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Abstract

Proteins evolve through two primary mechanisms: substitution, where mutations alter a
protein’s amino-acid sequence, and insertions and deletions (indels), where amino acids
are either added to or removed from the sequence. Protein structure has been shown to
influence the rate at which substitutions accumulate across sites in proteins, but
whether structure similarly constrains the occurrence of indels has not been rigorously
studied. Here, we investigate the extent to which structural properties known to covary
with protein evolutionary rates might also predict protein tolerance to indels.
Specifically, we analyze a publicly available dataset of single–amino-acid deletion
mutations in enhanced green fluorescent protein (eGFP) to assess how well the
functional effect of deletions can be predicted from protein structure. We find that
weighted contact number (WCN), which measures how densely packed a residue is
within the protein’s three-dimensional structure, provides the best single predictor for
whether eGFP will tolerate a given deletion. We additionally find that using protein
design to explicitly model deletions results in improved predictions of functional status
when combined with other structural predictors. Our work suggests that structure plays
fundamental role in constraining deletions at sites in proteins, and further that similar
biophysical constraints influence both substitutions and deletions. This study therefore
provides a solid foundation for future work to examine how protein structure influences
tolerance of more complex indel events, such as insertions or large deletions.

Introduction 1

Evolutionary change in proteins occurs via two broad classes of events: amino-acid 2

substitutions and insertions/deletions (indels). These evolutionary events are typically 3

subject to strong purifying selection, such that they can only occur if the resulting 4

protein sequence can still fold and function properly. The influence of biophysical 5

constraints on the rate of amino-acid substitution has been well-characterized, and 6

several structural properties indicating protein tolerance to substitution events have 7

been identified [1]. For example, residues within the protein core are less likely than are 8

residues on the protein surface to undergo substitutions [2–5] Similarly, residues with 9

more amino-acid contacts evolve more slowly that do sites with fewer contacts [6–10]. 10
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By contrast, the fundamental properties governing protein tolerance to indel events 11

are comparatively understudied. Previous efforts in comparative sequence analysis have 12

suggested that indels preferentially occur in disordered and/or loop regions and are less 13

common in regions with secondary structure [11–15]. Furthermore, indel events may be 14

more likely to occur on the protein surface, where residues are more exposed to solvent, 15

rather than in a protein’s core [13,14]. Thus, constraints on indel events appear to 16

mirror those on substitution events, in that amino-acid substitutions are most frequent 17

in unstructured regions and on the protein surface [1]. In spite of these observations, 18

however, the fundamental structural properties which govern whether indel events are 19

tolerated remain largely uncharacterized, ultimately hindering a complete 20

understanding of how protein structure influences protein evolution. 21

Recently, Arpino et al. [16] experimentally determined the functional consequences 22

of single deletions in enhanced green fluorescent protein (eGFP) by systematically 23

deleting individual residues from eGFP and then assaying for function. Similar to 24

observations from computational studies, most functional deletion mutants were located 25

in unstructured loop regions, as opposed to in highly structured regions comprised of 26

β-sheets and α-helices. In addition, Arpino et al. observed that non-functional mutants 27

were more likely to occur in buried regions than were functional mutants [16]. 28

Using the data from Arpino et al., we investigate here how well quantities known to 29

co-vary with amino-acid substitution rates can predict the functional consequences of 30

deletions in eGFP. Specifically, we consider relative solvent accessibility (RSA) and 31

weighted contact number (WCN). RSA, which ranges from 0 to 1 [17], measures how 32

exposed a given residue is to solvent, with 0 representing a fully buried residue and 1 33

representing a fully exposed residue. WCN is a measure of packing density [18]. 34

Residues with high WCN have many residue contacts and are thus tightly packed, and 35

residues with low WCN have few contacts with other amino acids in the protein. RSA 36

correlates positively with evolutionary rate and WCN negatively [1]. We additionally 37

consider whether tolerance to deletions can be predicted from computational protein 38

design [19]. Finally, we consider secondary structure (SS), which has previously been 39

suggested as the dominant constraint on indel events [11–15]. 40

Our results demonstrate that WCN is the best single predictor of whether a deletion 41

will be tolerated at a given site in eGFP. RSA and protein design are good predictors, 42

as well, but they perform somewhat worse than WCN. Interestingly, while secondary 43

structure is a significant predictor of functional status, we find it to be less informative 44

than WCN, RSA, and protein design. Combining multiple predictor variables yields 45

even better performing models, with models jointly considering RSA, WCN, and protein 46

design generally performing the best. Overall, in eGFP, the structural context of a 47

residue appears to be a crucial factor in determining tolerance to deletion of that 48

residue. 49

Materials and Methods 50

Functional data and calculation of structural properties 51

All functional data corresponding to each mutant was taken from Arpino et al. [16]. In 52

brief, Arpino et al. [16] made tri-nucleotide deletions in the eGFP coding sequence using 53

a transposon-mediated directed evolution tri-nucleotide deletion experimental 54

approach [20,21]. Their approach produced mutants with either a single amino-acid 55

deletion, multiple adjacent amino-acid deletions, or an amino-acid deletion with an 56

adjacent non-synonymous (i.e. missense) mutation. Arpino et al. specifically analyzed a 57

subset of resulting mutants, categorizing each as functional or non-functional if, when 58

expressed in E. coli, eGFP’s fluorescent green phenotype was preserved. In total, 87 59
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unique mutants were assayed, of which 42 were functional and 45 were non-functional. 60

In the following, we refer to deletion mutants as tolerated or functional if the resulting 61

mutant fluoresced, and as non-tolerated or non-functional if the resulting mutant did 62

not fluoresce. 63

Here we re-analyzed a subset of the original 87 mutants. Specifically, we identified 64

two mutants with different nucleotide-level deletions but with the same translated 65

product, so we only included one of these two in our analyses. We additionally excluded 66

four non-functional mutants whose mutations had produced an early stop codon, as well 67

as any mutants with two amino-acid changes. Finally, we excluded all mutants for 68

which deletions had occurred in the N-terminus, C-terminus, or the eGFP chromophore. 69

Our final dataset consisted of 72 total deletion mutants, 34 of which were functional and 70

38 of which were non-functional. 71

We computed all structural quantities using the eGFP crystal structure with PDB 72

identifier 4EUL. We calculated the solvent-accessible surface area (ASA) for each 73

deleted residue using DSSP [22]. To obtain relative solvent accessibility (RSA), we 74

normalized ASA values to the maximum solvent accessibility for each amino acid in a 75

Gly-X-Gly tripeptide, as given in Table 1 in Ref. [17]. We calculated the side-chain 76

weighted contact number (WCN) as defined by Marcos and Echave [9]. Side-chain 77

WCN is defined as 78

WCNi =
N∑
i 6=j

1

r2ij
, (1)

where rij is distance between the geometric center of the side-chain atoms of residue i 79

and the geometric center of the side-chain atoms of residue j in a protein that is N 80

residues long. For glycine residues, we considered the Cα carbon instead of the 81

geometric center of the side chain. Although previous studies have often calculated 82

WCN using Cα atoms as the reference center point, recent work has shown that using 83

the center of mass of the entire side-chain results in stronger correlations between WCN 84

and evolutionary variability [9, 10], and therefore we use side-chain WCN throughout 85

this study as well. Finally, we used secondary structure (SS) as assigned previously [16]. 86

Modeling deletion mutations with protein design 87

We based all protein design work on the eGFP crystal structure with PDB identifier 88

4EUL. eGFP’s structure consists of a beta-barrel composed of eleven beta sheets 89

surrounding an alpha helix which contains eGFP’s chromophore, the structural 90

component that produces the protein’s characteristic green fluorescent phenotype. 91

Because the chromophore interferes with commonly available protein design software, 92

we had to first design a protein structure in which the mature chromophore was 93

replaced with the original three amino acids (Thr65-Tyr66-Gly67) that autocatalytically 94

form the chromophore. 95

To generate this pre-maturation structure, we first designed an eGFP structure with 96

the chromophore removed, using RosettaModel [19, 23]. We subsequently used Rosetta’s 97

relax protocol [24,25] to optimize and re-pack the side-chains. We created 100 98

structures in Rosetta using the relax protocol and selected the best model as the 99

template for design based on total score, with the best score being the most negative. 100

We used the following commands for the relax protocol: 101

-database /path/to/rosetta_database 102

-s 4EUL_no_cro.pdb 103

-ignore_unrecognized_res 104

-use_input_sc 105

-constrain_relax_to_start_coords 106
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-nstruct 100 107

-relax:fast 108

-overwrite 109

-out:file:scorefile relax_scorefile.fasc 110

-out:path:pdb ./output_pdbs/ 111

To re-insert the three chromophore-forming residues (Thr65-Tyr66-Gly67) into the 112

structure, we had to identify the most likely secondary structure formed by these 113

residues. Therefore, we used Psipred [26,27] to predict eGFP’s secondary structure 114

elements from primary sequence. Based on the secondary structure information, we 115

built the insert with a helical backbone, using the RosettaRemodel protocol [23]. In 116

addition to inserting these three residues, we also designed two residues on either side of 117

the insertion to accommodate any major structural changes created by the insertion. 118

The following flags were used for this remodeling procedure: 119

-database /path/to/rosetta_database 120

-s 4EUL_no_cro_relaxed.pdb 121

-remodel:blueprint design_blueprint.txt 122

-run:chain A 123

-num_trajectory 5 124

-save_top 5 125

-ex1 126

-ex2 127

-extrachi_cutoff 1 128

-use_input_sc 129

-linmem_ig 10 130

-remodel:use_pose_relax 131

-out:file:scorefile design_protocol.fasc 132

-out:path:pdb ./output_pdbs/ 133

-remodel:hb_srbb 1.0 134

-overwrite 135

We made five separate models using this protocol, and then chose the best candidate, 136

based on overall score and visual inspection, as our wild-type template for modeling the 137

deletion mutants. 138

For each of the 72 selected deletion mutants, we used Modeller [28] to create 25 139

initial, rough models of the deletion. We then refined these models with Rosetta, using 140

the relax protocol with the following flags: 141

-database /path/to/rosetta_database 142

-l pdb_list.txt 143

-ignore_unrecognized_res 144

-use_input_sc 145

-constrain_relax_to_start_coords 146

-flip_HNQ 147

-no_optH false 148

-nstruct 4 149

-relax:fast 150

-overwrite 151

-out:file:scorefile scorefile.fasc 152

-out:path:pdb ./output_pdbs/ 153

We performed four independent relaxations for each modeler structure, so that we 154

ended up with 100 final structures corresponding to each mutant (25 Modeller models × 155

4 relaxed structures each). We used the mean Rosetta score for each of the 100 156

structures as a predictor of deletion tolerance. 157
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Statistical analysis of functional status 158

We used two different machine learning approaches, logistic regression and a support 159

vector machine (SVM), to predict functional status using structural predictors. We 160

employed both machine learning approaches for all models examined. We considered 161

WCN, RSA, SS, and/or the mean score from protein design as our structural predictors. 162

The mean score is calculated as the average Rosetta score from each of the 100 modeled 163

structures per mutant. 164

We conducted logistic regressions using the glm() function in the statistical 165

language R [29] with the argument family = binomial to specify the logistic link 166

function. For SVM, we implemented a supervised support vector machine algorithm 167

using the R package e1071 [30]. Our SVM used a radial basis kernel with default 168

parameters, that is, γ = 1/d, where d is the dimension of the data, and the default cost 169

of constraint violation is set to C = 1. 170

For each machine learning approach, we performed 10-fold cross-validation for each 171

model. For each dataset, all points in the nine other datasets were used as a training 172

dataset to train a model. The trained model was then used to predict the functional 173

consequence (tolerated or non-tolerated) for the remaining mutants. We obtained 174

Receiver-Operating Characteristic (ROC) curves for each model by pooling all of the 175

predictions from the ten test datasets and plotting the true positive rate versus the false 176

positive rate in this pooled dataset. We used the Area Under the Curve (AUC) value 177

for each resulting ROC curve to assess the predictive power of each model. We call 178

these AUC values the cross-validated AUC. Finally, for each model, we performed the 179

10-fold cross-validation 100 times, and we calculated the mean and standard error of the 180

cross-validated AUC for each model. 181

All scripts and data from this study are freely available at 182

https://github.com/wilkelab/eGFP_deletion_prediction. 183

Results 184

Variation in structural properties between non-tolerated and 185

tolerated deletions 186

To examine the relationship between protein structure and tolerance to deletion, we used 187

functional data for 72 single amino-acid eGFP deletion mutants from Arpino et al. [16] 188

(see also Fig 1). We refer to a given deletion mutant as tolerated and/or functional if 189

the mutated eGFP exhibited a fluorescent phenotype, and we refer to a given deletion 190

mutant as non-tolerated and/or non-functional if the fluorescence phenotype was lost. 191

To characterize the structural environment of each deletion, we measured relative 192

solvent accessibility (RSA) and weighted contact number (WCN) in the original eGFP 193

structure for each of the 72 deleted residues. We additionally categorized each deleted 194

residue as either beta sheet (sheet), alpha helix (helix), or loop (loop), based on the 195

annotations previously provided [16]. We also used computational protein design to 196

predict structures for each of the 72 mutant eGFPs. Since the eGFP structure contains 197

a chromophore, which interferes with standard modeling approaches, we first used 198

RosettaRemodel [19, 23] to generate a model of the eGFP structure without its mature 199

chromophore (Fig 2A). We then used a pipeline consisting of Modeller [28] and Rosetta 200

relax [24,25] to design 100 models for each of the 72 mutant eGFPs (Fig 2B). We used 201

the mean Rosetta score over these 100 models as a measure of how energetically 202

(dis)favored a given deletion is, and we will refer to this score as mean score for the 203

remainder of this work. 204

We first examined the distributions of each structural property between tolerated 205
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and non-tolerated deletion mutants, and we found that all structural quantities we 206

considered displayed distinct distributions between mutant classes. In particular, 207

deleted residues that resulted in non-functional mutants had, on average, lower RSA 208

(Fig 3A, t test, P = 1.030 × 10−3) and higher WCN (Fig 3B, t test, P = 2.998 × 10−7) 209

than did residues that resulted in functional mutants. Further, most functional mutants 210

had deletions in unstructured loop regions, whereas most non-functional mutants had 211

deletions in highly structured beta sheets (Fig 3C, χ2 contingency table, 212

P = 3.642 × 10−5), as previously observed [16]. Finally, when comparing mean scores 213

from protein design across mutant classes, we found that, on average, functional 214

mutants had lower (more negative) scores (Fig 3D, t test, P = 2.084 × 10−6) than did 215

non-tolerated mutants. 216

Prediction of functional status 217

The systematic variation in structural properties between tolerated and non-tolerated 218

deletions suggested that protein structure was a viable metric for predicting tolerance to 219

deletions. We therefore assessed how well these structural properties could directly 220

predict the functional status of a given mutant. We constructed a series of logistic 221

regression models using various combinations of the four structural predictors RSA, 222

WCN, secondary structure (SS), and mean score. 223

For each logistic regression model, we inferred an ROC curve and calculated the 224

Area Under the Curve (AUC) to assess the model’s predictive ability. AUC ranges from 225

0 to 1, where 0.5 indicates a model that performs no better than random chance and 1 226

indicates a model with perfect prediction ability. We additionally performed multiple 227

rounds of 10-fold cross-validation for each model, computed an AUC value for each 228

round of cross-validation, and recorded mean and standard error of this cross-validated 229

AUC for each model. We used the cross-validated AUC as the primary measure of 230

model performance. 231

We first used RSA and WCN individually as single predictors of functional status. 232

Both WCN and RSA were significant predictors of deletion tolerance (Table 1), each 233

performing better than random chance. WCN proved to be a much stronger predictor 234

than was RSA, with a mean cross-validated AUC of 0.820 for WCN versus 0.681 for 235

RSA. 236

We next included residue secondary structure (SS) classification in our logistic 237

regressions. Secondary structure for a given residue had three possible values: beta-sheet 238

(sheet), alpha-helix (helix), or loop (loop). The mean cross-validated AUC for a model 239

with SS as a single predictor was 0.706, indicating that the location of residue in a given 240

structured or unstructured region was a stronger predictor of deletion tolerance than 241

was RSA but a weaker predictor than was WCN. Interestingly, the model AUC with SS 242

as a single predictor was much higher than was this model’s corresponding mean 243

cross-validated AUC value (Table 1). By contrast, model AUC and cross-validated AUC 244

were very similar for models using WCN or RSA as predictors. This discrepancy suggest 245

that SS models may have been more sensitive to the training set used and further that 246

WCN and RSA were more consistent predictors compared to SS. 247

Finally, we used the mean score of the 100 designed structures as a single predictor 248

of functional status. Mean score proved to be a better predictor of deletion tolerance 249

than both RSA and SS, but WCN was still the best predictor of tolerance to deletion of 250

a residue (Table 1). Therefore, when each predictor was considered individually, WCN 251

emerged as the strongest predictor of functional status. 252

We also performed logistic regressions that incorporated these four predictors in 253

various combinations. In general, using multiple predictors yielded better performing 254

models, even though WCN alone beat out several combinations of other predictors, 255

including a model using all other three predictors (RSA, SS, mean score) (Table 1). 256
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Overall, the best model for predicting functional status contained the three predictors 257

RSA, WCN, and mean score, yielding a mean cross-validated AUC value of 0.902. This 258

model was significantly better than the next best model, the model with RSA, WCN, 259

and SS as predictors, which had a mean cross-validated AUC value of 0.885 (t test, 260

P < 2.2 × 10−16). In fact, four of the top six logistic regression models scored by mean 261

cross-validated AUC had mean score as a predictor, and only two had SS as a predictor. 262

All models containing WCN as predictor performed better than did models without 263

WCN as a predictor. 264

To complement our logistic regressions, we used a second machine learning approach, 265

support vector machine (SVM) learning, to predict functional status using the same 266

four predictors. Again, we performed 10-fold cross-validation on SVM models, and we 267

used the mean cross-validated AUC to measure prediction accuracy. Except in the case 268

of the model with WCN, SS, and mean score as predictors of functional status, logistic 269

regression models yielded higher mean cross-validated AUC values compared to SVM. 270

(Figure 4). However, differences between the two approaches were minor, and results 271

from the SVM analysis largely agreed with those from the logistic regression analysis 272

(Table 2). The top six scoring models were the same as those in the logistic regression 273

analysis, although in a slightly different order (the second and third scoring models were 274

reversed). Importantly, the model including the three predictors RSA, WCN and mean 275

score was once again the best scoring model. With a mean cross-validated AUC value of 276

0.873, it was significantly better than the second best model, the model with all four 277

predictors, that had a mean cross-validated AUC value of 0.871 (t test, 278

P = 4.163 × 10−6). That including secondary structure as a predictor did not 279

substantially improve models suggests that information contained in secondary 280

structure may be effectively captured by more fundamental residue-level properties such 281

as WCN and RSA. 282

Covariation among structural predictors 283

Both logistic regression and SVM analyses revealed that including multiple predictors 284

significantly increased prediction accuracy, but also that including all four predictors 285

did not yield the overall best model. Moreover, secondary structure was the overall 286

weakest predictor, a finding that seemed surprising and counter to the observation that 287

deletions are most tolerated in loops and rarely tolerated in beta sheets (Fig 1 and 288

Fig 3C). To gain additional insight into how the various predictors co-vary and separate 289

tolerated from non-tolerated deletions, we performed a principal component analysis 290

(PCA) of the structural predictor variables and visualized the response (i.e., tolerated or 291

non-tolerated deletion) in principal component space. The PCA revealed that 292

non-functional and functional mutants largely separated along PC1 (Fig 5A), the axis 293

with most variance in the data. By contrast, PC2 separated sites in helices (high PC2 294

value) from sites in other secondary-structure regions (PC2 value near zero). 295

When looking at the rotation matrix (Fig 5B), we found that WCN and RSA were 296

nearly perfectly collinear, just with opposite signs (since increasing RSA corresponds to 297

decreasing WCN), and both were also highly collinear with the secondary structure 298

category “Loop”. Thus, loops tended to occur primarily in regions with high RSA and 299

low WCN, and therefore the secondary-structure classification did not provide much 300

additional information beyond what RSA and WCN had provided. Moreover, we see 301

from Fig 5A that not all deletions in loops were tolerated, and the non-tolerated 302

deletions occurred at sites with lower RSA and higher WCN. 303

Finally, the mean score from protein design was not fully collinear with any other 304

predictor, even though it was most similar to the secondary-structure category “Sheet”. 305

We believe that this observation explains why mean score tended to perform better than 306

secondary structure when added as predictor to models already containing RSA and 307
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WCN. As Fig 5A shows, not all deletions in sheets were non-tolerated, and those with 308

lower (i.e., more negative) mean scores had a higher likelihood of being tolerated. 309

Discussion 310

We have systematically investigated whether protein structural quantities known to 311

predict evolutionary rate in proteins can also predict tolerance to deletions, using 312

experimental results from enhanced green florescent protein (eGFP) as a case study. We 313

found that models which consider the structural quantities RSA and WCN in 314

conjunction with protein design scores provide the best predictions for whether a given 315

deletion will be tolerated and yield a functional protein product. Overall, residues with 316

higher RSA, lower WCN, and more negative mean scores tended to tolerate deletions 317

more than did the converse. Our results therefore demonstrate that structural 318

quantities known to correlate with evolutionary rate, i.e. RSA and WCN, may also be 319

useful for predicting whether or not a protein will tolerate a deletion. As such, we find 320

that structural considerations impose broad constraints on protein evolution, on 321

substitutions and indels alike. 322

While secondary structure was a significant predictor of functional status following 323

deletion, models with the best predictive power generally did not incorporate secondary 324

structure. In other words, although deletions in functional mutants were typically in 325

loop regions, and non-functional deletions occurred primarily in regions with secondary 326

structure, secondary structure itself may not represent a strong predictor. Instead, 327

secondary structure may in fact be a proxy for the fundamental residue-level properties, 328

such as packing density, which actually govern protein tolerance to deletions. This 329

finding mirrors historical trends in our understanding of biophysical constraints on 330

amino-acid substitutions: While early work suggested that secondary structure provided 331

the predominant constraint on evolutionary rate, advances in the field demonstrated 332

that secondary structure was far less predictive that quantities such as WCN [1]. 333

We further showed that protein design offers significant predictive power for a 334

deletion’s functional status. Interestingly, this result contrasts somewhat with identified 335

predictors of protein substitution rate, where protein design has had minimal predictive 336

ability compared to WCN or RSA [31,32]. For deletions, although WCN was still a 337

better single predictor than was protein design mean score, including protein design in 338

multi-predictor models led to consistent model improvement (Tables 1 and 2). Our 339

principal components analysis suggested that design scores were helpful because they 340

could distinguish sites in α-helices from sites in β-sheets, whereas WCN and RSA could 341

not (Fig 5B). Future work will have to resolve whether this finding is specific to the 342

beta-barrel structure of GFP or whether protein design is helpful in predicting tolerance 343

to deletions even in structures without extensive beta sheets. 344

In this work, we have leveraged an existing experimental dataset [16], consisting of 345

numerous deletions in a single protein, to delineate the biophysical constraints 346

controlling tolerance to small deletions in proteins. Our work is markedly distinct from 347

much of the prior work investigating where insertions and deletions (indels) can occur in 348

proteins. Prior work investigating evolutionary pressures on indels have relied largely on 349

sequence alignments and/or ortholog comparisons [33–36]. This approach inherently can 350

only identify protein regions where indels are tolerated, but it cannot comprehensively 351

reveal the evolutionary consequences of indel events. Indeed, in natural sequences, 352

selection will have already purged non-functional proteins from the evolutionary history 353

and only putatively functional proteins will remain. By contrast, using an experimental 354

dataset allows us to compare directly the properties of selectively tolerated vs. 355

non-tolerated deletion mutants. 356

Importantly, our study considered only the functional consequences of 357
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single–amino-acid deletion mutants, as opposed to insertions and indels spanning 358

multiple amino-acids. Is is therefore possible that the evolutionary constraints we have 359

identified pertain only to a small subset of indel types, and future work may elucidate 360

how evolution constrains more complex indel events. For example, proteins appear to 361

feature some amount of structural plasticity, allowing them to undergo compensatory 362

structural adjustments in response to indels [13, 37–39]. It is possible that the tolerance 363

to deletions may be specific to the compensatory abilities of a given protein, or a given 364

protein domain. 365

We further emphasize that eGFP features a unique beta-barrel structure that differs 366

from other structural families, such as globular or transmembrane proteins. Further 367

studies will shed light on whether the constraints we have identified here pertain to 368

proteins from different structural families. The trends we have identified in eGFP will 369

form a robust foundation for future work to elucidate how protein structure influences 370

the evolution of indels, ultimately providing a comprehensive picture of the forces that 371

govern protein evolution. 372
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Tables

Table 1. Summary of AUC values for logistic regression models. The structural properties analyzed are RSA,
WCN, secondary structure (SS), and mean score. Model AUC indicates the AUC resulting from fitting a logistic regression to
the entire dataset, and mean cross-validated AUC indicates the averaged AUC calculated from repeated 10-fold
cross-validation. Models are sorted in order of descending cross-validated AUC.

Model Model AUC Mean cross-validated AUC ± Standard Error
RSA + WCN + Mean Score 0.930 0.902 ± 0.0007
RSA + WCN + SS 0.920 0.885 ± 0.0009
RSA + WCN + Mean Score + SS 0.923 0.880 ± 0.0010
WCN + Mean Score 0.875 0.861 ± 0.0004
RSA + WCN 0.876 0.860 ± 0.0006
WCN + SS + Mean Score 0.842 0.844 ± 0.0008
WCN + SS 0.872 0.841 ± 0.0008
WCN 0.817 0.820 ± 0.0005
RSA + Mean Score 0.834 0.814 ± 0.0007
Mean Score 0.875 0.800 ± 0.0005
RSA + SS + Mean Score 0.850 0.799 ± 0.0012
SS + Mean Score 0.842 0.790 ± 0.0014
RSA + SS 0.808 0.769 ± 0.0011
SS 0.844 0.706 ± 0.0020
RSA 0.699 0.681 ± 0.0007

Table 2. Summary of AUC values for models using a support vector machine (SVM). The structural properties
analyzed are RSA, WCN, secondary structure (SS), and mean score. Model AUC indicates the AUC resulting from the entire
dataset, and mean cross-validated AUC indicates the averaged AUC calculated from repeated 10-fold cross-validation. Models
are sorted in order of descending cross-validated AUC.

Model Model AUC Mean cross-validated AUC ± Standard Error
RSA + WCN + Mean Score 0.937 0.873 ± 0.0011
RSA + WCN + Mean Score + SS 0.937 0.871 ± 0.0010
RSA + WCN + SS 0.918 0.864 ± 0.0015
WCN + SS + Mean Score 0.901 0.859 ± 0.0008
WCN + Mean Score 0.908 0.851 ± 0.0009
RSA + WCN 0.913 0.845 ± 0.0014
RSA + SS + Mean Score 0.885 0.791 ± 0.0016
WCN + SS 0.868 0.788 ± 0.0016
RSA + Mean Score 0.872 0.787 ± 0.0020
Mean Score 0.815 0.767 ± 0.0014
WCN 0.820 0.754 ± 0.0016
SS + Mean Score 0.852 0.753 ± 0.0022
RSA + SS 0.821 0.745 ± 0.0025
SS 0.864 0.690 ± 0.0020
RSA 0.755 0.634 ± 0.0025
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Figures

A B

Fig 1. Tolerated and non-tolerated deletions in enhanced GFP (eGFP). The
eGFP backbone is shown in cyan, and the chromophore responsible for florescence is
shown in green. (A) Tolerated deletions. (B) Non-tolerated deletions. The Cα carbon of
each deleted residue is represented by a sphere. Deletions that resulted a functioning
protein (tolerated deletions) are colored yellow (A) and deletions that resulted in a
non-functional protein (non-tolerated) are colored red (B). Tolerated deletions seem to
be clustered towards the top and bottom of the structure, whereas non-tolerated
deletions occur throughout the protein.

PLOS 13/17

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 4, 2016. ; https://doi.org/10.1101/079061doi: bioRxiv preprint 

https://doi.org/10.1101/079061
http://creativecommons.org/licenses/by-nc-nd/4.0/


Modeller  
x 25

Calculate 
mean score

Choose best 
representative 

structure

Relax 
x 4

Remove 
chromophore,

relax 
x 100

RosettaRemodel 
x 5

Choose best 
representative 

structure

A

B

. . . x 25

Compare scores 
across conditions

Fig 2. Visualization of the computational modeling pipeline. Colors represent
variation between structural models produced by each protocol. (A) Generating an
eGFP structure without chromophore. We first removed the chromophore and used
Rosetta relax to optimize the pared-down structure. We then chose the lowest scoring
model (best representative structure) from the 100 relaxed structures and reinserted the
missing residues using RosettaRemodel. Finally, we picked the lowest scoring model
from this protocol as the template for further analysis. (B) Generating deletion mutants.
For each individual deletion mutant we considered, we first generated 25 structures
using Modeller. We then refined these structures with Rosetta relax, generating four
relaxes structures for each of the 25 Modeller structures. Finally, we calculated the
mean score over these 100 models and used this score as a predictor of functional status
for each mutant.
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Fig 3. Structural properties of functional and non-functional deletions. (A)
Distribution of RSA among deletions. On average, residues with tolerated deletions are
more exposed than residues with non-tolerated deletions (t test, P = 1.030 × 10−3). (B)
Distribution of WCN among deletions. On average, residues with tolerated deletions
have lower WCN than residues with non-tolerated deletions (t test, P = 2.998 × 10−7).
(C) Secondary structure of deletions. Non-tolerated deletions are colored in blue and
tolerated deletions are in red. The majority of the residues deleted in the loop regions
and alpha helix regions are tolerated and result in a functioning fluorescent phenotype.
78.3% and 66.7% of deleted residues are tolerated in loop and helical regions,
respectively. However, only a small fraction of residues (21.6%) deleted in areas of the
proteins that make up a beta sheet are tolerated. These relative frequencies are
significantly different from each other (χ2 contingency table, P = 3.642 × 10−5). (D)
Distribution of mean scores among deletions. Residues that are tolerant to deletion have
lower scores (i.e., more negative) on average than non-tolerant residues (t test,
P = 2.084 × 10−6).
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Fig 4. Comparison of mean cross-validated AUC from SVM and logistic
regression models. For each set of predictor variables, the mean cross-validated AUC
value from the corresponding SVM is plotted against the mean cross-validated AUC
value from the corresponding logistic regression model. The dotted gray line represents
the line y = x. For all but one model, logistic regression models with the same
predictors have higher mean cross-validated AUC values.
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Fig 5. Principal Components Analysis (PCA) of the deletion dataset. (A)
Deletion mutants mapped into principal components space. PC1 separates tolerated
from non-tolerated mutations, while PC2 separates deletions in helices from deletions in
other secondary-structure elements. (B) Visualization of the rotation matrix for the first
two principal components. RSA, WCN, and secondary-structure category “Loop” are
nearly collinear and primarily (but not entirely) load onto PC1. Helix is nearly
orthogonal to this direction and loads primarily only PC2.
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