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Abstract 

Published genetic associations can be used to infer causal relationships between 

phenotypes, bypassing the need for individual-level genotype or phenotype data. We have 

curated complete summary data from 1094 genome-wide association studies (GWAS) on 

diseases and other complex traits into a centralised database, and developed an analytical 

platform that uses these data to perform Mendelian randomization (MR) tests and 

sensitivity analyses (MR-Base, http://www.mrbase.org). Combined with curated data of 

published GWAS hits for phenomic measures, the MR-Base platform enables millions of 

potential causal relationships to be evaluated. We use the platform to predict the impact of 

lipid lowering on human health. While our analysis provides evidence that reducing LDL-

cholesterol, lipoprotein(a) or triglyceride levels reduce coronary disease risk, it also suggests 

causal effects on a number of other non-vascular outcomes, indicating potential for 

adverse-effects or drug repositioning of lipid-lowering therapies. 

 [144/150 words] 
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Introduction 

 

The continuing success of large scale genome wide associations studies (GWAS) in 

identifying robust genetic associations
1,2

, combined with the development of techniques in 

Mendelian randomisation (MR)
3,4

, has vastly expanded the scope for assessing causal 

relationships between phenotypes
5
. In particular, the exploitation of non-disclosive 

summary data from GWAS by novel MR methods has been transformative, because this 

unlocks the powerful feature that causal relationships can be assessed between phenotypes 

even if these GWASs were performed on non-overlapping samples in a strategy known as 

two-sample MR
6
 (see Box 1 for further details on MR and its assumptions). The 

consequence of this methodological development is that the set of potential causal 

relationships between pairs of phenotypes that can be evaluated grows exponentially, 

limited only by the availability of reliable GWAS summary data for those phenotypes (Figure 

1a).  

 

The next major challenge is unifying published GWAS summary data with MR methodology 

within a single analytic platform to begin rapid and systematic interrogation of potential 

causal relationships across the phenome (Figure 1b). To address this we have developed 

MR-Base (http://www.mrbase.org/), that exists conceptually as a two-part framework. First, 

it is a repository of harmonised published GWAS summary data, which has been aggregated 

from disparate and heterogeneous sources on traits from across the phenome (Figure 1c). 

The summary data is harvested in two forms, (a) summary data limited to only the 

statistically significant associations for a particular trait (top hits)
7–11

, and (b) the full set of 

all SNPs analysed in the GWAS of a trait (complete summary data). The utility of these 

different forms of summary data go beyond making causal inference, but their use in MR is 

described in Figure 1. Second, MR-Base plays host to a range of causal estimation methods 

and automatically applied sensitivity analyses that can be used to improve the reliability of 

causal inferences
6,12–19

. The data and the methodology repositories are curated and 

continually expanding.  
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We showcase the application of MR-Base through a systematic MR study of the effect of LDL 

cholesterol, lipoprotein(a) [Lp(a)] and triglycerides - intervention targets for the prevention 

of coronary heart disease (CHD) - on a range of health-related outcomes. First, we perform 

MR analyses to predict the efficacy
20

 and safety
21,22

 of emerging lipid-lowering drugs
23,24

. 

Second, to gain insights into the broad safety of lipid-targeted interventions, we perform 

MR analyses of lipids against a wide range of disease outcomes and related traits. These 

examples demonstrate one particular scope of MR-Base: predicting the downstream 

consequences of interventions on particular phenotypes.  

Box 1: Mendelian randomization and instrumental variables 

The underlying principle of Mendelian randomization (MR) is that if a genetic variant (G) affects an 

environmental, molecular or physiological exposure (e.g. smoking, low density lipoprotein [LDL] 

cholesterol levels, body mass index), it can be used as an instrumental variable or proxy to appraise 

the causal effect of that exposure on an outcome at a population level. In this paper we  refer to the 

trait that is the putative causal factor as the ‘exposure’ (X) and the trait that is consequential (e.g. a 

disease or other complex trait) as the ‘outcome’ (Y), following conventions in the epidemiological 

literature.  

 

Genetic variants are good potential instrumental variables because they are fixed from conception 

and tend to be randomly distributed in the general population with respect to lifestyle and 

environmental factors. Thus, studies of gene-phenotype associations are less susceptible to 

confounders (U) and reverse causation in comparison to conventional observational studies. If MR 

assumptions are met, associations of a genetic instrument with an exposure and outcome can be 

used to infer the causal effect of the exposure on the outcome. The assumptions are: (IV1) the 

instrument is associated with the exposure; (IV2) the instrument is independent of known and 

unknown confounders; and (IV3) the instrument is independent of the outcome conditional on the 

exposure and confounders (Figure below and supplementary table 10). For further details see ref
4
. 

Both G-X and G-Y can be estimated using summary association statistics from non-overlapping 

GWAS studies, in an approach known as two-sample MR
6
.   

 

Interpretation of a MR study requires careful consideration of whether genetic variants exhibit 

horizontal pleiotropy, i.e. they associate with the exposure but influence the outcome through 

pathways that do not include the exposure. This is a violation of assumption IV3. Using multiple 
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instruments for an exposure, where possible, can help to evaluate and potentially account for this 

assumption. A range of analyses are now available to assess the sensitivity of results to horizontal 

pleiotropy, including MR Egger regression
18

 and the weighted median function
19

 (Supplementary 

figure 8, Supplementary table 2 and Supplementary table 10). Although MR can provide evidence 

regarding causality, we strongly advocate the use of different study designs in order to triangulate 

evidence when making causal inferences25. 

Results 

The MR-Base resource 

We curated and harmonised ‘complete summary data’ from 1094 GWAS analyses, 

corresponding to 139 unique GWAS publications and 61 unique studies (including 44 

consortia) (Figure 1c and Supplementary table 1). At the time of writing (November 2016), 

these GWAS summary statistics correspond to approximately 4 billion SNP associations with 

56 diseases, 125 risk factors, 559 metabolites and 149 immune system traits, derived from 

GWAS analyses of ~14.9 million individual sample measurements. In addition to the 

‘complete summary data’, we also collected published GWAS associations that comprise 

only the significant hits of a GWAS after applying stringent p-value thresholds (e.g. 5E-8, a 

conventional threshold for declaring statistical significance in GWAS) and often performing 

replication to obtain unbiased effect sizes. These ‘top hits’, which can be used to define 

genetic instruments for exposures in MR analyses (see Box 1), include 22,369 SNPs 

associated with 3889 complex traits and diseases in the NHGRI-EBI GWAS catalog
7
; 187,318 

SNPs associated with DNA methylation levels in whole blood at 33,256 genomic CpG sites, 

across five time points
8
; 187,263 SNPs associated with gene expression levels at 27,094 

gene identifiers, across 44 different tissues
9
; 1088 SNPs associated with metabolite levels in 

whole blood for 121 different metabolites
10

; and 56 SNPs associated with protein levels in 

47 different analytes
11

 (Online methods).  

 

The platform integrates these summary associations with statistical techniques for MR, 

including inverse-variance weighted (IVW) linear regression
12,13

 (the recommended default), 

maximum likelihood
6
 and Wald ratio methods

26
, as well as sensitivity analyses that allow 

users to assess the potential for violations of MR assumptions (Supplementary table 2), 

thereby improving the reliability of causal inference. An example of the basic use case of 

MR-Base - assessing the causal relationship between two traits - is presented in the 
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Supplementary Note, where we reproduce the known
27,28

 causal effect of higher LDL 

cholesterol levels on elevated risk of CHD. 

Predicting the efficacy and safety of lipid lowering drugs 

In order to predict the efficacy of current LDL cholesterol-lowering drugs for cardiovascular 

disease prevention, we used genetic variants at the 3-Hydroxy-3-Methylglutaryl-CoA 

Reductase (HMGCR), Niemann-Pick C1-Like 1 (NPC1L1) and Proprotein convertase 

subtilisin/kexin type 9 (PCSK9) genes to mimic the action of statins, Ezetimibe and 

Evolocumab, respectively, and compared the results to findings from randomized controlled 

trials (RCTs)
20,21,28,29

 (Figure 2, Supplementary table 3). Odds ratios (ORs) for CHD per 

standard deviation (SD) decrease in LDL cholesterol were directionally similar in MR and RCT 

analyses and were indicative of reductions in disease risk: 0.61 (95% confidence interval 

[CI]): 0.48-0.79) vs. 0.76 (0.74-0.77) for HMGCR/statins; 0.65 (0.40-1.06) vs. 0.85 (0.75-0.97) 

for NPC1L1/Ezetimibe; 0.41 (0.30-0.56) vs. 0.67 (0.51-0.88) for PCSK9/Evolocumab.  

 

We used the same framework to predict the efficacy of two novel lipid-lowering drugs that 

are currently undergoing clinical trials: an oligonucleotide inhibitor of apolipoprotein(a) 

(APOA) that targets Lipoprotein(a) (Lp[a]), and an oligonucleotide inhibitor of apolipoprotein 

C3 (APOC3) that targets triglyceride levels. In MR analyses there was strong evidence that 

intervention at both novel targets is likely to reduce risk of CHD. The OR for CHD per SD 

decrease in Lp(a) due to APOA was 0.79 (0.76-0.81) and per SD decrease in triglycerides due 

to APOC3 was 0.81 (0.73-0.90) (comparable results from RCT studies were unavailable).  

 

To evaluate the safety of these lipid-lowering drugs, we went on to estimate associations 

with type 2 diabetes risk, a well known side-effect of statin treatment (Figure 2, 

Supplementary table 3). ORs for type 2 diabetes per SD decrease in LDL cholesterol were 

directionally similar in MR and RCT analyses: 1.31 (0.94-1.82) vs. 1.30 (1.15-1.50) for 

HMGCR/statins; 2.73 (1.13-6.59) vs. 1.10 (0.86-1.41) for  NPC1L1/Ezetimibe; 1.20 (0.95-1.50) 

vs. 1.26 (0.88-1.82) for PCSK9/Evolocumab. In MR analyses, the OR for type 2 diabetes per 

SD lower Lp(a) due to APOA was 1.02 (0.95-1.09) and per SD lower triglycerides due to 

APOC3 was 0.88 (0.76-1.02) (comparable results from RCT studies were not available).  
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LDL-cholesterol targeting drugs could increase type 2 diabetes risk through LDL-cholesterol, 

or through alternative pathways (horizontal pleiotropy) specific to the target loci. To test 

this, we performed MR analyses of LDL-cholesterol using all available instruments 

(Supplementary table 3) against type 2 diabetes (Figure 3, Supplementary table 4). The IVW 

method estimated a strong influence of higher LDL-cholesterol levels on type 2 diabetes risk 

(1.23  [1.11-1.36] OR per SD increase), with similar estimates obtained from MR Egger and 

weighted median analyses (1.39 (1.17-1.65) and 1.31 (1.16-1.48), respectively). These 

results show that lower circulating LDL-cholesterol may increase risk of type 2 diabetes, 

suggesting that intervention on any gene that influences LDL-cholesterol levels is liable to 

incur this increased risk.  

Predicting the impact of lowering lipid levels on human health 

In order to gain broader insight into the effect of lowering lipid levels on health outcomes 

more generally we conducted a hypothesis-free scan for causal influences of LDL cholesterol 

(instrumented using 57 SNPs), Lp(a) (instrumented using 1 SNP) and triglycerides 

(instrumented using 40 SNPs) on 40 non-vascular diseases and 108 non-lipid complex traits 

in MR-Base (Figure 4, Supplementary figure 2). In addition, using an unadjusted p-value of 

0.05 to denote suggestive evidence for association, we identified 16 and 17 out of 147 non-

vascular traits associated with LDL cholesterol and triglycerides, respectively, and 11 out of 

112 non-vascular traits for Lp(a). We went on to examine the reliability of these 33 putative 

associations for LDL cholesterol and triglycerides in greater detail using a range of sensitivity 

analyses (Supplementary figure 3).  

 

Associations surviving multiple testing correction 

MR associations surviving multiple testing correction (false discovery rate < 0.05) for LDL 

cholesterol were type 2 diabetes (described earlier), and two traits for which lower LDL 

levels related to increased longevity: top 1% survival and father’s age at death. For these 

outcomes the MR estimates were consistent using IVW, MR Egger and weighted median 

analysis providing strong evidence that reducing LDL cholesterol levels increases longevity.  

 

Lower triglycerides appeared to have a strong association with reduced risk of primary 

biliary cirrhosis (PBC). The MR estimates using IVW, MR Egger and weighted median analysis 
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were consistent, though the effect slightly attenuated upon exclusion of the GCKR genetic 

variant (a gene with known pleiotropic effects) in leave-one-out analyses. 

 

Lower Lp(a) associated strongly with parents’ age at death, similar to LDL-C. Kidney function 

also appeared to be influenced, with lower Lp(a) associated with higher serum creatinine 

levels. Consistent with this finding, risk of chronic kidney disease was reduced by lower 

Lp(a). Because Lp(a) was only instrumented by a single SNP further sensitivity analyses were 

not possible. 

Putative associations not surviving multiple testing correction 

The apparent association between lower LDL cholesterol and increased risk of Alzheimer's 

disease using the IVW method was not reliable. MR Egger and weighted median methods 

attenuated strongly to the null, and after exclusion of the APOE genetic variant (rs4420638) 

in leave-one-out sensitivity analyses the IVW estimate attenuated to the null also. The 

putative association of lower triglycerides on Alzheimer’s disease, however, remained 

consistent between the three different MR methods, though precision reduced substantially 

upon removal of the VEGFA genetic variant (rs998584) in leave-one-out sensitivity analyses. 

 

The weak putative association between triglycerides and asthma was not consistent 

amongst the IVW, MR Egger and weighted median methods. The asymmetry of the funnel 

plot suggested some level of heterogeneity, but there were only 18 out of 40 variants 

available (after searching for LD proxies) in the asthma summary data which likely 

contributes to reduced statistical power.  

 

Putative associations also appeared for lower LDL cholesterol with higher anthropometric 

measures (body mass index, risk of obesity, body fat, waist-to-hip ratio and waist 

circumference). In all cases the MR Egger and weighted median estimates were stronger 

than the IVW estimates. However, in leave-one-out analyses for each of these MR analyses 

the effects attenuated towards the null upon exclusion of the APOE genetic variant.  
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Discussion  

As the availability of published GWAS summary data continues to grow MR offers an 

increasingly attractive approach for exploring the aetiology of disease. We have developed a 

platform that integrates a database of GWAS summary data together with a public 

repository of statistical methods for enabling systematic causal inference across the 

phenome. This benefits modelling of phenomic relationships in two ways - first, it maximises 

the breadth of possible causal relationships that can be interrogated by drawing together 

genetic information on as many traits as possible. Second, automating the application of 

state-of-the-art methodology establishes core standards for reporting MR results and 

improves the reliability and reproducibility of causal inference.  

 

One important emerging area in MR is predicting the safety and efficacy of drug targets for 

for disease prevention
30

. We recapitulate the known beneficial effects of LDL-cholesterol 

lowering on coronary disease risk
31,32

, and the small risk-raising effect on type 2 

diabetes
20,22,33

. Although our study was limited to publicly available data for the analyses of 

PCSK9, NPC1L1 and HMGCR and type 2 diabetes, our results are similar to, though less 

precise than, findings from recent larger MR studies
22,34,35

. The latter used the same public 

datasets that support MR-Base combined with additional data and stronger instrumental 

variables, illustrating how future studies could combine the convenience of MR-Base with 

novel datasets to maximise statistical power. 

 

The associations of LDL-cholesterol lowering with reduced CHD risk and increased type 2 

diabetes risk were observed regardless of whether we considered specific gene targets 

(HMGCR, PCSK9 and NPC1L1) separately or combined all LDL lowering genetic variants 

together in a single instrument. These findings suggest that the effect of LDL-lowering drugs 

on cardiometabolic disease is, at least partly, due to an on-target mechanism and that 

interventions through any gene that influences LDL-cholesterol levels is likely to increase 

risk of type 2 diabetes and decrease risk of CHD. The full mechanism of how LDL-targeted 

interventions raise risk of type 2 diabetes remains to be elucidated, but our hypothesis-free 

scan highlighted the potential role for anthropometric markers, such as body mass index. 
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This is consistent with evidence from RCT and MR studies indicating that statin treatment is 

associated with weight gain, a well known risk factor for type 2 diabetes
20,33

.  

 

We also use MR-Base to predict the impact of oligonucleotide-inhibitors of APOC3 and 

APOA: effective pharmaceutical strategies for lowering triglycerides
23

 and Lp(a)
36,37

 levels, 

respectively, but with, as yet, unknown efficacy for preventing coronary disease and 

unknown safety profile. Our findings indicate that these novel pharmaceutical agents are 

likely to be effective at reducing risk of CHD, with little evidence for adverse effects on risk 

of type 2 diabetes. However, these results cannot address the potential for adverse effects 

due to off-target mechanisms.  

 

In a hypothesis-free screen, we found evidence for effects of lipid-lowering on non-

cardiometabolic outcomes. Lower Lp(a) concentration was associated with higher serum 

creatinine levels. Lower serum creatinine is a diagnostic factor for chronic kidney disease, 

which also showed some evidence for association with higher Lp(a) levels in our analyses, 

consistent with observational studies
38–40

. These results suggest some potential for the 

repositioning of APOA-inhibitors for the prevention of chronic kidney disease. 

 

The association between triglycerides and primary biliary cirrhosis (PBC) is well known 

observationally
41

 but the association is assumed to be the consequence of the disease. Our 

results suggest, however, that elevated triglyceride concentration is also a contributing 

causal factor for primary biliary cirrhosis. To test if the reverse causal effect (PBC influencing 

triglycerides) also exists, we performed a further MR analysis using 25 variants
42

 to 

instrument PBC against triglycerides, which gave a weak positive association 

(Supplementary figure 4), which though low in precision is in the direction expected based 

on observational associations. Further studies are required to confirm this result and to 

explore whether triglyceride lowering could be a useful treatment strategy for disease 

prevention. One concern, which should be considered in any MR application, is the 

possibility of spurious associations arising due to selection bias
43

. Here for example, the 

triglyceride-PBC association may have arisen if individuals with PBC had been excluded from 

the triglycerides GWAS. Further exploration suggests that this mechanism is unlikely in this 
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specific case because PBC is sufficiently rare to not have a large impact on the triglycerides 

GWAS. 

LDL cholesterol and Lp(a) were also associated with parents’ age at death. These results 

potentially reflect the influence of these lipid traits on CHD risk, given that CHD is the single 

leading cause of death in the world
44

.  

 

A consequence of this scale of automation is that the problem of causal inference shifts 

from handling complex data to interpreting complex results. In our hypothesis-free scan for 

downstream effects of higher lipid levels, though we perform many tests we do still find 

associations that survive correction for multiple testing. GWAS sample sizes continue to 

grow and power to detect any one particular association is improving. But as the scale of 

phenomic data mining grows to include more traits, multiple testing will make the 

traditional approach of identifying associations increasingly intractable. Developing 

modelling frameworks that enable the construction of large causal systems comprising small 

putative effects is likely to be warranted. 

 

GWAS is typically conducted using meta-analysis of large numbers of different cohorts, 

where each cohort is likely to contribute to GWAS on many different traits. As a 

consequence there is likely to be considerable sample overlap amongst different GWAS 

within the database. In two-sample MR non-independence of samples for the exposure and 

outcome GWAS can induce bias of causal estimates towards the confounded observational 

association if instruments are weak (canonically defined as having SNP-exposure 

associations with F-statistics < 10 but the bias various continuously with instrument 

strength). If samples are independent, however, weak instruments induce bias towards the 

null. The level of sample overlap amongst different studies is not yet quantified within the 

database, but in addition to manual curation this could also be inferred analytically using LD 

score regression. 

 

There exist several resources for the collection and curation of genetic summary data. The 

NHGRI-EBI GWAS Catalog
7
 prioritises published associations that are statistically significant, 

according to conventional GWAS thresholds, and show evidence for replication in 

independent datasets. GWASdb
45

 and GRASP
46

 similarly focus on published association 
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statistics but employ more relaxed P-value inclusion criteria. We use the GWAS catalog in 

MR-Base as a source of instruments for potential exposure variables. Other important 

resources include PhenoScanner
47

, which collates complete summary data from 637 GWAS 

datasets, and dbGAP, which collates individual and complete summary-level genetic data 

(but in a generally less accessible and less standardized format). MR-Base has several 

notable differences to these existing repositories of GWAS summary data: comprising 1094 

datasets (as of December 2016), it is larger than PhenoScanner, more easily accessible than 

dbGAP, does not employ P-value inclusion thresholds (unlike the GWAS catalog, GWASdb 

and GRASP), provides a security layer which enables data to be deposited with restricted 

access (e.g. for unpublished studies) and it integrates directly to software to automate 

implementation of causal inference through two-sample MR. MR-Base also actively seeks 

datasets from studies that have yet to release their full results into the public domain (these 

currently correspond to 4% of the 1094 datasets in MR-Base). A number of other resources 

are now available that integrate published data of various (often non-GWAS) experimental 

origins with analytical methods, especially for the identification of potential drug targets, for 

example Open Targets
48

 and DisGeNET
49

 to name but a few. Combining these different 

resources with results from MR could be a valuable approach towards triangulating 

evidence about causal relationships in order to improve reliability of findings
25

. 

 

The data behind MR-Base can easily be extended to accommodate other MR methods, such 

as network MR
51

, or other other post-GWAS analytical approaches such as fine mapping
52–

54
, constructing genetic predictors

55
, omic-wide association studies

2
, or understanding 

genetic architecture
56,57

. For example, the GWAS summary statistics used in MR-Base also 

support LD Hub
58

, an online application for calculating bivariate genetic correlations and 

trait heritability using LD score regression (http://ldsc.broadinstitute.org/).  

 

In conclusion, we have developed MR-Base: a framework for a) collating and harmonising 

GWAS summary associations statistics and b) harnessing GWAS summary association 

statistics to automate implementation of two-sample MR. MR-Base is a growing, 

collaborative and open source platform that maximises the potential of summary-level 

genetic data for causal inference across the phenome.  
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Online methods 

Overview 

MR-Base comprises two main components: a database of GWAS summary association 

statistics and LD proxy information, and an R package that serves as repository for MR 

methods and sensitivity analyses  (TwoSampleMR, 

https://github.com/MRCIEU/TwoSampleMR). The database is accessible through an 

application programming interface (API), which enables optional access restrictions for 

summary data that is not released publicly. A web app was developed as a user-friendly 

wrapper to the R package using the R/shiny framework. Scripts to perform the analyses 

presented in this paper are available at https://github.com/explodecomputer/mr-base-

methods-paper.  

MR-Base database 

Obtaining summary data from genome wide association studies 

We  downloaded publicly available datasets from study-specific websites and dbGAP and 

invited studies curated by the GWAS catalog to share data (if these were not already 

publically available) (Supplementary figure 4). To be eligible for inclusion in MR-Base, 

studies must provide the following information for each SNP: the beta coefficient and 

standard error from an additive regression model and the modelled effect and non-effect 

alleles. This is the minimum information required for implementation of two-sample MR. 

The following information is also sought but is not essential: effect allele frequency, sample 

size, P values for SNP-phenotype associations, P values for Hardy–Weinberg equilibrium, P 

values for Cochran's Q test for between study heterogeneity (if a GWAS meta-analysis) and 

metrics of imputation quality, such as info or r
2
 scores (for imputed SNPs). MR-Base also 

includes information on the following study-level characteristics: sample size, number of 

cases and controls (if a case-control study), standard deviation of the sample mean for 

continuously distributed traits, geographic origin and whether the GWAS was conducted in 

males or females (or both). In future extensions to MR-Base, we plan to collate more 

detailed information on phenotype distribution (e.g. sample means for continuously 

distributed phenotypes) and population characteristics (mean and standard deviation of 
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age, number of males and females) and statistical models (e.g. covariates included in 

regression models and genomic control inflation factors).  

Linkage disequilibrium proxy data 

One of the main functions of the MR-Base database is to extract association data for 

requested SNPs from GWAS studies of interest to the user (Association Table, 

Supplementary Figure 7). Often, however, a requested SNP may not be present in the 

requested GWAS (e.g. because of different imputation panels or because imputed SNPs 

were not available). In order to enable information to be obtained even when SNPs are 

missing, we provide an LD proxy function using 1000 genomes data from 503 European 

samples. For each common variant (minor allele frequency [MAF] > 0.01) we used plink1.90 

beta 3 software to identify a list of LD proxies. We recorded the r
2
 values for each LD proxy, 

the phase of the alleles of the target and proxy SNPs. We limited the LD proxies to be within 

250kb or 1000 SNPs and with a minimum r
2
=0.6. 

MR instrument catalog 

We have assembled a collection of potential instruments for a wide range of traits from 

various sources. These sources typically present only the top hits from a GWAS, rather than 

the entire GWAS summary statistics. As such, the traits included here only have sufficient 

data for them to be evaluated as potential exposures. All curated data is available through 

the MRInstruments R package (https://github.com/MRCIEU/MRInstruments): 

NHGRI-EBI GWAS catalog 

This is a comprehensive catalog of reported associations from published GWAS studies
7
. To 

harmonize the data to be suitable for MR we converted odds ratios into log odds ratios, 

inferring standard errors from reported 95% confidence intervals or (if the latter were 

unavailable) from the reported P value using the Z distribution. We extracted information 

on the units of the SNP-trait effect; identifying the effect and non-effect alleles, by 

comparing the risk allele reported in the GWAS catalog to allele information downloaded 

from ENSEMBL, using the R/biomaRt package
59

. R/biomaRt was also used to identify base 

pair positions (in GRCh38 format) and associated genes; and infer effect allele frequency 

from the risk allele frequency reported in the GWAS catalog. We excluded SNP-trait 

associations from the GWAS catalog if they were missing a P value, beta (estimate of the 
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SNP-trait effect) or a standard error for the beta. The MR-Base standardized version of the 

GWAS catalog (2016-07-17 release at time of writing) comprises 24,305 potential 

instruments for approximately 4960 traits. The potential of this catalog for MR is 

considerable, but there are issues. For example not all reported associations surpass a P 

value threshold of 5e-8; and effect sizes are not always presented in the same units within 

studies of the same trait, hence further curation is warranted. MR results generated using 

the GWAS catalog should be viewed with caution. 

Accessible Resource for Integrated Epigenomics Studies (ARIES) mQTL catalog 

We obtained a large set of instruments for DNA methylation levels that were estimated in 

the ARIES dataset 
8
. Methylation quantitative trait loci (mQTLs) were identified in 1000 

mothers at two time points and 1000 children at three time points. Top hits were obtained 

from http://mqtldb.org with P<1e-7. There are 33,256 unique CpG sites across the 5 time 

points with at least one independent instrument. 

GTEx eQTL catalog 

We used the GTEx resource 
9
 of published independent cis-acting expression QTLs (cis-

eQTLs) to create a catalog of SNPs influencing up to 27,094 unique gene identifiers across 44 

tissues.  

Metabolomic QTL catalog 

SNPs influencing 121 metabolites measured using nuclear magnetic resonance (NMR) 

analysis in whole blood were obtained 
10

, totalling 1088 independent QTLs across all 

metabolites. 

Proteomic QTL catalog 

SNPs influencing 47 protein analyte levels
11

 in whole blood were obtained, totaling 57 

independent proteomic QTLs. 

 

The above catalogs can be used to define the user’s instruments in an MR analysis. 

Alternatively, the user can define their instruments manually (e.g. by uploading a file to the 

website) or can use the MR-Base repository of full GWAS summary association statistics to 
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extract independent sets of variants that surpass user-specified P-value and clumping 

thresholds. 

Applied MR analyses 

Instruments for LDL cholesterol levels and triglyceride levels were obtained from reported 

independent significant associations by the Global Lipids Genetics Consortium (GLGC) GWAS 

(n = 173,044), resulting in 57 and 40 independent instruments, respectively (Supplementary 

table 3). We used rs10455872 as an instrument for natural log Lp(a) levels, based on 

findings in a previous study
60

. These rs IDs were extracted from the complete summary data 

of 42 diseases and 108 non-lipid risk factors. Where the exact rs ID wasn’t available an LD 

proxy was searched for with r
2 

> 0.8 and within 250kb of the target SNP. The effect alleles of 

each SNP used in the exposure and outcome GWAS were compared and converted to the 

same strand where discrepancies were observed. Effect sizes in the exposure and outcome 

GWAS had their directions switched to reflect the same effect allele. All effect sizes were in 

standard deviation units for continuous traits or log odds ratios for disease and binary traits. 

We primarily used the two-sample MR IVW method to report causal estimates between 

exposures and outcomes. Where indicated, we also used MR-Egger regression and the 

weighted median function to assess the sensitivity of our results to violations of MR 

assumptions. The diseases and complex traits specified as outcomes in the MR analyses are 

described in Supplementary table 5.   

 

To predict the effects of lipid lowering drugs on health outcomes, we used SNPs with known 

associations with LDL cholesterol, triglyceride and Lp(a) levels that were within the vicinity 

of the genes that are targeted by specific drugs. Statin drug effects, targeting the HMGCR 

gene, were proxied by the rs12916 variant; Evolocumab, targeting the PCSK9 gene, was 

proxied by rs11591147; Ezetemibe, targeting the NPC1L1 gene, was proxied by rs2073547
61

. 

Apo(a) inhibitors, targeting the LPA gene, were proxied by rs10455872
62

. APOC3 inhibitors, 

targeting the APOC3 gene, were proxied by rs10790162
61

. The effect of statins, Evolocumab 

and Ezetemibe on disease risk for CHD and type 2 diabetes were obtained from randomized 

controlled trials (RCTs)
20,21,28,29

 for comparison with the MR estimates, equivalent RCT 

results for APOC3- and apo(a)-inhibitors were not available (Supplementary table 4).  
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Figure 1: Overview of MR-Base. a) The Two-sample mendelian randomisation (2SMR) process for estimating 

the causal influence of one trait (exposure) on another (outcome) is depicted. Independent SNPs that robustly 

associate with the exposure are used as instruments (top Manhattan plot). Those SNPs (or LD proxies) are then 

extracted from the outcome GWAS (bottom Manhattan plot) These summary data can then be harmonised 

and used to make causal inference using several 2SMR methods (b.i). A range of sensitivity analyses are also 

performed by default to improve robustness (b.ii and b.iii). All analyses are described in more detail in 

Supplementary table ##. b) The MR-Base framework consists of modular sources of GWAS summary data, to 

which access is managed by a public application programming interface (API). The “GWAS summary data (top 

hits)” module is a resource of data required for genetic instruments. The “GWAS summary data (complete)” 

module is typically used for outcomes. Applications can interface with the API to use the summary data for a 

range of analyses. 2SMR is one such analysis which can be performed through an R package or web 

application. c) A breakdown of the summary data in MR-Base, with the breadth of possible causal inferences 

that can be made. Any trait for which known GWAS hits are available can be instrumented as an exposure. Any 

trait for which there is complete summary data can be used as a potential outcome (Supplementary table 1). 
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Figure 2. Effect of lipid lowering on risk of coronary heart disease and type 2 diabetes in randomized controlled 

trials or predicted by Mendelian randomization. Each point represents the relative risk for disease per each 

standard deviation increase in selected lipid traits due to the intervention (green) or genetic pathway (red). 

Results are not yet available for drug trials of apo(a) and APOC3 inhibitors. Hazard ratios (from clinical trial 

results) and odds ratios (from Mendelian randomization analyses) were assumed to approximate the same 

measure of relative risk. The number of disease events from clinical trials of statins were 24323 CHD
28

 & 7339 

type 2 diabetes
20

 cases; from trials of Ezetimibe were 5314 CHD
29

 & 1414 Type 2 diabetes
29

 cases; from trials 

of Evolocumab were 60 CHD
21

 & 45 type 2 diabetes
21

 cases. The number of cases in Mendelian randomization 

analyses of CHD were 60801
63

 and for type 2 diabetes were 26488
64

. Inhibitors of HMGCR, NPC1L1 and PCSK9 

reduce LDL cholesterol concentration; inhibitors of apo(a) reduce Lp(a) concentration; inhibitors of APOC3 

reduce triglyceride concentration. Effects of SNPs on LDL cholesterol and triglycerides were estimated using 

results from the GLGC
61

; The effect of rs10455872 on Lp(a) levels was estimated using results from the 

European Prospective Investigation into Cancer and Nutrition (EPIC) study
60

. Abbreviations: CHD, coronary 

heart disease; SD, standard deviation; CI, confidence interval; LDL, lipoprotein; Lp(a), lipoprotein(a); Apo(a), 

apolipoprotein(a); HMGCR, 3-Hydroxy-3-Methylglutaryl-CoA Reductase gene; NPC1L1, Niemann-Pick C1-Like 1 

gene; PCSK9, Proprotein convertase subtilisin/kexin type 9 gene; LPA Lipoprotein(A) gene; APOC3, 

Apolipoprotein C3 gene.  
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Figure 3: Detailed analysis of causal effect of LDL cholesterol (LDL-C) on type 2 diabetes (T2D). a) A forest plot, 

where each black point represents the causal estimate of LDL-C (SD units) on T2D (log(OR)) produced using 

each of the 57 instruments separately, and red points show the combined causal estimate using all SNPs 

together using each of three different methods. Horizontal lines denote 95% confidence intervals. b) A plot 

relating the effect sizes of the SNP-LDL association (x-axis, SD units) and the SNP-T2D associations (y-axis, 

log(OR)) with 95% confidence intervals. The slopes of the lines correspond to causal estimates using each of 

three different methods. c) Leave-one-out sensitivity analysis. Each black point represents the maximum 

likelihood MR method applied to estimate the causal effect of LDL-C on T2D excluding that particular variant 

from the analysis. The red point depicts the estimate using all SNPs. All estimates in this plot are obtained 

using the inverse variance weighted method. There are no instances where the exclusion of one particular SNP 

leads to dramatic changes in the overall result. d) Funnel plot showing the relationship between the causal 

effect of exposure on outcome estimated by each SNP against the inverse of the standard error of the causal 

estimate. Vertical lines show the MR estimates using all SNPs for each of four different methods. Symmetry of 

the funnel plot indicates lower risk of horizontal pleiotropy leading to unreliable associations. 
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Figure 4 Hypothesis-free causality scan. a) An illustration of the analysis that was performed. LDL 

cholesterol, lipoprotein(a) and triglycerides were instrumented by 57, 1 and 40 SNPs, respectively. 

MR was performed sequentially for each exposure on each of 150 complex trait outcomes. The word 

cloud lists the categories under which each complex trait falls, with text size corresponding to the 

number of traits for that category. b) Volcano plot showing the effect of lower lipid levels on 

outcomes (x-axis) against the -log10(p-value) (y-axis) obtained from the inverse variance weighted 

estimate. Each volcano plot represents the association of a particular exposure against all available 

outcomes. Those outcomes that have a p-value < 0.05 are labelled. Larger points denote false 

discovery rate (FDR) < 0.05. 
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