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Abstract (250 words) 

Various models describe asexual evolution by mutation, selection and drift. Some focus directly on 

fitness, typically modelling drift but ignoring or simplifying both epistasis and the distribution of 

mutation effects (travelling wave models). Others follow the dynamics of quantitative traits determining 

fitness (Fisher’s geometrical model), imposing a complex but fixed form of mutation effects and 

epistasis, and often ignoring drift. In all cases, predictions are typically obtained in high or low mutation 

rate limits and for long-term stationary regimes, thus loosing information on transient behaviors and the 

effect of initial conditions. Here, we connect fitness-based and trait-based models into a single 

framework, and seek explicit solutions even away from stationarity. The expected fitness distribution is 

followed over time via its cumulant generating function, using a deterministic approximation that 

neglects drift. In several cases, explicit trajectories for the full fitness distribution are obtained, for 

arbitrary mutation rates and standing variance. For non-epistatic mutation, especially with beneficial 

mutations, this approximation fails over the long term but captures the early dynamics, thus 

complementing stationary stochastic predictions. The approximation also handles several diminishing 

return epistasis models (e.g. with an optimal genotype): it can then apply at and away from equilibrium. 

General results arise at equilibrium, where fitness distributions display a ‘phase transition’ with mutation 

rate. Beyond this phase transition, in Fisher’s geometrical model, the full trajectory of fitness and trait 

distributions takes simple form, robust to details of the mutant phenotype distribution. Analytical 

arguments are explored for why and when the deterministic approximation applies. 

Significance statement: How fast do asexuals evolve in new environments? Asexual fitness dynamics are 

well documented empirically. Various corresponding theories exist, to which they may be compared, but 

most typically describe stationary regimes, thus losing information on the shorter timescale of 

experiments, and on the impact of the initial conditions set by the experimenter. Here, a general 

deterministic approximation is proposed that encompasses many previous models as subcases, and 

shows surprising accuracy when compared to stochastic simulations. It can yield predictions over both 

short and long timescales, hopefully fostering the quantitative test of alternative models, using data 

from experimental evolution in asexuals.  
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Introduction 

Empirical dynamics of fitness in simple environments are still not quantitatively predicted by 

evolutionary biology, in spite of a wealth of theoretical progress and an ever-growing corpus of data 

produced by experimental evolution. To our knowledge, no model exists that was parameterized from 

independent data, and then has proved to predict observed fitness trajectories; in either sexual or 

asexual organisms, from de novo mutations or preexisting standing variance. Patterns of fitness 

trajectories in microbes (de novo mutations in asexuals) have been confronted to and fitted with various 

theoretical predictions, showing qualitative agreement with models of clonal interference (TSIMRING et al. 

1996; MIRALLES et al. 2000; GERRISH 2001; DESAI et al. 2007), and suggesting pervasive diminishing return 

epistasis among beneficial mutations (CHOU et al. 2011; KHAN et al. 2011). However, fitting is not 

predicting: several alternative models can be qualitatively consistent with the same dataset (FRANK 

2014). Regarding fitness dynamics during adaptation from standing variance, both theory and data are 

relatively scarce, at least in asexuals; this limits our knowledge of the transient effects of standing 

variance, while these can be critical for short-term adaptive responses to environmental challenges. 

Important progress has been made, over several decades, with a rich variety of models predicting fitness 

dynamics. These models critically depend on (i) a mutation rate and (ii) a distribution of fitness effects of 

mutations (DFE), which is either independent of the background genotype (no epistasis for fitness), or 

depends on it, minimally on its fitness. They differ in the genotype-fitness landscape considered and the 

regimes assumed to derive the evolutionary dynamics. Models of mutation and selection in asexuals 

roughly fall into two (seemingly disconnected) classes: DFE-based models that directly track the 

distribution of fitness and trait-based models that follow the distribution of underlying quantitative 

traits, which determine fitness. The aim of this work is to handle this variety of models into a single 

analytical framework (in terms of partial differential equations, or PDE), and to use it to derive new 

results for these models, regarding non-stationary dynamics or equilibria. We start by briefly 

summarizing these existing approaches, in a necessarily far from exhaustive manner. 

Fitness-based models directly follow the dynamics of fitness distributions, typically with a constant 

mutation rate and DFE over time (no epistasis). Initially based on deterministic equations and diffusive 

mutation effects (TSIMRING et al. 1996), they were then refined to include stochasticity and more general 

DFEs of purely beneficial mutations (GERRISH and LENSKI 1998; ROUZINE et al. 2003; DWYER 2012; GOOD et 

al. 2012). More recently, the interplay of a distribution of deleterious and beneficial mutations has been 
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studied in this context, in either low (e.g. GOOD and DESAI 2014) or high (e.g. NEHER and HALLATSCHEK 2013) 

mutation rate limits. As beneficial mutation influx becomes large in asexuals, co-segregating lineages 

compete for fixation and slow down adaptation, a process further affected by the deleterious mutations 

that accumulate on each lineage. These ‘clonal interference’ dynamics, in the presence of stochastic 

fluctuations, are difficult to analyze and often yield complex or non-explicit formulae, but several models 

have provided important insight into this process. They have been handled through alternative 

modelling approaches, accurate in different regimes: low to intermediate mutation rate for the original 

clonal interference models (GERRISH and LENSKI 1998; GERRISH 2001), or higher mutation rate for the more 

recent ‘travelling wave’ models (ROUZINE et al. 2003; GOOD et al. 2012; NEHER and HALLATSCHEK 2013). 

Note that in the limit of very large populations, high mutation rates and weak mutation effects, a simple 

and explicit Gaussian travelling wave is retrieved for the expected fitness distribution (NEHER and 

HALLATSCHEK 2013). 

 This rich literature, reviewed elsewhere (e.g. ROUZINE et al. 2003; DESAI and FISHER 2007; SNIEGOWSKI and 

GERRISH 2010; DESAI 2013), has a common feature: it describes the stationary regime of a stochastic 

process. This implies that a full trajectory from given initial conditions (possibly with standing variance) is 

not available, only the ultimate average rate of steady fitness change. Furthermore, as time goes on, the 

envelope around this mean fitness prediction typically explodes so that individual populations may lie far 

from the predicted mean at any time. This limits the comparison to empirical trajectories, which typically 

start away from stationary regime, and contain a few replicates. Note however, that this assumption of 

steady increase in fitness is often envisioned as reflecting a constant struggle between a steadily 

changing environment and an adapting population (NEHER and HALLATSCHEK 2013). It is possible that in 

such regime the envelope may remain narrow and steady-state may be reached faster. 

Another aspect of the approach is that epistasis must be ignored here; otherwise mutation rates and 

effects may change over time (as the dominant backgrounds change), impeding the setting of a 

stationary regime. Recent extensions do include some form of epistasis or deleterious mutations 

(KRYAZHIMSKIY et al. 2009; DWYER 2012; GOOD and DESAI 2015). However, analytical progress is then 

difficult beyond the master equation: relatively simple exemplary cases were analyzed in depth but 

always in regimes where clonal interference is negligible. Note also that other DFE-based models were 

devoted to describe mutation-selection balance (another stationarity assumption), ignoring drift and 

epistasis. General insight into equilibrium fitness distributions has been gained from quasi-species theory 

(EIGEN 1971) or asexual mutation-selection-balance models (JOHNSON 1999). This literature will not be 
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reviewed here either (see WILKE 2005), but in general analytical progress has often proved difficult unless 

simplified forms of DFE are assumed (discussed in MARTIN and GANDON 2010). 

Trait-based models form an equally central body of literature that deals with adaptation affecting a trait 

or set of traits under selection for an optimum (via some concave phenotype-fitness function). These 

single peak trait-based models date back to Fisher’s (FISHER 1930) geometrical model (FGM), and also 

produced a rich literature connected to evolutionary quantitative genetics (LANDE 1979). This approach is 

constrained into a particular form of DFE, but one that does include (i) pervasive epistasis and 

dominance, and (ii) both beneficial and deleterious mutations. Several patterns of mutant fitness 

expected in the FGM have been tested on fitness data from mutant lines (MARTIN et al. 2007; TRINDADE et 

al. 2010; MANNA et al. 2011; SOUSA et al. 2011; TRINDADE et al. 2012; HIETPAS et al. 2013), showing 

promising overall agreement. The FGM also emerges as the limit of a broader class of genotype-

phenotype-fitness landscapes involving highly integrated “small–world” phenotypic networks (MARTIN 

2014). Overall, the FGM seems a reasonable null model for evolutionary predictions (reviewed in 

TENAILLON 2014). The population genetics of adaptation by mutation and selection, in such trait-based 

models, has also seen many developments, reviewed extensively elsewhere (e.g. BURGER 2000; ORR 

2005). It provides a well-studied theory for equilibrium states in various situations (detailed in ROZE and 

BLANCKAERT 2014); several qualitative properties of equilibria have even been obtained for more general 

trait-fitness relationships, at least with a single trait (detailed in BURGER 1998; BURGER 2000). The effect of 

standing genetic variance has also been treated extensively (from its quantitative genetics heritage), 

making the FGM an interesting complement to DFE-based models. Furthermore, predictions on trait 

distributions can be transformed into predictions on measurable fitness distributions under the model 

(e.g. MARTIN and GANDON 2010). Yet, in spite of interest in its potential (BARTON 1998; GORDO and CAMPOS 

2012), analytic progress in situations relevant for experimental evolution (notably asexuals), has proven 

equally difficult to obtain. Even equilibrium states are not fully resolved in the FGM. Alternative analytic 

approximations only exist at each extreme of the mutation rate spectrum: House of Cards for a single 

trait (TURELLI 1984) vs. Gaussian for arbitrarily many traits (KIMURA 1965; LANDE 1980), respectively, in the 

low vs. large mutation rate limits. When dealing with the dynamics of adaptation, the classic approach 

(LANDE 1979) focuses on large highly polymorphic sexual populations, where the genetic variance of the 

traits is transiently approximately constant: another stationarity assumption, valid this time over finite 

timescales. However, this option breaks down with asexuals, in general. Alternatively, stochastic models 

of mutation-selection-drift dynamics have been implemented under the FGM for adaptation trajectories 

(ORR 2000), or mutation-selection-drift balance (TENAILLON et al. 2007). However, they apply in a weak 
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mutation strong selection limit (or with unlinked non-epistatic loci in sexuals) where clonal interference 

is negligible. Finally, it is noteworthy that treatments of trait-based models with high mutational input 

(Gaussian theories) put less emphasis on drift (often neglected), than their fitness-based counterparts. 

They do involve multiple co-segregating mutants (clonal interference), but the deterministic predictions 

prove fairly accurate in this case, suggesting that some difference in the assumptions makes the 

interplay of drift and other forces less critical. 

Aim of this work: Overall, we enjoy a wealth of alternative, complementary approaches of adaptive (or 

maladaptive) fitness dynamics in the presence of mutation, selection and possibly drift. Yet, they are not 

easily connected together. They do not provide a readily testable prediction, in terms of trajectories of 

fitness distributions over time, from known initial conditions, in the large asexual populations typical of 

evolution experiments. To derive such predictions, we extend an approach initially proposed by R. 

Bürger (1991), who studied trait-based models via the dynamics of the cumulants of the trait 

distribution, under selection and non-epistatic mutation. We apply this framework to fitness itself. 

Deterministic dynamics of fitness cumulants/moments have been used previously in non-epistatic 

fitness-based models: either neglecting drift (JOHNSON 1999; DESAI and FISHER 2011; GERRISH and 

SNIEGOWSKI 2012) or including a stochastic diffusion component and considering the expected cumulants 

over replicates (RATTRAY and SHAPIRO 2001; GOOD and DESAI 2013). Following Bürger’s (1991) strategy, 

these studies solved a finite set of cumulant equations numerically, but the system could not be closed, 

as cumulants/moments influence each other in cascade. Here, we focus on the moment and cumulant 

generating function (MGF and CGF, respectively) of the fitness distribution, which handles all moments 

(resp. cumulants) in a single function. In a variety of models, this allows to ‘close the system’ into a single 

partial differential equation (PDE) describing the dynamics of the expectation of the fitness distribution, 

among stochastic replicates, by ignoring the effect of drift. We further include mutational epistasis by 

considering DFEs that broadly depend on background fitness. Overall, several processes are jointly 

handled by the PDE (Fig. 1): starting from an arbitrary initial fitness distribution, new mutations 

accumulate on each lineage (with lineage-dependent DFE), which co-segregate under selection (clonal 

interference). In several classes of models, explicit solutions can be found for the PDE, providing a fully 

analytic theory in terms of mutational parameters and standing variance. We check the predictions 

against stochastic individual based simulations of various subcases. 
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Fig. 1. The standing fitness distribution ( 𝒑𝒕(𝒎), blue curve) travels to the right by selection. Each 
genetic background under this distribution (e.g. 𝑚1 and 𝑚2 here) mutates to new genotypes with 
fitness 𝑚𝑖 + 𝑠 where 𝑠 has the density 𝑓(𝑠|𝑚𝑖) depending on background fitness (red and brown curves 
for 𝑚1 and 𝑚2, respectively). 

 

Heuristic statements: Before describing the model in more mathematical detail, we first tackle some 

qualitative aspects of fitness dynamics in the different models above. Let us start by a somewhat 

technical remark that justifies the use of generating functions here. With any model where the DFE only 

depends on parental fitness and in an asexual (no recombination/segregation), fitness is the only ‘trait’ 

which distribution fully determines its own evolution. We can thus follow this distribution alone, ignoring 

the genetic or phenotypic details underlying its variation, namely the number and effects of the 

mutations carried by different genotypes, over their entire genome. This does not preclude the 

complications described above: multiple mutations accumulate on each lineage, multiple lineages co-

segregate and compete for ultimate fixation and each lineage may have its own background-dependent 

DFE (epistasis), as long as this dependence is entirely mediated by the background fitness. Generating 

functions handle sums of independent variables in a convenient manner, which helps study the 

cumulative effect of multiple mutations accumulating in lineages. It is also known that the effect of 

selection on fitness distributions takes simple form in terms of generating functions (HANSEN 1992; 

MANNA et al. 2012). 
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Second, let us consider why and when drift may be ignored in a given finite population, or among 

replicate finite populations, to describe the average fitness trajectory. The primary impact of drift 

identified in stochastic fitness-based models lies in its impact on the very fittest edge of the fitness 

distribution. When this edge represents a small absolute number of individuals, stochastic fluctuations in 

this subpopulation indirectly bias the future mean fitness dynamics of the whole population, over longer 

times. This effect does not average out if we consider the average mean fitness of replicate populations. 

However, over a substantial initial period, this fitter edge has little influence on the mean fitness 

dynamics (discussed in GERRISH and SNIEGOWSKI 2012), for two reasons. First, in a large polymorphic 

population, the short term mean fitness dynamics are driven by selection and mutation in the bulk of the 

population, which behaves roughly deterministically. Second, even in a smaller population, drift, of itself, 

only slightly alters the average frequency dynamics of genotypes: roughly by an order −𝑠 〈𝑝2〉/𝑁 

where 𝑁 is population size and 𝑝 and 𝑠 are the allele’s frequency and fitness effect, respectively (see, 

e.g. OTTO and BARTON 2001). Therefore, any quantity that is linear in genotype frequencies, such as mean 

fitness or the moment generating function of the fitness distribution, is only slightly affected by drift 

over this timescale. It is only once new mutants establish (or not) that the future of the fitness dynamics 

is inaccurately predicted by a deterministic model: ignoring the stochastic loss of these fitter genotypes 

leads to overestimate mean fitness over longer timescales. Finally, even over longer timescales, the bias 

induced by drift is only visible if it accumulates over time, as the fittest edge stochastically moves 

towards fitter classes (at a speed overestimated by the deterministic model). If the set of all possible 

fitnesses is bounded by some maximal value, stochastic fluctuations should become less important, as 

the edge cannot spread forward forever: the delay between the edge and the bulk is bounded, and tends 

to decay over time (as the bulk adapts). Most trait-based models consider adaptation towards a 

phenotypic optimum, implying a form of diminishing returns epistasis, where fitness is bounded on the 

right by the fitness of this optimum. This may explain why the mean fitness dynamics in these models 

has been accurately captured by deterministic theories. The same applies for purely deleterious models, 

where fitness cannot travel beyond the unloaded fitness class. In this case, however, loss of the fitter 

class also happens and affects the long-term dynamics (Muller’s ratchet 1932). Yet, this happens over 

much longer timescales, as the edge is a large subpopulation and as each ‘click’ of the ratchet has a small 

impact (especially with continuous DFEs, where the new fittest class typically lies close to the previous 

one). This argument suggests that, in the presence of a fitness upper bound, it may be possible to 

accurately capture fitness dynamics by a mere deterministic model, even if clonal interference is 

involved and even over long timescales. It also suggests that non-epistatic models with beneficial 
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mutations (where deterministic models fail in the long run) could still show transient fitness dynamics 

which average (over replicates) is captured by a deterministic model. Deriving such predictions (and 

justifying the above heuristic), as well as testing their accuracy with stochastic simulations is the central 

aim of this article. 

 

Model 

General setting: We assume finite haploid asexual populations and follow the expected fitness 

distribution among replicates, started from the same initial fitness distribution. We consider a 

continuous time model (overlapping generations), measured in arbitrary units (hours, days etc.). This 

setting can also approximate a discrete time model (non-overlapping generations) when effects are small 

per generations, the time 𝑡 is then measured in generations: this will actually be our simulation scheme. 

We follow the dynamics of the distribution of the Malthusian fitness  𝑚  (hereafter ’fitness’). In 

continuous time, this is the expected exponential growth rate of a given genotype. In a discrete time 

approximation,  𝑚 is the log of the Darwinian fitness (𝑚 = log 𝑊), namely the log of the expected 

geometric growth rate of a genotype. We define fitness relative to a reference, set at 𝑚 = 0, without 

loss of generality. This reference is arbitrary as we consider evolutionary dynamics (relative fitness) 

without coupling to demography. In those models that include some fitness upper bound (e.g. single 

peak landscape models or models with only deleterious mutations), we set the optimal genotype (with 

fitness equal to this maximum) to be the reference 𝑚 = 0 for convenience (so that all 𝑚 ≤ 0). In other 

models (e.g. models with context-independent beneficial mutations), the reference is just an arbitrary 

point in fitness space. At any time 𝑡,  an arbitrary set of  𝐾𝑡  genotypes, with constant 

fitnesses {𝑚𝑖}𝑖 ∈ [1,𝐾𝑡], coexist in relative frequencies 𝑝𝑡(𝑚𝑖), satisfying ∑ 𝑝𝑡(𝑚𝑖)
𝐾𝑡
𝑖=1 = 1. The approach 

can describe discrete classes ( 𝐾𝑡  finite) or infinite countable classes in the limit 𝐾𝑡 → ∞  (with 

convergence to a continuous distribution of fitness). Genotypes compete by frequency-independent 

selection, and mutate according to a Poisson process with fixed rate 𝑈 per capita per unit time. The 

fitness of a mutant which parent has fitness 𝑚 is 𝑚 + 𝑠, where 𝑠 is the selection coefficient of the 

mutation relative to the parent, and is drawn from an arbitrary distribution with probability distribution 

function 𝑓(𝑠|𝑚) (pdf; a probability density function if the distribution is continuous) depending on the 

parent fitness 𝑚. 
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Notations: We must define various expectations and means. We use an overbar �̅� to describe any 

variable 𝑋(𝑚), averaged over the current distribution of genotypes within a focal population: �̅� =

∑ 𝑝𝑡(𝑚𝑖)𝐾𝑡
𝑖=1 𝑋(𝑚𝑖). We define the expectation 𝐸(𝑌|𝑚) of any variable 𝑌(𝑠) over the DFE in background 

𝑚:  𝐸(𝑌|𝑚) = ∫ 𝑌(𝑠)𝑓(𝑠|𝑚)𝑑𝑠, and we denote by 𝜇𝑠 = 𝐸(𝑠) the mean DFE whenever it does not 

depend on 𝑚.  

Generating functions: The distribution of 𝑚 at time 𝑡 can be characterized by its moment generating 

function (MGF): 𝑀𝑡(𝑧) = 𝑒𝑚 𝑧̅̅ ̅̅ ̅̅ = ∑ 𝑝𝑡(𝑚𝑖)
𝐾𝑡
𝑖=1 𝑒𝑚𝑖 𝑧. For any finite population (𝐾𝑡 finite) this MGF is 

always defined over the full line 𝑧 ∈ ℝ, but we may study it on a compact subset spanning 0 (here, 𝑧 ∈

ℝ+), without loss of generality: this helps handle several continuous class limits (when 𝐾𝑡 → ∞). This 

generating function provides essential information on the distribution at time 𝑡: its derivatives at 𝑧 = 0  

are the raw moments of the fitness distribution, notably the mean fitness �̅�𝑡 = 𝑀𝑡
′(0) (the prime refers 

to differentiation with respect to 𝑧). For mathematical convenience, we mostly focus on the natural 

logarithm of the moment generating function, which is the cumulant generating function (CGF): 𝐶𝑡(𝑧) =

log 𝑀𝑡(𝑧). Its derivatives at 𝑧 = 0 are the cumulants of the distribution: in particular, the first three 

derivatives are the mean �̅�𝑡 = 𝐶𝑡
′(0), variance 𝑉𝑡 = 𝐶𝑡

′′(0) and third central moment (related to 

skewness) 𝜅3 = 𝐶𝑡
′′′(0). Additionally, the maximum of the distribution is given by 𝐶𝑡

′(∞) and the weight 

of the class 𝑚 = 0 is given by 𝜌𝑡 = 𝑒𝐶𝑡(∞); we say that the distribution has a spike at 𝑚 = 0 when this 

quantity 𝜌𝑡 is strictly positive. It should also be noted that the full distribution of 𝑚 at time 𝑡 can be 

retrieved by applying an inverse Laplace transform to 𝑀𝑡 = 𝑒𝐶𝑡 .  

Because each replicate population has its own trajectory of genotypic frequencies, the generating 

functions 𝑀𝑡(. ) and 𝐶𝑡(. ) are stochastic functions of 𝑧 over time. We seek to predict the behavior of the 

expectation of such variables over stochastic replicates, so we use 〈𝑋〉 to denote any such expectation 

of 𝑋. In particular 〈𝑀𝑡(𝑧)〉 and 〈𝐶𝑡(𝑧)〉  are the expected MGF and CGF, which are deterministic functions 

of 𝑧 and 𝑡, while 〈�̅�𝑡〉 and  〈𝑉𝑡〉 are the expected mean fitness and variance in fitness within populations. 

These are deterministic functions of time.  

Organization of the article: In Appendix A, we derive exact dynamics for the expected generating 

functions, which do not close. Then we describe approximate closed dynamics for these quantities under 

a deterministic approximation ignoring drift. In Appendix B, we derive general properties of the 

approximate dynamics, and Appendices C,D,E provide detailed applications to particular classes of 

mutational models. In the ‘Model’ section below, we summarize our results on the expected CGF 
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〈𝐶𝑡(𝑧)〉 , and its approximate deterministic counterpart, denoted  𝒞𝑡(𝑧) ≈ 〈𝐶𝑡(𝑧)〉  (the  ≈  sign is a 

reminder that the result is approximate). The ‘Application’ section then illustrates applications to several 

classes of mutation models, evaluating the accuracy of the approximation on stochastic simulations. A 

last section summarizes some analytic results on the error involved by the approximation, and hints on 

why and when it applies. All notations are summarized in Table 1. 

Notation Description Formula 

𝒎 Malthusian fitness  
{𝒎𝒊}𝒊 ∈ [𝟏,𝑲𝒕] Fitness classes within a population  

𝒑𝒕(𝒎𝒊) Frequency of the fitness class 𝑚𝑖 at time 𝑡  
𝑵, 𝑵𝒆 Population size, effective size  
𝑲𝒕 Number of fitness classes at time 𝑡  
�̅�𝒕 Mean fitness at time 𝑡 

∑ 𝑝𝑡(𝑚𝑖)
𝐾𝑡

𝑖=1
𝑚𝑖 

𝑽𝒕 Variance in fitness at time 𝑡 
∑ 𝑝𝑡(𝑚𝑖)

𝐾𝑡

𝑖=1
𝑚𝑖

2 − �̅�𝑡
2 

 
𝝆𝒕 Weight of the class 𝑚 = 0 𝑝𝑡(𝑚𝑖 = 0) 

�̅�  Mean value of any variable 𝑋(𝑚), averaged over the current 
distribution of genotypes within a population 

∑ 𝑝𝑡(𝑚𝑖)
𝐾𝑡

𝑖=1
𝑋(𝑚𝑖) 

〈 〉 ‘Ensemble expectation’ of any random variable, averaged over 
replicate (finite) populations. 

 

𝑴𝒕(𝒛) ‘Empirical’ moment generating function (MGF) of 𝑚 in a given 
population, at time 𝑡 

∑ 𝑝𝑡(𝑚𝑖)
𝐾𝑡

𝑖=1
𝑒𝑚𝑖 𝑧 

𝑪𝒕(𝒛) ‘Empirical’ cumulant generating function (CGF) of 𝑚 in a given 
population, at time 𝑡 

log 𝑀𝑡(𝑧) 

𝓜𝒕(𝒛) Expected MGF under the deterministic approximation ℳ𝑡(𝑧) ≈ 〈𝑀𝑡(𝑧)〉 
𝓒𝒕(𝒛) Expected CGF under the deterministic approximation 𝒞𝑡(𝑧) ≈ 〈𝐶𝑡(𝑧)〉 

DFE Distribution of fitness effects of mutations  
𝒔 Selection coefficient of the mutation relative to the parent  
𝒇(𝒔|𝒎) Probability distribution function of 𝑠 in background 𝑚  
𝑬(𝒀|𝒎) Expectation of any variable 𝑌(𝑠) over the DFE in background 

𝑚 ∫ 𝑌(𝑠)𝑓(𝑠|𝑚)𝑑𝑠,
ℝ

 

𝝁𝒔 Mean effect of mutations on fitness in the background with 
fitness 𝑚 = 0 (or any background in non-epistatic models) ∫ 𝑠 𝑓(𝑠|𝑚 = 0)𝑑𝑠

ℝ

 

𝑴𝑺(𝒛, 𝒎) MGF of the DFE 
∫ 𝑓(𝑠|𝑚)𝑒𝑠 𝑧𝑑𝑠

ℝ

 

𝑴∗(𝒛) MGF of the DFE in the background with fitness 𝑚 = 0 𝑀𝑆(𝑧, 0) 
𝝎(𝒛) Linear effect of 𝑚 on the CGF of the DFE 𝜕𝑚log 𝑀𝑆(𝑧, 𝑚) |𝑚 = 0 
𝒔𝑯 Harmonic mean in absolute value of the DFE in the 

background 𝑚 = 0. 
1/𝐸(1/|𝑠|)  

𝑼 Genomic mutation rate  
𝑳 Mutation load (with an optimal fitness class at 𝑚 = 0) 𝐿 = −〈�̅�∞〉 

FGM Fisher’s geometrical model  
𝒏 Dimension of the phenotypic space   
𝝀 Mutational variance at each trait  

 

Table 1. Main notations used throughout the article. 
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Dynamics of the expected CGF under selection, drift and mutation: Using a multi-type Wright-Fisher 

diffusion approximation to genotype frequency dynamics (Section II in Appendix A), it can be shown that 

the change by selection and drift (‘SD’), over Δ𝑡, in the expected CGF 〈𝐶𝑡(𝑧)〉 satisfies 

 

Δ
𝑆𝐷

〈𝐶𝑡(𝑧)〉

Δ𝑡
= 〈𝐶𝑡

′(𝑧)〉 − 〈𝐶𝑡
′(0)〉 + 𝛿𝑡(𝑧),

𝛿𝑡(𝑧) =
1 − 〈𝑒𝐶𝑡(2 𝑧)−2 𝐶𝑡(𝑧)〉

2𝑁𝑒
.

  [1] 

Here, 𝛿𝑡(𝑧) is the contribution generated by drift (it vanishes if 𝑁𝑒 → ∞), essentially the same as given in 

Good & Desai’s (2013) eq. (D.4). This dynamic term does not allow to close the system as 𝛿𝑡(𝑧) does not 

depend directly on 〈𝐶𝑡(𝑧)〉. We thus rely on a deterministic approximation (that we will use all along), 

which simply ignores 𝛿𝑡(𝑧) in the dynamics, yielding an approximate expected CGF (𝒞𝑡(𝑧) ≈ 〈𝐶𝑡(𝑧)〉), 

with closed dynamics Δ
𝑆𝐷

𝒞𝑡(𝑧) Δ𝑡⁄ = 𝒞𝑡
′(𝑧) − 𝒞𝑡

′(0).  

Mutation (see the General setting section above) generates a distribution of fitness effects (DFE) which 

MGF is denoted 𝑀𝑆(𝑧, 𝑚) = ∫ 𝑓(𝑠|𝑚)𝑒𝑠 𝑧𝑑𝑠
ℝ

. It is assumed to have known analytical form, over some 

positive domain 𝑧 ∈ [0, 𝑧𝑚𝑎𝑥] ⊂ ℝ+, determined by the model considered. This may include continuous 

or discrete distributions, but it does require that the DFE have finite higher moments (so that an MGF 

can be analytically defined). The change in 〈𝐶𝑡(𝑧)〉 (and 𝒞𝑡(𝑧)) by mutation (‘mut’), over Δ𝑡, takes the 

general form (Section III.1 in Appendix A): 

 
Δ

𝑚𝑢𝑡
〈𝐶𝑡(𝑧)〉

Δ𝑡
=

Δ
𝑚𝑢𝑡

𝒞t(𝑧)

Δ𝑡
= 𝑈 (〈 

𝑒𝑚 𝑧𝑀𝑠(𝑧, 𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑒𝑚 𝑧̅̅ ̅̅ ̅̅
 〉 − 1),   [2] 

where we recall that 〈 . 〉 is the expectation over replicate populations, while the overbar refers to the 

averaging with respect to 𝑚, within a given population, at current time 𝑡. The limit, as Δ𝑡 → 0, of 

( Δ
𝑆𝐷

𝒞t(𝑧) + Δ
𝑚𝑢𝑡

𝒞t(𝑧))/Δ𝑡 from Eqs. [1] and [2], yields the continuous time dynamics of the expected 

CGF, under the deterministic approximation: 
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 𝜕𝑡〈𝐶𝑡(𝑧)〉 ≈ 𝜕𝑡𝒞𝑡(𝑧) = 𝒞𝑡
′(𝑧) − 𝒞𝑡

′(0) + 𝑈 (〈 
𝑒𝑚 𝑧𝑀𝑠(𝑧,𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑒𝑚 𝑧̅̅ ̅̅ ̅̅ ̅  〉 − 1).  [3] 

This is our central result, from which all following dynamics are derived. In general, the mutation kernel 

in Eq. [3] does not generate a closed system, even under the deterministic approximation, as the 

mutational term cannot be expressed in terms of 𝒞𝑡(. ). Fortunately, this term simplifies in several 

general classes of models, which we detail below, summarize in Table 2 and implement in 

Supplementary material 2 (see below). 

 

model Background-
dependence 

Timescale of 
applicability 

𝝎(𝒛) or 𝒂(𝒛) 𝑴∗(𝒛) 

Non-epistatic deleterious none 𝑡 ≤ 𝑇 ∼ 𝑁𝑒 𝑒−𝑈/𝑠𝐻 0 arbitrary  < 1 

Non-epistatic delet. + benef. none 𝑡 ≤ 𝑇 ≈ 100 − 1000 (1) 0 arbitrary 

House Of Cards log-linear 𝑡 ∈ ℝ+ − 𝑧 arbitrary 

Binary Model (2) linear 𝑡 ∈ ℝ+ − 2 sinh(𝛿 𝑧) (Λ 𝛿) ⁄  𝑒−𝛿  𝑧 

Gaussian FGM log-linear 𝑡 ∈ ℝ+ − 𝜆 𝑧2 (1 + 𝜆 𝑧⁄ ) (1 + 𝜆 𝑧)−𝑛/2 

Generalized FGM ≈ linear (𝑈 ≫ 𝑈𝑐) 𝑡 ∈ ℝ+ ≈ − 2|𝜇𝑠| 𝑧2 𝑛⁄  ≈ 1 − 𝑧 |𝜇𝑠| 

diminishing return ≈ linear 
(near equilibrium) 

At equilibrium ∈ [−𝑧, 0] arbitrary < 1 

 

Table 2: Various mutational models handled by the proposed framework. These models only apply 

when 𝑁𝑒𝑈|𝜇𝑠| ≫ 1. For each model, each column gives (i) the model type, (ii) the type of background 

dependence, (iii) the timescale (sometimes approximate) over which the prediction applies (in that it is 

expected to be reasonably to very accurate), (iv) the background dependence function (𝜔(𝑧) for log-

linear background-dependence or 𝑎(𝑧) for linear background-dependence), and (v) the MGF 𝑀∗(𝑧) of 

the DFE in the background with fitness 𝑚 = 0 (fittest background in models with a maximum fitness). In 

some models the ′ ≈ ′ notifies that this is an approximate result or a conjecture; '𝑇 ∼ 𝑁𝑒 𝑒−𝑈/𝑠𝐻 ' means 

that the two quantities have the same order of magnitude.  (1): conjecture and timescale based on 

observations in our simulations. (2): simplified version of Rouzine et al.’s (2003) model, detailed in 

Appendix A III.2. Here, Λ is the number of sites (′𝐿 in the original paper) and 𝛿 is the constant deleterious 

effect of ‘mutant’ alleles (′𝑠′ in the original paper). 

 

Linear background-dependence: A first important situation is when the MGF of the DFE can be (exactly 

or approximately) written as a linear function of 𝑚: 𝑀𝑆(𝑧, 𝑚) = 𝑎(𝑧)𝑚 + 𝑀∗(𝑧), with some function 𝑎 

and with 𝑀∗(𝑧) = 𝑀𝑆(𝑧, 0) being the MGF of the DFE in the background with fitness 𝑚 = 0. As an 
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MGF, 𝑀∗  is continuous on a domain including  0  and must satisfy 𝑀∗(0) = 1 and  𝑀∗
′′(𝑧) ≥ 0. The 

function 𝑎 must satisfy  𝑎(0) = 0 and either 𝑎′′(𝑧) ≤ 0 over 𝑧 ∈ ℝ+, if fitnesses are bounded on the 

right so that all 𝑚 ≤ 0, or 𝑎′′(𝑧) = 0 if fitnesses are unbounded on the right. This is required for 𝑀𝑆 to 

satisfy the basic MGF properties  𝑀𝑆(0, 𝑚) = 1  (conservation of probability) and  𝑀𝑆′′
(𝑧, 𝑚) ≥ 0 

(convexity for all 𝑚 and 𝑧). Linear background-dependence (see Section III.2 in Appendix A), implies a 

mutation kernel (Eq. [2]) of the form Δ
𝑚𝑢𝑡

𝒞𝑡(𝑧) (𝑈Δ𝑡)⁄ = 𝑀∗(𝑧) − 1 +  𝑎(𝑧)𝒞𝑡
′(𝑧). The (approximate) 

expected CGF 𝒞𝑡(. ) then satisfies a 1st order linear nonlocal PDE: 

 𝜕𝑡𝒞𝑡(𝑧) = 𝛼(𝑧)𝒞𝑡
′(𝑧) − 𝒞𝑡

′(0) + 𝛽(𝑧),   [4] 

where the functional coefficient are  𝛼(𝑧) = 1 + 𝑈 𝑎(𝑧)  and  𝛽(𝑧) = 𝑈(𝑀∗(𝑧) − 1) , with 𝛼(0) = 1 

and 𝛽(0) = 0. This PDE has the boundary condition 𝒞𝑡(0) = 0, and initial condition 𝒞0(𝑧) = 𝐶0(𝑧) 

(initial fitness distribution); it can be solved analytically (Section II.1 in Appendix B). Define the 

function 𝑦, solution of the ODE 𝑦′(𝑧) = 𝛼(𝑦(𝑧)) with initial condition 𝑦(0) = 0 and its functional 

inverse 𝑦−1(𝑧) = ∫ 1 𝛼(𝑣)⁄ 𝑑𝑣
𝑧

0
,   such that 𝑦(𝑦−1(𝑧)) = 𝑧, defined on [0, 𝑧1), where 𝑧1  is the first 

positive root of 𝛼. The unique solution of Eq. [4] from initial condition 𝐶0(𝑧) is 

 𝒞𝑡(𝑧) = 𝐶0(𝑦(𝑦−1(𝑧) + 𝑡)) − 𝐶0(𝑦(𝑡)) + ∫ 𝛽(𝑦(𝑦−1(𝑧) + 𝑣)) − 𝛽(𝑦(𝑣))𝑑𝑣
𝑡

0

.   [5] 

The corresponding trajectory of the expected mean fitness is (under the deterministic approximation) 

 〈�̅�𝑡〉 ≈ 𝒞𝑡
′(0) = 𝛼(𝑦(𝑡))𝐶0

′ (𝑦(𝑡)) + 𝛽(𝑦(𝑡)),   [6] 

for all 𝑡 ≥ 0. A similar explicit expression is given in Appendix B (Eq. B31) for the trajectory of the 

expected variance 〈𝑉𝑡〉 ≈ 𝒞𝑡
′′(0). More generally, Eq. [5] gives the trajectory of the whole fitness 

distribution, for several classes of models described in the Application section.  

Examples of linear background-dependence models. 

Non-epistatic models: An obvious case of linear background-dependence is for any non-epistatic model 

(which DFE has finite moments, so that its MGF exists). In these, we have 𝑀𝑆(𝑧, 𝑚) = 𝑀∗(𝑧) for all 

backgrounds, so that 𝑎(𝑧) = 0 and 𝛼(𝑧) = 1.  
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 Simplified version of Rouzine et al.’s (2003)  ‘Binary model’: In this model (detailed in Appendix A III.2), 

genotypes consist of Λ bins representing sites (we use notations different from the original article to 

avoid confusions with other quantities in this article). Each bin codes for a wild-type (‘0’) or mutant (‘1’) 

allele (with constant deleterious effect −𝛿 < 0). Mutation, at rate 𝑢 per site (genomic rate 𝑈 = 𝑢 Λ), 

randomly creates shifts between allele states and allelic effects add-up across the genome. This model 

shows mutational epistasis (the DFE depends on the background 𝑚), although fitness is still a sum of 

allelic effects over the genome. It also implies an upper bound 𝑚 = 0 to all possible fitnesses (i.e. the 

unloaded wild-type with only ‘0’ bins) and has linear background-dependence (see Eq. (A10), Appendix A 

and Table 2). It can be checked that 𝑎(0) = 0 and 𝑎′′(𝑧) ≤ 0 over ℝ+. We do not explore this model 

further here, except in Supplementary material 2 (see below). 

Log-linear background-dependence: Alternatively, the MGF of the DFE may be log-linear 

in 𝑚: 𝑀𝑆 (𝑧, 𝑚) = 𝑀∗(𝑧)𝑒𝜔(𝑧) 𝑚. Here again, 𝑀∗(𝑧) = 𝑀𝑆(𝑧, 0) is convex and satisfies 𝑀∗(0) = 1, while 

 𝜔 must be concave (with bounded fitness set 𝑚 ≤ 0) and 𝜔(0) = 0. Plugging this form into the 

mutational kernel in Eq. [2] yields another nonlocal 1st order PDE for the (approximate) expected CGF, 

but this time it is nonlinear (Section III.4 in Appendix A): 

 𝜕𝑡𝒞𝑡(𝑧) ≈ 𝒞𝑡
′(𝑧) − 𝒞𝑡

′(0) + 𝑈(𝑀∗(𝑧) 𝑒𝒞𝑡(𝑧+𝜔(𝑧))−𝒞𝑡(𝑧) − 1),   [7] 

for 𝑡 ≥ 0  and 𝑧 ≥ 0, with the boundary condition 𝒞𝑡(0) = 〈𝐶𝑡(0)〉 = 0.  The second term 

𝑈(𝑀∗(𝑧) 𝑒𝒞𝑡(𝑧+𝜔(𝑧))−𝒞𝑡(𝑧) − 1)in Eq. [7] describes the effect of mutations accumulating on each 

background, with a dependence on the standing distribution of background fitnesses (on 𝒞𝑡) mediated 

by 𝜔(𝑧). Note that this time, this term is only approximate, under similar conditions as the deterministic 

approximation used all along (detailed in III.3 of Appendix A). 

The well-posedness of Eq. [7] requires that 0 ≤ 𝑧 + 𝜔(𝑧)  so that the nonlocal term remains within the 

domain under study. It is the case for any epistatic model (𝜔 ≢ 0) showing log-linear background-

dependence, with a fitness optimum at 𝑚 = 0 (see Section I.1 in Appendix B). Although we were not 

able to get an explicit solution of Eq. [7], which is a nonstandard PDE problem due to the two nonlocal 

terms 𝒞𝑡
′(0)  and 𝑒𝒞𝑡(𝑧+𝜔(𝑧)), we were able to get some insight into the behavior of the solution. First, 

𝒞𝑡
′(∞) = 0 for all positive times (Section I.2 in Appendix B), with epistatic model (𝜔 ≢ 0). This means 

that the support of the fitness distribution instantaneously reaches the optimum 𝑚 = 0, whatever the 
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initial fitness distribution. It implies a memoryless property in the sense that the long-time behavior of 

the solution is not impacted by the initial fitness distribution, which is not obtained in non-epistatic 

models (𝜔 = 0).  Second, analytical expressions are derived (Section I.3 of Appendix B) for the  𝑘𝑡ℎ 

cumulants of the equilibrium distribution (𝑘 ≥ 0) and a dichotomy for the value of the equilibrium mean 

fitness; namely, either 〈�̅�∞〉 = −𝑈 or 〈�̅�∞〉 = −𝑈(1 − 𝐵), for some positive constant 𝐵. Third, the 

existence of a spike implies that 〈�̅�∞〉 = −𝑈 (Section I.4 of Appendix B). These results were obtained 

under any of the two general properties (Section I.2 in Appendix B): (H) any background can mutate to 

the optimal background; or (H') any background can at best mutate to some fitter but suboptimal class. 

Biologically, this simply means that some form of compensation of deleterious mutations exist. 

Examples of log-linear background dependent models: As an example, we describe two classic models 

of context-dependent DFEs where log-linear background dependence applies (see also Table 2). 

Fisher’s (1930) geometrical model (FGM): This model assumes that each genotype is characterized by a 

(breeding value for) phenotype at 𝑛 traits (𝐠 ∈ ℝ𝑛) (possibly with some environmental variance effects). 

An optimal phenotype corresponds to maximal fitness and sets the origin of phenotype space (𝐠 = 𝟎). 

Fitness decreases away from this optimum, and mutation creates random iid variation 𝐝𝐠 around the 

parent, for each trait. In all our examples, we will consider a quadratic fitness function: in continuous 

time models, Malthusian fitness is a quadratic function of the breeding value (𝑚(𝐠) = −‖𝐠‖2/2), and in 

discrete time versions, Darwinian fitness is a Gaussian function of 𝐠 (𝑊(𝐠) = 𝑒𝑚(𝐠) = exp(− ‖𝐠‖2 2⁄ )). 

A classic version of this model is the ‘Gaussian FGM’, where mutation phenotypic effects are multivariate 

normal: 𝐝𝐠~𝑁(𝟎, 𝜆𝐈𝑛), where 𝜆 > 0 is the mutational variance at each trait, and 𝐈𝑛 is the identity matrix 

in 𝑛 dimensions. This ‘Gaussian FGM’ is also the standard model of evolutionary quantitative genetics, 

dating back to Kimura’s (1965) and Lande’s (1980) work on mutation and selection on traits with a 

complex genetic basis (infinitely many possible alleles). The Gaussian FGM shows exact log-linear 

context-dependence (MARTIN 2014): 𝑀𝑆(𝑧, 𝑚) = 𝑀∗(𝑧)𝑒𝑚 𝜔(𝑧) with 𝑀∗(𝑧) = (1 + 𝜆 𝑧)−𝑛/2 and 𝜔(𝑧) =

−𝜆 𝑧2/(1 + 𝜆 𝑧).  We study this model in depth in the Application section. 

Kingman’s (1978) House of Cards (HOC) model: this model assumes that mutants have absolute fitness 

that follows a unique distribution, independently of the background in which they arise. This model is 

epistatic in that the DFE depends on the background: 𝑓(𝑠|𝑚) = 𝑔(𝑠 + 𝑚) so that mutant absolute 

fitnesses 𝑋 have a given fixed fitness distribution with pdf 𝑔(𝑥). Versions of the HOC were used e.g. in 

(KRYAZHIMSKIY et al. 2009) and (MCCANDLISH et al. 2014), respectively with an exponential or Gaussian 
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distribution 𝑔, and focusing on a regime of low 𝑁𝑈 where substitutions occur sequentially (no clonal 

interference). In this model, the MGF of the DFE is  𝑀𝑆(𝑧, 𝑚) = 𝐸(𝑒𝑠 𝑧|𝑚) = 𝑀𝑋(𝑧)𝑒−𝑧 𝑚 

where 𝑀𝑋(𝑧) = ∫ 𝑒𝑥 𝑧𝑔(𝑥)𝑑𝑥 is the MGF of the chosen distribution of 𝑋 with pdf 𝑔. Thus this model, in 

its general version, implies log-linear background dependence with 𝑀∗ = 𝑀𝑋 and 𝜔(𝑧) = −𝑧. We do not 

explore this model further here, except in Supplementary material 2 (see below). 

Individual based simulations: Individual based, discrete time simulations were used to check the validity 

of the approximations in finite populations, for various mutational models. Individuals were sampled 

every generation according to their fitness 𝑊 = 𝑒𝑚 (Wright Fisher model of genetic drift and selection). 

Mutation was simulated every generation in each individual by randomly drawing a Poisson number of 

mutations, each with effects drawn into a given DFE, and summing their effects to produce the mutant 

offspring. When considering trait-based models, genotypes where characterized by their breeding value 

in 𝑛 dimensions 𝐠 ∈ ℝ𝑛. Mutation effects on traits were drawn into a given multivariate distribution and 

the fitness was computed as 𝑚(𝐠) = −‖𝐠‖2/2 (quadratic landscape models, or ‘generalized FGM’, see 

Application section). 

Numerical solver: A numerical solver of Eq. [7], applied to the FGM, is provided as a Matlab© source 

code in Supplementary material 1, together with a Matlab© graphical user interface and code for 

individual based simulation. The solver is based on a finite difference method with variable step sizes in 𝑧 

(smaller steps near 𝑧 = 0, to get accurate values of the derivatives 𝒞𝑡
′(0), 𝒞𝑡

′′(0)) and an implicit scheme 

in time. Because of the transport term 𝒞𝑡
′(𝑧), which tends to translate the solution towards the left with 

speed 1, the solution was computed on a finite interval 𝑧 ∈ [0, 𝑡𝑚𝑎𝑥] where 𝑡𝑚𝑎𝑥 is the duration of the 

simulation. See Section V in Appendix D for more details. A Mathematica® notebook is also available as 

Supplementary material 2: it provides a versatile (but less robust) solver (method of lines) of Eq. [7] and 

a code for individual based simulations, for four classes of models: non-epistatic models, Gaussian 

Fisher’s geometrical model (FGM), House of Cards and a simplified version of Rouzine et al.’s (2003) 

binary model. 

 

Application 

Here we study various models for which the PDEs in Eqs. [4] and/or [7] apply. We distinguish three main 

applications: A) non-epistatic models of general form, B) epistatic models of general form, nearing an 
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equilibrium, and C) epistatic models generated by quadratic fitness functions of phenotypes (FGM). All 

along we use the deterministic approximation, so we write ≈ to recall the approximate nature of our 

results.  

A. Non-epistatic models 

Before tackling epistatic models, we first focus on context-independent mutation models, mostly to 

check that we retrieve previously known properties and to provide some new results. Because several 

results on non-epistatic models are already known, we put most of the results on this section in a 

dedicated Appendix C, and focused on new insights. As we have seen, any non-epistatic model is a trivial 

subcase of Eq. [4] with 𝛼(𝑧) = 1 (𝑦(𝑧) = 𝑦−1(𝑧) = 𝑧) and 𝛽(𝑧) = 𝑈(𝑀∗(𝑧) − 1): Eq. [5] yields 

 

𝒞𝑡(𝑧) = 𝐶0(𝑧 + 𝑡) − 𝐶0(𝑡) + 𝑈 ∫ 𝑀∗(𝑧 + 𝑣) − 𝑀∗(𝑣)𝑑𝑣,
𝑡

0

〈�̅�𝑡〉 = 〈𝐶𝑡
′(0)〉 ≈ 𝒞𝑡

′(0) = 𝐶0
′(𝑡) + 𝑈 (𝑀∗(𝑡) − 1),

〈𝑉𝑡〉 = 〈𝐶𝑡
′′(0)〉 ≈ 𝒞𝑡

′′(0) = 𝐶0
′′(𝑡) + 𝑈 (𝑀∗

′(𝑡) − 𝜇𝑠),

  [8] 

where we recall that 𝜇𝑠 = 𝐸(𝑠). This result essentially retrieves an alternative formulation of eq. (10) of 

(DESAI and FISHER 2011), itself a continuous time version of Johnson’s (1999) eq. (13). These previous 

results both assumed purely deleterious mutations, which proves unnecessary in the derivation of Eq. 

[8]. Eq. [8] further allows for arbitrary standing variance in fitness via the additional term 𝐶0(𝑧 + 𝑡) −

𝐶0(𝑡), previously obtained for an infinite asexual population without mutation (HANSEN 1992; MANNA et 

al. 2012). As such, results in terms of CGFs or MGFs provide valuable information on the trajectory of 

moments, but are not so easy to fit on observed empirical distributions, which requires an explicit 

distribution function. In Appendix C II, we derive the stochastic representation of fitness from Eq. [8], to 

help derive such functions. Supplementary Movies 1A and 1B illustrate the dynamics of the full fitness 

distribution for a negative gamma DFE and a constant DFE, respectively. In the parameter range chosen, 

the prediction from Eq. [8] accurately fits the observed distribution from the simulation of a single finite 

population of size 𝑁 = 105. Other illustrative examples are given in Appendix C.  

Retrieving previous results: Several key known results on non-epistatic deleterious mutation models are 

readily obtained from Eq. [8] (detailed in Appendix C), such as properties of non-epistatic mutation-

selection balance with arbitrary DFEs. In particular, Johnson’s (1999) result for discrete fitness classes 

straightforwardly extends to continuous DFEs: the equilibrium fitness distribution is a negative 

compound Poisson, with Poisson parameter 𝑈/𝑠𝐻 where 𝑠𝐻 = 1/𝐸(1/|𝑠|) is the harmonic mean of the 

DFE in absolute value. Note that allowing for continuous distributions implies that the harmonic mean 
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may be zero (𝐸(1 |𝑠|⁄ ) → ∞), in which case the spike of fittest genotypes (with weight  𝑒−𝑈/𝑠𝐻) is de 

facto absent and the fitness distribution converges to a Gaussian (Eq. (C10) in Appendix C). Eq. [8] also 

implies that with arbitrary deleterious DFE and mutation rate 𝑈, the mutation load is 𝐿 = −〈�̅�∞〉 = 𝑈, 

and the equilibrium variance in fitness is 〈𝑉∞〉 = 𝑈 |𝜇𝑠|. This extends a result previously derived as a low 

mutation rate limit (BURGER and HOFBAUER 1994) to the full mutation rate spectrum. 

Timescales of load build-up vs. loss of accuracy with purely deleterious mutations: Eq. [8]  allows to 

derive the ‘characteristic time’ 𝑡𝑞 that it takes to reach some proportion 𝑞 of the ultimate equilibrium 

(〈�̅�𝑡𝑞
〉 = −𝑞 𝑈). Neglecting standing variance, this time, 𝑡𝑞 is the solution of 𝑀∗(𝑡𝑞) = 1 − 𝑞: notably, it 

is independent of the mutation rate. This time can be computed for any given DFE, and admits simple 

bounds in the general case (see Appendix C III). For example, 3 |𝜇𝑠|⁄ ≤ 𝑡0.95 ≤ 8/𝑠𝐻, it takes between 3/

|𝜇𝑠| and 8/𝑠𝐻 generations to reach 95% of the load. We recall that |𝜇𝑠| and 𝑠𝐻 are the arithmetic and 

harmonic means of the DFE in absolute value, respectively. 

Non-epistatic models with beneficial mutations: When the kernel includes a portion of beneficial 

mutations (𝑀∗(∞) = ∞), mean fitness increases indefinitely (〈�̅�𝑡〉 → ∞ in Eq. [8]) and our approach 

overestimates this increase, after some time (see 3rd section). For any non-epistatic model, the long-term 

fitness dynamics are best described by stochastic origin-fixation models (with or without clonal 

interference), once a stationary regime of fitness change has set. However, we propose that Eq. [8] can 

provide some connection between the transient and stationary regime and predict the fitness trajectory 

before stationarity (Section III in Appendix C). Assume a given rate 𝜈 of fitness change is predicted at 

stochastic stationary regime. If we assume a sharp transition from deterministic to stochastic stationary 

regime, this transition must then occur when the deterministic and stochastic models have equal rates of 

mean fitness change, namely at some time  𝑡 = 𝜏 such that 𝜕𝑡〈�̅�𝑡〉 = 𝜈 = 𝑈 𝑀∗
′(𝜏) (Eq. [8] ignoring the 

contribution from standing variance). Up to this time, mean fitness is assumed to be given by the 

deterministic theory (〈�̅�𝑡〉 = 𝑈 𝑀∗(𝑡)) while it increases steadily at rate 𝜈 afterwards. This conjecture 

proves reasonable, as illustrated in Fig. 2. In Fig. 2A the DFE consists of purely beneficial, exponentially 

distributed, mutation effects (𝑠~𝐸𝑥𝑝(1/𝜇𝑠), with 𝜇𝑠 > 0) and 𝜈 is given by clonal interference theory 

(eq. (16) in (GOOD et al. 2012)). In Fig. 2B, a shifted gamma DFE is considered: 𝑠 ∼ 𝑠0 + 𝑥, with 𝑠0 > 0 

and 𝑥 ∼ −Γ(𝑎, 𝑏) and the stationary rate 𝜈 is computed empirically, based on the adaptation rate that is 

observed at large times in the individual based simulations. Using only this rate 𝜈 as input, the transition 

time 𝜏 is computed and the full trajectory of expected mean fitness is predicted (see also Figs. C2-C5 in 

Appendix C for other parameter values and another DFEs). By construction, theory (lines) and average 
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from simulations (circles) should have the same slope 𝜈 in the late linear increase phase. However, they 

need not be superposed, especially over the full timescale studied. Coarse grain observation indeed 

suggests that the whole trajectory is surprisingly well captured by this simple heuristic. However, a 

transiently oscillating behavior (of the average trajectories) arises around the inferred transition time 𝜏 

in all our simulations. This shows that the actual behavior is more complex than a simple transition from 

nonstationary/deterministic to stationary/stochastic (discussed in DESAI and FISHER 2007).  

 

Fig. 2. Mean fitness �̅�𝒕  and variance 𝑽𝒕 trajectories in non-epistatic models including beneficial 

mutations. (A) Exponential DFE: 𝑠 ~ 𝐸𝑥𝑝(1/𝜇𝑠)  with mean effect 𝜇𝑠 = 0.001. (B) Shifted gamma DFE: 

𝑠 ∼ 𝑠0 + 𝑥, with 𝑠0 > 0 and 𝑥 ∼ −Γ(𝑎, 𝑏), with 𝑎 = 2, 𝑏 = 5 ⋅ 10−3 and 𝑠0 = 𝑎 ⋅ 𝑏/5. In both cases, 

𝑈 = 10−3. Plain lines: for 𝑡 < 𝜏, the expected trajectories 〈�̅�𝑡〉  and 〈𝑉𝑡〉  are given by our analytical 

theory (Eq. [8]); for 𝑡 ≥ 𝜏, the slope 𝜈 = 〈𝜕𝑡�̅�𝑡〉 and the variance 〈𝑉𝑡〉  are kept constant. In panel A, the 

transition time 𝜏 (≃ 770) is such that 𝜈 equals the theoretical asymptotic slope given by eq. (16) in (GOOD 

et al. 2012); in panel B, the transition time 𝜏 (≃ 2650) is such that 𝜈 equals the empirical slope observed 

in the individual based simulations during the interval 𝑡 ∈ (4000,6000). Circles: empirical mean fitness 

and variance given by individual based simulations, averaged over 103 populations (panel A) or 102 

populations (panel B), with 𝑁 = 𝑁𝑒 = 106; shaded regions: 99% confidence intervals for the mean 

fitness (in red) and the variance (in gray). We assumed initially clonal populations with 𝑚0 = 0. 

 

In any case, the simulations in Fig. 2 and Figs. C2-C5 (Appendix C) show that the simple deterministic 

approximation does capture the dynamics over possibly several hundred (Fig. 2A) or thousand (Fig. 2B) 

generations (all the more as the proportion of beneficial mutations is small, apparently). 

Furthermore, recall that this treatment only applies to thin-tailed DFEs (that fall off faster or as an 

exponential), otherwise the MGF is not analytic and 𝜏 → 0. The limiting case is an exponential tail, for 
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which 𝜏 becomes smaller as the tail falls slower (larger mean). Yet, the simple heuristic did show good 

accuracy when simulating exponential DFEs with 𝜇𝑠 = 0.01 𝑜𝑟 0.001 (Fig. 2 and C2-C3).  

Finally, the Figs. 2 and C2-C5 in Appendix C also illustrate that variation around the expected mean 

fitness explodes over time (red envelopes), especially after the transition to stationarity (late linear 

phase). Therefore, the empirical insight gained from the sole prediction of the expected mean fitness 

dynamics (without its envelope) can be de facto limited in this regime. 

 

B. Equilibrium in the presence of diminishing returns epistasis. 

Now consider an epistatic model (𝑀𝑠(𝑧, 𝑚) ≠ 𝑀∗(𝑧)), where beneficial mutations become less frequent 

and of smaller effect, as the population adapts, corresponding to a form of ‘diminishing returns’ 

epistasis. More precisely, we assume that (i) fitnesses are bounded on the right (the maximum fitness is 

then set at 𝑚 = 0) and (ii) there is compensation (suboptimal backgrounds produce a portion of 

beneficial mutations). In this case, near equilibrium, the fitness distribution shrinks towards the 

maximum, and a 1st order Taylor series of𝐶𝑠(𝑧, 𝑚) = log 𝑀𝑠(𝑧, 𝑚)  in small  𝑚  yields  𝑀𝑠(𝑧, 𝑚) =

𝑀∗(𝑧)𝑒𝜔(𝑧)𝑚(1 + 𝑂(𝑚2)). Here 𝜔(𝑧) = 𝜕𝑚𝐶𝑠(𝑧, 𝑚)|𝑚=0 is the slope of the change with 𝑚 of the CGF 

of the DFE, in the vicinity of 𝑚 = 0, while 𝑀∗(𝑧) = 𝑀𝑠(𝑧, 0) is the MGF of the DFE in the optimal 

background. Arbitrary models with diminishing returns epistasis (and a fitness upper bound), converge to 

log-linear background dependence near equilibrium. Then, by the memoryless property of log-linear 

background dependent models (see Eq. (B3) in Appendix B I), the CGF converges as 𝑡 → ∞ to a unique 

equilibrium, independently of the initial CGF (the equilibrium cumulants are detailed in Appendix B I). 

Overall, mutation-selection balance is therefore a local attractor for this class of models and a global 

attractor for models with exact background dependence (such as the FGM).  

In order to get further insight into the equilibrium fitness distribution, we now use a linear 

approximation to the MGF with small 𝑚, yielding 𝑀𝑆(𝑧, 𝑚) = 𝑎(𝑧)𝑚 + 𝛽(𝑧) + 𝑂(𝑚2), where 𝛽(𝑧) =

𝑈(𝑀∗(𝑧) − 1) and 𝛼(𝑧) = 1 + 𝑈𝑀∗(𝑧)𝜔(𝑧). The asymptotic properties of Eq. [5] as 𝑡 → ∞ (Section II.2 

and II.3 in Appendix B) then yield a general theory for mutation-selection balance in the presence of 

diminishing return epistasis. 

Mutation load:  In particular, mean fitness stabilizes to 〈�̅�∞〉 = 𝛽(𝑧1), where 𝑧1 is the smallest positive 

root of 𝛼. Therefore, the mutation load is 𝐿 = 0 − 〈�̅�∞〉 = −𝛽(𝑧1) = 𝑈(1 − 𝑀∗(𝑧1)). Two situations 
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can occur: either 𝛼 has no such root (𝑧1 = ∞) in which case 𝐿 = 𝑈, or it has a root 0 < 𝑧1 < ∞ in which 

case  𝐿 = 𝑈(1 − 𝑀∗(𝑧1)) = 𝑈 + 1 𝜔(𝑧1)⁄ . As  0 < 𝑀∗(𝑧1) < 1 , the load is then smaller than the 

mutation rate 0 < 𝐿 < 𝑈. The first situation (𝐿 = 𝑈) always arises as 𝑈 → 0. We thus have some form of 

‘phase transition’ in the dependence of the load on mutation rate, as 𝑈 increases. 

Equilibrium fitness variance: We have 〈𝑉∞〉 = 𝑈 𝐿 𝜔′(0) + 𝑈 |𝜇𝑠|, where 𝜇𝑠 = 𝑀∗
′(0), as above. Note 

that the term 𝜔′(0) = 𝜕𝑚𝐸(𝑠|𝑚)|𝑚=0 is the slope of the change in the mean of the DFE with 𝑚 in the 

vicinity of 𝑚 = 0. It seems likely that in most models, this slope is of same order as the mean 

itself: 𝜔′(0) = 𝑂(|𝜇𝑠|). We thus have, a priori, 〈𝑉∞〉 = 𝑈 |𝜇𝑠| (1 + 𝑂(𝐿)) where we have seen that 𝐿 ≤

𝑈; therefore, the fitness variance is close to 𝑈 |𝜇𝑠| at equilibrium, in a vast variety of models (epistatic or 

not),  as long as 𝑈 ≪ 1. It is easily checked that the equilibrium for a non-epistatic model with 

deleterious mutations (see above) is retrieved as a subcase: 𝜔(𝑧) = 0 (𝛼(𝑧) = 1, 𝑧1 = ∞) so that 𝐿 = 𝑈 

and 〈𝑉∞〉 = 𝑈 |𝜇𝑠| . 

Spike of optimal genotypes: a spike may exist (Section II.4 in Appendix B),  but only provided the load 

is 𝐿 = 𝑈  and if 𝜔′(0) ≥ 0, namely when maladaptation at most aggravates the mean deleterious effect 

of mutations (they become more or equally deleterious as the background gets suboptimal). The spike 

converges as 𝑈 → 0, to that of the corresponding non-epistatic model with the same 𝑀∗(. ). We 

have 〈𝜌∞〉  →  𝑒−𝑈 ∫ 𝑀∗(𝑢)𝑑𝑢
∞

0 = 𝑒−𝑈/𝑠𝐻  where 𝑠𝐻, as previously, is the harmonic mean (in absolute 

value) of the DFE in the optimal background at 𝑚 = 0. Furthermore, whenever 𝑠𝐻 = 0, the spike is 

vanishing at equilibrium, for any 𝑈. Finally, when 𝜔′(0) = 0 (as in the FGM), the weak mutation limit is 

also the upper bound 〈𝜌∞〉 ≤ 𝑒−𝑈/𝑠𝐻  for any 𝑈. 

Some of the qualitative results above are reminiscent of Burger’s (2000) propositions 2.1 p.127 and 5.1 

p.145, proven for a single continuous trait, by a very different approach. It states that, independently of 

the trait mutational kernel or the trait-to-fitness function, the load (i) converges to 𝐿 = 𝑈 as 𝑈 → 0, (ii) is 

exactly equal to 𝑈 whenever a spike exists at the optimum, and (iii) is always less or equal to this limit 

(𝐿 ≤ 𝑈, 𝑈 ∈ ℝ+). This section thus extends this result by providing a general approach to analytically 

compute these mutation loads, spike heights and higher moments, for all 𝑈. 
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C. Fisher’s geometrical model.  

Let us now consider a classic model with diminishing returns epistasis: Fisher’s (1930) geometrical model 

(FGM), described in the Model section, as an example of log-linear background dependence.  

Gaussian FGM: Recall that we denote Gaussian FGM the classic version with a multivariate normal 

distribution for mutation phenotypic effects, which shows exact log-linear context-dependence (Table 2) 

so that Eq. [7] applies. 

Trajectories: The fitness mean and variance trajectories over time (predicted by numerically solving  Eq. 

[7]) are illustrated for a small mutation rate in Fig. 3A (𝑈 < 𝑈𝑐, see below for the definition of the critical 

value 𝑈𝑐) and a high mutation rate (𝑈 > 𝑈𝑐)  in Fig. 3B. They are compared with the average fitness 

mean and variance in simulations (population size 𝑁 = 105). Smaller and larger population sizes and 

other mutation rates are illustrated in Figs D2 and D3 (Appendix D). The deterministic approximation is 

here accurate across the mutation rate spectrum (roughly as long as 𝑁𝑈|𝜇𝑠| ≫ 1). Note that, while the 

two first derivatives at 𝑧 = 0 (expected mean 〈�̅�𝑡〉 = 𝒞𝑡′(0) and variance 〈𝑉𝑡〉 = 𝒞𝑡
′′(0)) are accurately 

retrieved from the numerical solution of Eq. [7], the third order derivative is more problematic to obtain 

(due to limited machine epsilon) and would require to solve the PDE satisfied by 𝒞𝑡
′(𝑧), together with Eq. 

[7]. 

Equilibrium: The equilibrium for the Gaussian FGM is a global attractor (by the memoryless property of 

log-linear background dependence models, Appendix B). Its properties are readily derived from the 

framework in Section B. (detailed in Appendix D), and summarized in Table 3 (approximate results 

for 𝑛 ≥ 3 are derived in Appendix E). Three qualitatively distinct situations arise according to the 

dimensionality 𝑛 and mutation rate 𝑈, which determine the existence of a finite positive root to 𝛼. 

Consistent with the general results in B., a ‘phase transition’ can occur (if 𝑛 ≥ 3) at a critical mutation 

rate 𝑈𝑐, which depends on dimension and scale (explicit formulae in Appendix D, section III and Table 3). 

The results are consistent with Waxman and Peck’s (1998) conclusions: a spike of optimal genotypes only 

exists at low enough mutation rate (𝑈 < 𝑈𝑐) and in 𝑛 ≥ 3 dimensions. Here an exact expression is 

obtained for the critical mutation rate where the spike vanishes, for the spike height below this 

threshold and for the mutation load over the full range of 𝑈. Note that explicit expressions for the spike 

height in 𝑛 = 3 dimensions were also obtained (for a non-Gaussian FGM) in (WAXMAN and PECK 2006), by 

a different approach. 
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Fig. 3. Mean fitness �̅�𝒕 and variance 𝑽𝒕 trajectories in a Gaussian Fisher’s geometrical model. (A) 𝑈 =
0.02 < 𝑈𝑐; (B) 𝑈 = 0.1 > 𝑈𝑐.  Plain lines: expected trajectories 〈�̅�𝑡〉 and 〈𝑉𝑡〉 given by the numerical 

solution of Eq. [7], with 𝑀∗(𝑧) = (1 + 𝜆 𝑧)−𝑛/2 and 𝜔(𝑧) = −𝜆 𝑧2/(1 + 𝜆 𝑧). Dotted lines: equilibria 

〈�̅�∞〉 = −𝐿 = −𝑈 + 𝑈(1 + 𝜆 𝑧1)−𝑛 2⁄   and 〈𝑉∞〉 = 𝑈 |𝜇𝑠| = 𝑈 𝑛 𝜆/2  given by the analytical theory. 
Dashed lines (panel B): expected trajectories from the weak selection strong mutation (WSSM) 
approximation (Eq. [12] for 〈�̅�𝑡〉 and (B31) for 〈𝑉𝑡〉). Circles: empirical mean fitness and variance given by 

individual based simulations, averaged over 103 populations (𝑁 = 𝑁𝑒 = 105); shaded regions: 99% 
confidence intervals for the mean fitness (in red) and the variance (in gray). The parameter values are 
𝑛 = 6 traits and  𝜆 = 1/300 (|𝜇𝑠| = 0.01), leading to a critical mutation rate 𝑈𝑐 = 16𝜆 ≃ 0.05. We 
assumed initially clonal populations with 𝑚0 = −20|𝜇𝑠| = −0.2.   

 

A simple approximation emerges for the equilibrium fitness distribution when 𝑈 < 𝑈𝑐 in terms of a 

mixture of a probability mass of optimal genotypes and a negative gamma distribution of suboptimal 

genotypes, corresponding to a Gaussian FGM in 𝑛 − 2 dimensions (with 𝑛 ≥ 3): 

 if 𝑈 < 𝑈𝑐 ∶ {
𝑚 = 0, with probability 〈𝜌∞〉 = 𝑒−𝑈/𝑠𝐻 ,

𝑚 ~ − Γ (
𝑛 − 2

2
, 𝜆) , with probability  1 − 〈𝜌∞〉

  .  [9] 

Strikingly, the weight of the spike is exactly the same as that in the corresponding non-epistatic model 

here (gamma DFE), whereas our heuristic analysis (Application B.) only suggests such convergence in the 

low mutation rates, in general. The full fitness distribution in Eq. [9] is exactly that expected in the 

absence of epistasis, in the small 𝑈/𝑠 approximation described in Appendix C II (Eq. C9). A simple pattern 

thus emerges: for any 𝑈 < 𝑈𝑐, the equilibrium fitness distribution in the FGM is approximately ‘blind’ to 

the presence of epistasis, and behaves as the equivalent non-epistatic model with DFE given by that of 
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the optimal genotype. We thus retrieve essentially a House of Cards approximation (TURELLI 1984) on 

fitness itself.  

On the other hand, when 𝑈 ≫ 𝑈𝑐 , a weak selection strong mutation (WSSM) limit (detailed below and in 

Appendix E) yields a complementary approximation for the fitness distribution at high mutation rates. 

 if 𝑈 ≫ 𝑈𝑐 ∶ 𝑚 ~ − Γ (
𝑛

2
, √𝑈 𝜆)  .  [10] 

Finally, note that the equilibrium higher moments of Eq. [7] (exact for the Gaussian FGM) can be studied 

analytically (Appendix B) and are very close to the general expressions derived from the linearization in 

Application section B.. 

𝑛 𝑈𝑐 𝑧1 load 𝑉(𝑚) Spike height 

1 ∞ < ∞ < 𝑈 𝑈 |𝜇𝑠| 0 

2 𝜆 {
∞, 𝑈 < 𝑈𝑐

1/(√𝑈𝜆 − 𝜆), 𝑈 ≥ 𝑈𝑐

 {
𝑈, 𝑈 < 𝑈𝑐

√𝑈𝜆, 𝑈 ≥ 𝑈𝑐

 𝑈 |𝜇𝑠| 0 

≥ 3 ≈
𝑛2𝜆

4
  {

∞, 𝑈 < 𝑈𝑐

≈ 1/√𝑈𝜆, 𝑈 ≥ 𝑈𝑐

 {
𝑈, 𝑈 < 𝑈𝑐

≈ 𝑛 2⁄  √𝑈𝜆, 𝑈 ≥ 𝑈𝑐

 𝑈 |𝜇𝑠| {
𝑒−𝑈 𝑠𝐻⁄ , 𝑈 < 𝑈𝑐

0, 𝑈 ≥ 𝑈𝑐
 

 

Table 3: Mutation-selection balance properties in the Gaussian FGM. Here 𝜇𝑠 = 𝐸(𝑠|𝑚) = 𝐸(𝑠|0) =
− 𝑛 𝜆/2 arithmetic mean of the DFE and 𝑠𝐻 = 1/|𝐸(1/𝑠|0)| = 1/(𝜆(𝑛 2⁄ − 1)), harmonic mean of the 
DFE. ′ ≈ ′ notifies that this is an approximate result (Appendix E). 

 

Generalized FGM: Fisher’s original formulation did not specify the shape of the fitness function (linear, 

quadratic etc.) or the distribution of mutation effects on 𝐠 (normal, uniform etc.), except that it must be 

spherically symmetric (effects are iid across traits), and centered on the parental phenotype. Keeping the 

quadratic fitness function, we study a ‘generalized FGM’ (see Appendix E) with arbitrary spherically 

symmetric distributions of mutation phenotypic effects (𝐝𝐠~𝒟). A given distribution 𝒟 determines a 

given DFE in the optimal background (a given 𝑀∗(𝑧)). The function 𝜔 is then 𝜔(𝑧) = 2 𝑧2𝑀∗
′(𝑧)/

(𝑛𝑀∗(𝑧)), thus allowing the study of equilibria for any choice of 𝒟 (Appendix E I). As an example 

(Appendix E II), we derive the equilibrium properties of a model with arbitrary dimension 𝑛 and negative 

exponential DFE at the optimum: 𝑠 ~ − 𝐸𝑥𝑝 (1/|𝜇𝑠|). In particular, the load is 𝐿 = min(𝑈, 𝑛 √𝑈 𝜆/2), 

where 𝜆 = 2|𝜇𝑠|/𝑛 is the mutational variance on each trait (for consistency with the Gaussian FGM). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2016. ; https://doi.org/10.1101/079368doi: bioRxiv preprint 

https://doi.org/10.1101/079368
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

Weak selection strong mutation (WSSM) approximation. More general and simple results (Appendix E 

III) are obtained from a WSSM approximation, more precisely whenever 𝑈 ≫ �̃�𝑐 = 𝑛2𝜆/4 where 𝜆 =

2|𝜇𝑠|/𝑛 is the mutational variance on each trait. Note that �̃�𝑐 ≈ 𝑈𝑐  (for substantial 𝑛): it is roughly at the 

same mutation rate threshold that equilibria (𝑈𝑐) and transient dynamics (�̃�𝑐) show a qualitative 

transition. In the WSSM regime, the mutational kernel is approximately linear in 𝑚, so that Eq. [4] 

captures the CGF dynamics, even away from equilibrium. The coefficients are 𝛼(𝑧) = 1 − 𝑈 𝜆 𝑧2 

and 𝛽(𝑧) = −𝑈 𝜆 𝑛/2 𝑧.  

 

Fig. 4. Mutation load 𝑳 (A) and spike 𝝆∞ (B) as a function of mutation rate 𝑼: with two values of |𝜇𝑠| 
(see legend) and with the standard Gaussian Fisher’s geometrical model (Gaussian FGM) or an FGM with 
Inverse Gaussian DFE at the optimum (IG FGM). Plain red and blue lines: numerical values obtained with 
the Eq. [7] for the Gaussian FGM (estimated at a large time  𝑇 = 103); the load  (panel A) was computed 

as −𝒞𝑇
′ (0)  and the expected spike (panel B) as 𝑒𝒞𝑇(900) . Panel A, black dashed lines: analytic 

approximations 𝐿 ≃ 𝑚𝑖𝑛(𝑈, 𝑛 2⁄ √𝑈𝜆) (Eq.[11], panel A). Panel B, black dashed or dotted lines: 〈𝜌∞〉 ≃

𝑒−𝑈/𝑠𝐻 , where 𝑠𝐻 is the harmonic mean of the DFE (in absolute value) at the optimum (Gaussian or IG 
FGM respectively, Eq. (D8)). Circles (Gaussian FGM) and crosses (IG FGM): simulated values of the 
mutation load and of spike at time 𝑇 = 103 given by individual based simulations of a single population 

(𝑁 = 𝑁𝑒 = 105). The parameter values are 𝑛 = 6 traits and |𝜇𝑠| = 0.01 or 0.1. The inverse Gaussian 
distribution has mean |𝜇𝑠| and shape parameter 0.05. 

 

Equilibrium: As was already stated above (Eq. [10]) the corresponding equilibrium fitness distribution is a 

negative gamma: 𝑚 ~ − Γ(𝑛 2⁄ , √𝑈𝜆). Connecting this approximation with the known value of the load 

at lower mutation rates 𝐿 = 𝑈 provides a simple expression covering all the range of 𝑈: 

 𝐿 ≈ min(𝑈, 𝑛 2⁄ √𝑈𝜆),  [11] 

with a ‘phase transition’ at 𝑈 = �̃�𝑐 = 𝑛2𝜆/4. The accuracy of this simple result is illustrated in Fig. 4A, 

where the load is shown for single replicate simulations over a range of 𝑈. We simulated two alternative 
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models (Gaussian FGM with a gamma DFE and an Inverse Gaussian DFE), scaled to the same value of |𝜇𝑠| 

and with the same dimensionality 𝑛.  Both models yield the same results, accurately captured by Eq. 

[11]. The spike of optimal genotypes is shown in Fig. 4B for the same simulations: here, all genotypes 

pertaining to an effectively neutral fitness class relative to the optimum (− 1 𝑁⁄ ≤ 𝑚 ≤ 0) were counted 

as ‘under the spike’. As expected by theory, the spike weight is approximately 𝑒−𝑈/𝑠𝐻  , where 𝑠𝐻 differs 

between the two models (Gaussian or Inverse Gaussian).  

Trajectories: The analytic solution (Eq. [5]) applied to the WSSM approximation can be equated, at all 

times, to a known explicit distribution, depending on the initial condition. The corresponding distribution 

of the underlying phenotype is also explicit, and happens, in all cases, to be multivariate Gaussian (with 

time-varying variances and means). Therefore, the WSSM approximation exactly matches Kimura’s 

(1965) and Lande’s (1980) Gaussian approximation for traits at equilibrium, and extends it away from 

equilibrium. Indeed, although obtained in very different manners, these two approaches rely on 

qualitatively the same WSSM assumption. Lande already conjectured that this approximation was mostly 

independent of the underlying distribution of mutation effects on phenotype, and should be valid away 

from equilibrium, as the dynamics of phenotypic variance are then independent of the mean (eq. (19) in 

LANDE 1980). Here, the result arises explicitly as a WSSM limit of a generalized FGM. The present 

approach extends these former results to fitness (and trait) dynamics where the phenotypic variance is 

not constant, and provides an explicit threshold (𝑈 ≫ �̃�𝑐 = 𝑛2𝜆/4), beyond which it is accurate. All 

results are given in Appendix E, we here only detail the mean fitness trajectories.  

Adaptation from a clone: For a population started with a clone at given fitness 𝑚0 ≤ 0, the mean fitness 

trajectory, given by Eq. [6], is 

 〈�̅�𝑡〉 = 𝒞𝑡
′(0) ≈ −

𝑛

2
√𝑈 𝜆 tanh( 𝑡 √𝑈 𝜆) + sech(𝑡 √𝑈 𝜆)

2
𝑚0.  [12] 

This WSSM approximation was illustrated in Fig. 3B (dashed lines) and proves fairly accurate even when 

𝑈 is only mildly superior to �̃�𝑐 ( 𝑈 = 2 �̃�𝑐 in this example). The corresponding trajectory of the full 

fitness and phenotype distributions are illustrated in supplementary movie files (Movie 2A and 2B 

respectively), showing the agreement between simulations and theory, for a single replicate. The 

characteristic time of this fitness trajectory is the time 𝑡0.99 taken to fulfill 99% of the trajectory. 

Strikingly, it is independent of the details of the model: 𝑡0.99 ≈ 3/√𝑈𝜆. In particular, it is independent of 
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the distance to the optimum (𝑚0): it takes roughly the same time to reach equilibrium from an optimal 

or a highly suboptimal clone, in the WSSM regime. 

Adaptation from an equilibrium population: In a similar manner, we may consider a population starting 

at equilibrium, undergoing a sudden shift in the optimum and responding to this new environment, this 

time with standing variance available. Here too, the whole fitness and phenotype distributions are 

explicit over time, including with a change in 𝑈 or 𝜆 between the former and new environments. If the 

shift only affects the optimum (not 𝑈 or 𝜆) and is such that the mean phenotype shows a fitness lag 𝑚0 

(mean fitness is then �̅�0 = 𝑚0 − √𝑈𝜆 𝑛/2), then 

 〈�̅�𝑡〉 = 𝒞𝑡
′(0) ≈ 𝑚0 𝑒−2 𝑡√𝑈 𝜆 −  √𝑈 𝜆 𝑛/2.  [13] 

The trajectory of the fitness and phenotype distributions are illustrated in supplementary movie files 

(Movie 3A and 3B respectively), with an additional doubling of the mutation rate in the new 

environment. Here too, the characteristic time is independent of the distance to the optimum 𝑡0.99 ≈

2.3/√𝑈𝜆, and it is only mildly shorter than the characteristic time in the absence of standing variance. In 

all cases the characteristic times scale with 1/√𝑈𝜆, showing that the ‘cost of complexity’ well known in 

the FGM (ORR 2000) is only mediated by √𝑈 𝜆 = √2𝑈|𝜇𝑠|/𝑛 in this regime. When comparing different 

dimensionalities  𝑛 , if we scale  𝜆  to the same |𝜇𝑠| , complexity slows down adaptation as  1/√𝑛 . 

Otherwise, simply adding traits with the same variance 𝜆 does not affect the characteristic time, it simply 

increases the mutation load as 𝐿 = 𝑛/2 √𝑈 𝜆. 

 

Convergence to the deterministic approximation 

Our simulations, which included full stochasticity (individual based model) showed good agreement with 

the theory in Eq. [3], that ignores drift. This seems to hold over either effectively infinite timescales (e.g. 

FGM, Figs. 3-4, and other models illustrated in Supplementary material 2), over very long timescales 

(non-epistatic models with purely deleterious mutations, Fig. C1), or over only a few hundred/thousand 

generations (non-epistatic models with beneficial mutations, Figs. C2-C5). Accuracy also seems to 

increase as 𝑁𝑈 gets larger for the models and parameters we explored. It has indeed long been observed 

that deleterious mutation models or models with an optimum could be handled reasonably well by 
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deterministic population genetics. This then raises the question of why the deterministic approximation 

ultimately breaks down with non-epistatic models, whereas it does not seem to do so with diminishing 

returns epistasis. 

This can obviously be tackled by individual based simulations for any given model. In the case of non-

epistatic models, analytical studies have also pointed to a complex interplay of drift and other forces in 

the mid to long term behavior of asexual models (e.g. DESAI and FISHER 2007): the importance of the 

“stochastic edge” of the fitness distribution (BRUNET et al. 2008) depends on whether this edge is 

stochastic or not (highly populated or not). The present treatment provides some hint on the issue, by 

looking at the term neglected in the deterministic dynamics: 𝛿𝑡(𝑧) in Eq. [1]. This ‘stochastic source 

term’ is negative, vanishes at 𝑧 = 0 but increases with 𝑧 (see Appendix B III). That 𝛿𝑡(𝑧) < 0 means that 

the deterministic prediction overestimates the cumulants (for ex., the expected mean fitness is actually 

bellow the deterministic prediction). That 𝛿𝑡(𝑧) is small about 𝑧 = 0, means that the current error on 

the bulk of the distribution (the first derivatives of 𝛿𝑡(. ) at 𝑧 = 0) is limited. On the other hand, because 

of the transport term 𝒞𝑡
′(𝑧) in Eq. [3],  the larger error |𝛿𝑡(𝑧)| for large 𝑧 progressively affects the 

accuracy of the deterministic approximation around 𝑧 = 0 (hence the bulk itself) at later times. 

Intuitively, this reflects the fact that sampling (drift) induces relatively more stochastic variation in the 

extrema than in the mean and variance of a distribution: the maximum can be very important for the 

long term rate of adaptation (“stochastic edge” BRUNET et al. 2008), while the mean and variance 

influence the short term “bulk” dynamics.  

Whether and when a substantial deviation will accumulate depends on the details of the model, and can 

be difficult to quantify. However, in the case of linear background-dependence (Eq. [4]) some general 

insight can be obtained, focusing on mean fitness trajectories. The relative deviation between the ‘exact’ 

expected mean fitness 〈�̅�𝑡〉 = 〈𝐶𝑡
′(0)〉 and that predicted by the deterministic approximation 𝒞𝑡

′(0), has 

an explicit upper bound at all times:  

 
|𝒞𝑡

′(0) − 〈�̅�𝑡〉|

|〈�̅�𝑡〉|
≤

1

|〈�̅�𝑡〉|
∫ 𝑤𝑡(𝑣) 〈 

|�̅�𝑣|

𝑁𝑒 𝑝𝑚𝑎𝑥(𝑣)
 〉 𝑑𝑣

𝑡

0

.  [14] 

Here 𝑤𝑡(𝑣) = 𝛼(𝑦(𝑡 − 𝑣)) = 𝑦′(𝑡 − 𝑣) is a weight which depends on the form of epistasis (via 𝑦), see 

Eq. [4] and the paragraph below. Roughly, if |�̅�𝑣| and |�̅�𝑡| are of comparable order, the relative error is 

proportional to (i) 𝑡/𝑁𝑒  and (ii) to a weighted mean over the period (0, 𝑡) of the expected inverse 
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frequency (across replicates) of the fittest class. Eq. [14] provides some intuition on how and why 

different mutation models deviate from the deterministic prediction. We treat each in turn. 

Non-epistatic models: The weights are then 𝑤𝑡(𝑣) = 𝛼(𝑦(𝑡 − 𝑣)) = 1, so the error must accumulate 

over time. With purely deleterious mutation models, 𝑝𝑚𝑎𝑥(𝑡) remains large for a long time (𝑝𝑚𝑎𝑥(𝑡) ≥

𝑒−𝑈/𝑠𝐻  in the deterministic approximation), and it can be shown (Appendix C III.) that  the relative error 

in Eq.[14] remains ≤ 1 for some ‘time to loss of accuracy’ of order 𝑁𝑒 𝑒−𝑈/𝑠𝐻  (see Table 2). The 

‘characteristic time’ to reach 95% of equilibrium (𝑡0.95 ≤ 8/𝑠𝐻, see section A.) is therefore often much 

less than the timescale over which the deterministic approximation breaks down and Muller’s ratchet 

starts to ‘click’ (of order 𝑁𝑒  𝑒− 𝑈/𝑠𝐻 , Table 2).  

With beneficial mutations however, the fittest class consists of a small number of fit mutants so the error 

accumulates much faster. Furthermore, as the error depends on inverse frequencies of the fittest class, 

the fluctuations of this ‘stochastic edge’ (across replicates and times), especially through smaller values, 

are important, a fact already pointed out for these models (HALLATSCHEK 2011). 

Diminishing returns epistatic models: With diminishing returns, two effects alleviate the deviation. First, 

mere intuition suggests that, as there is a reachable fitness upper bound, this fitness edge should 

ultimately become highly populated (𝑝𝑚𝑎𝑥(𝑡) ≫ 1/𝑁), after sufficient time. This remains a verbal 

argument. Second, beyond the critical mutation rate threshold (whenever 𝛼(. ) has a finite root), the 

weights 𝑤𝑡(𝑣) in Eq.[14] vanish as 𝑡 → ∞. This implies that the error ultimately becomes independent of 

the earlier dynamics of 𝑝𝑚𝑎𝑥(𝑣) and remains bounded by a constant independent of 𝑡 (see Appendix B, 

part III.2). This explains why these models are always accurately captured by the deterministic 

approximation at large times (see Fig. 4 on equilibrium states), even when a substantial deviation from 

the deterministic trajectory builds up transiently (as observed e.g. in Fig. D2 with  𝑈 = 0.0002, 𝑁𝑈 = 2). 

Intuitively (without formal proof) we expect the transient error to be larger with smaller 𝑁𝑈 and when 

starting from a strongly maladapted population, as the fittest class may be small for a long time. 

Qualitatively, this absence of accumulation of deviation over large times is a key difference introduced 

by epistasis. The result is reminiscent of Poon and Otto’s (2000), who showed that even a minimal 

amount of compensating mutations can stop Muller’s ratchet. A substantial transient deviation may arise 

at intermediate times, , but it ultimately shrinks again.  
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Discussion 

The proposed approach models the dynamics of fitness distributions in the presence of selection and 

mutation (neglecting drift), in large asexual populations, with a variety of distributions of mutation 

fitness effects (DFE). A deterministic PDE arises as an approximation to the dynamics of the expectation 

(over stochastic replicates) of the cumulant generating function (CGF) of the fitness distribution. This 

allows to easily handle clonal interference between co-segregating mutants (drawn from various classes 

of mutation models), and the contribution from standing variance, at or away from stationary regimes. 

Main results and possible empirical tests. When considering only the contribution from standing 

variance (negligible contribution from de novo mutation), Eq. [8] with 𝑈 = 0 predicts the full fitness 

distribution over time from arbitrary initial condition. This provides a versatile model for the response to 

selection of large polymorphic asexual populations, over short timescales, i.e. before new mutations 

contribute to adaptation. The predicted trajectories are highly testable in experimental evolution: it only 

requires a measurement of the initial fitness distribution. We hope it may foster empirical tests of 

adaptive dynamics from standing variance in model asexual organisms, with a potential for faster 

observable responses than when a single clone adapts by new mutations. 

The use of CGFs also simplifies the treatment of non-epistatic models with fairly general DFEs (Figs. 2,C1-

C5). For non-epistatic deleterious mutation, most previous results are retrieved as a subcase (see 

Application A.). We further find that the fitness distribution admits explicit (testable) form over time 

(Appendix C, Fig. C1, Movies 1A & 1B), that the timescale to reach equilibrium from an optimal clone is 

independent of the mutation rate 𝑈 (and of order 1/|𝜇𝑠|), which is easily smaller than that over which 

the deterministic approximation breaks down. 

When non-epistatic beneficial mutations are added, the approach breaks down over shorter timescales 

(detailed in Model section and Application section A., Table 2). In general, the deterministic 

approximation breaks (after some time) when the fittest class is only represented by a few copies (see 

Appendix B III), forming a “stochastic edge” (BRUNET et al. 2008). However in this case, we observe by 

simulation that Eq. [8] still provides a rough connection (Fig. 2) between the early regime of adaptation 

(deterministic), and the ultimate stationary regime (stochastic). Because Eq. [8] easily handles a wide 

variety of DFEs (e.g. including beneficial and deleterious mutations) which are not easily treated in the 

stationary stochastic regime, it may also be used as a more general null model over shorter empirical 

timescales (albeit still ignoring epistasis). 
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The same framework can be applied to mutation kernels showing diminishing returns epistasis 

(Application B. and C.). In that case, the discrepancy with the deterministic approximation remains 

bounded (sometimes very small) at all times (Figs. 3 and 4 and Supplementary material 2), because the 

fittest class is rapidly filled with a substantial number of selected mutants. The fitness distribution and 

the proportion of optimal genotypes at equilibrium then take testable explicit forms (Application B. and 

Fig. 4) in a variety of diminishing returns epistasis models where beneficial mutations compensate 

suboptimal genotypes. Overall, our most robust prediction (both with and without epistasis), at 

equilibrium, is that  fitness variance should be close to 〈𝑉∞〉 ≈ 𝑈 |𝜇𝑠| + 𝑜(𝑈), whenever 𝑈 ≪ 1. This is 

also testable (given a large population at equilibrium), as the product 𝑈 |𝜇𝑠|  can be directly estimated 

from mutation-accumulation experiments (reviewed e.g. in KEIGHTLEY and EYRE-WALKER 1999). It is also 

easier to estimate the fitness variance (and possibly skewness etc.) than the mutation load, as the latter 

requires an estimate of the maximal fitness. Such estimate would only be possible if optimal genotypes 

were frequent (not always the case), or given a particular model for the equilibrium fitness distribution 

(e.g. Eqs. [9]-[10]), which depends on the assumed DFE at the optimum. 

The approach via CGFs is also particularly well suited for the Gaussian FGM with normally distributed 

mutant phenotypes. This model has recently served as a landmark null model of context-dependent DFE 

(background and/or environment dependence, TENAILLON 2014). It has also long been a landmark tool in 

evolutionary ecology and quantitative genetics: most treatments of the adaptive and demographic 

responses to environmental challenges, or of the distribution of phenotypes under stabilizing selection 

are based on its assumptions (TENAILLON 2014). Under this Gaussian FGM, the fitness dynamics (averaged 

over replicates) are fully captured by a single PDE (Eq. [7], Fig. 3) covering the full mutation rate 

spectrum. Known analytical treatments of this model mostly described equilibria under two extreme 

regimes: in the limit  𝑈 ≪ |𝜇𝑠| with  𝑛 = 1  dimension (TURELLI 1984) or in the limit  𝑈 ≫ |𝜇𝑠|  with 

arbitrary 𝑛 (LANDE 1980). Here, the full fitness distribution, at or before equilibrium, is predicted 

(analytically or numerically by solving Eq.[7]), for all 𝑈 and arbitrary 𝑛 (Appendix D, Fig. 3 and 4, Movies 

2 and 3). This yields a fully testable pattern to fit to observed fitness distribution or mean fitness 

dynamics. 

Finally, the results extend to arbitrary (spherically symmetric) distributions of mutant phenotypes, in a 

weak selection strong mutation (WSSM) limit (𝑈 ≫ 𝑈𝑐 ≈ 𝑛2𝜆/4). In this limit, both traits and fitness, at 

all times, converge to simple analytic distributions, independently of the details of mutational effects. 

This limit (Fig. 3B and Appendix E) arises here as a diffusion approximation in fitness space, and 
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corresponds to normally distributed phenotypes (with time-varying mean and variance), consistent with 

M. Kimura’s derivation at equilibrium in one dimension (1965), and R. Lande’s conjecture for multiple 

dimensions (LANDE 1980). The approach extends these theories away from equilibrium and clarifies the 

threshold mutation rate (�̃�𝑐) where they apply. These trajectories are also highly testable. Indeed, (i) the 

full distribution is analytic at all times from known initial condition (it may be applied on short 

experimental timescales) and (ii) the FGM can be parameterized  (MARTIN and LENORMAND 2006) from 

data on deleterious mutation effects (|𝜇𝑠| and 𝑛) and rates (𝑈), which are more readily available to the 

experimenter than beneficial mutation kernels and rates.  

The evolutionary process inherent in the FGM is complex in large asexual populations and at high 

mutation rates: it includes clonal interference, both deleterious and beneficial mutations and pervasive 

epistasis. Yet, the resulting fitness trajectories in the WSSM limit (Eqs. [12]-[13]) display surprisingly 

simple and robust patterns, independently of the details of the underlying mutational process. In 

particular, the mean fitness (at any time away from equilibrium), scales simply with the initial 

maladaptation: 〈�̅�𝑡〉 ≈ 𝑚0 sech( √𝑈𝜆 𝑡)
2

, Eq. [12]. This latter pattern is, at least qualitatively, in 

agreement with the recent observation in bacteria (PERFEITO et al. 2014) and yeast (KRYAZHIMSKIY et al. 

2014), that the cumulative mean fitness increase (over stochastic replicates and between distant 

generations) scales almost linearly with initial maladaptation (〈�̅�𝑡〉 ∝ 𝑚0). A test of the FGM and other 

models would (ideally) require confronting full observed trajectories with (independently parameterized) 

predictions. We hope that the proposed approach may help such quantitative testing. Deriving 

(approximate or exact) analytic solutions to Eq. [7] away from the WSSM limit would also be useful in 

this regard, but requires further effort. 

Finally, and although not detailed here, other epistatic models can be predicted analytically (Eq. [4]) or 

numerically (Eq. [7]) through the proposed framework. Two such examples are summarized in Table 2: 

Kingman’s (1978) House of Cards model (Eq. [7]) and a simplified version of Rouzine et al.’s (2003) binary 

model (Eq. [4]). Evaluating how accurate the predictions are, depending on the models and parameters, 

requires extensive simulation work beyond the scope of this article, but the necessary tools (and 

illustrations of the accuracy) are provided in Supplementary material 2. 

Limits. The model has several limits obviously; first of all, not all equations proposed here can be solved 

analytically (Eq. [7]) and we must then rely on numerical solutions. But more fundamental issues can be 

raised about the approach itself. We detail them below and discuss how to improve these aspects.  
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Genetic drift and clonal interference: Drift is explicitly modelled in Appendix A, but only to determine the 

error implied by neglecting it (Eq.[14]). Our results suggest that if the fittest class of genotypes quickly 

reaches (and remains at) substantial frequency, the deterministic approximation is accurate, even over 

the long term (see the section on ‘Convergence’.). This is typically what occurs with diminishing returns 

epistatic models (where fitness is bounded from above), which also prove to have a memoryless 

property that makes them less prone to accumulate stochastic deviations.  

During adaptation over a single peak landscape, clonal interference is pervasive (multiple asexual 

lineages compete for fixation); yet, modelling the stochastic fate of each mutant does not prove critical 

in this model. Conversely, in similar conditions, it proves critical to do so with non-epistatic models of 

beneficial mutation, at least over long timescales. Overall, clonal interference need not always be 

described in the presence of drift: non-epistatic models with beneficial mutations, most studied in this 

context (SNIEGOWSKI and GERRISH 2010), happen to be a case where it is particularly important to do so. 

From an empirical perspective, it is simpler to avoid a theory that requires details of the genetic drift 

process, as the relevant parameters are notoriously difficult to measure (𝑁𝑒, the stochastic reproductive 

variance which may vary between genotypes etc.). However, a proper treatment of effect of stochastic 

forces (drift and mutations) would still be useful even in models where the expected trajectory is robust 

to their effect: it would provide envelopes around the deterministic expectation. Models of stochastic 

fronts and cutoffs may be used once translated into CGF dynamics, or stochastic PDEs using the results of 

Appendix A. 

Segregation and recombination: Asexuals are our focus here, because they form the vast majority of 

model organisms in experimental evolution, for which this work is intended. However, sex is the norm in 

natura and will also likely become increasingly more studied empirically. The approach by CGFs was 

originally designed to handle recombinant genomes (BURGER 1991), as the CGF from independent loci 

add up, providing simple extensions. Indeed, some of our results naturally extend to sexuals in simplified 

situations (not detailed here). However, fitness is typically non-additive across loci, so that simple 

additive theory may prove inaccurate in more realistic models. 

Substitution data: The present model directly follows fitness dynamics, without explicitly modeling 

substitutions at the molecular level. They do occur (an allele becomes dominant, then another takes over 

etc.), but their dynamics may be complex (co-segregating alleles). By not requiring an explicit description 

of these dynamics, fitness trajectories in non-stationary regimes, with complex epistatic models can be 

handled. Yet, this is at the cost of providing no information on the underlying genetic basis of adaptation 
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(which are now partly available empirically). For some important models, possibly epistatic but with low 

polymorphism, these underlying dynamics may be inferred from backward modeling. However, regimes 

with high polymorphism might show more complex molecular signatures, especially away from 

stationary regimes. The proposed framework may generate alternative coalescent models suited for 

epistatic, non-stationary models, just as travelling wave models have been successfully used (GOOD et al. 

2014), for non-epistatic models at stationary regime. 

More complex environments and landscapes: The models considered here mostly assumed a fixed 

environment in which adaptation occurs, as is typical in most theories of adaptation (ORR 2005), and as is 

relevant to many experimental evolution settings. However, more complex situations are of interest: 

multiple environments connected by migration, a continuously changing environment with a moving 

optimum, trade-off in life history traits. In some cases, these can be expressed as an adaptive process on 

multiple fitness components, and may then be handled by considering the dynamics of a multivariate 

CGF, describing the joint distribution of these components. Also, trait-based landscapes where traits are 

not equivalent for selection and/or mutation (e.g. anisotropic FGM) are not handled by the model as 

such. Indeed, the DFE is then not only dependent on the background fitness alone (distance to the 

optimum), but also on additional details (direction to the optimum). These can also be handled by 

introducing multivariate CGFs, describing the joint fitness contributions from each phenotypic 

dimension. We believe PDEs for such multivariate CGF dynamics can be written for many important 

classes of models where multiple fitness components interact. The open question will more likely be 

whether they can yield analytical insight. 

Conclusion: We believe theoretical tools are now available that provide “null” adaptation models, which 

may be quantitatively confronted to experimental evolution data (including with standing variance, 

rarely studied in these experiments). Such tests of basic process predictions are necessary if we are ever 

to apply our theories quantitatively, into the wild or into the human body. 
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Appendix A: Derivation of the general PDEs for the evolution of the fitness distribution 

I. Notations and general setting 

We call 𝑡 the ‘time’ variable and 𝑧 the real-valued argument of the moment generating functions (MGFs) 
and cumulant generating functions (CGFs) that we define below. We express the reference to time 𝑡 by 
an index for compactness:  𝑋𝑡(𝑧) is the value of the function 𝑋(𝑡, 𝑧). We denote 𝜕𝑡𝑋𝑡(𝑧)  the 1st 
derivative of function 𝑋(𝑡, 𝑧) with respect to time 𝑡 and 𝑋𝑡′(𝑧0) and 𝑋𝑡′′(𝑧0) the 1st and 2nd derivatives, 
respectively, with respect to 𝑧, taken at 𝑧 = 𝑧0.  All integrals involving the probability density function 
(PDF) of a distribution are implicitly taken over the domain of this distribution. Expectations indicated 
as 〈⋅〉 are taken over replicate populations (‘ensemble expectation’), while the overbar sign refers to the 
weighted average within a population at time 𝑡. 

We consider a population of 𝑁 asexual haploids, in continuous time (overlapping generations), measured 
in arbitrary units (hours, days etc.). This setting can also approximate a discrete time model (non-
overlapping generations) when effects are small per generations, the time 𝑡 is then measured in 
generations. We follow the dynamics of the distribution of the Malthusian fitness 𝑚 (growth rate of a 
given genotypic class, hereafter ’fitness’) under selection and mutation. At any time 𝑡, an arbitrary set 
of  𝐾𝑡  genotypes, indexed by  𝑖 ∈ [1, 𝐾𝑡] , with constant fitnesses  𝑚𝑖 , coexist in relative 

frequencies 𝑝𝑡(𝑚𝑖), satisfying ∑ 𝑝𝑡(𝑚𝑖)
𝐾𝑡
𝑖=1 = 1. The approach can describe discrete classes (𝐾𝑡 finite) or 

infinite countable classes in the limit 𝐾𝑡 → ∞. All co-segregating genotypes compete by frequency-
independent selection, and mutate according to a Poisson process with fixed rate 𝑈 per capita per unit 
time. The fitness of a mutant which parent has fitness 𝑚 is 𝑚 + 𝑠, where 𝑠 is a random variable 
corresponding to the selection coefficient of the mutation relative to the parent. We measure fitness 
relative to a reference, set at 𝑚 = 0 without loss of generality. Indeed, this reference is arbitrary 
because we are not considering demographic dynamics but only adaptation trajectories, namely relative 
fitness not absolute fitness. In those models that include some fitness optimum (e.g. single peak 
landscape models or models with only deleterious mutations), we set this optimum genotype to be the 
reference 𝑚 = 0 for convenience (so that all 𝑚 ≤ 0). In other models (e.g. models with background-
independent beneficial mutations), the reference is just an arbitrary point in the fitness domain.  

The distribution of 𝑚 at time 𝑡 can also be characterized by generating functions. We will consider the 

moment generating function (MGF) for a given finite population: 𝑀𝑡(𝑧) = ∑ 𝑝𝑡(𝑚𝑖)
𝐾𝑡
𝑖=1 𝑒𝑚𝑖 𝑧 , which for 

a finite number of genotypic classes, is always defined over the full line 𝑧 ∈ ℝ. We will also consider the 
cumulant generating function (CGF): 𝐶𝑡(𝑧) = log 𝑀𝑡(𝑧) . Note that, by definition of a probability 
distribution 𝑀𝑡(0) = 1 and 𝐶𝑡(0) = 0. Furthermore, the two functions are convex and 𝑀𝑡(𝑧) is positive 
on ℝ+.  

For compactness, we use simplified notations for some key quantities: �̅�𝑡 = ∑ 𝑝𝑡(𝑚𝑖)𝑚𝑖
𝐾𝑡
𝑖=1 , and  𝑉𝑡 =

𝑚𝑡
2̅̅ ̅̅ − �̅�𝑡

2 are, respectively, the mean and variance of the Malthusian fitness at time 𝑡 for a given 

population (with 𝑚𝑡
2̅̅ ̅̅ = ∑ 𝑝𝑡(𝑚𝑖)𝑚𝑖

2𝐾𝑡
𝑖=1 ). At any time, replicate populations may differ in the number 

(𝐾𝑡), fitness (𝑚𝑖) and frequencies (𝑝𝑡(𝑚𝑖)) of co-segregating alleles. Averaging over these possible 
trajectories among replicates yields ‘ensemble expectations’. For the mean and variance in fitness within 
populations, the corresponding ‘ensemble expectations’ are the expected mean fitness 〈�̅�𝑡〉 and the 

expected fitness variance within populations 〈𝑉𝑡〉 = 〈𝑚𝑡
2̅̅ ̅̅ − �̅�𝑡

2〉. We also use simplified notations for the 
ensemble expectation of generating functions, under the deterministic approximation (see main text): 
ℳ𝑡(𝑧) ≈ 〈𝑀𝑡(𝑧)〉  and 𝒞𝑡(𝑧) ≈ 〈𝐶𝑡(𝑧)〉 = 〈log 𝑀𝑡(𝑧)〉  are the approximate expected MGF and CGF, 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2016. ; https://doi.org/10.1101/079368doi: bioRxiv preprint 

https://doi.org/10.1101/079368
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 
 

respectively. We first describe exact dynamics for 〈𝑀𝑡(𝑧)〉 and 〈𝐶𝑡(𝑧)〉 , then introduce the dynamics 
of ℳ𝑡(𝑧) and 𝒞𝑡(𝑧) under the deterministic approximation. 

 

II. Effect of drift and selection 

Accounting for genetic drift, the CGF 𝐶𝑡(𝑧) and MGF 𝑀𝑡(𝑧) themselves are random variables, generated 
by the random process governing the vector of frequencies of the 𝐾𝑡 different genotypes (𝑝𝑡(𝑚𝑖)) 
present at time 𝑡. For compactness, we note this vector 𝐩 =  {𝑝𝑖}𝑖∈[1,𝐾] and 𝐾 = 𝐾𝑡. When population is 

large enough, this random  𝐾 dimensional vector is approximately described by a 𝐾-type Wright-Fisher 
diffusion with selection and drift, characterized by a given variance effective size 𝑁𝑒. The infinitesimal 
generator 𝒟 of this diffusion (eq. 4.83 p. 154 of EWENS 2004) can be expressed as follows, for any twice 
differentiable function 𝜑: ℝ𝐾 → ℝ of the vector 𝐩 

 

𝒟𝜑(𝐩) = ∑ 𝑝𝑖(𝑚𝑖 − �̅�𝑡) 
𝜕𝜑(𝐩)

𝜕𝑝𝑖

𝐾
𝑖=1 +

1

2𝑁𝑒
(∑ 𝑝𝑖(1 − 𝑝𝑖)

𝜕2𝜑(𝐩)

𝜕𝑝𝑖
2

𝐾
𝑖=1 −

2 ∑ ∑ 𝑝𝑖𝑝𝑗  
𝜕𝜑(𝐩)

𝜕𝑝𝑖𝜕𝑝𝑗

𝐾
𝑗=𝑖+1

𝐾
𝑖=1 ), 

 (A1) 

 

where �̅�𝑡 = ∑ 𝑝𝑖𝑚𝑖
𝐾
𝑖=1  is the population mean fitness at time 𝑡. This infinitesimal generator formally 

describes the expected change of the arbitrary function 𝜑  of the random process 𝐩𝑡  over some 
infinitesimal time interval  𝑑𝑡: 〈𝑑𝜑|𝜑〉 = 〈𝜑(𝐩𝑡+𝑑𝑡)|𝐩𝑡〉 − 𝜑(𝐩𝑡) = 𝒟𝜑(𝐩𝑡)𝑑𝑡.  Recall that the 
expectation 〈. 〉 is taken over replicate populations. We wish to follow the dynamics of the unconditional 
expectation �̅�𝑡 = 〈𝜑(𝐩𝑡)〉 of the function 𝜑(. ), over time, over replicate populations with similar initial 
conditions 𝜑(𝐩𝟎). 

Rattray and Shapiro (RATTRAY and SHAPIRO 2001) used a somewhat similar Wright-Fisher generator-based 
approach in the study of fitness cumulants, in a model of sexuals with constant effect mutation. The 
fitness distribution under study could thus be simplified to that of the number of mutations carried by 
each individual, assuming linkage equilibrium. Rattray and Shapiro’s model was not framed in terms of 
PDEs as here but rather as an infinite set of ODEs, solved numerically for some threshold level, (BURGER 
1991; GERRISH and SNIEGOWSKI 2012).  

Good & Desai (2013) also obtained a similar result (see their Appendix D), in terms of the dynamics of 
the expected CGF, using Itô calculus. They worked on absolute numbers of lineages (while we consider 
diffusion on frequencies), assuming a constant effect of mutations (while we consider arbitrary DFE), but 
they obtained essentially the same results on CGF dynamics. Here we use an alternative method, via the 
Feynman-Kac theorem (theorem 8.1.1 in ØKSENDAL 2003) and derive the dynamics of both the expected 
MGF and CGF. 

II.1 Dynamics of the expected MGF. The MGF is a particular function of genotypic frequencies (𝜑(𝐩) =

𝑀𝑡  (𝑧) = ∑ 𝑝𝑖𝑒𝑚𝑖 𝑧𝐾
𝑖=1 ), for which 𝜕𝑝𝑖

𝜑(𝐩) = 𝑒𝑚𝑖𝑧 and 𝜕𝑝𝑖,𝑝𝑗
𝜑(𝐩) = 0. Eq. (A1) applied to this function 

can be written in terms of derivatives of  𝑀𝑡(𝑧) with respect to 𝑧: 𝒟𝑀𝑡(𝑧) = 𝑀𝑡
′(𝑧) − 𝑀𝑡

′(0)𝑀𝑡(𝑧) 
where we used the fact that �̅�𝑡 = 𝑀𝑡

′(0). This only reflects the effect of selection on multiple 
gentoypes: drift induces no bias on the MGF as it is a linear function of allele frequencies, themselves 
unchanged, on average, by drift.  Taking expectation over replicate populations starting from the same 
initial distribution 𝐩0, we can derive the dynamics of the expected MGF 〈𝑀𝑡(𝑧)〉. Using the Feynman-Kac 
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formula, the expected MGF satisfies 𝜕𝑡〈𝑀𝑡(𝑧)〉 = 〈𝒟 𝑀𝑡(𝑧)〉 = 𝒟〈𝑀𝑡(𝑧)〉, with initial condition 𝑀0(𝑧), 
leading to the PDE:  

 
𝜕𝑡〈𝑀𝑡(𝑧)〉 = 〈𝒟 𝑀𝑡(𝑧) 〉 = 〈𝑀𝑡

′(𝑧)〉 − 〈𝑀𝑡
′(0)〉〈𝑀𝑡(𝑧)〉 − 𝑐𝑜𝑣(�̅�𝑡 , 𝑀𝑡(𝑧)).  (A2) 

This equation is not closed as such, as it is affected by the covariance, across populations, of the mean 

fitness with the MGF: 𝑐𝑜𝑣(�̅�𝑡 , 𝑀𝑡(𝑧)), which itself will depend on higher order covariances. 

II.2 Dynamics of the expected CGF. Consider now the CGF (𝜑(𝐩) = log 𝑀𝑡 (𝑧) = log ∑ 𝑝𝑖𝑒𝑚𝑖 𝑧𝐾
𝑖=1 ), so 

that 𝜕𝑝𝑖
𝜑(𝐩) = 𝑒𝑚𝑖 𝑧/𝑀𝑡(𝑧) and 𝜕𝑝𝑖,𝑝𝑗

𝜑(𝐩) = −𝑒(𝑚𝑖+𝑚𝑗)𝑧/𝑀𝑡(𝑧)2. Eq. (A1) applied to this function can 

be written (recalling that 𝐶𝑡
′(𝑧) = 𝑀𝑡′(𝑧)/𝑀𝑡(𝑧) and 𝐶𝑡

′(0) = 𝑀𝑡
′(0) = �̅�𝑡): 𝒟𝐶𝑡(𝑧) =  𝐶𝑡

′(𝑧) − 𝐶𝑡
′(0) +

(1 − 𝑒𝐶𝑡(2 𝑧)−2 𝐶𝑡(𝑧))/(2𝑁𝑒). Starting from the distribution 𝐩0, and considering the expected CGF 〈𝐶𝑡(𝑧)〉, 
the Feynman-Kac formula leads to 

  𝜕𝑡〈𝐶𝑡(𝑧)〉 = 〈𝒟 𝐶𝑡(𝑧)〉 = 〈𝐶𝑡
′(𝑧)〉 − 〈𝐶𝑡

′(0)〉 +
1 − 〈𝑒𝐶𝑡(2 𝑧)−2 𝐶𝑡(𝑧)〉

2𝑁𝑒
.  (A3) 

Note that the term introduced by drift, 𝛿𝑡(𝑧) = 〈1 − 𝑒𝐶𝑡(2 𝑧)−2 𝐶𝑡(𝑧)〉/(2𝑁𝑒), is the same as in Good & 
Desai’s (2013) eq. (D.4). Here again the equation cannot be solved unless we ignore this term, which is 
the deterministic approximation described in the next section. 

II.3 Neglecting the bias induced by drift. For the rest of the article, we neglect the impact of drift on 
expected cumulants and moments, which boils down to neglecting  𝑐𝑜𝑣(�̅�𝑡 , 𝑀𝑡(𝑧))  in (A2) and 

〈1 − 𝑒𝐶𝑡(2 𝑧)−2 𝐶𝑡(𝑧)〉/(2𝑁𝑒)  in (A3). We call this  the “deterministic approximation”, and we 
define  ℳ𝑡(𝑧) ≈ 〈𝑀𝑡(𝑧)〉 and 𝒞𝑡(𝑧) ≈ 〈𝐶𝑡(𝑧)〉  the expected MGF and CGF (respectively) under this 
approximation. Noting that ensemble expectation and derivation with respect to both 𝑧 and 𝑡 are 
exchangeable (linear operators), this yields a closed system for the dynamics of the approximate 
expected MGF and CGF:  

 

𝜕𝑡ℳ𝑡(𝑧) = ℳ𝑡
′(𝑧) − ℳ𝑡

′(0)ℳ𝑡(𝑧) ,

𝜕𝑡𝒞𝑡(𝑧) = 𝒞𝑡
′(𝑧) − 𝒞𝑡

′(0) .
  (A4) 

We then observe that 𝒞𝑡(𝑧) and log ℳ𝑡(𝑧) satisfy the same equation. The uniqueness of the solution of 
this equation (see Appendix B, II.1) thus implies that 𝒞𝑡(𝑧) = log ℳ𝑡(𝑧) ; in other words, the 
deterministic approximation equates 𝒞𝑡(𝑧) = 〈𝐶𝑡(𝑧)〉 = 〈log 𝑀𝑡(𝑧)〉 ≈ log〈𝑀𝑡(𝑧)〉 = log ℳ𝑡(𝑧). 

This amounts to ignoring variation in 𝐶𝑡(𝑧) among replicates, relative to its expectation. Indeed, let the 
random deviation of 𝑀𝑡(𝑧) from its expectation be 휁 = 𝑀𝑡(𝑧) − 〈𝑀𝑡(𝑧)〉, in any population. Then 〈휁〉 =

0 and 〈휁2〉 = 𝑉(𝑀𝑡(𝑧)), the variance in 𝑀𝑡(𝑧) among populations. To leading order in 휁 ∶  〈𝐶𝑡(𝑧)〉 −

log〈𝑀𝑡(𝑧)〉 ≈ − 1 2⁄  〈휁2〉 ℳ𝑡(𝑧)2⁄ , while 𝑉(𝐶𝑡(𝑧)) = 〈𝐶𝑡(𝑧)2〉 − 〈𝐶𝑡(𝑧)〉2 ≈ 〈휁2〉 ℳ𝑡(𝑧)2⁄ . Overall, to 

leading order we have: 〈𝐶𝑡(𝑧)〉 ≈ log〈𝑀𝑡(𝑧)〉 − 𝑉(𝐶𝑡(𝑧))/2, so the deterministic approximation (which 

equates  〈𝐶𝑡(𝑧)〉 ≈ log〈𝑀𝑡(𝑧)〉) is consistent when 𝑉(𝐶𝑡(𝑧)) ≪ log〈𝑀𝑡(𝑧)〉 ≈  〈𝐶𝑡(𝑧)〉. We discuss the 

timescale over which this approximation may be accurate, depending on the models considered, in 
Appendix B III (i.e. including in the presence of mutation). 
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III. Background-dependent mutation 

III.1 General expression. We allow the distribution of mutation fitness effects (DFE) to depend on the 

fitness 𝑚 of the background on which they appear, and denote 𝑓(𝑠|𝑚) the probability distribution 

function (PDF, probability density function if the random variable 𝑠 is continuous) of this conditional 

distribution. This conditional DFE remains constant over time, for each given background fitness class 𝑚, 

but the overall distribution of mutation effects spawned by the population may change over time, 

through the change in background distribution. We define the MGF of the conditional DFE 

as 𝑀𝑠(𝑧, 𝑚) = ∫ 𝑒𝑠 𝑧𝑓(𝑠|𝑚)𝑑𝑠, and the corresponding CGF 𝐶𝑠(𝑧, 𝑚) = log 𝑀𝑠(𝑧, 𝑚). We assume that 

these quantities are well-defined and finite for any 𝑚  attainable in the model, and over some 

interval 𝑧 ∈ [0, 𝑧𝑚𝑎𝑥] : this means the DFE has finite moments in all backgrounds.  

A single mutation occurs within a small enough time interval  Δ𝑡with probability 𝑁 𝑈  Δ𝑡(Poisson 

process).  Given the effect 𝑠 of the mutation and the background 𝑚 where the mutation occurs, the 

conditional change in  𝑀𝑡(𝑧)  is  Δ
𝑚𝑢𝑡

𝑀𝑡(𝑧|𝑠, 𝑚) = 𝑁𝑈 Δ𝑡(𝑒(𝑠+𝑚)𝑧 − 𝑒𝑚 𝑧)/𝑁 = 𝑈 Δ𝑡 𝑒𝑚 𝑧(𝑒𝑠 𝑧 − 1) . 

Taking the expectation over the DFE 𝑠 in background 𝑚 yields: 

 

Δ
𝑚𝑢𝑡

𝑀𝑡(𝑧|𝑚) = ∫ Δ
𝑚𝑢𝑡

𝑀𝑡(𝑧|𝑠, 𝑚)𝑓(𝑠|𝑚)𝑑𝑠 =  𝑈 Δ𝑡 𝑒𝑚 𝑧(𝑀𝑠(𝑧, 𝑚) − 1). 

 

 (A5) 

Then taking expectations over the background distribution 𝑚 yields 

 

Δ
𝑚𝑢𝑡

𝑀𝑡(𝑧) = ∑ 𝑝𝑡(𝑚𝑖)
𝐾𝑡

𝑖=1
Δ

𝑚𝑢𝑡
𝑀𝑡(𝑧|𝑚𝑖) = 𝑈  Δ𝑡 (∑ 𝑝𝑡(𝑚𝑖)

𝐾𝑡

𝑖=1
𝑒𝑚𝑖 𝑧(𝑀𝑠(𝑧, 𝑚𝑖) − 1))

= 𝑈 Δ𝑡 ( 𝑒𝑚 𝑧𝑀𝑠(𝑧, 𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑒𝑚 𝑧̅̅ ̅̅ ̅̅  )

, 

 

 (A6) 

where the overbar refers to the weighted average within a population at time 𝑡. The corresponding 

change in CGF 𝐶𝑡(𝑧) = log 𝑀𝑡(𝑧), with 𝑀𝑡(𝑧) = 𝑒𝑚 𝑧̅̅ ̅̅ ̅̅  is obtained by noting that, with infinitesimal 

change in the continuous time limit (as Δ𝑡 → 0) Δ
𝑚𝑢𝑡

𝐶𝑡(𝑧) = Δ
𝑚𝑢𝑡

𝑀𝑡(𝑧)/𝑀𝑡(𝑧)) 

 

Δ
𝑚𝑢𝑡

𝐶𝑡(𝑧) = 𝑈 Δ𝑡 (
𝑒𝑚 𝑧𝑀𝑠(𝑧, 𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑒𝑚 𝑧̅̅ ̅̅ ̅̅
− 1), 

 

 (A7) 

Taking ensemble expectation, over the stochastic trajectories of 𝐶𝑡(𝑧) among replicate populations, 
yields an exact expression for the mutational contribution Δ

𝑚𝑢𝑡
〈𝐶𝑡(𝑧)〉 to the expected CGF 𝒞𝑡(𝑧) =

〈𝐶𝑡(𝑧)〉: 
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Δ
𝑚𝑢𝑡

〈𝐶𝑡(𝑧)〉

Δ𝑡
=

Δ
𝑚𝑢𝑡

𝒞𝑡(𝑧)

Δ𝑡
= 𝑈 (〈 

𝑒𝑚 𝑧𝑀𝑠(𝑧, 𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑒𝑚 𝑧̅̅ ̅̅ ̅̅
 〉 − 1).  (A8) 

As such, the effect of mutation on 𝒞𝑡 cannot be expressed in terms of 𝒞𝑡 for general DFEs: further 
assumptions on the DFE are thus required to close the system. 

III.2 Linear background-dependence. Situations may arise where the MGF of the DFE is linear in 𝑚 ∶
𝑀𝑠(𝑧, 𝑚) = 𝑎(𝑧)𝑚 + 𝑀∗(𝑧), for some functions 𝑎(. ) and 𝑀∗(𝑧) = 𝑀𝑠(𝑧, 0), which is again the MGF in 
the background with fitness 𝑚 = 0. This linearity may be exact or approximate, depending on the 
models and regimes. By definition of an MGF, 𝑀∗(0) = 1 and 𝑀∗

′′(𝑧) > 0, and 𝑎(. ) must satisfy 𝑎(0) =
0. Also we have 𝑎′′(𝑧) ≤ 0 for all 𝑧, whenever the fitness set is bounded (so that 𝑚 ≤ 0 with our 
convention). The MGF 𝑀𝑠(. , . ) then satisfies the required properties 𝑀𝑠(0, 𝑚) = 1 (conservation of 

total probability for all 𝑚) and 𝑀𝑠′′(𝑧, 𝑚) ≥ 0 (convexity for all 𝑚 with 𝑚 ≤ 0). Note that when 𝑚 is 

unbounded on the right (so that 𝑚 ∈ ℝ instead of ℝ−), then convexity (𝑀𝑠′′(𝑧, 𝑚) ≥ 0 for all 𝑚 and 𝑧) 
implies that 𝑎′′(𝑧) = 0 for all 𝑧. In this case, linear background-dependence can only be consistent with a 
function of the form 𝑎(𝑧) = 𝑎′(0) 𝑧, namely a DFE that is background independent, except for its 

mean: 𝐸(𝑠|𝑚) = 𝑀𝑠′(0, 𝑚) = 𝑎′(0)𝑚 + 𝑀∗
′(0). 

Replacing 𝑀𝑠(𝑧, 𝑚)  by 𝑎(𝑧)𝑚 + 𝑀∗(𝑧)  in the mutational term in Eq. (A8) yields 𝑒𝑚 𝑧𝑀𝑠(𝑧, 𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
𝑎(𝑧) 𝑚 𝑒𝑚 𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑀∗(𝑧) 𝑒𝑚 𝑧̅̅ ̅̅ ̅̅ . We then note that 𝑚 𝑒𝑚 𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑀𝑡

′(𝑧), so that 𝑚 𝑒𝑚 𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑒𝑚 𝑧̅̅ ̅̅ ̅̅⁄ = 𝑀𝑡
′(𝑧) 𝑀𝑡(𝑧)⁄ =

𝐶𝑡
′(𝑧), so that the mutational contribution in Eq. (A8) can be written: Δ

𝑚𝑢𝑡
𝒞𝑡(𝑧) Δ𝑡⁄ = 𝑎(𝑧) 𝒞𝑡(𝑧) +

𝑀∗(𝑧). Taking a continuous time limit (Δ𝑡 → 0), the full dynamics of the expected CGF under the 
deterministic approximation is a nonlocal linear 1st order PDE:  

 
𝜕𝑡〈𝐶𝑡(𝑧)〉 ≈ 𝜕𝑡𝒞𝑡(𝑧) = 𝛼(𝑧)𝒞𝑡

′(𝑧) − 𝒞𝑡
′(0) + 𝛽(𝑧),  (A9) 

with 𝛼(𝑧) = 1 + 𝑈 𝑎(𝑧) and  𝛽(𝑧) = 𝑈 (𝑀∗(𝑧) − 1). This PDE is studied and solved analytically in 
Appendix B. 

Application: binary model (BM). One example of mutation model that has linear background 
dependence is simplified version of Rouzine et al.’s model of asexual sequence evolution. In this model, 
genotypes are composed of Λ bins representing sites (𝐿 in the original paper, but we use other notation 
to avoid confusion with mutation load here). We thus denote this model ‘binary model’. Each bin is 0 for 

wild-type allele or 1 for mutant allele at the site and a given genotype 𝑖 is a vector 𝐱𝑖 ∈ {0,1}Λ. Each 
mutant allele incurs a deleterious effect − 𝛿 < 0 on Malthusian fitness (‘𝑠’ in the original paper: again 
notation is changed to avoid confusion with the random variable 𝑠 describing selection coefficients in the 
present paper). Fitness is additive across sites so that 𝑚(𝐱𝑖) = −𝛿 𝑘 for a genotype carrying 𝑘 ∈ [0, Λ] 
mutant alleles. Mutation is symmetric at each site with rate 𝑢 per capita per generation per site: mutant 
alleles mutate back to wild type (effect + 𝛿 ) and wild type alleles mutate forward to a deleterious 
mutant (effect − 𝛿). The net genomic mutation rate is 𝑈 = 𝑢 Λ per generation per capita. Conditional on 
a mutation occurring, it hits a site at random and has an effect +𝛿  if it hit a mutant allele (probability 𝑘/
Λ ) or −𝛿  if it hit a wild type allele (probability  1 − 𝑘/Λ).  This DFE has stochastic 
representation 𝛿𝑚 ~ 2 𝛿  (𝐵 − 1) where 𝐵 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑘/Λ). Recalling that 𝑘 = −𝑚/𝛿, we can write 
the MGF of this DFE as a function of the background fitness 𝑚:  
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𝑀𝑠(𝑧, 𝑚) = 𝑎(𝑧)𝑚 + 𝑀∗(𝑧),

𝑎(𝑧) = −2
sinh(𝛿 𝑧)

Λ 𝛿 
and 𝑀∗(𝑧) = 𝑒− 𝛿 𝑧,

  (A10) 

Which is a linear background-dependent model. This is a simplification of the original model in (ROUZINE 
et al. 2003) in that they introduced an extra parameter 𝑞 which is a proportion of sites that may 
compensate for a deleterious mutation at a given site. In the present ‘binary model’, 𝑞 = 𝑘/Λ is by 
construction the current proportion of sites that are in ‘mutant’ state. 

 

Application: Background – independent models. 

Bürger’s (1991) model: another instance where Eq. (A9) applies is for arbitrary background-independent 
models where  𝑀𝑠(𝑧, 𝑚) = 𝑀∗(𝑧)  (or  𝑎(𝑧) = 0 ), a given  𝑀∗(𝑧)  characterizing the background-
independent DFE. Logically, Eq. (A9)  is then consistent with the CGF dynamics derived by R. Bürger (eq. 
4.2 in (BURGER 1991), for discrete time, when applied to a trait (fitness itself) with “exponential selection 
scheme”. Indeed here, Darwinian fitness (𝑊, fitness for the discrete time model) is an exponential 
function of the trait 𝑧 = 𝑚 (here Malthusian fitness): 𝑊(𝑧) = 𝑒𝑧. 

Diffusion in fitness space: A simple form of background-independent model is one where mutation 
effects are modeled as a diffusion term in fitness space (TSIMRING et al. 1996), yielding the so-called 
‘replicator-mutator equation’ (ALFARO and CARLES 2014). In this model, the mutational contribution on 
the dynamics of genotypic frequencies (on  𝜕𝑡𝑝𝑡(𝑚) ) are described by a Laplace diffusion 
operator: 𝑈 𝜎2𝜕𝑚

2 𝑝𝑡(𝑚), where 𝜎2 is the mutational variance in fitness per generation. Multiplying this 
quantity by 𝑒𝑚 𝑧 and integrating by parts with respect to 𝑚, it can be shown that the corresponding 
mutational input Eq. (A8) is Δ

𝑚𝑢𝑡
𝐶𝑡 = Δ

𝑚𝑢𝑡
𝑀𝑡(𝑧)/𝑀𝑡(𝑧) = 𝑈Δ𝑡 𝜎2𝑧2/2, a quadratic function of 𝑧. In this 

model, drift is ignored so the deterministic approximation applies directly (𝒞𝑡 = 𝐶𝑡). 

Alternatively, this polynomial form of the mutational contribution arises as a weak selection limit of the 
background-independent kernel. Consider an arbitrary DFE with some MGF 𝑀∗(𝑧) = ∫ 𝑓(𝑠)𝑒𝑠 𝑧𝑑𝑧, with 
mean 𝜇𝑠 = 𝑀∗

′(0) = ∫ 𝑠 𝑓(𝑠)𝑑𝑧and variance 𝑉(𝑠) = 𝑀∗
′′(0) − 𝑀∗

′(0)2 = 𝜎2 ≪ 1. Consider the scaled 
variable 𝑋 = 𝑠/𝜎, with MGF 𝑀𝑋(𝑧): by definition, we have 𝑀∗(𝑧) = 𝑀𝑋(𝜎 𝑧), 𝑀𝑋(0) = 1, 𝑀𝑋

′ (0) =
𝜇𝑠/𝜎 and 𝑀𝑋

′′(0) = 1 + 𝜇𝑠
2/𝜎2. A Taylor series of the mutational kernel Δ

𝑚𝑢𝑡
𝒞𝑡 (𝑈Δ𝑡)⁄ = 𝑀𝑋(𝜎 𝑧) − 1, 

to leading order in 𝜎, yields Δ
𝑚𝑢𝑡

𝒞𝑡 (𝑈Δ𝑡)⁄ = 𝜇𝑠 𝑧 + (𝜎2 + 𝜇𝑠
2)𝑧2 2⁄ + 𝑜(𝜎2𝑧2), again a 2nd order 

polynomial in 𝑧. Setting a symmetric DFE (𝜇𝑠 = 0) yields the exact same contribution as above (𝛿𝐶𝑡 ≈
𝑈 Δ𝑡 𝜎2𝑧2/2): the diffusion kernel can be equated to a small variance limit of an arbitrary mutational 
kernel with zero mean, consistent with the rationale behind the diffusion approximation. This diffusion 
limit extends to include non-zero mean, but it can only be defined if the initial distribution has an 
analytical MGF, which amounts to the same condition as found in (ALFARO and CARLES 2014): the initial 
distribution must fall off exponentially or faster, or put differently, it must have finite moments. 

Note that such diffusion in fitness space can also be used with a context-dependent mutation kernel, 
from the background dependent mean and variance in fitness (see e.g. Appendix E for the FGM). 

 

III.3 Log-linear background-dependence.  
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Another possibility is that the dependence of the CGF of the DFE on the background fitness 𝑚 is linear 
(so the MGF is log-linear):  

 

𝐶𝑠(𝑧, 𝑚) = 𝐶∗(𝑧) + 𝜔(𝑧) 𝑚,

𝑀𝑠(𝑧, 𝑚) = 𝑒𝜔(𝑧) 𝑚𝑀∗(𝑧).
  (A11) 

The function 𝜔(𝑧) describes how the DFE is affected by background fitness. By definition,  𝑀∗(𝑧) =
𝑀𝑠(𝑧, 0)  is the MGF of the DFE in the ‘reference’ background with fitness  𝑚 = 0 . Thus 𝜔 ≡ 0 
corresponds to background-independent mutations. In the case of background-dependent mutations 
𝜔 ≢ 0 and we further assume that there is a fitness optimum at 𝑚 = 0, so that 𝑚 ≤ 0. The properties 
of 𝑀∗ and 𝜔 are further detailed in Appendix B where this model is analyzed in detail. 

Plugging Eq.(A11) into Eq. (A8) yields 𝑒𝑚 𝑧𝑀𝑠(𝑧, 𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑀∗(𝑧) 𝑒𝑚 (𝑧+𝜔(𝑧))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and thus the mutational 

contribution on the expected CGF has exact form Δ
𝑚𝑢𝑡

𝒞𝑡(𝑧) Δ𝑡⁄ = 𝑈(〈𝑒𝐶𝑡(𝑧+𝜔(𝑧))−𝐶𝑡(𝑧)〉 − 1). We have 

seen that the deterministic approximation amounts to equate 𝒞𝑡(𝑧) = 〈𝐶𝑡(𝑧)〉 ≈ log〈𝑀𝑡(𝑧)〉 which 

implies  𝑉(𝐶𝑡(𝑧)) ≪ 〈𝐶𝑡(𝑧)〉 . At roughly the same level of approximation, 〈𝑒𝐶𝑡(𝑧+𝜔(𝑧))−𝐶𝑡(𝑧)〉 ≈

𝑒𝒞𝑡(𝑧+𝜔(𝑧))−𝒞𝑡(𝑧), and the system can be closed. Taking the continuous time limit (Δ𝑡 → 0), the full 
dynamics of the expected CGF under the deterministic approximation is then a 1st order nonlinear 
nonlocal PDE:  

 
𝜕𝑡〈𝐶𝑡(𝑧)〉 ≈ 𝜕𝑡𝒞𝑡(𝑧) ≈ 𝒞𝑡

′(𝑧) − 𝒞𝑡
′(0) + 𝑈(𝑀∗(𝑧)𝑒𝒞𝑡(𝑧+𝜔(𝑧))−𝒞𝑡(𝑧) − 1).  (A12) 

Application: Fisher’s (1930) geometrical model (FGM). Our landmark example of background-
dependent mutation is a particular version of Fisher’s geometric model (FGM), which we call ‘Gaussian 
FGM’. With 𝑛 dimensions, the FGM generally assumes that fitness is a quadratic function of some 𝑛-
dimensional vector of breeding values for phenotype 𝐠 (𝑚(𝐠) = − ‖𝐠‖2/2), while mutations create a 
perturbation 𝐝𝐠 on this vector, that is unbiased and follows an isotropic multivariate distribution. In a 
particular version, the ‘Gaussian FGM’, this distribution is multivariate Gaussian : 𝐝𝐠~𝑁(𝟎, 𝜆𝐈𝑛) , 
where 𝐈𝑛 is the identity matrix in 𝑛 dimensions. The reference is the optimal phenotype (𝐠 = 𝟎) with 
fitness 𝑚 = 0, and the conditional DFE, for the background with breeding value 𝐠 and fitness 𝑚 = 𝑚(𝐠) 
has stochastic representation (MARTIN 2014): 𝑠|𝑚 ~ − 𝑚 − 𝜆 2⁄ 𝜒𝑛

2(−2𝑚/𝜆), where 𝜒𝑛
2(𝜈) is a non-

central chi-square deviate with 𝑛 degrees of freedom and non-centrality parameter 𝜈 (MARTIN 2014). The 
CGF of this DFE is exactly log-linear in background fitness:  

 

𝑀𝑠(𝑧, 𝑚) = 𝑀∗(𝑧)𝑒𝑚 𝜔(𝑧),

𝜔(𝑧) = −
𝜆 𝑧2

1 + 𝜆 𝑧
 and 𝑀∗(𝑧) = (1 + 𝜆 𝑧)−𝑛 2⁄ .

  (A13) 

Eq. (A12) thus applies directly to this model. In appendix E, we show that a generalized version of this 
model with arbitrary, isotropic distribution of mutation effects on phenotypes, can be equated to a log-
linear background dependent model when mutation effects are small relative to mutation rate. 

Application: Kingman’s (1978) House of Cards model (HOC). Under this model, mutants have a given 
fixed absolute fitness distribution 𝑋, which means that the relative fitness effects of mutations are 
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background dependent (𝑠 = 𝑋 − 𝑚, so that 𝑚 + 𝑠 = 𝑋). If 𝑀𝑋(𝑧) = 𝐸(𝑒𝑋 𝑧) is the MGF of the fixed 
absolute fitness distribution, then the MGF of the DFE shows log-linear background dependence 

 
𝑀𝑠(𝑧, 𝑚) = 𝑀∗(𝑧)𝑒𝑚 𝜔(𝑧),

𝜔(𝑧) = −𝑧 and 𝑀∗(𝑧) = 𝑀𝑋(𝑧).
  (A14) 
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Appendix B: formal properties and solutions of the general PDEs used in the article 

This appendix is divided into two sections. In Section I, we study the mathematical properties of the 

nonlocal nonlinear equation [9] (main text), for 𝒞𝑡(𝑧)  corresponding to log-linear background-

dependence. In Section II, we solve the linear nonlocal equation [6] (main text) corresponding to linear 

background-dependence, and which can also be seen as an approximation of the nonlocal nonlinear 

equation [9] obtained by linearizing the MGF of the DFE, 𝑀𝑠(𝑧, 𝑚) around 𝑚 = 0. We use results from 

Section I to justify that the equilibrium of Eq. [6] is memoryless (independent of the initial fitness 

distribution) in the presence of epistasis. We also show that the two equations lead to consistent results 

at equilibrium (when such equilibrium exists). In the following, we consider only non-neutral mutation 

(the mutation rate 𝑈 considered is a rate of mutation to non-neutral effects (𝑠 ≠ 0)), so that the DFE has 

no Dirac mass at 0. 

 

 

I. Nonlinear nonlocal PDE for log-linear background-dependence. 

 

We investigate some a priori properties of the solutions of the nonlocal equation: 

  

 𝜕𝑡𝒞𝑡(𝑧) = 𝒞𝑡
′(𝑧) − 𝒞𝑡

′(0) + 𝑈(𝑒𝒞𝑡(𝑧+𝜔(𝑧))−𝒞𝑡(𝑧)𝑀∗(𝑧) − 1),   (B1)  

 

for 𝑡 ≥ 0, 𝑧 ≥ 0 and with the boundary condition 𝒞𝑡(0) = 0.  

Below, we first detail (Section I.1) the properties of 𝑀∗ and 𝜔 that may be compatible with log-linear 

background dependence. Then (Section I.2) we show that the support of the fitness distribution 

instantaneously reaches the optimum 𝑚 = 0 (or equivalently that 𝒞𝑡
′(∞) = 0, for all 𝑡 > 0). Then we 

use this property to study the properties of the CGF as 𝑡 → ∞: in particular the first cumulants (Section 

I.3) and the existence of a spike in the distribution (discrete probability mass) at the optimal genotype 

(Section I.4). 

 

I.1 Properties of 𝝎 𝐚𝐧𝐝 𝑴∗. The function 𝑀∗ is the MGF of the DFE for the genotype with fitness 𝑚 = 0; 

it satisfies MGF properties 𝑀∗(0) = 1 and 𝑀∗
′′(𝑧) ≥ 0. Furthermore, we consider only epistatic models 

that have an upper bound for fitness; whenever 𝜔 ≠ 0, we thus set this maximum to max(𝑚) = 0 

without loss of generality. This implies that 0 ≤ 𝑀∗(𝑧) ≤ 1 whenever 𝜔 ≠ 0; we do not require 𝑀∗(𝑧) ≤

1 in the non-epistatic models (𝜔 = 0). 

For the well-posedness of Eq. (B1) we need that 𝑧 + 𝜔(𝑧) ≥ 0 for all positive 𝑧. In order to establish this 

inequality, we recall that the optimal fitness was set at 𝑚 = 0. Thus, the DFE is such that 𝑓(𝑠|𝑚) = 0 for 

all 𝑠 ≥ −𝑚, otherwise a mutant could overshoot 𝑚 = 0. This implies that 𝑀𝑠(𝑧, 𝑚) = 𝐸(𝑒𝑠 𝑧|𝑚) ≤

𝑒−𝑚 𝑧.  Using the log-linearity assumption log 𝑀𝑠(𝑧, 𝑚) = 𝐶𝑠(𝑧, 𝑚) = 𝐶∗(𝑧) + 𝜔(𝑧) 𝑚, we get 𝐶∗(𝑧) +

𝜔(𝑧) 𝑚 ≤ −𝑚 𝑧, for all 𝑚 ≤ 0 and 𝑧 ≥ 0. Dividing this last inequality by 𝑚 < 0 and passing to the limit 

𝑚 → −∞, we get:  𝑧 + 𝜔(𝑧) ≥ 0 for all 𝑧 ≥ 0. 

Furthermore, the convexity of CGFs implies that 𝐶𝑠′′(𝑧, 𝑚) = 𝐶∗
′′(𝑧) + 𝜔′′(𝑧) 𝑚 ≥ 0 for all 𝑚 ≤ 0. This 

implies that 𝜔′′(𝑧) ≤ 0  for all  𝑧 ≥ 0,  in other words 𝜔  is concave over  ℝ+ . This in turn implies 

that 𝜔′(𝑧) ≤ 𝜔′(0) and, as 𝜔(0) = 0, that 𝜔(𝑧) = ∫ 𝜔′(𝑢)𝑑𝑢
𝑧

0
≤ 𝜔′(0) 𝑧. The inequality 𝑧 + 𝜔(𝑧) ≥ 0 
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for all 𝑧 ≥ 0 and the concavity of 𝜔 also implies that 𝜔′(𝑧) ≥ −1 for all 𝑧 ≥ 0. Then two cases may arise 

depending on 𝜔′(0). Note that 𝐶𝑠′(0, 𝑚) = 𝐸(𝑠|𝑚) = 𝐶∗
′(0) − 𝜔′(0)|𝑚| so that −𝜔′(0) describes how 

the mean effect of mutations on fitness changes with increased maladaptation |𝑚|. 

Case 1, 𝜔′(0) ≤ 0: in this case, the mean effect of mutations on fitness is unchanged or less deleterious 
as |𝑚| increases: maladaptation alleviates mutation effects. Then 𝜔 is negative over ℝ+ and 0 ≤  𝑧 +

𝜔(𝑧) ≤ 𝑧(1 + 𝜔′(0)) ≤ 𝑧. The nonlocal term 𝒞𝑡(𝑧 + 𝜔(𝑧)) in Eq. (B1) applies to a value that always 

remains within the domain [0, 𝑧]. 

Case 2, 𝜔′(0) > 0: in this case, the mean effect of mutations on fitness is more deleterious as |𝑚| 
increases: maladaptation aggravates mutation effects. Then 𝜔(𝑧) may change sign over 𝑧 ∈ ℝ+ (and 
starts at positive values for small 𝑧). 

Finally, we note that since the optimal fitness was set at 𝑚 = 0,  𝐸(𝑒𝑚 𝑧) ≤ 1  for all positive 𝑧, which 

implies that 

 

 𝒞𝑡(𝑧) ≤ 0. (B2)  
 

I.2 Flatness at infinity. As a key preliminary result, we show that, even if 𝒞0
′ (+∞) < 0, instantaneously 

any solution 𝒞𝑡(𝑧) of (B1) becomes flat at infinity. More precisely:  

 

 𝒞𝑡
′(𝑧) → 0 as 𝑧 → +∞, for all 𝑡 > 0. (B3)  

 

Intuitively, property (B3) arises because (i) we allow for beneficial mutations, (ii) the maximum fitness is 

set at 𝑚 = 0, (iii) we ignore the stochastic loss of rare mutants and (iv) we consider continuous time. 

Therefore, even at very low mutation rates and after a very small period of time, a proportion of the 

fitness distribution (albeit initially infinitesimal) reaches the optimum. More rigorously, this result is 

achieved under any of the following biological/mathematical assumption: 

 

Assumption H: any background can mutate to the optimal background. This means that   max{𝑠,

such that 𝑓(𝑠|𝑚) > 0} = −𝑚, thus 𝐶𝑠′(∞, 𝑚) = 𝐶∗
′(∞) + 𝜔′(∞) 𝑚 = −𝑚 for all 𝑚 ≤ 0. This implies 

that 𝐶∗
′(∞) = 𝑀∗′(∞)/𝑀∗(∞) = 0 and 𝜔′(∞) = −1. 

or 

Assumption H’: any background can mutate to some fitter but suboptimal class. Here,  sup {𝑠,

such that 𝑓(𝑠|𝑚) > 0} = −𝑚(1 − 𝜖𝑚) , for some 𝜖𝑚 ∈ (0,1)  and for all 𝑚 ≤ 0 . In this case, 

𝐶𝑠′(∞, 𝑚) = 𝐶∗
′(∞) + 𝜔′(∞)𝑚 = −𝑚(1 − 𝜖𝑚)  for all 𝑚 ≤ 0 , which implies that 𝐶∗

′(∞) = 𝑀∗′(∞)/

𝑀∗(∞) = 0  and −1 < 𝜔′(∞) < 0, thus z + ω(z) → ∞ as 𝑧 → ∞. 

 

H or H’ imply that there is compensation, i.e., all suboptimal backgrounds (𝑚 < 0) produce at least some 

beneficial mutations. Thus, it also implies that, for all 𝑚 < 0, 

 

 𝑀∗(𝑧)𝑒𝜔(𝑧)𝑚 = 𝑀𝑠(𝑧, 𝑚) = 𝐸(𝑒𝑠 𝑧|𝑚) → ∞, as 𝑧 → ∞ . (B4)  
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Proof of the property (B3). Let us set 𝑊𝑡(𝑧) = 𝒞𝑡(𝑧 + 𝜔(𝑧)) − 𝒞𝑡(𝑧).  Using the convexity of the CGFs, 

we have 𝒞𝑡
′′(𝑧) ≥ 0;  the function 𝒞𝑡

′(𝑧) is therefore increasing (nondecreasing) in 𝑧. Thus, since 𝒞𝑡 ≤ 0 

(Eq. (B2)),  𝒞𝑡
′ cannot reach positive values, otherwise it would remain positive at all larger 𝑧 and 𝒞𝑡(𝑧) 

would converge to ∞ as 𝑧 → ∞, contradicting (B2). Thus, for each time 𝑡 > 0, 𝒞𝑡
′(𝑧) admits a limit 

𝒞𝑡
′(∞) ≤ 0 as 𝑧 →  +∞.  The function 𝒞𝑡

′ also satisfies the following equation: 

 

 𝜕𝑡𝒞𝑡
′(𝑧) = 𝒞𝑡

′′(𝑧) + 𝑈𝑀∗(𝑧)(𝑀∗
′(𝑧)/𝑀∗(𝑧) + 𝑊𝑡

′(𝑧))𝑒𝑊𝑡(𝑧). (B5)  

 

Assume by contradiction that: 

 

 there exists a  time 𝑡0 > 0 such that 𝒞𝑡0

′ (∞) < 0. (B6)  

 

First, we compute 𝑊𝑡0

′ (𝑧) = (1 + 𝜔′(𝑧))𝒞𝑡0

′ (𝑧 + 𝜔(𝑧)) − 𝒞𝑡0

′ (𝑧).  Using Assumption H (𝜔′(∞) = −1), 

we get that 𝑊𝑡0

′ (∞) = −𝒞𝑡0

′ (∞) > 0. If we replace Assumption H by H' (𝑧 + 𝜔(𝑧) → ∞), we obtain: 

𝑊𝑡0

′ (∞) = 𝒞𝑡0

′ (∞)𝜔′(∞) > 0. Thus, in all cases, for some constant 𝛿 > 0 and large 𝑧, we have: 

 𝑊𝑡0

′ (𝑧) > −𝛿𝒞𝑡0

′ (∞) > 0. (B7)  

We know that  𝒞𝑡
′′(𝑧) ≥ 0 and, from Assumption H or H' (𝑀∗′(∞)/𝑀∗(∞) = 0), 𝑀∗

′(𝑧) is negligible 

compared to 𝑀∗(𝑧) for large 𝑧. Equation (B5) together with (B7) and with 𝑈 > 0 imply that 𝜕𝑡𝒞𝑡0

′ (𝑧) > 0 

for large 𝑧. 

Assume that there exists 𝑡1 ∈ (0, 𝑡0) such that 𝒞𝑡1

′ (∞) = 0 and 𝒞𝑡
′(∞) < 0 for all 𝑡 ∈ (𝑡1, 𝑡0). Again, 

𝜕𝑡𝒞𝑡
′(𝑧) > 0 for all 𝑡 ∈ (𝑡1, 𝑡0) and large 𝑧. As a consequence, the limit 𝒞𝑡

′(∞) is a nondecreasing 

function of 𝑡 ∈ (𝑡1, 𝑡0)  which implies that 0 = 𝒞𝑡1

′ (∞) ≤ 𝒞𝑡0

′ (∞) < 0 and leads to a contradiction. As a 

consequence, Property (B6)  implies that  𝒞𝑡
′(∞) < 0 for all 𝑡 ∈ (0, 𝑡0].  

The same arguments as above imply that for each 𝑡 ∈ (0, 𝑡0), 𝑊𝑡
′(𝑧) > −𝛿𝒞𝑡

′(∞) > 0 for 𝑧 large enough 

and that 𝜕𝑡𝒞𝑡
′(𝑧) > 0 for all 𝑡 ∈ (𝑡1, 𝑡0). Therefore,  𝒞𝑡

′(∞) is nondecreasing  for 𝑡 ∈ (0, 𝑡0), and 

𝑊𝑡
′(𝑧) > −𝛿𝒞𝑡

′(∞) ≥ −𝛿𝒞𝑡0

′ (∞) > 0, (B8)  

for all 𝑡 ∈ (0, 𝑡0) and large 𝑧. 

 

Second, note that 𝑊𝑡(𝑧) can be bounded from below, for all 𝑡 ∈ (0, 𝑡0). From Assumption H or H', we 

know that 𝜔(𝑧) < 0 for large 𝑧. Then, we can write, for large 𝑧: 

𝑊𝑡(𝑧) = − ∫ 𝒞𝑡
′(𝑠)𝑑𝑠 ≥ 𝒞𝑡

′(𝑧)𝜔(𝑧) ≥ 𝒞𝑡
′(∞)𝜔(𝑧) ≥ 𝒞𝑡0

′ (∞)𝜔(𝑧),
𝑧

𝑧+𝜔(𝑧)
 since 𝒞𝑡

′(𝑧) is nondecreasing in 

𝑧 and 𝒞𝑡
′(∞) is nondecreasing in 𝑡. Using this lower bound, together with the formulas (B5) and (B8), we 

get: 

 𝜕𝑡𝒞𝑡
′(𝑧) ≥ 𝑈𝑀∗(𝑧) (𝑀∗

′(𝑧)/𝑀∗(𝑧) − 𝛿𝒞𝑡0

′ (∞)) 𝑒𝒞𝑡0
′ (∞)𝜔(𝑧). (B9)  

 

Let 𝑡2 ∈ (0, 𝑡0); integrating the inequality (B9) between 𝑡2 and 𝑡0, we get: 

𝒞𝑡0

′ ( 𝑧) ≥ 𝐶𝑡2

′ (𝑧) + (𝑡0 − 𝑡2)𝑈𝑀∗(𝑧) (𝑀∗
′(𝑧)/𝑀∗(𝑧) − 𝛿𝒞𝑡0

′ (∞)) 𝑒𝒞𝑡0
′ (∞)𝜔(𝑧),  for all 𝑧  large enough. 

Using Assumption H or H' (𝑀∗
′(∞)/𝑀∗(∞) = 0) and Property (B4) which is a consequence of both H and 

H', we conclude that 𝒞𝑡0

′ (𝑧) → ∞ as 𝑧 → ∞. This contradicts the inequality 𝒞𝑡
′ ≤ 0. Finally, since Property 
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(B6)  leads to a contradiction, we conclude that 𝒞𝑡
′(𝑧) → 𝒞𝑡

′(∞) = 0  as 𝑧 → ∞, for all 𝑡 > 0. This 

concludes the proof of Property (B3). 

 

I.3 Stationary solution. Using the preliminary result of Section I.1, we are able to derive some properties 

of the long-time behavior of the solutions of Eq. (B1). 

 

First cumulant (load). By definition, a stationary solution of the nonlocal equation (B1) does not depend 

of time; it is a solution 𝒞(𝑧) of: 

 

 𝒞′(𝑧) − 𝒞′(0) + 𝑈(𝑒𝒞(𝑧+𝜔(𝑧))−𝒞(𝑧)𝑀∗(𝑧) − 1) = 0,   for 𝑧 > 0, (B10)  

 

with the boundary condition 𝒞(0) = 0. This equilibrium solution describes the fitness distribution at 

mutation-selection balance. 

 

It is easily seen that the solution of (B10) is not unique. However, if the stationary solution is obtained as 

the limit of the solution 𝒞𝑡(𝑧) of Eq. (B1), using the result (B3) of Section I.1, and passing to the limit 𝑡 →

∞, we observe that 𝒞′(∞) = 0. As a consequence, for any model where context-dependence affects the 

system (𝜔(𝑧) ≠ 0) in a way that satisfies the Assumptions H or H', we must have: 

 

〈�̅�∞〉 = 𝒞′(0) = lim
𝑧→+∞

−𝑈 (1 − 𝑒𝒞(𝑧+𝜔(𝑧))−𝒞(𝑧)𝑀∗(𝑧)). 

 

Then, two situations are possible, depending on 𝑈, 𝜔(𝑧) and 𝑀∗(𝑧). 

 

First case: 𝑒𝒞(𝑧+𝜔(𝑧))−𝒞(𝑧)𝑀∗(𝑧) → 0 as 𝑧 → +∞. In that case, 𝒞′(0) = −𝑈. 

 

Second case: 𝑒𝒞(𝑧+𝜔(𝑧))−𝒞(𝑧)𝑀∗(𝑧) → 𝐵 > 0 as 𝑧 → +∞, for some positive constant 𝐵. In that case, 

𝒞′(0) = −𝑈(1 − 𝐵) > −𝑈 (as 𝐵 > 0). 

 

This provides a general result on the mutation load, namely the difference between the maximal fitness 

possible (𝑚 = 0) and the mean fitness at mutation-selection balance: 𝐿 = −〈�̅�∞〉 = −𝒞′(0). As the 

optimal DFE corresponds to a probability distribution function 𝑓∗(𝑠) = 𝑓(𝑠|𝑚 = 0) supported in ℝ− and 

with no "Dirac mass" at 0, 𝑀∗(∞) = 0: indeed, for any  𝜖 > 0 small enough and 𝑧 > 0, 0 ≤ 𝑀∗(𝑧) ≤

𝑒−𝜖𝑧 ∫ 𝑓∗(𝑠)𝑑𝑠
−𝜖

−∞
+∫ 𝑓∗(𝑠)𝑑𝑠

0

−𝜖
, which shows that 0 ≤ 𝑀∗(∞) ≤ ∫ 𝑓∗(𝑠)𝑑𝑠

0

−𝜖
  for all 𝜖 small enough and 

therefore  

𝑀∗(∞) = 0. (B11)  
 

 

Higher cumulants. Differentiating the solution of Eq. (B1) with respect to 𝑧, and looking for stationary 

solutions, we can easily compute the cumulants 𝒞′′(0) and 𝒞′′′(0) in terms of the functions 𝜔(𝑧) and 

𝑀∗(𝑧) and of the load 𝐿 = −〈�̅�∞〉 = −𝒞′(0) (recall that the maximal fitness is at 𝑚 = 0): 
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{
〈𝑉(𝑚∞)〉 ≈ 𝒞′′(0) = −𝑈𝑀∗

′(0) + 𝑈𝜔′(0)𝐿,

〈𝑐3(𝑚∞)〉 ≈ 𝒞′′′(0) = −𝑈𝑀∗
′′(0) + 𝑈𝜔′′(0)𝐿.

 (B12)  

 

This provides an exact theory for the variance and skewness in fitness at equilibrium for models 

satisfying log-linear context dependence (such as Fisher’s geometrical model for example), but only given 

some explicit result regarding the load 𝐿. 

 

I.4 Weight of the optimal genotype. Without loss of generality, we can write ℳ𝑡(𝑧) = 〈𝜌𝑡〉 +

〈∑ 𝑝𝑡(𝑚𝑖)
𝐾𝑡
𝑖=2 𝑒𝑚𝑖 𝑧〉, where 𝜌𝑡 is the weight of the optimal genotype (with fitness 𝑚1 = 0) and 𝑚𝑖 < 0 

for all 𝑖 ≥ 2 and 𝑡 ≥ 0.  Passing to the limit 𝑧 → ∞, we get: 

 𝑒𝒞𝑡(∞) = ℳ𝑡(∞) = 〈𝜌𝑡〉. (B13)  
 

Thus, the limit of the MGF ℳ𝑡(𝑧) as 𝑧 → ∞ describes the expected weight of the optimal genotype 𝑚 =

0 in the distribution PDF 𝑝𝑡(𝑚). This weight is positive if and only if 𝒞𝑡(𝑧) converges to some finite limit 

as  𝑧 → ∞.  

Consider now an equilibrium 𝒞(𝑧) obtained as the large time limit of 𝒞𝑡(𝑧). If the expected weight of the 

optimal genotype at equilibrium satisfies 〈𝜌∞〉 > 0, then 𝒞(∞) = log〈𝜌∞〉 > −∞. As 𝑀∗(∞) = 0 (Eq. 

(B11)), it follows that 𝑒𝒞(𝑧+𝜔(𝑧))−𝒞(𝑧)𝑀∗(𝑧) → 0 as 𝑧 → ∞. It then follows from the analysis in Section I.2 

(first case) that 𝒞′(0) = −𝑈. We thus have the following implication  

 

 if 〈𝜌∞〉 > 0, then  𝐿 = 𝑈. (B14)  
 

By contraposition, we obtain that if 𝒞′(0) > −𝑈, then 𝑒𝒞(𝑧+𝜔(𝑧))−𝒞(𝑧)𝑀∗(𝑧) → 𝐵 > 0 (second case in 

Section I.2), which, as 𝑀∗(∞) = 0,  yields the following alternative implication 

 

 𝐿 < 𝑈 implies that 〈𝜌∞〉 = 0.   (B15)  
 

The above analysis (Section I.2) shows that necessarily the mutation load 𝐿 at equilibrium satisfies  𝐿 ≤

𝑈. Furthermore, either 𝐿 = 𝑈 and there can be a spike at 0, or 𝐿 < 𝑈 and no spike can exist. 

 

II. Exactly soluble PDE for linear background-dependence 

 

We consider the general linear transport equation with nonlocal term  𝒞𝑡
′(0): 

 

 𝜕𝑡𝒞𝑡(𝑧) = 𝛼(𝑧)𝒞𝑡
′(𝑧) − 𝒞𝑡

′(0) + 𝛽(𝑧), 𝑡 ≥ 0, 𝑧 ≥ 0, (B16)  
 

with the boundary condition 𝒞𝑡(0) = 0, and where 𝛼 is bounded from above and globally Lipschitz-

continuous in [0, +∞), 𝛽 is continuous and 𝒞0 is continuously differentiable. We assume that 𝛼(0) = 1 

and 𝛽(0) = 0. 

To the best our knowledge, there is no general theory for solving this type of nonlocal PDEs. Here, we 

construct an explicit solution of this equation in terms of the solution of a simple ordinary differential 

equation (ODE). 
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II.1 General time-dependent solution: an explicit formula. First, we consider the solution 𝑦(𝑧) of the 

ODE: 

 

𝑦′(𝑧) = 𝛼(𝑦(𝑧)), 𝑧 ∈ ℝ, 𝑦(0) = 0. (B17)  

 

With our assumptions on 𝛼, the Cauchy-Lipschitz theorem implies that the solution 𝑦 of the ODE (B17) 

exists and is unique. We then make the following change of variable: 

 

𝐶�̂�(𝑧) = 𝒞𝑡(𝑦(𝑧)). (B18)  

 

Since 𝛼(0) = 1, we observe that  �̂� satisfies the following equation: 

 

 {

∂t�̂�𝑡(𝑧) = �̂�𝑡
′(𝑧) − �̂�𝑡

′(0) + 𝛽(𝑦(𝑧)), 

�̂�0(𝑧) = 𝒞0(𝑦(𝑧)),

�̂�𝑡(0) = 0,

 (B19)  

 

for 𝑡 ≥ 0 and 𝑧 ≥ 0. In order to get rid of the transport term and of the nonlocal term in this equation, 

we set, for some arbitrary constant 𝑅 > 0:  

 

𝑊𝑡(𝑧) = �̂�𝑡(𝑧 + 𝑅 − 𝑡) − �̂�𝑡(𝑅 − 𝑡), for 𝑡 ∈ [0, 𝑅], 𝑧 ≥ 𝑡 − 𝑅. (B20)  
 

The definition of 𝑊𝑡 implies that:  

 

𝜕𝑡𝑊𝑡(𝑧) = 𝜕𝑡�̂�𝑡(𝑧 + 𝑅 − 𝑡) − �̂�𝑡
′(𝑧 + 𝑅 − 𝑡) − 𝜕𝑡�̂�𝑡(𝑅 − 𝑡) + �̂�𝑡

′(𝑅 − 𝑡). (B21)  
 

Coming back to (B19), we get that the function 𝑊𝑡 satisfies:  

 

{
∂t𝑊𝑡(𝑧) = 𝛽(𝑦(𝑧 + 𝑅 − 𝑡)) − 𝛽(𝑦(𝑅 − 𝑡)), 𝑡 ∈ [0, 𝑅], 𝑧 ≥ 𝑡 − 𝑅,

𝑊0(𝑧) = 𝒞0(𝑦(𝑧 + 𝑅)) − 𝒞0(𝑦(𝑅)),                        𝑧 ≥ 𝑡 − 𝑅,  
 (B22)  

 

with the boundary condition 𝑊𝑡(0) = 0. Integrating the above expression between 0 and 𝑡, we get:  

 

𝑊𝑡(𝑧) = 𝒞0(𝑦(𝑧 + 𝑅)) − 𝒞0(𝑦(𝑅)) + ∫ 𝛽(𝑦(𝑧 + 𝑅 − 𝑣)) − 𝛽(𝑦(𝑅 − 𝑣)) 𝑑𝑣
𝑡

0

 . (B23)  

 

Using the definition (B20) of 𝑊𝑡 , we get �̂�𝑡(𝑧) = 𝑊𝑡(𝑧 − 𝑅 + 𝑡) − 𝑊𝑡(𝑡 − 𝑅), which leads to: 

 

�̂�𝑡(𝑧) = 𝒞0(𝑦(𝑧 + 𝑡)) − 𝒞0(𝑦(𝑡)) + ∫ 𝛽(𝑦(𝑧 + 𝑣)) − 𝛽(𝑦(𝑣))𝑑𝑣
𝑡

0

, (B24)  

 

for all 𝑡 ∈ [0, 𝑅] and 𝑧 ≥ 0. Since 𝑅 was chosen arbitrarily, the function �̂�𝑡 satisfies (B24) for all 𝑡 ≥ 0. 
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Now, define 𝑧1 as the smallest positive root of 𝛼:  

 

𝑧1 = sup{𝑧 > 0,   such that 𝛼 > 0 in (0, 𝑧)}. (B25)  
 

Either 𝛼 > 0 in (0, +∞); in that case 𝑧1 = ∞, or otherwise 𝑧1 > 0 is finite. In all cases, the function 𝑦, 

defined by (B17) is a one to one and onto function from [0, +∞) to [0, 𝑧1). Then, using (B18), we can 

write:  

 

𝐶𝑡(𝑧) = 𝒞0(𝑦(𝑦−1(𝑧) + 𝑡)) − 𝒞0(𝑦(𝑡)) + ∫ 𝛽(𝑦(𝑦−1(𝑧) + 𝑣)) − 𝛽(𝑦(𝑣))𝑑𝑣
𝑡

0

, (B26)  

 

for 𝑡 ≥ 0 and all 𝑧 ∈ [0, 𝑧1). It is immediate to check that this is a solution of the problem (B16), and by 

construction, it is the only solution of this equation. Note that 𝑦−1(𝑧) = ∫
1

𝛼(𝑣)
𝑑𝑣

𝑧

0
 for 𝑧 ∈ [0, 𝑧1). 

 

 

Note that, when 𝛼 and 𝛽 are defined only in a finite interval [0, 𝑧0) Eq. (B18) can still be solved explicitly, 

but only for a finite range of values of 𝑧 and 𝑡: the formula (B31) remains true whenever 𝑦(𝑦−1(𝑧) +

𝑡) < 𝑧0, or equivalently when 𝑡 < ∫
1

𝛼(𝑣)
𝑑𝑣.

𝑧0

𝑧
  

 

Cumulants. Our objective here is to compute 𝒞𝑡
′(0) and 𝒞𝑡

′′(0). Differentiating the expression (B18) with 

respect to 𝑧, we obtain: 

 

{
 Ĉ𝑡

′(𝑧) = 𝛼(𝑦(𝑧)) 𝒞𝑡
′(𝑦(𝑧)),

 Ĉ𝑡
′′(𝑧) = 𝛼2(𝑦(𝑧)) 𝒞𝑡

′′(𝑦(𝑧)) + 𝛼(𝑦(𝑧)) 𝛼′(𝑦(𝑧)) 𝒞𝑡
′(𝑦(𝑧)).

 (B27)  

 

Computing these expressions at 𝑧 = 0, we get: 

 

{
 Ĉ𝑡

′(0) =  𝒞𝑡
′(0),

 Ĉ𝑡
′′(0) =  𝒞𝑡

′′(0) +  𝛼′(0) 𝒞𝑡
′(0).

 (B28)  

 

Differentiating the expression (B24) with respect to 𝑧, and computing it at 𝑧 = 0, we get: 

 

𝒞𝑡
′(0) = �̂�𝑡

′(0) = 𝛼(𝑦(𝑡))𝒞0
′ (𝑦(𝑡)) + 𝛽(𝑦(𝑡)). (B29)  

 

Differentiating two times the expression (B24) leads to the following expression for Ĉ𝑡
′′(0):  

 

�̂�𝑡
′′(0) = 𝛼(𝑦(𝑡))𝛼′(𝑦(𝑡))𝒞0

′ (𝑦(𝑡)) + 𝛼2(𝑦(𝑡)) 𝒞0
′′(𝑦(𝑡)) + 𝛼(𝑦(𝑡))𝛽′(𝑦(𝑡))

− 𝛽′(0). 
(B30)  

 

Using the expressions (B28) and (B29), we finally obtain: 
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𝒞𝑡
′′(0) = 𝛼(𝑦(𝑡)) (𝛼′(𝑦(𝑡)) − 𝛼′(0)) 𝒞0

′ (𝑦(𝑡)) + 𝛼2(𝑦(𝑡)) 𝒞0
′′(𝑦(𝑡))

+ 𝛼(𝑦(𝑡))𝛽′(𝑦(𝑡)) − 𝛽′(0) − 𝛼′(0)𝛽(𝑦(𝑡)). 
(B31)  

 

II.2 Stationary states and large time behavior. The stationary states of (B16) are the solutions of the 

following nonlocal ODE: 

 

𝛼(𝑧)𝒞′(𝑧) = 𝒞′(0) − 𝛽(𝑧), 𝑧 > 0, (B32)  
 

with the boundary condition 𝒞(0) = 0. 

 

Let 𝑧1 be defined by (B25). By definition, for all 𝑧 ∈ (0, 𝑧1), 𝛼(𝑧) > 0. For all 𝑧 ∈ (0, 𝑧1) we can divide 

(B32) by 𝛼(𝑧) and integrate  between 0 and 𝑧: 

 

𝒞(𝑧) = 𝒞′(0) ∫
1

𝛼(𝑣)
𝑑𝑣

𝑧

0

− ∫
𝛽(𝑣)

𝛼(𝑣)
𝑑𝑣

𝑧

0

. (B33)  

 

This gives an explicit expression for the stationary states of (B16). Unfortunately, the stationary states 

are not unique since 𝒞′(0) is an arbitrary constant in this expression. Thus, 𝒞′(0) cannot be directly 

determined from (B33). However, if the stationary state is obtained as the large time limit of the solution 

of (B16), the expression (B29) implies that: 

 

𝒞′(0) = 𝛼(𝑧1)𝒞0
′ (𝑧1) + 𝛽(𝑧1). (B34)  

 

Then, three situations may occur. 

 

Case 1: 𝑧1 is finite. In this case  𝛼(𝑧1) = 0 and Eq. (B34) implies that 𝒞′(0) = 𝛽(𝑧1). 

 

Case 2: 𝑧1 = ∞ and 𝒞0(𝑧) coincides with the solution of the nonlinear model (B1) under the Assumption 

H or H'. If the linear equation (B16) was intended to be an approximation of the nonlinear model (B1), 

the assumption 𝒞0
′ (+∞) = 0 arises naturally from property (B3) of Section I.1: 𝒞𝑡

′(∞) → 0 as 𝑧 → +∞, 

for any arbitrarily small time 𝑡 > 0. Since 𝛼 is bounded, we again obtain 𝒞′(0) = 𝛽(𝑧1) = 𝛽(+∞).  

 

Finally, in both cases, we obtain:  

 

 
𝒞(𝑧) = 𝛽(𝑧1) ∫

1

𝛼(𝑣)
𝑑𝑣

𝑧

0

− ∫
𝛽(𝑣)

𝛼(𝑣)
𝑑𝑣

𝑧

0

, for all 𝑧 ∈ [0, 𝑧1). (B35)  

 

Thus, in spite of the dependence of 𝒞𝑡(𝑧) with respect to the initial condition 𝒞0 (see Eq. (B26)) we note 

that the reached stationary state 𝒞(𝑧) does not depend on 𝒞0, at least when context-dependence is 

present and of a form satisfying Assumption H or H'. 

Differentiating two times the expression (B35) with respect to 𝑧 and computing the resulting expression 

at 𝑧 = 0, we get: 
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𝒞′′(0)  = −𝛽(𝑧1)𝛼′(0) − 𝛽′(0). (B36)  
 

 

Case 3: general case 𝑧1 = ∞.  In that situation, we cannot draw general a priori conclusions but we can 

solve the problem for an important particular case: any non-epistatic model. Indeed, these models are 

characterized by 𝜔(𝑧) = 0 in the fully nonlocal equation (B1), which then reduces exactly to the linear 

PDE (B16), with 𝛼(𝑧) = 1. In such cases, 𝑧1 = ∞  but the Assumptions H or H’ are not satisfied 

(since 𝜔′(∞) = 0) so they do not pertain to Case 2 above. This case is fully treated in Appendix C. 

 

II.3 Computation of the approached equilibrium cumulants. In order to compare the solution of the 

linearized model (B16) with the solution of the fully nonlocal and nonlinear equation (B1), we apply the 

previous results to the particular case: 

 

𝛼(𝑧) = 1 + 𝑈𝜔(𝑧)𝑀∗(𝑧) and 𝛽(𝑧) = 𝑈(𝑀∗(𝑧) − 1). 
 

(B37)  

Eq. (B16) with these coefficients corresponds to the linearization of an arbitrary epistatic model 

when 𝑚 → 0, they should thus be consistent with the results of (B1), which is a particular form of 

epistatic model with log-linear context-dependence. Under this interpretation (see main text), 𝜔(𝑧) =

𝜕𝑚 log 𝑀𝑠(𝑧, 𝑚) |𝑚=0 is the slope of the change in the CGF of the DFE with 𝑚, as 𝑚 approaches 𝑚 = 0 

(for backgrounds close to the optimal genotype), while 𝑀∗(𝑧) is still the MGF of the DFE in the optimal 

background. 

 

Case 1: 𝑧1 is finite. In this case, the expression 𝒞′(0) = 𝛽(𝑧1) implies that the mutation load is: 

 

𝐿 = −𝒞′(0) = 𝑈(1 − 𝑀∗(𝑧1)) = 𝑈 −
1

𝜔(𝑧1)
. (B38)  

 

Case 2: 𝑧1 = ∞ and 𝒞0(𝑧) coincides with the solution of the nonlinear model (B1) under the Assumption 

H or H'. As the DFE has no mass at 0, 𝑀∗(∞) = 0 (see Eq. (B11)). The expression 𝒞′(0) = 𝛽(𝑧1) thus 

implies that the load is 

𝐿 = −𝒞′(0) = 𝑈 .   

 

Overall, the results are consistent with the results obtained for the fully nonlocal and nonlinear equation 

(B1) (see Section I.3 above). Similarly, in both cases 1 and 2, formula (B36) leads to: 

 

 
{

𝒞′′(0) = −𝑈𝑀∗
′(0) + 𝑈 𝐿 𝜔′(0),

𝒞′′′(0) = −𝑈𝑀∗
′′(0) + 𝑈𝜔′′(0) 𝐿,

 (B39)  

 

which is fully consistent with the result (B12) obtained while studying Eq. (B1). 
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Case 3: 𝑧1 = ∞, and 𝜔 ≡ 0 (context-independent models). As already observed, the fully nonlocal 

equation (B1) reduces exactly to the linear PDE (B16). In this case, with 𝑀∗(∞) = 0,  and, as shown in 

Appendix C: 

{

𝒞′(0) = −𝑈 + 𝒞0
′ (+∞),

𝒞′′(0) = −𝑈𝑀∗
′(0),

𝒞′′′(0) = −𝑈𝑀∗
′′(0).

 (B40)  

 

Dependence to the initial condition (𝒞0
′ (+∞)) arises because the model contains no beneficial mutation 

here (otherwise 𝑀∗(∞) = +∞), so the upper bound of the ultimate fitness distribution is the maximum 

of the initial one.  

 

II.4 Spike of optimal genotypes at equilibrium. In model (B1), a spike can only exist if 𝒞′(0) = −𝑈 at 

equilibrium (Section I.4). Here, we focus on this situation and we derive an explicit formula for the 

weight of the spike by assuming that 𝒞′(0) = −𝑈 at equilibrium in the linearized equation (B16) 

corresponding to an epistatic model: 𝛼(𝑧) = 1 + 𝑈𝜔(𝑧)𝑀∗(𝑧), 𝛽(𝑧) = 𝑈(𝑀∗(𝑧) − 1).  

From the analysis in Section II.3, 𝒞′(0) = −𝑈 implies that 𝛼(𝑧) has no root over ℝ+: 𝑧1 = ∞. At this 

point, we recall that 𝜔 and 𝑀∗ here have the same interpretation as for Eq. (B1), so their properties 

should still apply. Therefore, we should have  𝜔(𝑧) ≤ 𝜔′(0) 𝑧  over  𝑧 ∈ ℝ+ , i.e., 𝛼(𝑧) ≤ 1 +

𝑈 𝑧 𝑀∗(𝑧) 𝜔′(0) . Since 𝛼(𝑧) has no root over ℝ+, one must assume that 𝜔′(0) ≥ 0.   

Using the formula (B35), we obtain that the equilibrium fitness distribution has CGF  𝒞(𝑧) =

− ∫ (𝑈 + 𝛽(𝑢)) 𝛼(𝑢)⁄ 𝑑𝑢
𝑧

0
. A spike may then exist and its expected weight is 

 

〈𝜌∞〉 = lim
𝑧→∞

𝑒𝒞(𝑧) = exp (−𝑈 ∫
𝑀∗(𝑢)

1 + 𝑈 𝜔(𝑢)𝑀∗(𝑢)
𝑑𝑢

∞

0

). (B41)  

 

 

As 𝛼(𝑢) = 1 + 𝑈 𝜔(𝑢)𝑀∗(𝑢) has no root over ℝ+ and 𝛼(0) = 1, up to a slight change in 𝑈 in the 

pathological case 𝜔(∞)𝑀∗(∞) = −1/𝑈, we know that 𝛼(. ) has a strictly positive lower bound over 𝑧 ∈

ℝ+: 𝛼(𝑧) ≥ 𝛼𝑚𝑖𝑛(𝑈) > 0, where 𝛼𝑚𝑖𝑛(𝑈) = 1 + 𝑈 min
ℝ+

(𝜔𝑀∗) → 1 as 𝑈 → 0. Similarly, we define an 

upper bound for 𝛼: 𝛼𝑚𝑎𝑥(𝑈), which may be finite or not, depending on 𝜔 and 𝑀∗. Note that, when 

𝜔′(0) = 0, as in Fisher’s geometric model,  𝛼𝑚𝑎𝑥(𝑈) = 1. Finally, a lower and upper bound to the 

spike's expected weight at equilibrium are then given by:  

 

0 ≤ exp (−
𝑈/𝑠𝐻

𝛼𝑚𝑖𝑛(𝑈)
) ≤ 〈𝜌∞〉 ≤ exp (−

𝑈/𝑠𝐻

𝛼𝑚𝑎𝑥(𝑈)
) ≤ 1 (B42)  

 

where 𝑠𝐻 = 1/(∫ 𝑓∗(𝑠) |𝑠|⁄ 𝑑𝑠)
0

−∞
 is the harmonic mean (in absolute value) of the DFE at optimum.  This 

follows from the definition of 𝑀∗(𝑢) = ∫ 𝑓∗(𝑠)𝑒𝑠 𝑢𝑑𝑠
0

−∞
,  which implies that  ∫ 𝑀∗(𝑢)𝑑𝑢

∞

0
=

∫ (∫ 𝑓(𝑠)𝑒𝑠 𝑢𝑑𝑠
0

−∞
)𝑑𝑢

∞

0
= − ∫ 𝑓∗(𝑠)/𝑠 𝑑𝑠

0

−∞
= 1/𝑠𝐻. 
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If the integral ∫ 𝑀∗(𝑢)𝑑𝑢
∞

0
 diverges ( 𝑠𝐻 = 0 ), then the spike vanishes (whatever the form 

of 𝜔(. )): 〈𝜌∞〉 = 0. This is if 𝛼𝑚𝑎𝑥(𝑈) is finite, which depends on the form of 𝜔(. ) (as 0 < 𝑀∗(𝑢) ≤ 1), 

but should be the case with many models. 

If the integral ∫ 𝑀∗(𝑢)𝑑𝑢
∞

0
 converges (𝑠𝐻 > 0), then the spike is non-vanishing and its expected weight 

can be approached as 𝑈 → 0 (𝛼𝑚𝑖𝑛(𝑈), 𝛼𝑚𝑎𝑥(𝑈) → 1) by 

 

〈𝜌∞〉 ~
𝑈→0

 exp (−𝑈 ∫ 𝑀∗(𝑢)𝑑𝑢
∞

0

) = 𝑒− 𝑈 𝑠𝐻⁄  (B43)  

 

which corresponds to the predicted spike weight in a non-epistatic model (𝜔(𝑧) = 0) with the same DFE 

at the optimum (characterized by the MGF 𝑀∗(. )). If 𝜔′(0) = 0, the mean of the DFE is unaffected by 

maladaptation, as in Fisher’s geometric model; then 𝛼𝑚𝑎𝑥(𝑈) = 1 and the limit is also the upper 

bound: 〈𝜌∞〉 ≤ 𝑒−𝑈 ∫ 𝑀∗(𝑢)𝑑𝑢
∞

0
 .  

 

III. Long-term accuracy of the deterministic approximation 

 

The PDEs which describe the dynamics of the expected CGF 〈𝐶𝑡(𝑧)〉  and of the deterministic 
approximation 𝒞𝑡(𝑧) differ by a term: 

𝛿𝑡(𝑧) = 〈1 − 𝑒𝐶𝑡(2 𝑧)−2 𝐶𝑡(𝑧)〉/(2𝑁𝑒), 

see Appendix A, part II (Eqs. (A3-4)). With linear background dependence, this is indeed the exact 
deviation between the dynamics derived from the diffusion generator (that account for drift) and from 
the deterministic approximation (Eq. (A9)). With log-linear background dependence, however, the 
mutational term is also approximated to obtain the closed system in Eq. (A12). Yet, this second 
approximation is at the same order (it also assumes 𝑉(𝐶𝑡(𝑧)) ≪ 〈𝐶𝑡(𝑧)〉). Therefore, with this model 
too, the above error term should correctly describe the deviations between the exact non soluble system 
and the approximate PDE dynamics. 

We derive here some properties of this error term 𝛿𝑡(𝑧) and we analyze its effect on the difference 
between 〈𝐶𝑡(𝑧)〉 and 𝒞𝑡(𝑧). We mostly focus on the error in the expected mean fitness, 𝒞𝑡

′(0) − 〈�̅�𝑡〉, 
with linear background-dependence (epistatic or non-epistatic models). 

 

III.1 Properties of the error term 𝜹𝒕(𝒛). By convexity of the CGFs and since 𝐶𝑡(0) = 0, we have 

𝐶𝑡(2 𝑧) − 2 𝐶𝑡(𝑧) ≥ 0, which implies that 𝛿𝑡(𝑧) ≤ 0. Thus, neglecting 𝛿𝑡(𝑧) leads to an overestimation 

of 〈𝐶𝑡(𝑧)〉, and consequently of the mean fitness 〈�̅�𝑡〉. We can draw two broad qualitative conclusions 

on the short term error. 

First, we observe that 𝛿𝑡(0) = 𝛿𝑡
′(0) = 0 while 𝛿𝑡

′′(0) = −〈𝐶𝑡
′′(0)〉/𝑁𝑒 and 𝛿𝑡

′′′(0) = −3 〈𝐶𝑡
′′′(0)〉/𝑁𝑒. 

Therefore, when starting from the correct 〈𝐶𝑡(𝑧)〉 at some given time 𝑡, the error made by using the 
deterministic approximate dynamics to predict later times is small on the bulk of the distribution (the 
first cumulants, mean, variance, third moment). This does not preclude this error from accumulating 
over time, thus creating large deviations later, even on the bulk. More precisely, these errors must be 
compared to the other source terms due to mutation and selection, which are implemented in the 
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deterministic approximation. 𝛿𝑡  does not directly contribute any error on the mean fitness dynamics, but 

for the variance and third moment, these source terms are of 𝒞𝑡
′′′(0) + 𝑈 𝑀∗

′′(0) and 𝒞𝑡
(4)(0) +

𝑈 𝑀∗
′′′(0), respectively (plus some potential extra terms due to linear background – dependence). For 

example, over some short term at least, the error made in the variance dynamics (relative to the 
deterministic prediction), remains limited if 𝑁𝑒  (𝑈 𝑉(𝑠) + 𝜇3(𝑚))/𝑉(𝑚) ≫ 1. 
Second, we also note that 𝛿𝑡(𝑧) decreases with 𝑧: consider ℎ ≥ 0, and compute 𝛿𝑡(𝑧 + ℎ) − 𝛿𝑡(𝑧) =

〈𝑒𝐶𝑡(2 𝑧)−2 𝐶𝑡(𝑧)(1 − 𝑒𝐶𝑡(2 𝑧+2ℎ)−𝐶𝑡(2 𝑧)−2 (𝐶𝑡(𝑧+ℎ)−𝐶𝑡(𝑧)))〉.  By convexity of the CGFs, 𝐶𝑡(2 𝑧 + 2ℎ) −

𝐶𝑡(2 𝑧) ≥ 2 (𝐶𝑡(𝑧 + ℎ) − 𝐶𝑡(𝑧)). This implies that 𝛿𝑡(𝑧 + ℎ) − 𝛿𝑡(𝑧) ≤ 0 and the conclusion follows. 

Thus |𝛿𝑡(𝑧)| is bounded by |𝛿𝑡(∞)|. If we define 𝑝𝑚𝑎𝑥(𝑡) the current frequency of the fittest class in a 
given replicate, with fitness 𝑚𝑚𝑎𝑥(𝑡) = max(𝑚(𝑡))) we notice that:  

𝑀𝑡(𝑧) = ∑ 𝑝𝑡(𝑚𝑖)
𝐾𝑡
𝑖=1 𝑒𝑚𝑖 𝑧 ∼ 𝑝𝑚𝑎𝑥(𝑡)𝑒𝑚𝑚𝑎𝑥(𝑡) 𝑧 at large 𝑧. 

Then, coming back to the definition of 𝐶𝑡:  

𝑒𝐶𝑡(2 𝑧)−2 𝐶𝑡(𝑧) =
𝑀𝑡(2𝑧)

𝑀𝑡(𝑧)2
∼

𝑧→∞

𝑝𝑚𝑎𝑥𝑒2 𝑚𝑚𝑎𝑥 𝑧

(𝑝𝑚𝑎𝑥𝑒𝑚𝑚𝑎𝑥 𝑧)2
 and lim

𝑧→∞
𝑒𝐶𝑡(2 𝑧)−2 𝐶𝑡(𝑧) =

1

𝑝𝑚𝑎𝑥(𝑡)
. (B44)  

 

Finally, we thus get that  

|𝛿𝑡(𝑧)| ≤
1

2𝑁𝑒
|1 − 〈

1

𝑝𝑚𝑎𝑥(𝑡)
〉 | < 〈

1

2𝑁𝑒  𝑝𝑚𝑎𝑥(𝑡)
〉 <

𝑁

2𝑁𝑒
 (B45)  

 

where the upper bound is obtained by noting that, at least, 𝑝𝑚𝑎𝑥 ≥ 1/𝑁. This upper bound is necessarily 
small whenever 𝑁𝑒  𝑝𝑚𝑎𝑥(𝑡) ≫ 1, namely when the number of  individuals in the fittest class is 
sufficiently large, in all replicates. 

Therefore, whenever a large absolute number of individuals lies at the maximum of the current 
distribution, the error made at current time is also small. It will be the case with models that have an 
upper fitness bound (epistatic with an optimum, non-epistatic with purely deleterious mutations), once 
this bound is highly populated (of course the larger 𝑁𝑒  the milder the criterion is in terms of frequencies). 
On the contrary, in non-epistatic models the deviation from the deterministic approximation can become 
substantial when the fittest edge of the distribution is small and stochastic. 

 

III.2 Cumulative error with linear background-dependence. To get a more quantitative characterization 

of how discrepancies accumulate over time, let us define the deviation between the exact and 

approximate CGF at time 𝑡: 𝐻𝑡(𝑧) = 𝒞𝑡(𝑧) − 〈𝐶𝑡(𝑧)〉. We reduce our analysis here to linear background-

dependence (which includes all non epistatic and some epistatic models). We have shown in appendix A 

that the deterministic and ‘exact’ stochastic dynamics (under the diffusion approximation, actually) are 

given by: 

 

𝜕𝑡𝒞𝑡(𝑧) = 𝛼(𝑧)𝒞𝑡
′(𝑧) − 𝒞𝑡

′(0) + 𝛽(𝑧) and 𝜕𝑡〈𝐶𝑡(𝑧)〉 = 𝛼(𝑧)〈𝐶𝑡
′(𝑧)〉 − 〈𝐶𝑡

′(0)〉 + 𝛽(𝑧) + 𝛿𝑡(𝑧), 

with 𝛼(𝑧) = 1 + 𝑈 𝑎(𝑧) and  𝛽(𝑧) = 𝑈 (𝑀∗(𝑧) − 1), and we assume here that 𝛼 ≤ 1. The deviation 
𝐻𝑡(𝑧) = 𝒞𝑡(𝑧) − 〈𝐶𝑡(𝑧)〉 satisfies the PDE (with initial condition 𝐻0(𝑧) = 0): 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2016. ; https://doi.org/10.1101/079368doi: bioRxiv preprint 

https://doi.org/10.1101/079368
http://creativecommons.org/licenses/by-nc-nd/4.0/


58 
 

𝜕𝑡𝐻𝑡(𝑧) = 𝛼(𝑧)𝐻𝑡
′(𝑧) − 𝐻𝑡

′(0) − 𝛿𝑡(𝑧).  

Considering 𝛿𝑡(𝑧) as an external forcing term, this equation can be solved exactly (Part II.1 above), 

yielding 𝐻𝑡(𝑧) = ∫ 𝛿𝑡−𝑣(𝑦(𝑣)) − 𝛿𝑡−𝑣(𝑦(𝑦−1(𝑧) + 𝑣))𝑑𝑣
𝑡

0
, where 𝑦 is the solution of the ODE 𝑦′(𝑧) =

𝛼(𝑦(𝑧)), with 𝑦(0) = 0. As expected, this shows that 𝐻𝑡(𝑧) ≥ 0 since 𝛿𝑡  is a decreasing function of 𝑧 

and 𝑦(𝑣) is increasing in 𝑣. The deterministic approximation overestimates the mean fitness trajectory 
over time. Computing 𝐻𝑡(𝑦(𝑧)), we get: 

0 ≤ 𝐻𝑡(𝑦(𝑧)) = ∫ 𝛿𝑡−𝑣(𝑦(𝑣)) − 𝛿𝑡−𝑣(𝑦(𝑧 + 𝑣))𝑑𝑣
𝑡

0

. 

Dividing this expression by 𝑧 and passing to the limit 𝑧 → 0, (recall that 𝑦′(0) = 𝛼(𝑦(0)) = 𝛼(0) = 1) 

we obtain  

0 ≤ 𝑦′(0)𝐻𝑡
′(0) = 𝐻𝑡

′(0) = 𝒞𝑡
′(0) − 〈�̅�𝑡〉 = ∫ −𝑦′(𝑣)𝛿𝑡−𝑣

′ (𝑦(𝑣))𝑑𝑣
𝑡

0
, 

0 ≤ 𝐻𝑡
′(0) =

1

𝑁𝑒
∫ 𝑦′(𝑣)〈(𝐶𝑡−𝑣

′ (2 𝑦(𝑣)) − 𝐶𝑡−𝑣
′ (𝑦(𝑣)))𝑒𝐶𝑡−𝑣(2𝑦( 𝑣))−2 𝐶𝑡−𝑣(𝑦(𝑣))〉𝑑𝑣

𝑡

0

. 

With a relevant choice of reference for relative fitness, the fitness of the fittest class is non-positive up to 
any given time ( max(𝑚) ≤ 0 ). Thus, 𝐶𝑡−𝑣

′ (2 𝑦(𝑣)) ≤ 0  and as already observed in part III.1, 

𝑒𝐶𝑡−𝑣(2𝑦( 𝑣))−2 𝐶𝑡−𝑣(𝑦(𝑣)) ≤ 𝑝𝑚𝑎𝑥
−1 (𝑡 − 𝑣).  Moreover, 0 ≤ −𝐶𝑡−𝑣

′ (𝑦(𝑣)) ≤ −𝐶𝑡−𝑣
′ (0) = |�̅�𝑡−𝑣|   by 

convexity of 𝐶𝑡(𝑧) with respect to 𝑧. Overall, this shows that:  

0 ≤ 𝐻𝑡
′(0) = 𝒞𝑡

′(0) − 〈�̅�𝑡〉

≤
1

𝑁𝑒
∫ 𝑦′(𝑡 − 𝑣) 〈

|�̅�𝑣|

𝑝𝑚𝑎𝑥(𝑣)
〉 𝑑𝑣 =

𝑡

𝑁𝑒
(

1

𝑡
∫ 𝛼(𝑦(𝑡 − 𝑣)) 〈

|�̅�𝑣|

𝑝𝑚𝑎𝑥(𝑣)
〉 𝑑𝑣

𝑡

0

)
𝑡

0

. 

 

(B46)  

If 〈|�̅�𝑡| 𝑝𝑚𝑎𝑥
−1 (𝑡)〉 remains bounded by some positive constant 휀 after a transient period of duration 𝑡∗, 

we get for 𝑡 > 𝑡∗:  

0 ≤ 𝐻𝑡
′(0) = 𝒞𝑡

′(0) − 〈�̅�𝑡〉 ≤
1

𝑁𝑒
∫ 𝛼(𝑦(𝑡 − 𝑣)) 〈

|�̅�𝑣|

𝑝𝑚𝑎𝑥(𝑣)
〉

𝑡∗

0

𝑑𝑣 +
휀

𝑁𝑒
(𝑦(𝑡) − 𝑦(𝑡∗)). (B47)  

 

If 𝛼(𝑧) admits a finite positive root 𝑧1, as in the generalized FGM under the WSSM approximation 
(Appendix E) or in Rouzine et al.’s binary model, we have the upper bound 𝑦(𝑡) ≤ 𝑧1 for all 𝑧, and 

𝛼(𝑦(𝑡 − 𝑣)) → 0 as 𝑡 → ∞, for all 𝑣 ∈ (0, 𝑡∗), which means that the error term  

1

𝑁𝑒
∫ 𝛼(𝑦(𝑡 − 𝑣)) 〈

|�̅�𝑣|

𝑝𝑚𝑎𝑥(𝑣)
〉

𝑡∗

0

𝑑𝑣 

 converges to 0 as 𝑡 → ∞ and therefore transient error has no effect on the ultimate deviation. In 
particular, at large times, 

0 ≤ 𝐻𝑡
′(0) = 𝒞𝑡

′(0) − 〈�̅�𝑡〉 ≤
휀𝑧1

𝑁𝑒
,  
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which shows that the error 𝒞𝑡
′(0) − 〈�̅�𝑡〉 remains bounded by some constant which is independent of 𝑡 

and independent of the values taken by 〈|�̅�𝑡| 𝑝𝑚𝑎𝑥
−1 (𝑡)〉 during the transient period (0, 𝑡∗). The error on 

the long term behavior has no memory of the error in the past (error does not accumulate). 

For log-linear background dependence, below the threshold for 𝑈 where  𝛼 has a finite root, we cannot 
state the order of the error and must rely only on simulations to check the accuracy of the deterministic 
approximation. 
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Appendix C: Application to non - epistatic models 

The results provided in Appendix B are of general form: here we first apply them to general context- 

independent mutation kernels (no epistasis), and look for analytical solutions over time in these cases. 

This serves first as a check that the model is consistent with results obtained previously, and allows to 

derive some new insights. We study the trajectory of the fitness distribution during a bout of adaptation 

from given arbitrary starting conditions (standing variance in fitness), then describe the long term 

stationary regimes of the fitness distribution (equilibrium or stationary travelling wave). 

 

I. General analytic solution and properties 

Solution over time: All non-epistatic models assume that the DFE 𝑓(𝑠|𝑚) = 𝑓∗(𝑠) is independent of the 

background in which mutations arise. This is characterized by 𝑀𝑠(𝑧, 𝑚) = 𝑀∗(𝑧) independent of 𝑚. We 

thus retrieve a special case of ‘linear-background dependence’ with 𝛼(𝑧) = 1 and 𝛽(𝑧) = 𝑈 (𝑀∗(𝑧) −

1), which solution is given in appendix B. The solution to the ODE in Eq. (B17) (𝑦′ = 𝛼(𝑦) = 1, 𝑦(0) =

0), is obviously 𝑦(𝑧) = 𝑧 and its inverse is 𝑦−1(𝑧) = 𝑧. The general solution in (B26) yields the trajectory 

of the CGF of the fitness distribution: 

 𝒞𝑡(𝑧) = 𝒞0(𝑧 + 𝑡) − 𝒞0(𝑡) + 𝑈 ∫ 𝑀∗(𝑧 + 𝑣) − 𝑀∗(𝑣)𝑑𝑣
𝑡

0

 .  (C1) 

This solution can be computed for any model with analytical MGF/CGF of the initial distribution and of 

the DFE: be it discrete or continuous, including beneficial or deleterious mutations or both. We note the 

consistency between the mutational term in (C1) and the discrete time version previously found in eq. 

(13) of (JOHNSON 1999), and, after a slight rearrangement, that found for continuous time in eq. (10) of 

(DESAI and FISHER 2011). This is expected, as these models also describe the Laplace transform of the 

fitness distribution under non-epistatic mutation. The main difference with these previous results is that 

Eq. (C1) needs not be limited to a purely deleterious mutation model, and that it allows for arbitrary 

initial standing variance. We now turn to some further general insight that may be gained by studying 

the form of the CGF in Eq. (C1). 

The form of  𝒞𝑡(𝑧) in (C1), as a sum of two CGF terms, implies that the fitness distribution at any time is 

a sum (convolution) of two independent variables (contributions) generated by two processes. The first 

contribution is the result of selection acting on pre-existing standing variance, yielding a random 

component with CGF 𝒞𝑡(𝑧) = 𝐶0(𝑧 + 𝑡) − 𝐶0(𝑡). The second contribution is generated by the interplay 

of mutation and selection and yields a random component with CGF 𝑈 ∫ 𝑀∗(𝑧 + 𝑣) − 𝑀∗(𝑣)𝑑𝑣
𝑡

0
. We 

detail these contributions below.  

Cumulant trajectory: The cumulant of order 𝑘 at time 𝑡 is obtained by taking the 𝑘th derivative 𝒞𝑡
(𝑘)(0), 

with respect to 𝑧, taken at 𝑧 = 0, of the expression (C1). This yields a general expression for the 

expected cumulant 𝑐𝑘(𝑡) of arbitrary order 𝑘, at time 𝑡:  
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〈𝑐𝑘(𝑡)〉 ≈ 𝒞𝑡

(𝑘)(0) = 𝐶0
(𝑘)(𝑡) + 𝑈 (𝑀∗

(𝑘−1)(𝑡) − 𝑀∗
(𝑘−1)(0)).  (C2) 

The ′ ≈ ′ is in fact ′ = ′ for the first cumulants (as 𝒞𝑡
′(0) = ℳ𝑡

′(0) = 〈𝑀𝑡
′(0)〉 = 〈�̅�〉. The first term 

𝐶0
(𝑘)

(𝑡) describes the dynamics of adaptation from selection on standing variance (with an arbitrary 

initial fitness distribution). The second term, proportional to 𝑈, describes the contribution of new 

mutations with an arbitrary non - epistatic DFE. The three first cumulants equal the three first central 

moments of the distribution, e.g. the expectation of the mean fitness 〈�̅�𝑡〉 = 〈𝑐1(𝑡)〉 = 𝒞𝑡
′(0) and of the 

fitness variance 〈𝑉𝑡〉 = 〈𝑐2(𝑡)〉 ≈ 𝒞𝑡
′′(0) have the following trajectories: 

 {
〈�̅�𝑡〉 = 𝐶0

′(𝑡) + 𝑈 (𝑀∗(𝑡) − 1),

〈𝑉𝑡〉 ≈ 𝐶0
′′(𝑡) + 𝑈 (𝑀∗

′(𝑡) − 𝜇𝑠).
  (C3) 

Here 𝜇𝑠 = 𝑀∗
′(0) is the mean of the DFE. As expected, the mutational contributions are consistent with 

Johnson’s (1999) results (eqs. 14-15): allowing for beneficial mutation does not affect the relationship 

between mutational contribution and the MGF of the DFE. 

Trajectories of fitness mean and variance are illustrated in Fig. C1 for a constant DFE (𝑠 = 𝜇𝑠 < 0) and a 

negative gamma DFE (𝑠 ~ − Γ(𝑎, |𝜇𝑠|/𝑎)). The simulated trajectories, averaged over replicates, are 

accurately captured by the deterministic theory (C3), and replicates show limited variation around these 

expectations. Note that all these predictions lose accuracy over much longer timescales (of the order 

of 𝑁𝑒 time units), as Muller’s ratchet starts to play a role in finite populations, see Section III below. 

 

Fig. C1. Mean fitness �̅�𝑡 and variance 𝑉𝑡 trajectories in non-epistatic models with deleterious mutations. (A) 

gamma DFE 𝑠 ~ − 𝛤(𝑎, |𝜇𝑠|/𝑎), with shape parameter 𝑎 = 2 and scale parameter |𝜇𝑠|/𝑎 = 5 ⋅ 10−3; (B) constant 

DFE 𝑠 = 𝜇𝑆 = −0.01. Plain lines: trajectories given by the analytical theory (Eq. [8] in main text and Eq. (C3)); 

circles: empirical mean fitness and variance given by individual based simulations, averaged over 103 replicate 

simulations (𝑁 = 𝑁𝑒 = 105); shaded regions: 99% confidence intervals for the mean fitness (in red) and the 

variance (in gray). We assumed initially clonal populations with 𝑚0 = 0. Sup files Movie 1A and Movie 1B show the 

dynamics of the corresponding full fitness distributions. 

(A) (B) 
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Existence of an equilibrium: Equilibrium of the fitness distribution, here, corresponds to mutation-

selection balance; it is characterized by a finite limit 〈�̅�∞〉, in Eq. (C3), as 𝑡 → ∞. The existence of such 

equilibrium depends on qualitative properties (i) of the initial fitness distribution and (ii) of the DFE. The 

mutational term 𝑀∗(𝑡) = ∫ 𝑒𝑠 𝑡𝑓∗(𝑠)𝑑𝑠
∞

−∞
 tends to a finite limit as 𝑡 → ∞ if and only if all mutations are 

deleterious, namely iff 𝑓∗(𝑠) = 0 for all 𝑠 > 0. Otherwise the term 𝑈 𝑀∗(𝑡) “explodes” over time, as 

expected if beneficial mutations allow adaptation to increase mean fitness indefinitely. We have also 

seen that the term 𝒞0
′ (𝑡) converges to the maximum of the initial fitness distribution: 𝒞0

′ (∞) =

max(𝑚0). Overall, a simple and intuitive rule applies: a mutation-selection sets in a non-epistatic model 

whenever (i) there are no beneficial mutations (max(𝑠) ≤ 0) and (ii) the initial fitness distribution is 

bounded on the right (max(𝑚0) < ∞). We now consider this equilibrium in more detail. 

Mutation load: We consider only deleterious mutations so that a mutation-selection balance may exist. 

The maximum of the initial fitness distribution is 𝐶0
′ (∞) = max(𝑚0) = 0, without loss of generality, so 

that 〈�̅�∞〉 = 𝐶0
′ (∞) + 𝑈(𝑀∗(∞) − 1) (Eq. (C3)). Furthermore, with only deleterious mutations, the 

MGF term is integrated over ℝ− (𝑀∗(𝑡) = ∫ 𝑒𝑠 𝑡𝑓∗(𝑠)𝑑𝑠
0

−∞
), so it vanishes at equilibrium (𝑀∗(∞) = 0). 

Note that this assumes that there is no discrete probability mass at 𝑠 = 0. This would boil down to 

neutral mutations, which are not included in the mutational process with rate 𝑈. Overall, the mutation 

load 𝐿 is always equal to the mutation rate: 

 𝐿 = max(𝑚0) − 〈�̅�∞〉 = 𝑈.  (C4) 

This essentially the continuous time version of Kimura and Maruyama’s (1966) classic result (also known 

as Haldane-Muller principle) for a discrete time, discrete DFE model: �̅� = 𝑒−𝑈 ≈ 1 − 𝑈 with 𝑊𝑚𝑎𝑥 ≡ 1. 

For continuous time models, Bürger and Hofbauer (1994) already obtained Eq. (C4) for general non-

epistatic models, as a small 𝑈 approximation. The result proves in fact exact for all 𝑈 (under the 

deterministic approximation). 

 

II. Stochastic representation of the fitness distribution with arbitrary DFE 

CGFs can be fitted directly to data (see KNIGHT and SATCHELL 1997), but to use the power of a maximum 

likelihood framework requires knowing the distribution function. This function can be derived 

numerically as the inverse Laplace transform of ℳ𝑡(𝑧) = 𝑒𝒞𝑡(𝑧), but this method is very sensitive to 

inaccuracies in the computation of 𝒞𝑡 . Overall, it may prove useful to derive an explicit pdf, via a 

‘stochastic representation’ of the fitness distribution at any time. 

We now detail the dynamics of the fitness distribution in more detail by interpreting Eq. (C1) in terms of 

its two contributions. 
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Contribution from standing variance: The term 𝐶0(𝑧 + 𝑡) − 𝐶0(𝑡) in Eq. (C1) describes the contribution 

from standing variance. It implies that this is an ‘exponential tilting’, by a factor 𝑡, of the initial fitness 

distribution (with CGF  𝐶0(. ) ): the expected frequency of fitness class  𝑚  at time  𝑡  is 〈𝑝𝑡(𝑚)〉 =

𝑒𝑚 𝑡𝑝0(𝑚)/𝑀0(𝑡). Any starting distribution that is unchanged by exponential tilting (e.g. negative 

gamma or Gaussian) will remain qualitatively the same over the course of adaptation from standing 

variance. A Gaussian initial fitness distribution 𝑚0 ~𝑁(𝜇0, 𝑉0) yields a Gaussian wave 𝑚 ~ 𝑁(𝜇0 +

𝑉0𝑡, 𝑉0), travelling at constant speed 𝜕𝑡�̅�𝑡 = 𝑉0. Similarly, a negative gamma initial fitness distribution 

(𝑚0 ~ − Γ(𝑎0, 𝑏0)) yields a negative gamma wave 𝑚𝑡~ − Γ(𝑎0, 𝑏0/(1 + 𝑡 𝑏0)) with decreasing speed 

𝜕𝑡�̅�𝑡 = 𝑎0𝑏0/(1 + 𝑏0𝑡).  

As expected, this contribution ultimately converges to a Dirac at the fittest class of the preexisting 

variants, as 𝑡 → ∞ (this maximum class may be infinite, e.g. with a Gaussian wave). Indeed, the CGF 

𝐶0(𝑧 + 𝑡) − 𝐶0(𝑡) converges to 𝐶0
′ (∞) 𝑧, the CGF of a dirac at 𝑚 = 𝐶0

′ (∞), which is the maximum of the 

distribution with CGF 𝒞0(. ). 

Contribution from mutation: the term 𝑈 ∫ 𝑀∗(𝑧 + 𝑣) − 𝑀∗(𝑣)𝑑𝑣
𝑡

0
 in Eq. (C1) describes the contribution 

from new mutations. Below we detail its form for constant effects, then extend it to arbitrary DFEs and 

derive simplified approximate forms to this contribution. 

Constant effects: Consider first the simplest model: a constant effect of mutations  𝑠 = 𝑠𝑑 < 0 (so 

that  𝑀∗(𝑧) = 𝑒𝑠𝑑 𝑧 ). The solution in (C1) then yields  𝒞𝑡(𝑧) = 𝑈 𝑟𝑡(𝑒𝑠𝑑𝑧 − 1)  where  𝑟𝑡 =

(𝑒𝑡 𝑠𝑑 − 1) 𝑠𝑑⁄ > 0 . This CGF corresponds to a compound Poisson distribution with stochastic 

representation: 𝑚 =  𝑛𝑡𝑠𝑑, where 𝑛𝑡  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑈 𝑟𝑡), consistent with the classical result of (HAIGH 

1978). 

Arbitrary DFE: Let us now consider the generalization of this result. Assume now that the DFE is arbitrary, 

with only deleterious effects  𝑠 ∈ ℝ−  given by the PDF  𝑓∗(𝑠) , and corresponding MGF : 𝑀∗(𝑧) =

∫ 𝑒𝑠 𝑧𝑓∗(𝑠)𝑑𝑠
0

−∞
. As for all our treatments, this includes the subcase of  𝑘 classes of discrete effects 

{𝑠𝑗}
𝑗∈[1,𝑘]

 by defining 𝑓∗(𝑠) = ∑ 𝑓𝑗𝛿(𝑠 − 𝑠𝑗)𝑘
𝑖=1  where the 𝑓𝑗 are the weights of each class and 𝛿(. ) is the 

Dirac delta function. Because Equation (C1) is linear in 𝑀∗(𝑧), the solution 𝒞𝑡(𝑧) can be written as a 

weighted sum of constant effects terms (𝛿𝐶𝑡(𝑧, 𝑠) below) contributed by each (potentially infinitesimal) 

fitness class [𝑠, 𝑠 + 𝑑𝑠]. More precisely, by swapping integrals on 𝑣 and 𝑠, we can write 

 

𝒞𝑡(𝑧) = ∫ 𝛿𝐶𝑡(𝑧, 𝑠)
0

−∞

𝛿𝐶𝑡(𝑧, 𝑠) = 𝑈 𝑓∗(𝑠)𝑑𝑠 ∫ (𝑒𝑠 (𝑧+𝑣) − 𝑒𝑠 𝑣)𝑑𝑣
𝑡

0

= 𝑈 𝑟𝑡(𝑠)(𝑒𝑠 𝑧 − 1)

  (C5) 

where  𝑟𝑡(𝑠) = (𝑒𝑠 𝑡 − 1) 𝑠⁄ 𝑓∗(𝑠)𝑑𝑠 > 0 . The infinitesimal contributions 𝛿𝐶𝑡(𝑧, 𝑠)  are the CGFs of 

compound Poisson random variables of the form 𝛿𝑚𝑠 = 𝑛𝑡(𝑠)𝑠 where 𝑛𝑡(𝑠) ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑈 𝑟𝑡(𝑠)), so the 

sum is the CGF of a sum of independent draws from these compound Poisson variables. As such sum is 

also a compound Poisson distribution, this formulation yields an explicit stochastic representation for  𝑚 

as a compound Poisson distribution 𝑚𝑗 = ∑ 𝑋𝑗,𝑡
𝑛𝑡
𝑗=0 , where 𝑛𝑡  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑈 𝑟𝑡) with  
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 𝑟𝑡 = ∫ 𝑟𝑡(𝑠)
0

−∞

=  ∫
(𝑒𝑠 𝑡 − 1)

𝑠
𝑓∗(𝑠)𝑑𝑠

0

−∞

=  𝐸𝑠 (
𝑒𝑠 𝑡 − 1

𝑠
) ,  (C6) 

which is always positive ((𝑒𝑠 𝑡 − 1) 𝑠⁄ > 0 for all 𝑠 ∈ ℝ). The increments 𝑋𝑗,𝑡 are distributed as a mixture 

of all contributions, namely their probability density function is 

 𝑓𝑋(𝑥, 𝑡) =
1

𝑟𝑡
∫

(𝑒𝑠 𝑡 − 1)

𝑠
𝛿(𝑥 − 𝑠)𝑓∗(𝑠)𝑑𝑠

0

−∞

=
(𝑒  𝑡 𝑥 − 1)

𝑥 𝑟𝑡
𝑓∗(𝑥) → 

𝑡 → ∞
−

𝑓∗(𝑥)

𝑥 𝑟∞
.  (C7) 

The MGF of the distribution of increments 𝑋𝑗,𝑡 for time 𝑡 is 

 𝑀𝑋(𝑧, 𝑡) = ∫ 𝑓𝑋(𝑥, 𝑡)𝑒𝑥 𝑧𝑑𝑥
0

−∞

=
1

𝑟𝑡
𝐸𝑠 (

𝑒𝑠 𝑧

𝑠
(𝑒𝑠 𝑡 − 1)) .  (C8) 

Where the expectation is taken over the DFE. Up to now we have not required mutations to be purely 

deleterious, we now study the case of deleterious mutations in more detail. 

Equilibrium fitness distribution with deleterious DFE: Letting time go to infinity, with purely deleterious 

mutations (𝑒𝑠 𝑡 → 0 for all 𝑠 ∈ ℝ−) in (C6), the Poisson parameter tends to 𝑈 𝑟∞ = 𝑈/𝑠𝐻, where 𝑠𝐻 =

1/𝐸(−1/𝑠) is the harmonic mean of the DFE, in absolute value. The increments 𝑋∞ are distributed as 𝑠 

weighted by −1/𝑠 = 1/|𝑠|. As should be, we thus retrieve the equilibrium results of T. Johnson (1999) 

and H.A. Orr (2000), for a set of discrete effects. 

Small 𝑼/𝒔 approximation: It may be difficult to explicitly write the pdf of a compound Poisson 

distribution (multiple convolutions of the pdf in Eq. (C7)). However, whenever 𝑈 𝑟𝑡 ≪ 1, the rate of the 

Poisson 𝑟𝑡 remains small at all times, so that it suffices to consider only two fitness classes, the non-

loaded class (𝑚 = 0) with weight 𝑒− 𝑈 𝑟𝑡  at time 𝑡, and the single mutation class (𝑚 = 𝑋𝑡) with weight 

1 − 𝑒−𝑈 𝑟𝑡  and pdf given by Eq. (C7): the pdf of the fitness distribution is thus 

 𝑓𝑚(𝑥, 𝑡) = 𝛿(𝑥) 𝑒−𝑈 𝑟𝑡 + (1 − 𝑒−𝑈 𝑟𝑡)
(𝑒  𝑡 𝑥 − 1)

𝑥 𝑟𝑡
𝑓∗(𝑥) ,  (C9) 

Where 𝛿(𝑥) is the Dirac delta. This explicit distribution can always be computed with any DFE with 

known pdf 𝑓∗(𝑥). 

Gaussian approximation: On the other hand, the rate 𝑈 𝑟𝑡 may be large in two situations: with purely 

deleterious mutations (0 < 𝑟𝑡 ≤ 1/𝑠𝐻 ) provided 𝑈 ≫ 𝑠𝐻 , or with beneficial mutations in general 

conditions after sufficient time has elapsed (as 𝑟𝑡 → ∞ then). In this case, the compound Poisson 

converges to a normal distribution (by application of the central limit theorem), with mean and variance 

equal to the moments derived in Eq. (C3): 
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 𝑚 ~  𝑁(𝑈 (𝑀∗(𝑡) − 1), √𝑈 (𝑀∗
′(𝑡) − 𝐸(𝑠))).  (C10) 

This approximation should be particularly well suited to DFEs that include a substantial portion of 

beneficial mutations, as the rate 𝑟𝑡 then quickly becomes large. On the other hand, it will fail over long 

timescales as the deterministic approximation fails in this case. 

Negative Gamma DFE: An important subcase is to consider the gamma DFE (𝑠 ~ −  Γ(𝑎, 𝑏)), which is 

widely used to describe deleterious mutations, both theoretically and empirically. It is also of interest as 

a point of comparison with the Gaussian FGM (see Results and Appendix D). The rate parameter of the 

Poisson is then 𝑈 𝑟𝑡  with  𝑟𝑡 = (1 − (1 + 𝑏 𝑡)1−𝑎) (𝑏 (𝑎 − 1))⁄ , which diverges at infinite time 

whenever 𝑎 ≤ 1 and converges to 𝑟∞ = 1/(𝑏(𝑎 − 1)) whenever 𝑎 > 1.  

When 𝑎 > 1, Eq. (C8) at equilibrium yields 𝑀𝑋(𝑧, ∞) = (1 + 𝑏 𝑧)𝑎−1, namely 𝑋∞ ~ −  Γ(𝑎 − 1, 𝑏) is 

also a gamma distribution, with smaller shape. In general, the pdf of the resulting Poisson-Gamma 

distribution can be computed analytically and fitted to empirical data, for any given value of 𝑎 > 1. 

The dynamics of the full fitness distribution under deleterious mutation and selection are illustrated in 

Movies 1A (negative gamma DFE) and 1B (constant DFE), with the same parameters as in Fig. C1, but this 

time comparing theory with results from a single stochastic simulation. 

 

III. Characteristic timescales for purely deleterious DFEs 

Timescale of load build-up: Ignoring standing variance, Eq. (C1) allows to derive the characteristic time 

to reach mutation selection balance. The time 𝑡𝑞 to reach a high fraction 𝑞 → 1 of the equilibrium mean 

fitness ( 〈�̅�∞〉 = −𝑈) is the solution of 〈�̅�𝑡𝑞
〉 = −𝑞 𝑈, namely 𝑀∗(𝑡𝑞) = 1 − 𝑞. This timescale is thus 

independent of the mutation rate. Let  𝜇𝑠 = 𝑀∗
′(0)  be the mean of the DFE, then by Jensen’s 

inequality:  1 − 𝑞 = 𝑀∗(𝑡𝑞) = 𝐸(𝑒𝑠 𝑡𝑞) ≥ 𝑒𝜇𝑠 𝑡𝑞  so that  𝑡𝑞 ≥ − log(1 − 𝑞) /|𝜇𝑠|.  Additionally, 1 − 𝑞 =

𝐸(𝑒𝑠 𝑡𝑞) ≤ 𝐸(−𝑒−1/(𝑡𝑞𝑠) ) = 𝑒−1/(𝑡𝑞𝑠𝐻), thus 𝑡𝑞 ≤
𝑒−1

(1−𝑞)𝑠𝐻
. For example, the time to reach 95% of the 

load is 𝑡0.95 ∈ (3/|𝜇𝑠|,8/𝑠𝐻). 

Time to loss of accuracy: As we have seen (Appendix B, part III.2), the error made by the deterministic 

approximation on the mean fitness, 𝒞𝑡
′(0) − 〈�̅�𝑡〉 ≥ 0, can be bounded from above by 1/𝑁𝑒 (∫ 〈|�̅�𝑣|/

𝑡

0

𝑝𝑚𝑎𝑥(𝑣)〉𝑑𝑣).  With purely deleterious mutations 𝑟𝑡 = 𝐸((𝑒𝑠 𝑡 − 1)/𝑠) is an increasing function of time, 

so that the frequency 𝑝𝑚𝑎𝑥(𝑤) of the fittest class remains above its equilibrium value 𝑒−𝑈/𝑠𝐻  at all times 

𝑤 (under the deterministic approximation itself). Additionally, 〈|�̅�𝑤|〉 ≤ 𝑈 for all 𝑤 > 0. Thus, the error 

𝒞𝑡
′(0) − 〈�̅�𝑡〉 is bounded by 𝑡 𝑈 𝑒𝑈/𝑠𝐻 𝑁𝑒⁄ . The prediction should remain accurate as long as this error is 

smaller than the deterministic term (𝑈 (𝑀∗(𝑡) − 1)) which is of order 𝑈 . This implies that the 

deterministic approximation should remain accurate as long as 𝑡 𝑈 𝑒𝑈/𝑠𝐻 𝑁𝑒⁄ ≤ 𝑈, namely at least while 

𝑡 ≤ 𝑁𝑒  𝑒−𝑈/𝑠𝐻  for models that have a non-vanishing 𝑠𝐻. 
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IV. Connection to stochastic models in the presence of beneficial effects 

Transition to stationary adaptation: Equation (C1) can in principle handle any form of DFE, including 

ones with beneficial mutation effects, for which equilibrium is impossible. However, simulations and our 

heuristic treatment of genetic drift show that the model is inaccurate over some timescale, whenever 

non - epistatic beneficial mutations are present. This can be understood by considering the term that 

was neglected in the expected MGF dynamics, −𝑐𝑜𝑣(�̅�𝑡, 𝑀𝑡(𝑧)) (see Eq. (A2) in Appendix A), in 

particular its contribution to mean fitness dynamics −𝑐𝑜𝑣(�̅�𝑡 , 𝑀𝑡
′(0)) = −𝑉(�̅�𝑡) (minus the variance in 

mean fitness among replicate trajectories). For any non-epistatic model with beneficial mutations, mean 

fitness can grow indefinitely and  𝑉(�̅�𝑡)  scales with it, while the expected within population 

variance 〈𝑉𝑡〉 reaches a constant level at stationary regime, so that mean fitness increases at constant 

rate. Therefore, the between-population variance becomes large relative to the within-population 

variance, after sufficient time, and our deterministic approach breaks down: it tends to overestimate the 

fitness increase (as the neglected contribution is −𝑉(�̅�𝑡) < 0).  

A more intuitive explanation can be given as follows: in the deterministic PDE, beneficial mutants (even 

vanishingly rare), create a tail in the fitness distribution that spreads over infinite values, in a vanishingly 

small time interval due to the continuous time approximation. A wide portion of these mutants are in 

fact lost by genetic drift, imposing a speed limit to adaptation (a constant rate 𝜕𝑡〈�̅�𝑡〉 = 𝜈), that is 

neglected here. 

This tail starts to impact the dynamics after some time, when de novo beneficial mutants start to become 

dominant in the population, so the transient fitness dynamics are still well approximated by the 

deterministic PDE. The stationary process that sets later is better handled by stochastic fixation models, 

in the classic “clonal interference theories”. Yet, a heuristic approach suggests that the fitness dynamics 

derived here provide a connection between the transient non-stationary dynamics and the ultimate 

stationary regime of steady fitness increase. 

Consider some stationary rate of adaptation 𝜈 > 0, assumed known as a function of (𝑁, 𝑁𝑒 , 𝑈, 𝑓∗(𝑠)). In 

stationary regime, the expected mean fitness increases at constant rate 𝜕𝑡〈�̅�𝑡〉 = 𝜈 = 〈𝑉𝑡〉 − 𝑈 |𝜇𝑠| 

(where 𝜇𝑠 = 𝐸(𝑠) = 𝑀∗
′(0)). As standing variance affects the system as an independent contribution, we 

can ignore it in the present argument and study the transition to stationarity of the mutational 

contribution in (C1). A consistency argument implies that at the transition to stationarity, the 

deterministic and stochastic rates of adaptation must be equal. From (C3), the deterministic dynamics of 

the mutational term yields 𝜕𝑡〈�̅�𝑡〉 = 𝑈 𝑀∗
′(𝑡) so transition must occur at some time 𝜏 satisfying 

  𝜈 = 𝑈 𝑀∗
′(𝜏).  (C11) 

This 𝜏 can in principle be found (numerically or analytically) for any model with analytic 𝑀∗(. ) and 

stationary rate of adaptation 𝜈. After this point, all higher cumulants must remain stable for the variance 

to be stationary (a travelling wave solution). They are thus set to those predicted by the deterministic 
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dynamics at time 𝜏. The CGF of the fitness distribution, after adding the independent component 

generated by standing variance, should thus approximately be 

 𝒞𝑡(𝑧) = 𝒞0(𝑧 + 𝑡) − 𝒞0(𝑡) + 𝜈 (𝑡 − 𝜏)𝑧 Θ(𝑡 − 𝜏) + 𝑈 ∫ 𝑀∗(𝑧 + 𝑢) − 𝑀∗(𝑢)𝑑𝑢
min(𝑡,𝜏)

0

,  (C12) 

where Θ(⋅) is the Heaviside theta function: Θ(𝑥) = 0 for all 𝑥 < 0 and Θ(𝑥) = 1 for all 𝑥 ≥ 0. 

Exponential DFE: Let us apply this to a classic subcase: an exponential DFE of exclusively beneficial 

mutations: 𝑠 ~ Exp (1/𝜇𝑠) with mean 𝜇𝑠 > 0, so that 𝑀∗(𝑧) = 1/(1 − 𝜇𝑠𝑧) defined on 𝑧 ∈ [0,1/𝜇𝑠]. The 

time of transition to stationarity is the first positive root of (C11):  

 𝜏 =
1

𝜇𝑠
− √

𝑈

𝜈 𝜇𝑠
,  (C13) 

and the corresponding CGF of the fitness distribution, covering non stationary and stationary regimes is 

 

𝒞𝑡(𝑧) = 𝐶0(𝑧 + 𝑡) − 𝐶0(𝑡) + 𝜈 (𝑡 − 𝜏) 𝑧 Θ(𝑡 − 𝜏)

+
𝑈

𝜇𝑠
log (

(1 − 𝜇𝑠𝑧)(1 − 𝜇𝑠min (𝑡, 𝜏))

1 − 𝜇𝑠𝑧 − 𝜇𝑠min(𝑡, 𝜏)
), 

 (C14) 

defined over the finite positive domain 𝑧 ∈ [0, √𝑈/(𝜈𝜇𝑠) ). The stationary adaptation rate 𝜈 used in 

(C13) and (C14) depends on the mutation rate, the shape of the DFE (FOGLE et al. 2008) and the 

demographic processes that determine the stochasticity of the model. For example, consider a discrete 

generation model with a Wright-Fisher model of genetic drift (Poisson offspring distribution). With mild 

mutation rates 𝑈, the stationary rate of adaptation is given by Gerrish and Lenski’s (GERRISH and LENSKI 

1998) original “clonal interference” theory, which, applied to an exponential DFE, yields 

 

𝜈 = 2𝑁𝑈 /𝜇𝑠 ∫ 𝑠2𝑒−𝜆(𝑠)− 𝑠/𝜇𝑠𝑑𝑠
∞

0

𝜆(𝑠) = 2𝑁𝑈 log 𝑁 𝑒−𝑠/𝜇𝑠(1 + 𝜇𝑠/𝑠).

  (C15) 

With higher mutation rates (and a continuous time process of birth and death yielding probabilities of 

establishment equivalent to the Wright-Fisher model), the stationary rate of adaptation is better 

captured by Desai and Fisher’s “multiple mutation” theory (DESAI and FISHER 2007), which, applied to an 

exponential DFE, (eqs. 15 and 16 in GOOD et al. 2012), yields 

 
𝜈 =

𝜇𝑠
2 log(2𝑁𝑈 log(𝜇𝑠 𝑈⁄ ))2

2 log(log(2𝑁𝑈)𝜇𝑠 (√𝜋 log(𝜇𝑠/𝑈) 𝑈)⁄ )
, 2 log(𝜇𝑠/𝑈) ≫ log 𝑁𝑈,  (C16) 
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and 𝜈 = 2 𝜇𝑠
2 log(2𝑁𝑈 log(𝑁𝑈)) ,   for large 𝑁𝑈.  (C17) 

In Fig. 2 (main text), and Figs. C2, C3 below, we illustrate this conjecture with various DFEs and 

parameters. In each case, we check (i) whether the transient expected trajectories (fitness mean and 

variance) are correctly described up to time 𝜏 and (ii) whether the average 𝜈 from existing analytic 

theory (dashed lines) is sufficient or whether the agreement is improved by using 𝜈 inferred from 

simulation (plain lines). 

 

 

Fig. C2. Mean fitness �̅�𝑡 and variance 𝑉𝑡 trajectories in non-epistatic models with beneficial mutations. The DFE 

is given by an exponential distribution 𝑠 ~ 𝐸𝑥𝑝(1/𝜇𝑠) with mean 𝐸(𝑠) = 𝜇𝑠 = 0.001 and panels correspond to 

different mutation rates: (A): 𝑈 = 10−4; (B): 𝑈 = 5 10−4; (C): 𝑈 = 5 10−3; (D): 𝑈 = 10−2. The transition time 𝜏 =

1 𝜇𝑠⁄ − √𝑈 (𝜈 𝜇𝑠)⁄   (Eqs. (C11), (C13)) is computed for a given stationary rate of adaptation 𝜈 = 〈𝜕𝑡�̅�𝑡〉 either 

from stationary regime theory (dashed lines) or observed in simulations (plain lines, 𝜈 averaged over replicates 

from 𝑡 = 2000 to 𝑡 = 3000). For 𝑡 < 𝜏 the expected trajectories  〈�̅�𝑡〉  and 〈𝑉𝑡〉  are given by our analytical theory 

(Eq.(C3)). From 𝑡 > 𝜏, the slope 𝜈 = 〈𝜕𝑡�̅�𝑡〉 and the variance 〈𝑉𝑡〉  are kept constant. Dashed lines: 𝜈 equals the 
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slope given by the most suited theory (i.e., the theoretical slope which is closest to the empirical one: Eq. (C16) in 

panels A and B; Eq. (C17) in panels C and D). Circles: empirical mean fitness and variance, averaged over 103 

individual based simulations (𝑁 = 𝑁𝑒 = 106); shaded regions: 99% confidence intervals for the mean fitness (in 

red) and the variance (in gray). We assumed initially clonal populations with 𝑚0 = 0. 

 

 

Fig. C3. Mean fitness �̅�𝑡 and variance 𝑉𝑡 trajectories in non-epistatic models with beneficial mutations. Same as 

Fig. C2, with a higher mean effect of mutation: 𝐸(𝑠) = 𝜇𝑠 = 0.01. The theoretical slopes 𝜈 (dashed lines) are given 

by  Eq. (C15) in panel A, Eq. (C16) in panels B and C and Eq. (C17) in panel D. 

Other DFEs: As a second example, we consider a DFE with constant effects, either deleterious or 

beneficial: 𝑠 = 𝛿 > 0  with probability 1/2  and 𝑠 = −𝛿  with probability 1/2.  In such case, 𝑀∗(𝑧) =

cosh(𝛿 𝑧),  and given the stationary rate of adaptation 𝜈, the time of transition to stationarity is 𝜏 =
1

𝛿
arcsinh

𝜈

𝑈 𝛿
. The corresponding mean fitness and variance trajectories obtained by connecting the 

analytical expressions of Eq. (C3) with the stationary adaptation regime are compared with individual-

based simulations in Fig. C4.  

Lastly, Fig. C5 shows trajectories corresponding to a displaced gamma DFE, which is continuous and 

includes both deleterious and beneficial mutations. Here, 𝑠 ∼ 𝑠0 − 𝑥, with 𝑠0 > 0 and 𝑥 ∼ Γ(𝑎, 𝑏) (in 

this case, 𝑀∗(𝑧) = 𝑒𝑠0(1 + 𝑏 𝑧)−𝑎). The time of transition to stationarity is obtained numerically here, 

for a given 𝜈. 
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Fig. C4. Mean fitness �̅�𝑡 and variance 𝑉𝑡 trajectories in non-epistatic models with beneficial and deleterious 

mutations. Same as Figs. C2-C3, but with 102 replicate simulations and another DFE, consisting of symmetrical 

constant effects: 𝑠 = 𝛿 > 0 with probability 1/2 and 𝑠 = −𝛿 with probability 1/2, and 𝛿 = 0.01. (A): 𝑈 = 10−4; 

(B): 𝑈 = 10−3. Transition to stationarity at 𝜏 = arcsinh(𝜈 (𝑈 𝛿))⁄ /𝛿 , with rate 𝜈 inferred from simulations as a 

measured stationary rate 𝜈 = 〈𝜕𝑡�̅�𝑡〉  averaged over replicate simulations from  𝑡 = 2000  to  𝑡 = 3000   (no 

analytical expression available). 

 

 

 

Fig. C5. Mean fitness �̅�𝑡 and variance 𝑉𝑡 trajectories in non-epistatic models with beneficial and deleterious 

mutations. Same as in Fig. C4, with a shifted gamma DFE: 𝑠 ∼ 𝑠0 + 𝑥, with 𝑠0 > 0 and 𝑥 ∼ −Γ(𝑎, 𝑏), with 𝑎 = 2, 

𝑏 = 5 ⋅ 10−3 and 𝑠0 = 𝑎 ⋅ 𝑏/5. (A): 𝑈 = 10−4; (B): 𝑈 =  10−3. The time 𝜏 is obtained by numerically solving Eq. 

(C11) with a stationary rate 𝜈 = 〈𝜕𝑡�̅�𝑡〉 inferred from simulations from 𝑡 = 4000 to 𝑡 = 6000. 
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Appendix D: Equilibrium and numerical computations 

for the ‘Gaussian Fisher’s geometrical model’ 

 

I. Definition of the “Gaussian FGM”: Fisher’s geometrical model (FGM) is our landmark example of 

context-dependent DFEs. In all versions of FGM considered in this article, Darwinian fitness 𝑊(𝐠) is a 

Gaussian isotropic function in  𝑛  dimensions, and/or Malthusian fitness is a quadratic isotropic 

function: log 𝑊(𝐠) = 𝑚(𝐠) = −‖𝐠‖2/2, 𝐠 ∈ ℝ𝑛. The particular version studied in this appendix arises 

when the mutation effects on phenotype follow an isotropic multivariate Gaussian distribution 

(𝐝𝐠 ~ 𝑁(𝟎, 𝜆 𝐈𝑛)) where 𝐈𝑛 is the identity matrix in 𝑛 dimensions and 𝜆 > 0 is a positive scaling constant. 

We denote this particular model the ‘Gaussian FGM’. In the ‘Gaussian FGM’, the MGF of the DFE in a 

background with arbitrary fitness 𝑚 ≤ 0 is (MARTIN 2014) 

 

 𝑀𝑠(𝑧, 𝑚) = 𝑒𝜔(𝑧) 𝑚𝑀∗(𝑧),

 𝜔(𝑧) = −𝜆 𝑧2/(1 + 𝜆 𝑧),

 𝑀∗(𝑧) = (1 + 𝜆 𝑧)−𝑛/2.

  (D1) 

In this case the DFE from an optimal background is gamma distributed (𝑠∗~ − Γ(𝑛/2, 𝜆)) with 

MGF 𝑀∗(𝑧). It is noteworthy that the MGF of 𝑠 is log-linear with background fitness 𝑚 in the Gaussian 

FGM: the log-linear background-dependence assumption is satisfied and the PDE: 

 𝜕𝑡𝒞𝑡(𝑧) = 𝒞𝑡
′(𝑧) − 𝒞𝑡

′(0) + 𝑈(𝑒𝒞𝑡(𝑧+𝜔(𝑧))−𝒞𝑡(𝑧)𝑀∗(𝑧) − 1),    (D2) 

corresponding to Eq. [9] in the main text and (B1) in Appendix B is exact in the Gaussian FGM. This PDE 

can be solved numerically, see Paragraph "Numerical methods" at the end of this appendix, leading to 

accurate description of fitness mean and variance trajectories (Figs. 3A and 3B in the main text). The 

mathematical properties of this PDE have been analyzed in Appendix B (Section I), under an assumption 

which is readily satisfied in the Gaussian FGM: 

Assumption H (appendix B) is obviously verified as any background can mutate to the optimum; it can 

also be checked that the mathematical counterpart of H is verified: 𝐶∗
′(𝑧) = −𝑛 𝜆 2⁄ (1 + 𝜆 𝑧)−1 → 0 

as 𝑧 → ∞ and 𝜔′(𝑧) = (1 + 𝜆 𝑧)−2 − 1 → −1 as 𝑧 → ∞.  

Some exact results regarding the equilibria (e.g. memoryless property) of this PDE are derived in 

Appendix B (Sections I.2 and I.3). However, more general insight is gained via a simple approximation. 

Near equilibrium (𝑚 → 0), log-linear background-dependence becomes approximately linear, so the 

equilibrium solution of the PDE (D2) can be approached by the corresponding solution of the linear PDE: 
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 𝜕𝑡𝒞𝑡(𝑧) = 𝛼(𝑧)𝒞𝑡
′(𝑧) − 𝒞𝑡

′(0) + 𝛽(𝑧),  (D3) 

corresponding to Eq. [6] in the main text, with the coefficients: 

  {
 𝛼(𝑧) = 1 − 𝑈 

𝑧2𝜆

(1 + 𝑧 𝜆)1+𝑛/2
,

𝛽(𝑧) = 𝑈((1 + 𝑧 𝜆)−𝑛/2 − 1).

  (D4) 

The general equilibrium properties of this linear PDE are detailed in Appendix B (Section II); we apply 

these results to the particular functional coefficients above to obtain the equilibrium fitness distribution 

in Fisher’s model. 

II. Dynamics of the fitness distribution: Away from equilibrium, a general explicit solution to (D2) could 

not be found. We thus rely either on (i) a numerical solution (detailed below) or (ii) an analytical weak 

selection strong mutation approximation (detailed in Appendix E). 

III. Mutation load and spike at the optimum:  As seen in Appendix B, the key to derive the mutation-

selection balance and mutation load is the first positive root 𝑧1 of 𝛼. This root, when it exists, can be 

computed numerically or analytically (at least when 𝑛 = 1, 2, 4 or 6). A sign analysis of 𝛼 over ℝ+ 

(Eq. (D4)) shows the following rules for the existence of a finite positive root of 𝛼, depending on the 

value of 𝑛, and on the value of the mutation rate 𝑈 with respect to a critical threshold 𝑈𝑐:  

(i):  𝑛 = 1: 𝛼(𝑧) decreases monotonically from 𝛼(0) = 1 to 𝛼(∞) = −∞ and there is always a positive 

root 𝑧1 ∈ ℝ+. The exact load can be computed explicitly but has a complicated closed form. The results 

of Appendix B imply that there is no spike at the optimum. 

(ii): 𝑛 = 2: 𝛼(𝑧) decreases monotonically from 𝛼(0) = 1 to 𝛼(∞) = 1 − 𝑈/𝜆 ; whenever 𝑈 > 𝑈𝑐 = 𝜆, 

there is a finite positive root  𝑧1 = 1/(√𝑈𝜆 − 𝜆)  and the  load is  𝐿 = −𝛽(𝑧1) = √𝑈𝜆 < 𝑈 , 

otherwise 𝑧1 = ∞ and 𝐿 = 𝑈. In the latter case, a spike may exist at the optimum in principle, but its 

upper bound is 〈𝜌∞〉 ≤ 𝑒−𝑈 ∫ 𝑀∗(𝑠)𝑑𝑠
∞

0 = 0 as the integral ∫ 𝑀∗(𝑠)𝑑𝑠
∞

0
 does not converge with 𝑛 = 2 

(𝑀∗(𝑧) = (1 + 𝑧 𝜆)−1).  

(iii):  𝑛 ≥ 3 : 𝛼(𝑧)  reaches a minimum at  𝑧𝑚𝑖𝑛 = 2 (𝜆(𝑛/2 − 1))⁄ , equal to  𝛼(𝑧𝑚𝑖𝑛) = 1 − 4 𝑈/

𝜆 (𝑛/2 − 1)𝑛/2−1 (𝑛/2 + 1)𝑛/2+1⁄ . A finite positive root exists iff this minimum is below zero, namely 

whenever 

  𝑈 > 𝑈𝑐 =
𝜆

4
 
(𝑛/2 + 1)𝑛/2+1

(𝑛/2 − 1)𝑛/2−1
.  (D5) 

The root  𝑧1  can then be computed numerically or analytically (e.g., 𝑧1 = (√𝑈 − 2√𝜆 − √𝑈 −

4√𝜆𝑈)/(2𝜆√𝜆) in the case 𝑛 = 6 presented in Figs. 3A and 3B). The results of Appendix B show that the 
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corresponding mutation load is 𝐿 = −𝛽(𝑧1) = 𝑈(1 − 𝑀∗(𝑧1)). Otherwise whenever 𝑈 ≤ 𝑈𝑐: 𝑧1 = ∞, 

the load is 𝐿 = 𝑈, and a spike of optimal genotypes exists in this case, with weight close to (and 

below) 〈𝜌∞〉 ≈ 𝑒−𝑈 ∫ 𝑀∗(𝑠)𝑑𝑠
∞

0 = 𝑒−𝑈/(𝜆(𝑛/2−1)). 

Note that the general formulae for 𝑛 ≥ 3 handle in fact the case 𝑛 = 2: simply taking the limit for 𝑛 → 2 

of 𝑈𝑐 in Eq. (D5) yields 𝑈𝑐 = 𝜆 and 〈𝜌∞〉 → 0. 

 

IV. Equilibrium fitness distribution. The CGF of the fitness distribution at equilibrium is obtained by 

setting  𝐿 = 𝑈(1 − 𝑀∗(𝑧1))  and 𝜕𝑡𝒞𝑡(𝑧) = 0  in Eq. (D3):  𝒞(𝑧) = −𝑈 ∫ (𝑀∗(𝑢) − 𝑀∗(𝑧1))/𝛼(𝑢)𝑑𝑢
𝑧

0
, 

where 𝑀∗ and 𝛼 and are given by Eqs. (D1) and (D4), respectively. This yields the general expression (for 

𝑛 ≥ 3): 

 
 𝒞(𝑧) =

𝑈(1 + 𝑧 𝜆)1+𝑛/2 (
(1+𝑧 𝜆)1−𝑛/2−1

(𝑛/2−1)𝜆
+ 𝑧 𝑀∗(𝑧1))

(1 + 𝑧 𝜆)1+𝑛/2 − 𝑈 𝑧2𝜆
  . 

 (D6) 

Below the phase transition ( 𝑈 < 𝑈𝑐 ) we know that  𝑧1 = ∞  and  𝑀∗(𝑧1) = 𝑀∗(∞) = 0 , and the 

equilibrium CGF simplifies to 

  𝒞(𝑧) =
𝑈(1 + 𝑧 𝜆)(1 + 𝑧 𝜆 − (1 + 𝑧 𝜆)𝑛/2)

(𝑛/2 − 1) 𝜆 ((1 + 𝑧 𝜆)1+𝑛/2 − 𝑈 𝑧2 𝜆)
  .  (D7) 

From this expression, it can be shown (𝒞(𝑧) 𝑈 𝑠𝐻⁄ → 0, as 𝑧 → ∞) that the estimation of the expected 

spike weight which is derived for small 𝑈 in Appendix B, Section II.4 , is in fact exact in the Gaussian FGM 

for all 𝑈 < 𝑈𝑐: 

  
〈𝜌∞〉 = 𝑒𝒞(∞) = 𝑒−𝑈/𝑠𝐻 ,

𝑠𝐻 = 𝜆(𝑛/2 − 1), 𝑈 < 𝑈𝑐 , 𝑛 ≥ 3
   .  (D8) 

The fitness distribution among suboptimal genotypes has MGF given by 𝑀−(𝑧) = (𝑒𝒞(𝑧) − 〈𝜌∞〉)/(1 −

〈𝜌∞〉) where 𝐶(𝑧) is given by Eq. (D7) and 𝜌∞ by Eq. (D8). Its expression is complex, but a leading order 

in small 𝑈 (relevant here as we are below the phase transition), yields  𝑀−(𝑧) = (1 + 𝜆 𝑧)−(𝑛/2−1), 

namely the MGF of a negative gamma distribution: 𝑚− ~ − 𝛤((𝑛 − 2)/2, 𝜆). This is exactly the result 

expected, as 𝑡 → ∞, from the small 𝑈/𝑠 approximation in a non epistatic model (see Appendix C, Eq. 

(C9)) with context-independent DFE given by that at the optimum (𝑠 ~ − 𝛤(𝑛/2, 𝜆)). Therefore, to 

leading order in 𝑈 (approximately for any 𝑈 < 𝑈𝑐), the equilibrium fitness distribution in the FGM is 

blind to the presence of epistasis and behaves as the equivalent non-epistatic model with gamma DFE. 

Beyond the phase transition (𝑈 > 𝑈𝑐), an exact treatment is more involved as we do not have a 

general expression for 𝑧1. A weak selection strong mutation treatment, detailed in Appendix E, proves 

surprisingly accurate in this regime. 
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V. Numerical methods: The numerical computation of the solution of the nonlinear PDE (D2) was based 

on a finite difference method with variable step sizes in 𝑧 (smaller steps near 𝑧 = 0, to get accurate 

values of the derivatives 𝒞𝑡
′(0), 𝒞𝑡

′′(0)) and an implicit scheme in time. The nonlinearity was dealt with 

using a Newton-Raphson algorithm. The values of the functions at the positions 𝑧 + 𝜔(𝑧), which 

generally do not belong to the finite difference mesh, were computed by linear interpolation with the 

closest positions in the mesh.  

Because of the transport term 𝒞𝑡
′(𝑧), which tends to translate the solution towards the left and with 

speed 1, the solution was computed on a finite interval 𝑧 ∈ (0, 𝑧𝑚𝑎𝑥) where 𝑧𝑚𝑎𝑥 = 𝑇, the final time of 

the computations. The approximation of the solution of (D2) on ℝ+ by a solution on a bounded interval 

was made possible thanks to the property 0 ≤ 𝑧 + 𝜔(𝑧) ≤ 𝑧, which ensures that all the positions where 

𝒞𝑡 has to be evaluated belong to the interval (0, 𝑧𝑚𝑎𝑥) as long as 𝑧 belongs to this interval. Using the 

property (B3) of Appendix B it was natural to impose the Neumann boundary condition 𝒞𝑡
′(𝑧𝑚𝑎𝑥) = 0. 

The Matlab© source code of the solver is available as supplementary material, together with a Matlab© 

graphical user interface (Fig. D1). Examples of numerical computations are given in Figs. 3A, 3B (main 

text) and Figs. D2 and D3 (below). Notice that in the top left panels discrepancies with the theory arise 

for 𝑈 = 0.0002: as expected, (see ‘range of validity’, main text) these correspond to situations 

where 𝑁𝑒𝑈 |𝜇𝑠| < 1. 

 

 

 
 

Fig. D1. Snapshot of the graphical user interface of  the Matlab© solver for the numerical computation of the solution of 

the nonlinear PDE (D2)  (Eq. [9] in the main text). 
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 Fig. D2. 𝑵 = 𝑵𝒆 = 𝟏𝟎𝟒 individuals. Mean fitness �̅�𝑡 (top panels) and variance 𝑉𝑡 (bottom panels) trajectories in Gaussian 

Fisher’s geometrical model with several values of the mutation rate. Plain lines: expected trajectories  〈�̅�𝑡〉  and 〈𝑉𝑡〉 

given by the numerical solution of the PDE (D2) (or [9] in the main text), with 𝑀∗ and 𝜔 as in Eq. (D1). Dashed lines (right 

panel): expected trajectories given by the analytical solution of the linear PDE [6] under the weak selection strong 

mutation (WSSM) approximation (see Appendix E). The shaded regions correspond 99% confidence intervals given by 

individual based simulations, with 103 populations of 𝑁 = 𝑁𝑒 = 104 individuals. The parameter values are 𝑛 = 6 traits 

and  𝜆 = 2|𝜇𝑠|/𝑛 = 1/300 (|𝜇𝑠| = 0.01), leading to a critical mutation rate 𝑈𝑐 = 16𝜆 ≃ 0.05. We assumed initially clonal 

populations with 𝑚0 = −20|𝜇𝑠| = −0.2.   
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Fig. D3. 𝑵 = 𝑵𝒆 = 𝟏𝟎𝟔 individuals. Mean fitness �̅�𝑡 (top panels) and variance 𝑉𝑡 (bottom panels) trajectories in Gaussian 

Fisher’s geometrical model with several values of the mutation rate. Plain lines: expected trajectories  〈�̅�𝑡〉  and 〈𝑉𝑡〉 

given by the numerical solution of the PDE (D2) (or [9] in the main text), with 𝑀∗ and 𝜔 as in Eq. (D1). Dashed lines (right 

panel): expected trajectories given by the analytical solution of the linear PDE [6] under the weak selection strong 

mutation (WSSM) approximation (see Appendix E). The shaded regions correspond 99% confidence intervals given by 

individual based simulations, with 103 populations of 𝑁 = 𝑁𝑒 = 106 individuals. The parameter values are 𝑛 = 6 traits 

and  𝜆 = 2|𝜇𝑠|/𝑛 = 1/300 (|𝜇𝑠| = 0.01), leading to a critical mutation rate 𝑈𝑐 = 16𝜆 ≃ 0.05. We assumed initially clonal 

populations with 𝑚0 = −20|𝜇𝑠| = −0.2.   
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Appendix E: Generalized FGM 

Here we derive explicit results for a particular class of background – dependent models: Fisher’s 

Geometrical model (FGM). We extend our results from the ‘gaussian FGM’ (the standard model of 

quantitative genetics) where mutation effects on traits are normally distributed and which is analyzed in 

appendix D. We derive approximate results (both equilibria and dynamics) for a generalization of this 

model that relaxes the normality assumption for mutation effects.  

“Generalized FGM”: We consider here an extension of the Gaussian FGM (Appendix D) to more general 

phenotypic distributions. Darwinian (resp. Malthusian) fitness is still a Gaussian (resp. quadratic) 

isotropic function of 𝐠 ∈ ℝ𝑛: log 𝑊(𝐠) = 𝑚(𝐠) = −‖𝐠‖2/2. However, the distribution of mutation 

effects on phenotype may now pertain to a broad class of distributions, with the only constraint that it 

be spherically symmetric and continuous in the vicinity of  𝐝𝐠 = 0  (the latter to satisfy H, see 

Appendix B). Note that we may set that the distribution has no spike at 𝐝𝐠 = 𝟎 without loss of 

generality, as 𝑈 is the non-neutral mutation rate. We denote this model the “generalized FGM” as it is 

characterized by fairly general mutant phenotype distributions. 

I. Functions 𝜔(. ) and 𝑀∗(. ) in the generalized FGM 

The key to apply our approach to a particular model is to derive the functions 𝑀∗(𝑧) and 𝜔(𝑧) for this 

model. We derive these functions in the generalized FGM below. The stochastic representation of the 

DFE, from a background with phenotype 𝐠 is 𝑠 = − 𝑟2 2⁄ − 𝑟 ‖𝐠‖ 𝑢𝑛 where 𝑟 = ‖𝐝𝐠‖ is the norm of the 

mutant phenotypic effect, and 𝑢𝑛 is the cosine of the angle between 𝐝𝐠 and 𝐠. For any spherically 

symmetric distribution of 𝐝𝐠, 𝑢𝑛 has MGF 𝑀𝑢(𝑧) =  0𝐹1(𝑛/2, 𝑧2 4⁄ ) (see e.g. (MARTIN and LENORMAND 

2015)), where  0𝐹1(. ) is the regular confluent hypergeometric function. Therefore, the DFE among those 

mutants with fixed magnitude 𝑟, has MGF 𝑀𝑠(𝑧, 𝑟, 𝐠) = 𝑒−𝑧 𝑟2/2𝑀𝑢(−𝑟 ‖𝐠‖z). This can be rewritten in 

terms of the background fitness (𝑚 = −‖𝐠‖2/2) and the fitness effect that the mutants with 

magnitude 𝑟 would have, in an optimal background (𝑠∗ = −𝑟2/2): 

 

 
𝑀𝑠(𝑧, 𝑚, 𝑠∗) = 𝑒𝑠∗ 𝑧  0𝐹1 (

𝑛

2
, 𝑚 𝑠∗ 𝑧2).  (E1) 

As required, at 𝑚 = 0, the DFE for the mutant class with fitness 𝑠∗ has MGF 𝑀𝑠(𝑧, 0, 𝑠∗) = 𝑒𝑠∗𝑧 (a Dirac 

at  𝑠 = 𝑠∗ ). Taking the expectation of Eq. (E1) over  𝑠∗ , we retrieve the MGF of the DFE in 

background 𝑚: 𝑀𝑠(𝑧, 𝑚) = 𝐸𝑠∗
(𝑀𝑠(𝑧, 𝑚, 𝑠∗)). The MGF of the DFE at 𝑚 = 0 is 𝐸(𝑒𝑠∗𝑧) = 𝑀∗(𝑧), as 

required.  

II. Equilibrium in the Generalized FGM: application to an exponential DFE 

In order to compute general results on the equilibrium fitness distribution (see main text), we must 

further derive the function 𝜔(𝑧) = 𝜕𝑚 log 𝑀𝑠(𝑧, 𝑚) |𝑚=0. We note from (E1) that 𝜕𝑚𝑀𝑠(𝑧, 𝑚, 𝑠∗)|𝑚=0 

= 2 𝑠∗𝑒𝑠∗ 𝑧𝑧2/𝑛 and use the exchangeability of expectation and derivation to get 
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𝜔(𝑧) = 𝜕𝑚 log 𝑀𝑠(𝑧, 𝑚)|𝑚=0 =
𝜕𝑚𝐸𝑠∗

(𝑀𝑠(𝑧, 𝑚, 𝑠∗))

𝑀𝑠(𝑧, 𝑚)
|

𝑚=0

𝜔(𝑧) =
𝐸𝑠∗

(𝜕𝑚𝑀𝑠(𝑧, 𝑚, 𝑠∗)|𝑚=0)

𝑀𝑠(𝑧, 0)
=

2 𝑧2

𝑛

𝐸𝑠∗
(𝑠∗𝑒𝑠∗ 𝑧)

𝑀∗(𝑧)
=

2 𝑧2

𝑛

𝑀∗
′(𝑧)

𝑀∗(𝑧)
=

2 𝑧2

𝑛
𝐶∗

′(𝑧).

  (E2) 

Note that, as should be, Eq. (E2) retrieves the correct 𝜔(𝑧) = −𝜆 𝑧2(1 + 𝜆 𝑧)−1 for the Gaussian FGM. 

The two corresponding functional coefficients 𝛼(. ) and 𝛽(. ) are given by 

 {
 𝛼(𝑧) = 1 + 𝑈 𝜔(𝑧)𝑀∗(𝑧) = 1 +

2 𝑈

𝑛
𝑀∗

′(𝑧) 𝑧2,

𝛽(𝑧) = 𝑈(𝑀∗(𝑧) − 1).
  (E3) 

From a given model for the distribution of 𝐝𝐠, the framework can be applied to compute the 

corresponding equilibrium of the fitness distribution. The load is given by 𝐿 = 𝑈(1 − 𝑀∗(𝑧1)) where 𝑧1 is 

the smallest positive root of 𝛼(𝑧) = 1 + 2 𝑈 𝑛⁄ 𝑀∗
′(𝑧) 𝑧2, or 𝑧1 = ∞ if 𝛼(𝑧) > 0 for all 𝑧 ≥ 0.  

As an example, consider that 𝐝𝐠 is such that the DFE is exponential at the optimum: 𝑠∗~ − 𝐸𝑥𝑝(1/|𝜇𝑠∗|) 

with mean 𝐸(𝑠∗) = 𝜇𝑠∗ < 0 , with MGF 𝑀∗(𝑧) = |𝜇𝑠∗| −1/(𝑧 + |𝜇𝑠∗| −1). Assuming arbitrary number 𝑛 of 

dimensions, this model differs from the Gaussian FGM unless 𝑛 = 2. Define 𝜆 = 2|𝜇𝑠∗|/𝑛, the variance 

of the phenotypic distribution at each trait (for consistency with the Gaussian FGM). If  𝑈 ≤ 𝑈𝑐 = 𝑛2𝜆/4, 

there is no root to 𝛼 and the load is then 𝐿 = 𝑈. Beyond 𝑈 > 𝑈𝑐  ,  𝛼 has a unique positive root 𝑧1 =

1/(√𝑈 𝜆 − 𝑛 𝜆/2) and the load is 𝐿 = 𝑈(1 − 𝑀∗(𝑧1)) = 𝑛 √𝑈 𝜆/2. Over all possible 𝑈 values, the load 

can thus be written: 𝐿 = min(𝑈, 𝑛 √𝑈 𝜆/2).  

We now turn to more general results, independent of the details of the distribution of mutant 

phenotypes (hence of 𝑀∗), in a weak selection limit. 

III. Weak selection strong mutation (WSSM) approximation 

We note that in Eq. (E1),  𝑠∗ enters the function 𝑀𝑠(𝑧, 𝑚, 𝑠∗) in product with 𝑧.  This implies that 

mutation effects in background 𝑚 scale with their counterparts in background 𝑚 = 0 (with the norm of 

the mutant phenotypic effect). Taking a leading order in 𝑧 𝑠∗ yields 

𝑀𝑠(𝑧, 𝑚, 𝑠∗) ≈ 1 + 𝑧 𝑠∗ +
2 𝑚 𝑠∗

𝑛
𝑧2 + 𝑂(𝑠∗

2𝑧2) 

Taking expectations over the distribution of  𝑠∗  yields a mutational kernel of linear background-

dependence form : 𝑀𝑠(𝑧, 𝑚) = 1 + 𝑧 𝜇𝑠∗ + 2 𝑧2 𝑚 𝜇𝑠∗ 𝑛⁄ + 𝑂(𝜇𝑠∗
2  𝑧2) , where we require that the 

coefficient of variation of 𝑠∗ be of order 1 (or equivalently 𝐸(𝑠∗
2) = 𝑂(𝜇𝑠∗

2 )).  Computing the weighted 

sum over the within population distribution of  𝑚  yields 𝑒𝑚 𝑧𝑀𝑆(𝑧, 𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≈ 𝑒𝑚 𝑧̅̅ ̅̅ ̅̅ (1 + 𝑧 𝜇𝑠∗) +

𝑚 𝑒𝑚 𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅ 2 𝑧2 𝜇𝑠∗ 𝑛⁄ . Noting that  𝑚 𝑒𝑚 𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑀𝑡
′(𝑧)  and taking the ensemble expectation yields 

〈𝑒𝑚 𝑧𝑀𝑆(𝑧, 𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅〉 = ℳ𝑡(𝑧)(1 + 𝑧 𝜇𝑠∗) + ℳ𝑡
′(𝑧) 2 𝑧2 𝜇𝑠∗ 𝑛⁄ , once plugged into Eq. [4] yields the 

mutational term: 
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Δ

𝑚𝑢𝑡
𝒞𝑡(𝑧)

Δ𝑡
= 𝑈 (〈𝑒𝑚 𝑧𝑀𝑆(𝑧, 𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅〉𝑒−𝒞𝑡(𝑧) − 1) ≈ 𝑈 𝜇𝑠∗  𝑧 + 2 𝑧2 𝑈 𝜇𝑠∗ 𝑛⁄  𝒞𝑡′(𝑧).  (E4) 

And (as any form of linear background-dependence) a linear PDE for 𝒞𝑡 (see Eq. [6]):  

 

𝜕𝑡𝒞𝑡(𝑧) ≈ �̃�(𝑧)𝒞𝑡
′(𝑧) − 𝒞𝑡

′(0) + �̃�(𝑧),

�̃�(𝑧) = 1 − 𝑈 𝜆 𝑧2 , �̃�(𝑧) = −
𝑈 𝜆 𝑛

2
𝑧,

  (E5) 

where we recall that 𝜆 = 2|𝜇𝑠∗|/𝑛 is the variance of the phenotypic distribution at each trait. Note that 

the above expressions of �̃� and �̃� correspond to series expansions at 𝜆 𝑧 = 0 of the coefficients 𝛼, 𝛽 

proposed in Appendix D for the Gaussian FGM. 

Range of validity: The approximation is valid to leading order in |𝜇𝑠∗| 𝑧; therefore, it cannot be accurate 

over the full range of 𝑧 ∈ ℝ+, but remains accurate in some finite range 𝑧 ∈ [0, 𝜖/|𝜇𝑠∗|] where 𝜖 ≪ 1. 

This reflects the fact that it does not capture the right tail of the DFE (fitter mutants), this tail being 

determined by the values of 𝑀𝑠(𝑧, 𝑚) at large 𝑧. Such limited range implies that the mutation rate must 

be strong enough relative to mutation fitness effects that the fitness dynamics are not driven by this tail: 

this is a strong mutation weak selection regime. More precisely, under the approximation, the range of 𝑧 

where the solution to Eq. [5] evolves is bounded by 𝑦(ℝ+) = [0, 𝑧1] (see Eq. [6]). In Eq. (E5), the first 

positive root of �̃� is  �̃�1 = 1 √𝑈 𝜆⁄ : consistency thus implies that a sufficient condition for  the solution of 

Eq. (E5) to capture the full dynamics over time is that 0 ≤ 𝑧 ≤ �̃�1 = 1 √𝑈 𝜆⁄ ≪ 1/|𝜇𝑠∗|. This boils down 

to a lower bound on the mutation rate, relative to the strength of selection: the weak selection 

approximation is valid when 

 𝑈 ≫ �̃�𝑐 = 𝑛2 𝜆 4⁄ .  (E6) 

Note here that we have used the notation �̃�𝑐 (recalling the critical mutation rate 𝑈𝑐 in Appendix D) on 

purpose. It is also the critical mutation rate where the phase transition occurs between 𝐿 = 𝑈 and 𝐿 <

𝑈, as computed from Eq. (E5). We have (beyond the phase transition) the load 𝐿 ≈ �̃� = −�̃�(1 √𝑈 𝜆⁄ ) =

𝑈 |𝜇𝑠∗|/√𝑈 𝜆 which is exactly equal to �̃� = 𝑈 (below phase transition) at the transition point 𝑈 = �̃�𝑐 . 

Equilibrium fitness distribution: We know that the mutation load is approximately 𝐿 ≈ 𝑈|𝜇𝑠∗|/√𝑈 𝜆 =

𝑛/2√𝑈 𝜆 , whenever the approximation applies. We also know that, outside this regime, there must be a 

lower bound to  𝑈  below which  𝐿 = 𝑈  (with  𝐿 < 𝑈  beyond this bound). A natural approximation 

connecting all the range of 𝑈 is  

 𝐿 ≈ min(𝑈, 𝑛/2√𝑈 𝜆),   (E7) 
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with a phase transition at 𝑈 = �̃�𝑐 = 𝑛2 𝜆 4⁄ . This ‘rule of thumb’ happens to yield the exact behavior for 

a particular form of FGM (detailed above) with an exponential distribution of 𝑠∗, also corresponding to 

the Gaussian FGM in 𝑛 = 2 dimensions.  

The equilibrium fitness distribution has CGF 𝒞∞(𝑧) satisfying 𝜕𝑡𝒞𝑡(𝑧) = 0 with 𝒞∞
′ (0) ≈ −�̃� = − 𝑛 휂 2⁄ , 

which (from Eq. (E5)) yields: 

 

 𝒞∞(𝑧) ≈ − ∫
�̃�(𝑣) + 𝑛 √𝑈 𝜆 2⁄

�̃�(𝑣)
𝑑𝑣

𝑧

0

= −
𝑛

2
log(1 + √𝑈 𝜆 𝑧).   

(E8) 

This is the CGF of a negative gamma distribution 𝑚~ − Γ(𝑛/2, √𝑈 𝜆). 

Normal equilibrium trait distribution: Because the FGM links fitness and phenotype, the equilibrium 

fitness distribution corresponds to a given multivariate distribution of the 𝑛 traits. As fitness is a 

quadratic function of breeding values for the traits ( 𝐠 ∈ ℝ𝑛), it is easily shown that the gamma 

distribution of fitness (Eq. (E8)) implies a multivariate normal (𝑀𝑉𝑁) distribution of the breeding 

values 𝐠 at equilibrium, with mean at the optimal phenotype ( �̅� = 𝟎) and variance √𝑈 𝜆 on each 

trait: 𝐠 ~ 𝑀𝑉𝑁(𝟎, √𝑈 𝜆 𝐈𝑛), where 𝐈𝑛  is the identity matrix in  𝑛  dimensions. Therefore, our weak 

selection approximation exactly matches Kimura’s (1965) and Lande’s (1980) normal approximations for 

trait distributions at mutation – selection balance under stabilizing selection. Indeed, although obtained 

in strikingly different manners, these two approaches rely on the same assumption of strong mutation 

relative to selection (Eq. (E6)). It is also maybe more straightforward here (although already noted by 

Lande) that this equilibrium is mostly independent of the underlying distribution of mutation effects on 

phenotypes (generalized FGM).  

Beyond its application to fitness, the present treatment thus clarifies that the well-known normal 

approximation for traits applies, at equilibrium, under two explicit quantitative conditions. First, the 

mutation rate must be well above  �̃�𝑐 = 𝑛2 𝜆 4⁄ = 𝑛 |𝜇𝑠∗|/2 . Second, the distribution of mutant 

phenotypic effects must yield a DFE, at the optimum, that has a coefficient of variation of order 1 or less 

(𝐶𝑉(𝑠∗) = 𝑂(1)). 

General fitness distribution dynamics: The solution of Eq. (E5) over time (Eq. [6] and Appendix B) 

depends on the solution of the ODE  �̃�′(𝑡) =  �̃�(�̃�(𝑡))  with boundary condition  �̃�(0) = 0 . This 

yields �̃�(𝑡) = tanh(√𝑈 𝜆 𝑡) /𝜇 with functional inverse �̃�−1(𝑧) = arctanh(√𝑈 𝜆 𝑧) /√𝑈 𝜆. From a given 

initial fitness distribution characterized by some CGF 𝐶0(𝑧), and plugging the particular functions �̃�(. ), 

�̃�(. ) and �̃�−1(𝑧) into the general solution in Eq. [6], the CGF of the fitness distribution at time 𝑡 is 
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𝒞𝑡(𝑧) ≈ −
𝑛

2
log(1 + √𝑈 𝜆 𝑧 tanh(√𝑈 𝜆 𝑡)) + 𝐶0 (

tanh(√𝑈 𝜆 𝑡 + arctanh(√𝑈 𝜆 𝑧))

√𝑈 𝜆
)

− 𝐶0 (
tanh(√𝑈 𝜆 𝑡)

√𝑈 𝜆
),  

 (E9) 

with mean fitness trajectory given by (Eq. [7]): 

 〈�̅�𝑡〉 ≈ −
𝑛

2
√𝑈 𝜆 tanh(√𝑈 𝜆 𝑡) + sech(√𝑈 𝜆 𝑡)

2
𝐶0

′ (
tanh(√𝑈 𝜆 𝑡)

√𝑈 𝜆
).   (E10) 

Particular forms of  𝐶0(. ) can be studied to obtain explicit forms, depending the on initial conditions: we 

consider two standard scenarios. 

Adaptation from a clone: If the population is initially clonal, with fitness 𝑚0 < 0, then 𝐶0(𝑧) = 𝑚0𝑧 and 

the CGF of the fitness distribution becomes 

 𝒞𝑡(𝑧) ≈
𝑚0𝑧 sech(√𝑈 𝜆 𝑡)

2

1 + 𝑧 √𝑈 𝜆 tanh(√𝑈 𝜆 𝑡)
−

𝑛

2
log(1 + √𝑈 𝜆 𝑧 tanh(√𝑈 𝜆 𝑡)).  (E11) 

The mean fitness is given by Eq. (E10), with 𝐶0
′ (tanh(√𝑈 𝜆 𝑡) √𝑈 𝜆⁄ ) = 𝑚0. Eq. (E11) can be equated to 

the CGF of a known distribution, providing a stochastic representation for the fitness distribution over 

time: 

 

𝑚 ~ − 𝜆𝑡 2⁄ 𝜒𝑛
2(𝑟𝑡),

𝜆𝑡 = √𝑈 𝜆 tanh(√𝑈 𝜆 𝑡) ,

𝑟𝑡 = 4 csch(2 √𝑈 𝜆 𝑡)
|𝑚0|

√𝑈 𝜆
,

  (E12) 

where 𝜒𝑛
2(𝑟𝑡) is a non-central chi-square distribution with 𝑛 degrees of freedom and non-centrality 

parameter 𝑟𝑡. As for equilibrium, a corresponding trait distribution can also be derived: we retrieve again 

a multivariate normal trait distribution, but with time-varying mean and variance. Consider a given 

position 𝐠0 of the initial clone in phenotype space, in any direction but with norm satisfying ‖𝐠0‖ =

√2|𝑚0|; the trait distribution at time 𝑡 is 

 
𝐠𝑡 ~ 𝑀𝑉𝑁(sech(√𝑈 𝜆 𝑡) 𝐠0 , 𝜆𝑡𝐈𝑛),

𝜆𝑡 = √𝑈 𝜆 tanh(√𝑈 𝜆 𝑡) .
  (E13) 

Characteristic time of the trajectory: Let us consider the time 𝑡𝑞 it takes to fulfill a proportion 𝑞 of the 

full fitness trajectory. This  𝑡𝑞  is the time at which  〈�̅�𝑡𝑞
〉 − 𝑚0 = 𝑞 (〈�̅�∞〉 − 𝑚0) , with 〈 �̅�𝑡〉 =

𝑚0 sech(√𝑈 𝜆 𝑡)
2

− 𝑛 2⁄ √𝑈 𝜆 tanh(√𝑈 𝜆 𝑡). When 𝑚0 = 0 it yields the time to reach equilibrium, from 

an optimal clonal population. This time is 𝑡𝑞 = arctanh(𝑞) /√𝑈 𝜆; for example with 𝑞 = 0.99, it is 𝑡𝑞 ≈
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2.64/√𝑈 𝜆. When considering adaptation from a strongly suboptimal clone ( 𝑚0 ≫ √𝑈 𝜆), most of the 

trajectory is driven by the term  𝑚0 sech(√𝑈 𝜆 𝑡)
2

, and the characteristic time is then  𝑡𝑞
′ ≈

arcsech(√1 − 𝑞)/√𝑈 𝜆 . Again with  𝑞 = 0.99  it is 𝑡𝑞 ≈ 3/√𝑈 𝜆 . The two characteristic times are 

remarkably close; in general, their ratio is 𝑡𝑞 𝑡𝑞
′⁄ = log(ℎ 2⁄ ) log(ℎ 4⁄ )⁄ + 𝑜(ℎ) where ℎ = 1 − 𝑞, which 

remains very close to 1 for any small ℎ (large 𝑞). Therefore, it takes roughly the same time (𝑂(3 √𝑈 𝜆⁄ )) 

for an optimal clone to reach mutation selection balance, and for a suboptimal clone to reach the vicinity 

of the optimum. The characteristic time is independent of the initial distance and only proportional 

to 1/ √𝑈 𝜆. 

 

Adaptation from a population formerly at equilibrium: Alternatively, the population may be initially at 

equilibrium, around some optimum in phenotype space 𝐎0. At time 𝑡 = 0 the optimum shifts from g0 to 

the origin 𝐎1 = 𝟎 of the landscape, due to a change in the environment, and the population adapts to it. 

As the equilibrium is characterized by a normal distribution of phenotypes in the diffusion regime, we 

may import the theory of the Gaussian FGM to compute the initial fitness distribution after the optimum 

has shifted. We have �̅�0 = 𝐎0 the initial position of the mean phenotype (the former optimum), 

corresponding to some fitness lag (in the new environment)  𝑚0 = −‖𝐎0‖2/2 < 0 , in whatever 

direction. The initial trait distribution is Multivariate Normal: 𝐠0~𝑀𝑉𝑁(𝐎0, √𝑈𝐴 𝜆𝐴 𝐈𝑛) corresponding to 

the ancestral (‘A’) mutation rate 𝑈𝐴 and phenotypic variance 𝜆𝐴 that were affecting the population 

before the environmental change. In the new environment, the mutation rate and phenotypic variance 

are 𝑈 and 𝜆, respectively, yielding a new √𝑈𝜆. The stochastic representation of fitness, at the onset of 

the environmental change, is  𝑚 ~ − √𝑈𝐴 𝜆𝐴/2𝜒𝑛
2(− 2𝑚0 √𝑈𝐴 𝜆𝐴⁄ ) , and the CGF of the fitness 

distribution is  𝐶0(𝑧) = 𝑚0 𝑧/(1 + √𝑈𝐴 𝜆𝐴 𝑧) − 𝑛 2⁄ log (1 + √𝑈𝐴 𝜆𝐴 𝑧) . Let  𝛿 = √𝑈𝐴 𝜆𝐴 √𝑈 𝜆⁄ − 1  be 

the relative change in √𝑈 𝜆 before and after the onset of stress. Plugging  𝐶0(. ) into our general solution 

yields a form similar to Eq. (E11): 

 

𝒞𝑡(𝑧) ≈
𝑚𝑡  𝑧

1 + 𝜆𝑡 𝑧
−

𝑛

2
log(1 + 𝜆𝑡 𝑧) ,

휂𝑡 = √𝑈 𝜆 (1 + 2
𝛿

(𝛿 + 2)𝑒2 √𝑈 𝜆 𝑡 − 𝛿
) ,

〈𝑚𝑡〉 = 𝑚0 (cosh(√𝑈 𝜆 𝑡) −
휂𝑡

√𝑈 𝜆
sinh(√𝑈 𝜆 𝑡))

2

.

  (E14) 

For a small effect of the environmental change on √𝑈 𝜆 (to leading order in 𝛿), we have 〈𝑚𝑡〉 ≈

𝑚0 𝑒−2 √𝑈 𝜆 𝑡(1 − 𝛿)  and  휂𝑡 ≈ √𝑈 𝜆 (1 + 𝑒−2 𝑡 √𝑈 𝜆𝛿) ≈ √𝑈 𝜆  after some time. With no change in 

either 𝑈or 𝜆  across environments (𝛿 = 0), the expected mean fitness trajectory is simply 〈�̅�𝑡〉 =

𝑚0𝑒−2 √𝑈 𝜆 𝑡 − 𝑛 √𝑈 𝜆/2. The stochastic representation of the fitness distribution is  
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𝑚 ~ −𝜆𝑡 2⁄ 𝜒𝑛
2(𝑟𝑡),

𝜆𝑡 = 휂𝑡 ≈ √𝑈 𝜆,

𝑟𝑡 = 2 |𝑚𝑡| 휂𝑡⁄ ≈ 2 𝑒−2 √𝑈 𝜆 𝑡 |𝑚0|(1 − 𝛿).

  (E15) 

In similarity with the model starting from a clonal population, the corresponding trait distribution is 

again Gaussian (with approximately constant variance when 𝛿휂 ≪ 1): 

 

𝐠𝑡 ~𝑀𝑉𝑁(�̅�𝑡, 휂𝑡𝐈𝑛),

휂𝑡 = √𝑈 𝜆 (1 + 2
𝛿

(𝛿 + 2)𝑒2 √𝑈 𝜆 𝑡 − 𝛿
) = √𝑈 𝜆 + 𝑂(𝛿2),

�̅�𝑡 = �̅�0 (cosh(√𝑈 𝜆 𝑡) −
휂𝑡

√𝑈 𝜆
sinh(√𝑈 𝜆 𝑡)) = 𝑒− √𝑈 𝜆 𝑡 √1 − 𝛿 �̅�0 + 𝑂(𝛿2).

  (E16) 

The qualitative behavior of the trait distribution in the case of a constant mutation rate and effects (𝛿 =

0) has been pointed out previously (HEREFORD et al. 2004): from equilibrium, the trait distribution evolves 

as a Gaussian traveling wave with constant variance; the mean distance from the optimum decreases 

exponentially as 𝑒− √𝑈 𝜆 𝑡. The effect of mild changes in 𝑈 or 𝜆 between environments is approximately 

to modify the effective distance to the optimum, by a factor√1 − 𝛿. 

Characteristic time of the trajectory: As above, let us consider the characteristic time for this trajectory. 

When 𝑚0 ≈ 0 the interesting situation arises when 𝑈𝐴 ≠ 𝑈 or 𝜆𝐴 ≠ 𝜆 (otherwise the system stays at the 

same equilibrium). The characteristic time then describes how long it takes to adjust to a new mutation 

rate or mutational variance, without moving from the optimum. Taking a leading order 𝛿 yields 𝑡𝑞
′′ =

log (1/ℎ)/(2√𝑈 𝜆) where ℎ = 1 − 𝑞. The time to adjust is independent of the difference in mutation 

rates, as long as they are close (𝛿 ≪ 1). When 𝑚0 ≫ √𝑈 𝜆, away from the optimum, and if we consider 

this time that 𝛿 = 0 for simplicity, the trajectory is driven by the term in 𝑚0 (�̅�𝑡 = 𝑚0𝑒−2 √𝑈 𝜆 𝑡) and we 

obtain again 𝑡𝑞
′′ = log (1/ℎ)/(2√𝑈 𝜆). It takes roughly the same time to adjust between different 

mutation rates at equilibrium and to adapt to a new environment, from equilibrium. 

The characteristic time for adaptation to a new environment, from standing variance or from an initially 

clonal population are of similar order:  𝑡𝑞
′′ 𝑡𝑞

′⁄ = log(1 ℎ⁄ ) (2 arcsech(√ℎ)⁄ ) = log(1/ℎ)/log (4/ℎ) +

𝑜(ℎ) remains within [0.6,1] with ℎ ∈ [0,0.1]. In this regime of strong mutation weak selection, de novo 

mutation drives the dynamics. 

PDF of the fitness distribution over time: As it appears, both models yield the same form of stochastic 

representation; it is thus useful to derive its corresponding pdf. The distributions are of the form 𝑚 ~ −

𝜆 2⁄ 𝜒𝑛
2(𝑟) with some 𝜆 and 𝑟 (which, here, depend on time), given by Eqs. (E12) and (E15), depending 

on the model. The pdf of the distribution is (from that of the non-central chi-square): 

 𝑓𝑚(𝑥) =
𝑒  − 𝑟 2⁄ 𝜆−𝑛 2⁄

Γ(𝑛/2)
𝑒− |𝑥| 𝜆⁄  |𝑥|𝑛 2⁄ −1  0𝐹1 (

𝑛

2
,
|𝑥| 𝑟

2 𝜆
) , 𝑥 ≤ 0,  (E17) 

where  0𝐹1(. , . ) is the confluent hypergeometric function and |𝑥| = −𝑥 is the absolute value of 𝑥. 
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