fast do asexuals evolve in new environments? Asexual fitness dynamics are
well documented empirically. Various corresponding theories exist, to which they may be compared, but
most typically describe stationary regimes, thus losing information on the shorter timescale of
experiments, and on the impact of the initial conditions set by the experimenter. Here, a general
deterministic approximation is proposed that encompasses many previous models as subcases, and
shows surprising accuracy when compared to stochastic simulations. It can yield predictions over both
short and long timescales, hopefully fostering the quantitative test of alternative models, using data
from experimental evolution in asexuals.
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Introduction

Empirical dynamics of fitness in simple environments are still not quantitatively predicted by
evolutionary biology, in spite of a wealth of theoretical progress and an ever-growing corpus of data
produced by experimental evolution. To our knowledge, no model exists that was parameterized from
independent data, and then has proved to predict observed fitness trajectories; in either sexual or
asexual organisms, from de novo mutations or preexisting standing variance. Patterns of fitness
trajectories in microbes (de novo mutations in asexuals) have been confronted to and fitted with various
theoretical predictions, showing qualitative agreement with models of clonal interference (TSIMRING et al.
1996; MIRALLES et al. 2000; GERRISH 2001; DesAl et al. 2007), and suggesting pervasive diminishing return
epistasis among beneficial mutations (CHou et al. 2011; KHAN et al. 2011). However, fitting is not
predicting: several alternative models can be qualitatively consistent with the same dataset (FRANK
2014). Regarding fitness dynamics during adaptation from standing variance, both theory and data are
relatively scarce, at least in asexuals; this limits our knowledge of the transient effects of standing

variance, while these can be critical for short-term adaptive responses to environmental challenges.

Important progress has been made, over several decades, with a rich variety of models predicting fitness
dynamics. These models critically depend on (i) a mutation rate and (ii) a distribution of fitness effects of
mutations (DFE), which is either independent of the background genotype (no epistasis for fitness), or
depends on it, minimally on its fitness. They differ in the genotype-fitness landscape considered and the
regimes assumed to derive the evolutionary dynamics. Models of mutation and selection in asexuals
roughly fall into two (seemingly disconnected) classes: DFE-based models that directly track the
distribution of fitness and trait-based models that follow the distribution of underlying quantitative
traits, which determine fitness. The aim of this work is to handle this variety of models into a single
analytical framework (in terms of partial differential equations, or PDE), and to use it to derive new
results for these models, regarding non-stationary dynamics or equilibria. We start by briefly

summarizing these existing approaches, in a necessarily far from exhaustive manner.

Fitness-based models directly follow the dynamics of fitness distributions, typically with a constant
mutation rate and DFE over time (no epistasis). Initially based on deterministic equations and diffusive
mutation effects (TSIMRING et al. 1996), they were then refined to include stochasticity and more general
DFEs of purely beneficial mutations (GERRISH and LENSKI 1998; ROUZINE et al. 2003; DwYER 2012; GooD et

al. 2012). More recently, the interplay of a distribution of deleterious and beneficial mutations has been
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studied in this context, in either low (e.g. Goob and DesAl 2014) or high (e.g. NEHER and HALLATSCHEK 2013)
mutation rate limits. As beneficial mutation influx becomes large in asexuals, co-segregating lineages
compete for fixation and slow down adaptation, a process further affected by the deleterious mutations
that accumulate on each lineage. These ‘clonal interference’ dynamics, in the presence of stochastic
fluctuations, are difficult to analyze and often yield complex or non-explicit formulae, but several models
have provided important insight into this process. They have been handled through alternative
modelling approaches, accurate in different regimes: low to intermediate mutation rate for the original
clonal interference models (GERRISH and LENSkI 1998; GERRISH 2001), or higher mutation rate for the more
recent ‘travelling wave’ models (ROUzINE et al. 2003; GooD et al. 2012; NEHER and HALLATSCHEK 2013).
Note that in the limit of very large populations, high mutation rates and weak mutation effects, a simple
and explicit Gaussian travelling wave is retrieved for the expected fitness distribution (NEHER and

HALLATSCHEK 2013).

This rich literature, reviewed elsewhere (e.g. ROUZINE et al. 2003; DEsAI and FISHER 2007; SNIEGOWSKI and
GERRISH 2010; DEesAl 2013), has a common feature: it describes the stationary regime of a stochastic
process. This implies that a full trajectory from given initial conditions (possibly with standing variance) is
not available, only the ultimate average rate of steady fitness change. Furthermore, as time goes on, the
envelope around this mean fitness prediction typically explodes so that individual populations may lie far
from the predicted mean at any time. This limits the comparison to empirical trajectories, which typically
start away from stationary regime, and contain a few replicates. Note however, that this assumption of
steady increase in fitness is often envisioned as reflecting a constant struggle between a steadily
changing environment and an adapting population (NEHER and HALLATSCHEK 2013). It is possible that in

such regime the envelope may remain narrow and steady-state may be reached faster.

Another aspect of the approach is that epistasis must be ignored here; otherwise mutation rates and
effects may change over time (as the dominant backgrounds change), impeding the setting of a
stationary regime. Recent extensions do include some form of epistasis or deleterious mutations
(KRYAZHIMSKIY et al. 2009; DWYER 2012; Goob and DEesAl 2015). However, analytical progress is then
difficult beyond the master equation: relatively simple exemplary cases were analyzed in depth but
always in regimes where clonal interference is negligible. Note also that other DFE-based models were
devoted to describe mutation-selection balance (another stationarity assumption), ignoring drift and
epistasis. General insight into equilibrium fitness distributions has been gained from quasi-species theory

(EIGEN 1971) or asexual mutation-selection-balance models (JOHNSON 1999). This literature will not be
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reviewed here either (see WILKE 2005), but in general analytical progress has often proved difficult unless

simplified forms of DFE are assumed (discussed in MARTIN and GANDON 2010).

Trait-based models form an equally central body of literature that deals with adaptation affecting a trait
or set of traits under selection for an optimum (via some concave phenotype-fitness function). These
single peak trait-based models date back to Fisher’s (FISHER 1930) geometrical model (FGM), and also
produced a rich literature connected to evolutionary quantitative genetics (LANDE 1979). This approach is
constrained into a particular form of DFE, but one that does include (i) pervasive epistasis and
dominance, and (ii) both beneficial and deleterious mutations. Several patterns of mutant fitness
expected in the FGM have been tested on fitness data from mutant lines (MARTIN et al. 2007; TRINDADE et
al. 2010; MANNA et al. 2011; SousA et al. 2011; TRINDADE et al. 2012; HIETPAS et al. 2013), showing
promising overall agreement. The FGM also emerges as the limit of a broader class of genotype-
phenotype-fitness landscapes involving highly integrated “small-world” phenotypic networks (MARTIN
2014). Overall, the FGM seems a reasonable null model for evolutionary predictions (reviewed in
TENAILLON 2014). The population genetics of adaptation by mutation and selection, in such trait-based
models, has also seen many developments, reviewed extensively elsewhere (e.g. BURGER 2000; ORR
2005). It provides a well-studied theory for equilibrium states in various situations (detailed in Roze and
BLANCKAERT 2014); several qualitative properties of equilibria have even been obtained for more general
trait-fitness relationships, at least with a single trait (detailed in BURGER 1998; BURGER 2000). The effect of
standing genetic variance has also been treated extensively (from its quantitative genetics heritage),
making the FGM an interesting complement to DFE-based models. Furthermore, predictions on trait
distributions can be transformed into predictions on measurable fitness distributions under the model
(e.g. MARTIN and GANDON 2010). Yet, in spite of interest in its potential (BARTON 1998; GORDO and CAMPOS
2012), analytic progress in situations relevant for experimental evolution (notably asexuals), has proven
equally difficult to obtain. Even equilibrium states are not fully resolved in the FGM. Alternative analytic
approximations only exist at each extreme of the mutation rate spectrum: House of Cards for a single
trait (TURELLI 1984) vs. Gaussian for arbitrarily many traits (KIMURA 1965; LANDE 1980), respectively, in the
low vs. large mutation rate limits. When dealing with the dynamics of adaptation, the classic approach
(LANDE 1979) focuses on large highly polymorphic sexual populations, where the genetic variance of the
traits is transiently approximately constant: another stationarity assumption, valid this time over finite
timescales. However, this option breaks down with asexuals, in general. Alternatively, stochastic models
of mutation-selection-drift dynamics have been implemented under the FGM for adaptation trajectories

(ORR 2000), or mutation-selection-drift balance (TENAILLON et al. 2007). However, they apply in a weak
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mutation strong selection limit (or with unlinked non-epistatic loci in sexuals) where clonal interference
is negligible. Finally, it is noteworthy that treatments of trait-based models with high mutational input
(Gaussian theories) put less emphasis on drift (often neglected), than their fitness-based counterparts.
They do involve multiple co-segregating mutants (clonal interference), but the deterministic predictions
prove fairly accurate in this case, suggesting that some difference in the assumptions makes the

interplay of drift and other forces less critical.

Aim of this work: Overall, we enjoy a wealth of alternative, complementary approaches of adaptive (or
maladaptive) fitness dynamics in the presence of mutation, selection and possibly drift. Yet, they are not
easily connected together. They do not provide a readily testable prediction, in terms of trajectories of
fitness distributions over time, from known initial conditions, in the large asexual populations typical of
evolution experiments. To derive such predictions, we extend an approach initially proposed by R.
Birger (1991), who studied trait-based models via the dynamics of the cumulants of the trait
distribution, under selection and non-epistatic mutation. We apply this framework to fitness itself.
Deterministic dynamics of fitness cumulants/moments have been used previously in non-epistatic
fitness-based models: either neglecting drift (JOHNSON 1999; DEesAl and FISHER 2011; GERRISH and
SNIEGOWSKI 2012) or including a stochastic diffusion component and considering the expected cumulants
over replicates (RATTRAY and SHAPIRO 2001; Goob and DEesal 2013). Following Birger’s (1991) strategy,
these studies solved a finite set of cumulant equations numerically, but the system could not be closed,
as cumulants/moments influence each other in cascade. Here, we focus on the moment and cumulant
generating function (MGF and CGF, respectively) of the fitness distribution, which handles all moments
(resp. cumulants) in a single function. In a variety of models, this allows to ‘close the system’ into a single
partial differential equation (PDE) describing the dynamics of the expectation of the fitness distribution,
among stochastic replicates, by ignoring the effect of drift. We further include mutational epistasis by
considering DFEs that broadly depend on background fitness. Overall, several processes are jointly
handled by the PDE (Fig. 1): starting from an arbitrary initial fitness distribution, new mutations
accumulate on each lineage (with lineage-dependent DFE), which co-segregate under selection (clonal
interference). In several classes of models, explicit solutions can be found for the PDE, providing a fully
analytic theory in terms of mutational parameters and standing variance. We check the predictions

against stochastic individual based simulations of various subcases.
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Fig. 1. The standing fitness distribution ( p,(m), blue curve) travels to the right by selection. Each
genetic background under this distribution (e.g. m; and m, here) mutates to new genotypes with
fitness m; + s where s has the density f(s|m;) depending on background fitness (red and brown curves
for m; and m,, respectively).

Heuristic statements: Before describing the model in more mathematical detail, we first tackle some
qualitative aspects of fitness dynamics in the different models above. Let us start by a somewhat
technical remark that justifies the use of generating functions here. With any model where the DFE only
depends on parental fitness and in an asexual (no recombination/segregation), fitness is the only ‘trait’
which distribution fully determines its own evolution. We can thus follow this distribution alone, ignoring
the genetic or phenotypic details underlying its variation, namely the number and effects of the
mutations carried by different genotypes, over their entire genome. This does not preclude the
complications described above: multiple mutations accumulate on each lineage, multiple lineages co-
segregate and compete for ultimate fixation and each lineage may have its own background-dependent
DFE (epistasis), as long as this dependence is entirely mediated by the background fitness. Generating
functions handle sums of independent variables in a convenient manner, which helps study the
cumulative effect of multiple mutations accumulating in lineages. It is also known that the effect of
selection on fitness distributions takes simple form in terms of generating functions (HANSEN 1992;

MANNA et al. 2012).
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Second, let us consider why and when drift may be ignored in a given finite population, or among
replicate finite populations, to describe the average fitness trajectory. The primary impact of drift
identified in stochastic fitness-based models lies in its impact on the very fittest edge of the fitness
distribution. When this edge represents a small absolute number of individuals, stochastic fluctuations in
this subpopulation indirectly bias the future mean fitness dynamics of the whole population, over longer
times. This effect does not average out if we consider the average mean fitness of replicate populations.
However, over a substantial initial period, this fitter edge has little influence on the mean fitness
dynamics (discussed in GERRISH and SNIEGOwsKI 2012), for two reasons. First, in a large polymorphic
population, the short term mean fitness dynamics are driven by selection and mutation in the bulk of the
population, which behaves roughly deterministically. Second, even in a smaller population, drift, of itself,
only slightly alters the average frequency dynamics of genotypes: roughly by an order —s (p?)/N
where N is population size and p and s are the allele’s frequency and fitness effect, respectively (see,
e.g. OTT0 and BARTON 2001). Therefore, any quantity that is linear in genotype frequencies, such as mean
fitness or the moment generating function of the fitness distribution, is only slightly affected by drift
over this timescale. It is only once new mutants establish (or not) that the future of the fitness dynamics
is inaccurately predicted by a deterministic model: ignoring the stochastic loss of these fitter genotypes
leads to overestimate mean fitness over longer timescales. Finally, even over longer timescales, the bias
induced by drift is only visible if it accumulates over time, as the fittest edge stochastically moves
towards fitter classes (at a speed overestimated by the deterministic model). If the set of all possible
fitnesses is bounded by some maximal value, stochastic fluctuations should become less important, as
the edge cannot spread forward forever: the delay between the edge and the bulk is bounded, and tends
to decay over time (as the bulk adapts). Most trait-based models consider adaptation towards a
phenotypic optimum, implying a form of diminishing returns epistasis, where fitness is bounded on the
right by the fitness of this optimum. This may explain why the mean fitness dynamics in these models
has been accurately captured by deterministic theories. The same applies for purely deleterious models,
where fitness cannot travel beyond the unloaded fitness class. In this case, however, loss of the fitter
class also happens and affects the long-term dynamics (Muller’s ratchet 1932). Yet, this happens over
much longer timescales, as the edge is a large subpopulation and as each ‘click’ of the ratchet has a small
impact (especially with continuous DFEs, where the new fittest class typically lies close to the previous
one). This argument suggests that, in the presence of a fitness upper bound, it may be possible to
accurately capture fitness dynamics by a mere deterministic model, even if clonal interference is

involved and even over long timescales. It also suggests that non-epistatic models with beneficial
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mutations (where deterministic models fail in the long run) could still show transient fitness dynamics
which average (over replicates) is captured by a deterministic model. Deriving such predictions (and
justifying the above heuristic), as well as testing their accuracy with stochastic simulations is the central

aim of this article.

Model

General setting: We assume finite haploid asexual populations and follow the expected fitness
distribution among replicates, started from the same initial fitness distribution. We consider a
continuous time model (overlapping generations), measured in arbitrary units (hours, days etc.). This
setting can also approximate a discrete time model (non-overlapping generations) when effects are small
per generations, the time t is then measured in generations: this will actually be our simulation scheme.
We follow the dynamics of the distribution of the Malthusian fitness m (hereafter ‘fitness’). In
continuous time, this is the expected exponential growth rate of a given genotype. In a discrete time
approximation, mis the log of the Darwinian fitness (m = logW), namely the log of the expected
geometric growth rate of a genotype. We define fitness relative to a reference, set at m = 0, without
loss of generality. This reference is arbitrary as we consider evolutionary dynamics (relative fitness)
without coupling to demography. In those models that include some fitness upper bound (e.g. single
peak landscape models or models with only deleterious mutations), we set the optimal genotype (with
fitness equal to this maximum) to be the reference m = 0 for convenience (so that all m < 0). In other
models (e.g. models with context-independent beneficial mutations), the reference is just an arbitrary
point in fitness space. At any time t, an arbitrary set of K, genotypes, with constant
fitnesses {m;}; e [1,k,], coexist in relative frequencies p.(m;), satisfying Zf;lpt(mi) = 1. The approach
can describe discrete classes (K; finite) or infinite countable classes in the limit K; = oo (with
convergence to a continuous distribution of fitness). Genotypes compete by frequency-independent
selection, and mutate according to a Poisson process with fixed rate U per capita per unit time. The
fitness of a mutant which parent has fitness mism + s, where s is the selection coefficient of the
mutation relative to the parent, and is drawn from an arbitrary distribution with probability distribution
function f(s|m) (pdf; a probability density function if the distribution is continuous) depending on the

parent fitness m.
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Notations: We must define various expectations and means. We use an overbar X to describe any

variable X(m), averaged over the current distribution of genotypes within a focal population: X =

Zf;lpt(mi) X(m;). We define the expectation E(Y|m) of any variable Y (s) over the DFE in background

m: E(Y|m) = [ Y(s)f(s|m)ds,and we denote by g = E(s) the mean DFE whenever it does not

depend on m.

Generating functions: The distribution of m at time t can be characterized by its moment generating

function (MGF): M;(z) = e™? =Zf=tlpt(mi) e™i?, For any finite population (K finite) this MGF is
always defined over the full line z € R, but we may study it on a compact subset spanning 0 (here, z €
R*), without loss of generality: this helps handle several continuous class limits (when K; — ). This
generating function provides essential information on the distribution at time t: its derivatives atz = 0
are the raw moments of the fitness distribution, notably the mean fitness m, = M{(0) (the prime refers
to differentiation with respect to z). For mathematical convenience, we mostly focus on the natural
logarithm of the moment generating function, which is the cumulant generating function (CGF): C;(z) =
log M, (z). Its derivatives at z = 0 are the cumulants of the distribution: in particular, the first three
derivatives are the mean m; = C{(0), variance V; = C{'(0) and third central moment (related to
skewness) k3 = C{"'(0). Additionally, the maximum of the distribution is given by C{(c) and the weight
of the classm = 0 is given by p; = eCt(®); we say that the distribution has a spike atm = 0 when this
quantity p; is strictly positive. It should also be noted that the full distribution of m at time t can be

retrieved by applying an inverse Laplace transform to M, = e‘t.

Because each replicate population has its own trajectory of genotypic frequencies, the generating
functions M;(.) and C;(.) are stochastic functions of z over time. We seek to predict the behavior of the
expectation of such variables over stochastic replicates, so we use (X) to denote any such expectation
of X. In particular (M;(z)) and (C;(z)) are the expected MGF and CGF, which are deterministic functions
of z and t, while (m;) and (V) are the expected mean fitness and variance in fitness within populations.

These are deterministic functions of time.

Organization of the article: In Appendix A, we derive exact dynamics for the expected generating
functions, which do not close. Then we describe approximate closed dynamics for these quantities under
a deterministic approximation ignoring drift. In Appendix B, we derive general properties of the
approximate dynamics, and Appendices C,D,E provide detailed applications to particular classes of

mutational models. In the ‘Model’ section below, we summarize our results on the expected CGF
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(C:(2)), and its approximate deterministic counterpart, denoted C;(z) = (C;(2)) (the = sign is a

reminder that the result is approximate). The ‘Application’ section then illustrates applications to several

classes of mutation models, evaluating the accuracy of the approximation on stochastic simulations. A

last section summarizes some analytic results on the error involved by the approximation, and hints on

why and when it applies. All notations are summarized in Table 1.

Notation Description Formula
m Malthusian fitness
{m}ic1k, Fitness classes within a population
p:(m;) Frequency of the fitness class m; at time t
N,N, Population size, effective size
K, Number of fitness classes at time t
m, Mean fitness at time ¢ K
izlpc(mi) m;
. . . . K
vV, Variance in fitness at time t | ¢ ) —
i=1
Pt Weight of the classm = 0 p:(m; = 0)
o ; X,
X (I;/ilseta:?bn:il;s ::))]1: any variable 'X(.m), average.d over the current Z o)
genotypes within a population sl
() ‘Ensemble expectation’ of any random variable, averaged over
replicate (finite) populations.
M, (z) ‘Empirical’ moment generating function (MGF) of m in a given e "z
population, at time ¢ izlpt(mi) e
C.(2) ‘Empirical’ cumulant generating function (CGF) of min a given  log M,(z)
population, at time t
M. (2) Expected MGF under the deterministic approximation M (2) = (M (z))
C.(2) Expected CGF under the deterministic approximation Ci(2) = (C(2))
DFE Distribution of fitness effects of mutations
s Selection coefficient of the mutation relative to the parent
f(sm) Probability distribution function of s in background m
E(Y|m) Expectation of any variable Y (s) over the DFE in background
m fna Y(s)f(slm)ds,
Hs Mean effect of mutations on fitness in the background with
fitness m = 0 (or any background in non-epistatic models) fn& s f(slm = 0)ds
M5(z,m) MGF of the DFE
J f(slm)es%ds
R
M, (2) MGF of the DFE in the background with fitness m = 0 M3(z,0)
w(2) Linear effect of m on the CGF of the DFE Omlog M5(z,m) |y =0
Sy Harmonic mean in absolute value of the DFE in the 1/E(1/|s])
background m = 0.
U Genomic mutation rate
L Mutation load (with an optimal fitness class at m = 0) L =—(My)
FGM Fisher’s geometrical model
n Dimension of the phenotypic space
A Mutational variance at each trait

Table 1. Main notations used throughout the article.
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Dynamics of the expected CGF under selection, drift and mutation: Using a multi-type Wright-Fisher
diffusion approximation to genotype frequency dynamics (Section Il in Appendix A), it can be shown that

the change by selection and drift (‘SD’), over At, in the expected CGF (C;(2)) satisfies

SAD<Ct(Z)) , )
T = {G@) = (G (0) + 6:(2),
1 — (eC:2D-2C(2) [1]
6¢(2) = N :

Here, 6;(2) is the contribution generated by drift (it vanishes if N, — o), essentially the same as given in
Good & Desai’s (2013) eq. (D.4). This dynamic term does not allow to close the system as §;(z) does not
depend directly on (C;(2)). We thus rely on a deterministic approximation (that we will use all along),
which simply ignores §;(2) in the dynamics, yielding an approximate expected CGF (C;(2) = (C:(2))),
with closed dynamicss%(,’t(z)/At = C{(z) — ¢[(0).

Mutation (see the General setting section above) generates a distribution of fitness effects (DFE) which

MGF is denoted M5(z,m) = fR f(s|m)es2ds. It is assumed to have known analytical form, over some
positive domain z € [0, Z;,qx] € R*, determined by the model considered. This may include continuous
or discrete distributions, but it does require that the DFE have finite higher moments (so that an MGF
can be analytically defined). The change in (C;(2)) (and C;(z)) by mutation (‘mut’), over At, takes the

general form (Section Ill.1 in Appendix A):

A (CG(2) A Ci(2) emZMS(z,m)

emz

where we recall that (. ) is the expectation over replicate populations, while the overbar refers to the
averaging with respect tom, within a given population, at current timet. The limit, as At —» 0, of

(SADCt(Z) + AtC’t(z))/At from Egs. [1] and [2], yields the continuous time dynamics of the expected
mu

CGF, under the deterministic approximation:
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0:(C(2)) = 8,C,(2) = C{(2) — €}(0) + U (2™ 1), [3]

emz

This is our central result, from which all following dynamics are derived. In general, the mutation kernel
in Eq. [3] does not generate a closed system, even under the deterministic approximation, as the
mutational term cannot be expressed in terms of C.(.). Fortunately, this term simplifies in several
general classes of models, which we detail below, summarize in Table 2 and implement in

Supplementary material 2 (see below).

model Background- Timescale of w(z)ora(z) M., (z)
dependence applicability
Non-epistatic deleterious none t<T~N,e Ulsu 0 arbitrary <1
Non-epistatic delet. + benef. none t<T=~100-1000® 0 arbitrary
House Of Cards log-linear t e R* A arbitrary
Binary Model 2 linear teR* — 2sinh(8 z)/(A 8) e 0z
Gaussian FGM log-linear teR" —Az%/(1+2z) (A+A1z)™™2
Generalized FGM =~ linear (U » U,) t e R* ~ —2|uglz%/n ~1—z |y
diminishing return = linear At equilibrium € [z 0] arbitrary < 1

(near equilibrium)

Table 2: Various mutational models handled by the proposed framework. These models only apply
when N, U|ug| > 1. For each model, each column gives (i) the model type, (ii) the type of background
dependence, (iii) the timescale (sometimes approximate) over which the prediction applies (in that it is
expected to be reasonably to very accurate), (iv) the background dependence function (w(z) for log-
linear background-dependence or a(z) for linear background-dependence), and (v) the MGF M, (2) of
the DFE in the background with fitness m = 0 (fittest background in models with a maximum fitness). In
some models the ' = ' notifies that this is an approximate result or a conjecture; 'T ~ N, e U/SH' means
that the two quantities have the same order of magnitude. : conjecture and timescale based on
observations in our simulations. ?: simplified version of Rouzine et al.’s (2003) model, detailed in
Appendix A 111.2. Here, A is the number of sites ('L in the original paper) and & is the constant deleterious
effect o