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Abstract8

The cerebellum has a well-established role in locomotion control, but how the cerebellar network9

regulates locomotion behaviour is still not well understood. We therefore characterized the activity10

of cerebellar neurons in awake mice engaged in a locomotion task, using high-density silicon electrode11

arrays. We characterized the activity of over 300 neurons in response to locomotion, finding tuning12

to speed of locomotion, turning, and phase of the step cycle. We found that the cerebellar neurons13

we recorded mainly encoded information about future locomotor activity. We were able to decode the14

speed of locomotion with a simple linear algorithm, needing relatively few well-chosen cells to provide15

an accurate estimate of locomotion speed. Our observation that cerebellar neuronal activity predicts16

locomotion in the near future, and encodes the required kinematic variables, points to this activity17

underlying the efference copy signal for vertebrate locomotion.18

Introduction19

An animal’s survival relies heavily upon its ability to locomote through space. The ethological im-20

portance of locomotion is reflected in the large proportion of the central nervous system involved in21

locomotor activity. One such area is the cerebellum, whose function was long ago established through22

clinical and lesion studies to be essential for learning and controlling movements (Flourens, 1824;23

Luciani, 1891; Holmes, 1939). Being located, in circuit terms, between higher cortical centres and the24

periphery, the cerebellum acts as a strategic relay point for sensorimotor integration.25

Electrophysiological studies combined with the analysis of behaviour provided direct evidence for26

the role of the cerebellum in locomotor control and learning. The spinocerebellum, the central part of27

the cerebellum, receives projections from the spinal cerebellar tract neurons which convey peripheral28

sensory signals and information from the spinal pattern generator (Arshavsky et al., 1983; Fedirchuk29
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et al., 2013). In particular, the medial zone of the spinocerebellum, the vermis, has been identified as30

the area involved in controlling posture, tone, flexion and extension of limbs (Chambers and Sprague,31

1955).32

The spinocerebellar tracts, which are part of the locomotion circuitry (Goulding, 2009), were found33

to be essentially preserved across animal species, including mice (Oscarsson, 1965; Berretta et al., 1991;34

Sengul et al., 2015). The mouse is a model organism of particular interest due to its suitability for the35

use of transgenic technology to dissect out the contributions of individual circuit elements. In recent36

years, the application of transgenic techniques to mouse experiments provided new insights into the37

neural circuits involved in locomotion (Akay et al., 2014; Bellardita and Kiehn, 2015; Kiehn, 2016),38

and the role of the cerebellum in motor and cognitive functions (Reeber et al., 2013; Zhou et al., 2014;39

Galliano and De Zeeuw, 2014; Hoogland et al., 2015).40

Observation of neural activity in the cerebellum has revealed that many cerebellar neuron types41

carry locomotion-related information. Purkinje cells, the only output of the cerebellum, are essential42

to interlimb coordination, adaptation to external perturbation, and they tend to fire rhythmically43

with the stepping cycle (Yanagihara and Kondo, 1996; Ichise et al., 2000; Orlovsky, 1972; Armstrong44

and Edgley, 1984). Although Purkinje cells in the cat were not observed to have substantial firing45

rate modulation by walking speed on a treadmill (Armstrong and Edgley, 1988), it was recently46

observed that the firing rate of Purkinje cells, averaged within single steps, can be modulated both47

negatively and positively with locomotion speed in freely running rats (Sauerbrei et al., 2015). Golgi48

cells were also shown to discharge rhythmically during locomotion, however no modulation by the49

speed of locomotion was observed in this case (Edgley and Lidierth, 1987). In contrast, granule cells50

and molecular layer interneurons of mice on a a spherical treadmill increased their firing rate during51

locomotion relative to stationary periods (Ozden et al., 2012; Powell et al., 2015), leaving open the52

question of whether and how cerebellar neurons are tuned to the speed of locomotion.53

Electrophysiological recordings of single units in the cerebellum validated the relationship between54

behaviour and neural activity, but have thus far failed to account for population dynamics, providing a55

confined view of the cerebellar neural code. In fact, cerebellar circuitry is characterised by a high degree56

of feedback, feed-forward and collateral connections (Ito, 2006; Coddington et al., 2013; Mathews et57

al., 2012; Rieubland et al., 2014; Astorga et al., 2015), and a distinctive divergence-convergence58

configuration of inputs and outputs (Napper and Harvey, 1988; Person and Raman, 2012). There are59

therefore important unanswered questions as to how locomotion-related information is conveyed by60

ensembles of cerebellar neurons, and what type of neural population code is employed.61

To address these questions, we recorded from movement-sensitive populations of neurons in lobules62
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V and VI of the cerebellar vermis of mice navigating in a virtual reality (VR) environment. We63

characterised neurons whose activity is modulated by kinematics parameters such as locomotion speed64

and yaw rotation. The combined activity of these neurons linearly decodes locomotor speed with65

an accuracy proportional to the population size, providing new insight on the neural code of the66

cerebellum.67

Results68

Mice (n=14, 16-24 weeks old) were head-fixed on an air-supported spherical treadmill inside a demi-69

spherical screen (Figure 1A; Holscher et al., 2005; Harvey et al., 2009). Sphere pitch and yaw move-70

ments generated by the mouse were read by two optical computer mice, and integrated in order to71

determine the translation and heading of the animal in the virtual space. Visual stimuli were con-72

trolled in closed-loop using custom-developed LabView software (see Methods). The mice navigated73

through a virtual corridor along which they received water at defined reward points (green cylinders,74

Figure 1B). Following behavioural training (Figure 1C and Figure 1 - figure supplement 1), multi-75

electrode array extracellular recordings were made from lobules V and VI of the cerebellar vermis76

(Figure 1D). Four animals did not receive behavioural training, but instead were allowed to run in77

the dark, with the virtual reality stimulus switched off, as a control group to discern the influence78

of visual feedback on locomotor speed encoding. Animals spent on average 57±3% (mean±s.e.m.,79

n=39) of each recording period running (defined as speed exceeding 1 cm/s). For each animal, the80

recording electrode was positioned at a number of different depths (39 recordings in total, 311 units;81

see Figure 1E). Action potentials were detected and clustered to perform spike sorting (Rossant et al.,82

2016). For each identified unit, cell type was determined according to recently published classification83

criteria (Figure 1F and Figure 1 - figure supplement 2, Van Dijck et al., 2013; Hensbroek et al., 2014).84

Cerebellar neurons respond to speed of locomotion85

The activity of many units correlated with the behavioural status of the mouse, i.e. the firing rate86

changed with speed (Figure 2A-C). To determine whether neural activity correlated with speed of87

locomotion, we computed speed tuning curves for the firing rate of each unit (Figure 2D-F). To assess88

the significance of speed modulation, we shuffled the data 100 times and compared the variance of89

the original curve with that computed from the shuffled data. If this variance was greater than the90

values of at least 99 shuffled curves, the unit would be considered to be significantly speed modulated91

(Saleem et al., 2013; Kropff et al., 2015). We also checked whether the changes in firing rate were92

due only to changes in excitability between stationary and moving periods (i.e. if cells were driven93
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by locomotion, but their activity was not modulated by speed) by repeating the above procedure94

but only considering speeds >1 cm/s. 159 units were found to respond to locomotion movements:95

20 showed a binary response to movement and the remaining 139 were modulated by speed. For96

these units, three classes of modulation profile (tuning class) were observed: units whose firing rate97

monotonically increased (n=50) or decreased (n=51) with speed, and units whose firing rate reached98

its maximum at a preferred speed that is ≤ 70% the maximal speed achieved by the mouse (n=38).99

Similar profile responses were observed in näıve (untrained) mice and no differences were found between100

the responses of units recorded from these and trained animals. These units were therefore analysed101

conjointly (Figure 2 - supplement figure1A).102

Positively modulated units, on average, had lower spontaneous (animal at rest) firing rates com-103

pared to those cells whose firing rate decreased with speed (Figure 2G,H). Firing rate changed from104

24.7±4.6 Hz during resting periods to 52.2±7 Hz (mean±s.e.m., n=50) at maximal locomotion speed.105

For negatively modulated units, firing rate decreased from 50±7.6 Hz under the resting condition to106

30±6.1 Hz (mean±s.e.m., n=51) during locomotion at maximal speed. Units showing a preferred speed107

had on average less marked changes going from 19.3±4.2 Hz at rest up to 40±5.7 Hz (mean±s.e.m.,108

n=38) at the maximum speed observed (Figure 2I).109

We examined whether the modulation of single cells differed within and across response tuning110

classes (Figure 2 - supplement figure 2A). The modulation index was defined as the ratio between the111

difference and the sum of the maximum and minimum firing rates measured on each tuning curve.112

Modulation indexes for all response types varied heterogeneously across the whole range. We found113

that, for all response tuning classes, the modulation of firing rate was negatively correlated with114

spontaneous firing rate (Figure 2 - supplement figure 1B).115

Units responsive to movement were observed in all animals, with no discernible dependence on116

depth of recording site (Figure 2 - supplement figure 3). Units belonging to the same response tuning117

class were not observed to cluster spatially: in only 8 out of 39 recordings did we find units belonging118

to the same response class in close proximity (i.e. in the same electrode shank). In all remaining119

recordings (n=27) in which we found multiple units responsive to movement in close proximity, their120

response type was heterogeneous.121

Taken together, these results demonstrate that cerebellar neurons respond to locomotion speed by122

either increasing or decreasing their firing rate or responding maximally to a particular speed. Further-123

more, we did not find spatial clustering of units with the same tuning profile class. This observation124

suggests that nearby cerebellar neurons, possibly belonging to the same micro-zone (Oscarsson, 1979),125

encode locomotion-related movements by combining different types of sensorimotor information.126
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A subset of cerebellar neurons display yaw direction tuned responses127

While animals ran in the virtual corridor, they corrected their trajectories repeatedly to reach the128

target location marking the end of each trial. As the animals exerted more strength on either one or129

the other side of the body when turning the sphere, we examined whether this asymmetric use of limb130

muscles was reflected in cerebellar neuronal activity. By extracting the yaw movement information131

from the motion sensors, we examined how the firing rate changed with respect to sphere rotations132

around the clockwise (CW, negative yaw) and counter-clockwise (CCW, positive yaw) direction (ex-133

ample trace, top Figure 3A).134

To do so, we computed tuning curves for neural activity in response to CW and CCW yaw direc-135

tions, and calculated the modulation index for each cell in the two directions. For a few units, the136

neural response was clearly one-sided (Figure 3A). This was reflected in their tuning curves, and in137

the absolute difference between the modulation indexes of the tuning curves computed for the neg-138

ative (CW) and positive (CCW) yaw directions (delta yaw modulation index - Figure 3B,C). Most139

cells, however, responded equally to either yaw direction, showing a decrease (Figure 3D) or increase140

(Figure 3E) in firing rate to either CW or CCW yaw movement, in an almost symmetric fashion.141

This is reflected in the distribution of the delta yaw modulation indexes: 63% (195 out of 311) had142

a difference in modulation indexes smaller than 0.1, while only 19% (58 out of 311) was greater than143

0.2 (Figure 3F), indicating sensitivity to yaw direction. In fact many units had similar modulation144

indexes for both the CW and CCW yaw directions (Figure 3G). We also examined whether tuning145

to speed influenced the yaw-direction selectivity of the 58 cells that had delta yaw modulation index146

greater than 0.2. Interestingly, 32 out of the 58 yaw direction sensitive units did not modulate their147

activity with speed (Figure 3 - supplement figure 3A). There was also no evident relationship between148

the speed modulation index and delta yaw modulation index (Figure 3 - supplement figure 3B). These149

results suggest that there are units in the cerebellum that respond selectively to the use of one side of150

the body in preference to the other, and that these cells are not necessarily influenced by changes in151

speed.152

A subset of cerebellar neurons are tuned to phase of stepping cycle153

Previous studies of the role of the cerebellum in locomotion control found that Purkinje cells are154

rhythmically modulated by stepping cycle (Orlovsky, 1972; Armstrong and Edgley, 1984; Armstrong155

and Edgley, 1988; Edgley and Lidierth, 1987; Powell et al., 2015; Sauerbrei et al., 2015). We reasoned156

that one way to produce speed tuning would be for units to respond by spiking at a fixed phase per157

step cycle, thus producing higher firing rates the more step cycles occur per unit of time. We therefore158
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examined whether this was the reason behind the tuning of activity to locomotion speed. Since pitch159

velocity is measured by motion sensors parallel to the vertical axis, with velocity sampled at a high160

polling rate (f=200 Hz), it was possible to detect the vertical oscillations caused by the mouse stepping161

on the sphere (Figure 4A). The high frequency periodicity of the signal was extracted from the original162

pitch velocity signal by transforming the pitch velocity with the Hilbert operator. At least 393 putative163

step cycles were found for each recording session (1724±158, mean±s.e.m., n=39). We then measured164

the correlation between the firing rate (bin width = 5ms, smoothed with a 20-ms Gaussian window)165

and the phase of the step cycle for each unit (Figure 4B) finding that only 57 units out of 311 showed166

a significant modulation with the stepping cycle (p≤ 0.001, χ2 test for uniformity). Of these, thirty-167

two units were also significantly modulated by speed. Mean preferred phases of the modulated units168

were distributed across the stepping cycle, with approximately two-thirds of the response covering on169

average 2.2±0.06 (mean±s.e.m, n=57) radians, as measured by the standard circular deviation (Drew170

and Doucet, 1991) (Figure 4B).171

To quantify the step phase modulation of the response, we used an approach commonly used172

in the study of orientation tuning, an analogous problem (where here phase within a step cycle173

replaces orientation within a circular stimulus space). We calculated the normalised phase orientation174

vector and computed the orientation selectivity index (Mazurek et al., 2014), renamed here the phase175

selectivity index, PSI. Units significantly modulated by step phase have higher phase selectivity indexes176

in comparison to non-modulated units (p=2e−16, Mann-Whitney U-test, Figure 4D). These results177

suggest that cerebellar neurons’ activity encodes kinematic information, i.e. locomotion speed is not178

a by-product of rhythmic modulation of the stepping cycle as shown in a previous study (Sauerbrei179

et al., 2015).180

Cerebellar units compute multiple kinematic parameters181

We have described units tuned for speed of locomotion, yaw (including some tuned for direction of yaw182

motion), and phase of stepping cycle. It is important to determine whether these constitute separate183

classes of neurons, or if instead, each of the neurons displays tuning to a lesser or greater extent across184

each dimension.185

For each cell, we therefore compared the modulation index for speed with the mean modulation186

index for CW and CCW yaw (see Methods), and with the phase selectivity index. These are depicted187

in a tri-plot in Figure 5A. It is apparent that speed, yaw and phase selective units do not cluster188

in this space, but are instead distributed relatively uniformly. A similar picture arises when instead189

comparing the mutual information units convey about speed, yaw and step phase (Figure 5B). As190
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speed and yaw are not independent - indeed, speed is comprised of both a pitch and a yaw component191

- we broke speed tuning up into these components and assessed them separately. Figure 5C shows that192

units that conveyed substantial information about pitch also tended to convey substantial information193

about yaw - and that in fact, more of the speed information arose from yaw than from pitch signals.194

As bimodal distributions were not found in the information conveyed about speed, pitch, yaw nor195

step phase, we conclude that the cerebellar units examined were a relatively homogeneous population196

encoding all of these quantities to a greater or lesser extent, rather than a heterogeneous population197

comprising clusters of units encoding different kinematic variables.198

Cerebellar neurons mainly encode motor information199

In order to understand whether the recorded units encode information about descending motor com-200

mands, we analysed the timing of the information conveyed by neuronal responses about locomotion201

speed, reasoning that for motor units, the firing rate should provide predictive information about202

locomotion speed, whereas for sensory units, the information should be largely retrospective. We203

computed the mutual information (Schultz, Ince, et al., 2015) between the firing rate and locomotion204

speed time courses for each neuron, for a range of imposed time lags. Firing rates were shifted with205

respect to the speed signal by 10 ms from -500 to +500 ms (Figure 6A). While there were retrospective206

units (peak mutual information at negative time lag), the majority of speed modulated units showed207

a peak in the mutual information at a positive time lag of 108.1±17.2 ms (mean±s.e.m., n=139), sug-208

gesting that the neurons observed may primarily encode descending motor signals rather than sensory209

feedback (Figure 6B).210

The values of maximal mutual information were significantly higher that those of non-modulated211

units (p=2.3e−9, Mann-Whitney U-test): 0.24±0.01 bits (mean±s.e.m., n=139) for speed modulated212

units and 0.13±0.01 bits (mean± s.e.m., n=172) for unresponsive units. In fact, the lower information213

values - calculated at zero lag - for the latter class are consistent with the classification based on the214

tuning curve modulation approach (Figure 6 - figure supplement 1).215

Speed of locomotion can be linearly decoded from cerebellar neuronal ensembles216

It has been previously shown that neural activity of single Purkinje cells encode multiple kinematic217

parameters of multi-joint movements during arm reaching tasks in primates (Roitman, 2005; Pasalar218

et al., 2006; Hewitt et al., 2011). Similarly, locomotion requires the coordination of multiple joints and219

muscles. Since the majority of units we found was shown to encode multiple kinematics parameters,220

we set out to find out whether locomotion speed could be accurately reconstructed by populations of221
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cerebellar neurons.222

To this end, we developed an optimal linear estimator (OLE) with the aim to reconstruct the223

locomotion speed time course from a weighted sum of the firing rates of each unit (Figure 7A). The224

weights were adjusted by linear regression, so as to minimise the mean squared error (MSE) between225

the decoded and the original recorded trace. The decoder was trained on 70% of the data of each226

recording and tested on the remaining 30%. To assess the scaling of decoder performance with ensemble227

size, we selected recordings comprising at least eight units (n=6).228

We investigated how the population size affected the accuracy of the decoder. To avoid any bias229

in the choice of units used in the reconstruction, these were selected randomly for any given size of230

neural population. 2N possible population combinations were tested for ensembles of 1, 2, N − 1 and231

N units (N number of units recorded in the experiment), and N2 otherwise. As the number of units232

increased, so did the decoder accuracy whilst the decoding performance range of the random selected233

ensembles reduced (Figure 7B). Furthermore, as the population size increased, the median accuracy of234

locomotion speed reconstruction approached the one obtained using populations formed by the most235

correlated units only, as measured by the Pearson correlation coefficient.236

These results are consistent across all experiments that contained more than seven units (Figure237

7C) suggesting that the cerebellum encodes kinematic information related to instantaneous locomotion238

speed by linearly summing the contributions of single neurons.239

Discussion240

In this study, we used a virtual reality behavioural task, together with multi-unit electrophysiological241

recording, to investigate the neuronal population activity underlying locomotion. Our approach al-242

lowed us to assess the activity of multiple neighbouring neurons during behaviour while maintaining243

a high degree of experimental control over behavioural parameters. Our recordings from lobules V244

and VI of the vermis indicate that most cells in this area encode kinematic parameters of locomotion.245

We found that while 6% of the cells showed significantly different firing rates during locomotion as246

opposed to rest, but no significant modulation by speed (similar to the classical results of Armstrong247

and Edgley (1984)), 45% of neurons were specifically tuned for speed of locomotion. This included248

cells that increased their firing rate with increasing running speed, cells that decreased their firing249

rate below the spontaneous (rest) level with increasing speed, and cells showing a preferred locomo-250

tion speed. We also found that some cells were tuned to yaw (turning) and also to particular phases of251

the locomotion step cycle. The different responses of individual cells that we observed to locomotion252

speed, turning and stepping may reflect interdependent information about behavioural state, laterality253
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and type of muscles being exerted during locomotion.254

While we have employed and extended recently developed cell classification algorithms (Van Dijck255

et al., 2013; Hensbroek et al., 2014), our approach is limited by the lack of certainty about cell identity.256

We were able to identify Purkinje cells, granule cells, and interneurons, however we were not able to257

classify interneurons into specific classes with any degree of confidence, and our approach did leave258

a significant number of unclassified neurons. In the present study, for technical reasons we did not259

attempt to analyse complex spike (CS) waveforms from Purkinje cells, restricting our attention to260

simple spike (SS) waveforms. CS will be the subject of a future manuscript. Further improvements261

to cell classification algorithms will probably require obtaining ground truth validation data through262

simultaneous MEA and sharp electrode or whole cell patch clamp recording in the awake animal,263

with histological validation, a technically challenging task. In our study, however, we did not find the264

encoding of locomotion kinematic parameters to be dependent upon cell class.265

Kinematic parameters of arm movements have been found to be related to single neuron activity266

in the cerebellum (Hewitt et al., 2011; Popa et al., 2012) and in the motor cortex (Ashe and Geor-267

gopoulos, 1994; Yu et al., 2007) of non-human primates. It has recently been reported that Purkinje268

cells discharge rhythmically during locomotion (Sauerbrei et al., 2015), and that granule cells fire in269

bursts at locomotion onset (Powell et al., 2015). Ozden et al. (2012) reported finding molecular layer270

interneuron activity to increase following transition from a resting to a moving (locomotion) state.271

Sauerbrei et al. (2015) did report modulation by speed of some of the cells in their dataset (recorded272

from the freely moving rat), but did not describe speed tuning further, instead focusing on step-phase273

dependent correlations with behaviour. Moreover, vestibular inputs were not taken into account in274

their modulation analysis; such inputs were controlled in our study, as we used head-fixed animals275

for which these inputs can be considered negligible. To the best of our knowledge, the current study276

is the first description of the tuning of cerebellar neurons to speed of locomotion. One question that277

may arise is why this was not observed previously, for instance in earlier studies of cats walking on278

a treadmill. While it is not at this stage possible to rule out that inter-species differences account279

for this, our view is that the discrepancy is more likely to arise from the fact that in these studies280

the cats passively stepped on a treadmill, which was rotating at a rate fixed by the experimenter.281

Instead, in our study, the animals actively locomoted at a speed of their own choice (starting and282

stopping as they wished), motivated by an increasing reward rate for more rapid progress down the283

corridor segments, which may engage cerebellar networks to a greater degree. In fact, a small amount284

of speed modulation is apparent in Fig. 2 of Armstrong and Edgley (1988) for most of the neurons285

they recorded, suggesting that the situation in the mouse and cat may not be completely dissimilar.286
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By allowing the spherical treadmill to rotate along any orientation (rather than constraining it287

to a single axis as with a treadmill), we aimed to create a navigation paradigm congruent with a288

real-world scenario. Animals had to intentionally engage many muscles relevant for locomotion, and289

were not constrained to run at fixed speeds. However, the locomotion task should be thought of as a290

sensorimotor control task, rather than as normal locomotion behaviour, because of the artificial nature291

of the head fixation and of the act of balancing on a frictionless ball, which is itself an acquired skill.292

Because the animals were head-fixed, we assumed that vestibular inputs were negligible during yaw293

(turning) movements. The correlation of neuronal activity with the direction of movement may be294

related to lateralised spinocerebellar inputs from muscles employed to steer clockwise or anti-clockwise.295

We did not find cells with a preference for a turning direction (i.e. a high Delta modulation index) to296

be highly modulated by speed, suggesting that speed and direction locomotion information are relayed297

separately. A similar result was observed in macaque monkeys performing a visually guided tracking298

task (Roitman, 2005): Purkinje cells were found in that study to respond to position and direction of299

arm movement but not to arm speed.300

According to our information theoretic analysis, the majority of the units provided maximum301

information about the speed of locomotion a short time in the future (∼100 ms). They can thus be302

thought of as providing predictive, rather than retrospective, information about locomotion, suggesting303

that they may be driven by internally generated rather than sensory signals. The cerebellum receives304

projections from the nuclues cuneiformis (Gioia and Bianchi, 1987) that, in turn, receives inputs from305

the mesencephalic locomotor region (MLR; Ryczko and Dubuc, 2013). Since the MLR is a region of306

the hind brain that is involved in initiating and modulating locomotion (Shik et al., 1966; Lee et al.,307

2014; Kiehn, 2016), the cerebellum might receive a copy of the motor signals sent to spinal locomotion308

centres (Orlovsky et al., 1999). Indeed, MLR neurons have been observed to show similar speed309

tuning profiles to those reported here (Lee et al., 2014). We see this in agreement with computational310

theories, based on forward internal models, according to which the cerebellum uses an efference copy311

to compensate for slow sensory feedback during fast movements (Wolpert et al., 1995; Pasalar et al.,312

2006). In addition, the cerebellum might use the efference copy to suppress sensory feedback in order313

to reduce motor noise during movements (Shergill et al., 2003; Kennedy et al., 2014; Laurens et al.,314

2013).315

We were able to reconstruct locomotion speed to high accuracy by linearly summing (positive and316

negative) weighted firing rates. The performance of our decoder increased with population size, as it317

can be expected, suggesting that multiple motor commands and copies of the central pattern generator318

signals can be effectively combined to minimise noise in the output to the deep cerebellar nuclei (Eccles,319
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1973; Schultz, Kitamura, et al., 2009), while preserving the remarkable pattern recognition capacity320

of the individual Purkinje cell (Marr, 1969; Albus, 1971; Barlow, 2002). This strategy could provide a321

more accurate estimate of the real speed of the animal, and, in turn, optimise motor control, similarly322

to what has been described for population decoding of saccades duration in monkeys (Thier et al.,323

2000). It was striking, however, how few cells needed to be combined in order to obtain an accurate324

readout of locomotion speed, for well-chosen cells. This interpretation also agrees with the idea that a325

linear summation of different response contributions could underpin the cerebellar neural code (Walter326

and Khodakhah, 2009).327

In this study we recorded from neurons in cerebellar vermis lobules V and VI whose activity con-328

veyed information about locomotion kinematics. Other areas (such as paravermal lobule V, Sauerbrei329

et al., 2015) have also been found to represent locomotion signals. Because of the peculiar fractured330

somatotopy and modular organization of the circuitry (see e.g. Apps and Hawkes, 2009), it is unclear331

how kinematic information processing is divided across zones and how their outputs are integrated332

by deep cerebellar nuclei to generate motor control. Perhaps such motor estimations are also relayed333

to, and exploited by, other nervous centres, to integrate behavioural information relevant for motor334

control and spatial navigation. In future work we hope that this may be elucidated.335

Materials and Methods336

Virtual reality system337

Experiments were performed in a custom made virtual reality system for mice similar to the ones338

used in previous studies (Harvey et al., 2009; Schmidt-Hieber and Häusser, 2013). Mice ran on a339

polystyrene sphere of 20 cm in diameter free floating on a 3D-printed concave inset. The motion of340

the sphere was read by two USB laser mice (Razer Imperator, Razer Inc, USA) positioned ninety341

degrees apart on the equator of the sphere. The signals carrying the instantaneous velocities of the342

sphere were polled at 200Hz by the host computer (Windows 7 OS, Microsoft Corporation, USA) via343

a Labview custom software (National Instruments Corporation, USA). These were then integrated to344

update the position in the virtual environment. The virtual reality environment was rendered with345

the openGL API implemented in the C++ language and interfaced with Labview control software346

via Microsoft dynamic-link libraries (DLL). This was projected via a digital projector (PJD6553w347

ViewSonic Corporation, USA) onto a demispherical screen around the mouse (Talbot design Ltd,348

UK) with a refresh rate of 120Hz. The VR apparatus comprised an automated reward system for349

water delivery and air puff stimulation controlled via a data acquisition card (NI BNC-2090A and NI350
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PCIe-6321, National Instruments Corporation). Water rewards were delivered to the mouth of the351

mouse via a custom made water spout connected to a peristaltic pump (Model 80204-0.5, Campden352

Instruments). Low pressure air jets were puffed to the mouse trunk from two lateral copper tubes353

upon opening of two normally closed solenoid valves (model PU220AR-01, Shako Co. Ltd) connected354

to an air pressure regulator.355

Some experiments were run in the dark by disabling the projection of the visual stimulus and only356

recording mouse movements on the sphere.357

Surgical procedures358

All experiments were performed in accordance with the regulations of the United Kingdom Home359

Office. Of the fourteen animals used, ten of these animals received behavioural training before the360

electrophysiological recording. For the remaining four, the head stage implant and recording prepara-361

tion was performed in a single surgery (as these animals did not receive any training they are referred362

to as ‘näıve’ in this paper). All mice were implanted with a metal plate for head fixation attached363

on the anterior cranial bone with histoacryl tissue adhesive (Williams Medical Supplies, product code364

D569).365

Trained mice underwent a second surgery upon completion of the behavioural training. Water366

restriction was terminated at least 24 hours before the surgery to make sure the animals could undergo367

the surgery fully hydrated. A craniotomy and durotomy were made over the central part of the vermis.368

The craniotomy was covered with a 1.2% agarose in with phosphate-buffered saline (PBS) and then369

capped with Kwik-Cast sealant and nail varnish to preserve the brain tissue until the recording session.370

This happened at least 24 hours after the end of the surgery.371

Behavioural training372

Following a recovery period of at least 24 hours from the surgery, the mice were head-fixed on the373

spherical treadmill for up to 10 minutes to habituate to the system for two consecutive days. Water374

restriction began on day 2 post-surgery. From day 3, the virtual reality projection was switched on.375

This is the first session of behavioural training. To incentivize the mice participation to the task, a376

water reward was given through a lick port as the mouse walked underneath cylinders suspended over377

the corridor. The water reward was given only at the end of each trial, once the mouse reached the378

following two criteria: 1) when the mouse was observed to intentionally stop only to lick its water379

reward and 2) when the mouse could reach the end of the virtual corridor without running more than380

twice the length of the corridor throughout the trials. Corridor length was progressively increased up381
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to 500 cm depending on the mouse performance and motivation. Two lateral air-puffers were used to382

prevent the mouse from hitting the virtual walls of the corridor. They pointed to the rear part of the383

trunk of the mouse on either side.384

One to two hours after the end of a training session we gave the mice water ad libitum until they385

stopped drinking. Mouse weight was monitored daily as to guarantee that the each animal did not386

lose more than 20% of its pre-training body weight.387

Mice were trained every day for at least 2 weeks and until they were capable of running 20388

consecutive trials in under 30 minutes from the start of the session for two consecutive days.389

Electrophysiological recordings390

After 24 hr recovery from the second surgery for trained mice (or from the first surgery for näıve391

mice), the mice were head-fixed on the spherical treadmill, the craniotomy was exposed after gently392

removing all layers of nail varnish, Kwik-Cast and agarose. The electrode was inserted at a 45 degree393

angle along the coronal plane and allowed to stabilize in the cerebellum for approximately 10 minutes394

once good spike signals were detected. To record activity from lobules V and VI of the cerebellum, we395

used 4-shank, 32-channel multielectrode arrays (MEAs) (Neuronexus Technologies, USA, probe model396

Buzsaki32). Behaviour and electrophysiological activity were then recorded in parallel while the mice397

navigated in the virtual reality environment.398

To maximise mechanical and electrical stability during the electrophysiological recording, the water399

spout was removed from the mouth of the mouse and airpuffers were diverted from the mouse trunk.400

We did not observe behavioural changes, as the mice were fully hydrated beforehand, and the airpuff401

noise was a stimulus strong enough to elicit trajectory corrections. Multiple recordings were acquired402

from each mouse (minimum duration 270 seconds, max duration 1833 seconds). The entire recording403

sessions lasted up to 50 minutes.404

Data analysis405

Spike sorting and clustering406

Electophysiological data from each shank were processed independently with the SpikeDetekt / Klus-407

taKwik / Klustaviewa software suite (Rossant et al., 2016). After the spike times were detected and408

sorted with the automated program, we ‘cured’ the outcome of the spike sorting with the built-in409

KlustaViewa program. At this stage, we selected the units with the highest clustering quality. We410

kept units that had a central portion of the auto-correlogram completely clean (Harris et al., 2000).411

We merged units that were separated due to shift of the signal in different channels with the help of412
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the clustering features viewing tool. These were also validated against each other by means of the413

cross-correlograms. No distinction between simple and complex spikes were considered as the time414

window within which each spike waveform was extracted was only 2 ms.415

Cell classification416

We used a hybrid cell classifier based on recently published algorithms (Van Dijck et al., 2013; Hens-417

broek et al., 2014). The algorithm was applied only to those units from which it was possible to collect418

at least 60 inter-spike intervals (ISI) taken during periods of stillness (speed of mouse ≤ 1 cm/s). The419

first steps aimed to identify putative Purkinje and granule cells based on their mean spike frequency,420

entropy of ISI distribution and logarithmic coefficient of variation of ISIs (CVlog), (Figure 1 - figure421

supplement 3); the remaining units were considered to be putative interneurons.422

Tuning curves423

Firing rate was calculated at the same frequency as the speed (5 ms bins) and then smoothed with a424

150 ms Gaussian filter. Data points for speeds greater than 1 cm/s of the tuning curves are comprised425

by 2000 bins. The data points for speed=0 cm/s are formed by all bins taken when the mouse is426

still. To evaluate the significance of a unit’s firing rate modulation with speed of locomotion, we427

randomly shifted the spike times one hundred times by at least 20 seconds and up to the duration428

of the recording minus 20 seconds (Kropff et al., 2015). For each iteration, firing rate was calculated429

and a speed tuning curve computed, and its variance was measured. We then compared the variance430

of the original speed tuning curve with the ones from the shuffled data. If its value was greater than431

99% of the shuffled data values, then we considered the unit as significantly sensitive to movement432

(binary response). We repeated this calculation and applied the same criteria to speeds ≥ 1 cm/s to433

assess if each unit was significantly modulated by locomotion (Saleem et al., 2013).434

A unit response type was defined according to the curve that best fits the original data points.435

Because of the different response profiles obtained from the original data, three different curves were436

fitted (linear, second-degree polynomial and double exponential). The inverse of the variance of each437

data point was used as weight for the fitting to compensate for the different number of data points in438

each bin at speed=0. The coefficients of the best fit curve were used to determine the response type.439

In addition, we classified a cell as:440

• positively modulated if the maximum firing rate was greater than the firing rate during stationary441

periods, and this was recorded at a speed greater than 70% of the maximum speed of the mouse;442

• negatively modulated if the minimum firing rate was smaller than the firing rate during stationary443

periods, and it was recorded at a speed greater than 70% of maximum speed of the mouse444
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• having a preferred speed if the maximum firing was greater than the firing rate during stationary445

periods and this was recorded at a speed smaller than 70% of the maximum speed of the mouse.446

The tuning curves for yaw movement were calculated similarly for clockwise (CW) and counter-447

clockwise (CCW) turning of the sphere. We then fitted three different curves (linear, second-degree448

polynomial and double exponential), selected the best fitting, and calculated the modulation index449

for either yaw direction. Modulation indexes were calculated as:450

yawmax − yawmin
yawmax + yawmin

.

We also calculated the difference in Modulation Index (Delta Modulation Index: Modulation Index451

CW - Modulation Index CCW) between the CW and CCW direction to assess the ’asymmetry’ of452

tuning curves. Cells with a Delta larger than 0.2 were apparently asymmetric on visual inspection.453

Näıve vs. trained454

In order to verify whether the virtual reality affected the responses to movement kinematics, we455

compared the population of units acquired from näıve (n of units = 58) or trained (n of units = 253)456

animals. We used the Mann-Whitney Test to compare the modulation index distributions in the two457

conditions for speed and yaw. We also compared the difference in yaw modulation index and the phase458

index.459

Step cycle modulation460

To look at the modulation with stepping cycle, the pitch velocity signal was high-pass filtered at 3 Hz461

to cancel the locomotor related changes of speed. The Hilbert transform was then computed and its462

phase was extracted as a function of time. To ensure that pitch velocity changes were due to stepping,463

only putative stepping cycles longer than 50 ms and occurring only during moving periods (speed ≥ 1464

cm/s) were considered. Each cycle duration was normalised with respect to time and divided in 36465

equal intervals. For each interval, the instantaneous firing rate was computed.466

Because of the binning of each cycle, step phase modulation was tested for uniformity with the χ2
467

test of uniformity (Fisher, 1995). The mean direction θ (in radians) of the firing rate distribution of468

a cell around the step cycle was computed as:469

θ = arctan

(∑n
i=1

sinα
n∑n

i=1
cosα
n

)
(1)

where the numerator and denominator are the mean rectangular coordinates of the resulting phase470

angle, X and Y respectively, α is the phase angle of the resultant vector R =
√
X2 + Y 2 for each471

cycle, and n is the number of cycles or steps.472
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We also calculated the circular standard deviation σ, which is a measure of the spread of the firing473

rate around the mean phase direction, and indicates where approximately 66% of the data lie (Drew474

and Doucet, 1991), as σ =
√
−2lnR. We calculated the Phase Selectivity Index (PSI). PSI is defined475

equivalently to the orientation selectivity index described by Mazurek et al. (2014),476

PSI = 1−
∑n

i=1R(θn)2iθn∑n
i=1R(θn)

, (2)

where R(θ) is the magnitude of the firing rate for any given angle θ = [0◦ : 10◦ : 360◦], for each477

stepping cycle.478

Mutual information479

The Mutual Information between instantaneous firing rate and kinematic time-courses was computed480

using a continuous estimator based on the Kraskov, Stögbauer, and Grassberger (GSK) technique481

(Kraskov et al., 2004). We used the Matlab implementation of the GSK algorithm in the JIDT482

toolkit (Lizier, 2014). Firing rates and kinematics variables were computed as described above, and483

fed into the GSK algorithm, returning a mutual information value for each unit. For the step cycle484

calculation, the mutual information was computed between the firing rate and the phase angles of the485

Hilbert transform of the pitch velocity. Only periods during movement were considered, and mutual486

information was estimated for each cycle and then averaged. In this case, firing rate was computed487

every 5 ms and smoothed with a Gaussian filter of standard deviation 20 ms.488

Decoding489

For every chosen experiment, the recorded cells’ spike trains were binned at 5 ms and then convolved490

with a Gaussian function (σ = 50, window width of 3σ) to obtain a time-course vector of instantaneous491

firing rates. The locomotion speed time course was convolved with the same Gaussian function. We492

considered all locomotion speeds ≤ 1 cm/s to be stationary; these were set to 0 cm/s. Both the firing493

rate and the locomotion speed time-courses were then normalised to obtain values between 0 and 1.494

Only recording sessions with at least 8 units (resulting in inclusion of 6 sessions from 4 mice) were495

considered, in order to investigate the scaling of decoder performance with ensemble size. To decode,496

we used an optimal linear estimator (OLE) which weighted and linearly summed the instantaneous fir-497

ing rate of each neuron in its ensemble, then rectified the summed output. We tested the incorporation498

of an additional offset term prior to rectification, but found that it did not improve performance on499

our dataset. The decoder was trained on 70% of each locomotion session, and tested on the remaining500
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30%. The OLE reconstruction is given by501

v̂ =
[
R̂w

]+
(3)

where v̂ = [v1...vTtest ]
T is the reconstructed locomotion speed time course, [.]+ denotes the rectification502

operator, R̂ is a matrix whose columns consist of the firing rates ri of each cell i for the Ttest test time503

bins, and w is the linear estimator given by504

v = Rw, (4)

with v = [v1...vTtrain ]T being the measured speed time course vector for the Ttrain training data bins,505

and R a matrix whose columns are the firing rates for the training data, with the addition of a column506

of ones for the y intercept. Training the decoder by linear least squares regression is equivalent to507

solving this equation to find the optimal value of the estimator:508

w = (RTR)−1RTv, (5)

where v is a column vector containing the locomotion speed values for the training data. The esti-509

mated speed is half wave rectified to reflect the fact that only positive speed values are possible. We510

assessed decoding performance by computing the Pearson correlation coefficient between the actual511

and reconstructed locomotion speed time-courses, for the test data.512
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coding of sensory information by climbing fiber-evoked calcium signals in networks of neighboring664

cerebellar Purkinje cells’, The Journal of Neuroscience, 29(25), 8005–8015.665

Sengul, G., Fu, Y., Yu, Y., and Paxinos, G. (2015), ‘Spinal cord projections to the cerebellum in the666

mouse.’ Brain Structure & Function, 220(5), 2997–3009, doi: 10.1007/s00429-014-0840-7.667

Shergill, S. S., Bays, P. M., Frith, C. D., and Wolpert, D. M. (2003), ‘Two eyes for an eye: the668

neuroscience of force escalation.’ Science, 301(5630), 187, doi: 10.1126/science.1085327.669

Shik, M. L., Severin, F. V., and Orlovski, G. N. (1966), ‘Control of walking and running by means of670

electric stimulation of the midbrain.’ Biofizika, 11(4), 659–66.671

Thier, P., Dicke, P. W., Haas, R., and Barash, S. (2000), ‘Encoding of movement time by populations672

of cerebellar Purkinje cells’, Nature, 405(6782), 72–76, doi: 10.1038/35011062.673

Van Dijck, G., Van Hulle, M. M., Heiney, S. A., Blazquez, P. M., Meng, H., Angelaki, D. E., Arenz,674

A., Margrie, T. W., Mostofi, A., Edgley, S., Bengtsson, F., Ekerot, C. F., Jorntell, H., Dalley,675

J. W., and Holtzman, T. (2013), ‘Probabilistic identification of cerebellar cortical neurones across676

species’, PLoS ONE, 8(3), e57669, doi: 10.1371/journal.pone.0057669.677

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 5, 2016. ; https://doi.org/10.1101/078873doi: bioRxiv preprint 

https://doi.org/10.1101/078873
http://creativecommons.org/licenses/by-nc-nd/4.0/


Walter, J. T. and Khodakhah, K. (2009), ‘The advantages of linear information processing for cerebel-678

lar computation.’ Proceedings of the National Academy of Sciences of the United States of America,679

106(11), doi: 10.1073/pnas.0812348106.680

Wolpert, D. M., Ghahramani, Z., and Jordan, M. I. (1995), ‘An internal model for sensorimotor681

integration’, Science, 269(5232), 1880–1882, doi: 10.1126/science.7569931.682

Yanagihara, D. and Kondo, I. (1996), ‘Nitric oxide plays a key role in adaptive control of locomotion683

in cat.’ Proceedings of the National Academy of Sciences of the United States of America, 93(23),684

13292–13297.685

Yu, B. M., Kemere, C., Santhanam, G., Afshar, A., Ryu, S. I., Meng, T. H., Sahani, M., and Shenoy,686

K. V. (2007), ‘Mixture of trajectory models for neural decoding of goal-directed movements.’687

Journal of Neurophysiology, 97(5), 3763–3780, doi: 10.1152/jn.00482.2006.688

Zhou, H., Lin, Z., Voges, K., Ju, C., Gao, Z., Bosman, L. W., Ruigrok, T. J., Hoebeek, F. E., De689

Zeeuw, C. I., and Schonewille, M. (2014), ‘Cerebellar modules operate at different frequencies.’690

eLife, 3, e02536, doi: 10.7554/eLife.02536.691

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 5, 2016. ; https://doi.org/10.1101/078873doi: bioRxiv preprint 

https://doi.org/10.1101/078873
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figures692

After main figures693

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 5, 2016. ; https://doi.org/10.1101/078873doi: bioRxiv preprint 

https://doi.org/10.1101/078873
http://creativecommons.org/licenses/by-nc-nd/4.0/


60°
projector

demispherical
dome

treadball

30°

10cm

Head-plate 
holder

Cerebellar 
vermis

Recording location 
lobule V-VI

yaw

pitch

2 4 6 8 10 12 14 16

1

3

5

7

9

session

N
or

m
al

is
ed

 d
is

ta
nc

e 
   

   
   

   
/ t

ria
l

0

240°

90
°

starting 
position

reward points

end 
position

A B

C

D E

velocity 
sensors

spherical 
mirror

mirror

labjack

velocity 
sensor

water spout

F

MEA

Cerebellum

Cerebrum

0

500

1000

1500

2000

2500
I II III IV

granule cell
Purkinje cell
interneurons
not classifiable

de
pt

h 
(μ

m
)

10cm10cm

overhead view

side view

spherical 
mirror

demispherical
dome

240°

kinematics components

visual stimulus 
azimuthal span

water spout
treadball

82

129

82

virtual reality maze

18

shank

Figure 1: Virtual reality setup and electrophysiology recordings. (A) schematic view of the virtual
reality system with approximate image path of the visual stimulus from the projector to the demi-
spherical screen. Bottom left. Overhead view of the coverage of the mouse visual field. Bottom right.
Mouse on the spherical treadmill, or treadball. The signals from the velocity sensors are integrated to
determine translation (pitch) and heading (yaw) movements of the mouse in the virtual environment.
Mouse drawings not to scale. (B) Virtual reality environment. Top, perspective view of the virtual
corridor. Bottom, subject perspective of the VR maze with horizontal and vertical span of the virtual
camera. (C) Mean normalised distance ran per trial in first 16 days. Gray lines are subjects, thick
black line is average for all mice. (D) Recording location area. (E) Depth of single units (n=311)
from the cerebellar surface grouped by shank (I-IV) for all mice. Depth measurements are based on
the position of the channel in which the greatest spike amplitude of the signal is recorded (F) Pie
chart of cell classes as identified by a hybrid classification algorithm based on VanDijck et al., 2013
and Hensbroek et al. 2014
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Figure 2: Cerebellar neurons response to locomotion speed. (A-C) Speed and instantaneous firing
rate of three example units for the three response profiles observed (bins = 0.5 seconds). (D-F) Speed
tuning curves of the examples in A-C; error bars are standard errors. (G-I) Mean firing rate during
stationary periods and speeds at which maximal firing rate is recorded. Gray lines are single units;
thin black lines with asterisks on the left indicate units shown in A-C and D-F; thick black lines are
average firing rates of all units within each response class.
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Figure 3: Cerebellar neurons response to yaw direction. (A) Example unit tuned to CCW yaw
direction (positive): top, yaw trace in deg/s; bottom, mean instantaneous firing rate, bin width 100
ms. (B-C) Two example units preferentially responding to yaw-turning in the CW (B) or CCW (C)
; each data point is formed by more than 900 bins (100ms width); error bars are s.e.m.; inset bars
indicate the modulation index values derived from the two curves. (D) Example unit decreasing its
activity in both yaw directions. (E) Example unit that increases its activity in either yaw direction.
(F) Distribution of the difference in modulation index between the CW and CCW yaw direction. (G)
Population plot of modulation index values of each unit for the CW and CCW direction (n=311).
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Figure 4: Cerebellar neurons response to stepping cycle. (A) Top: pitch velocity signal; centre: boxed
pitch velocity signal aligned with its Hilbert transformed signal (middle) and spike events of an example
unit; bottom: close-up of approximately one second. (B) Preferred phases of units significantly
modulated by stepping cycle (n=57); horizontal bars indicate standard circular deviations. Unit 2,
shown in A and C is marked by the asterisk. (C) Polar plot showing the preferred locomotion phase
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standard deviation. (D) PSI of units modulated by step phase as a function of speed modulation
index. Right, distribution of PSI of these units is significantly different from the distribution of the
other units.
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Figure 5: Modulation indexes and mutual information values of cerebellar units. (A) Modulation in-
dexes for speed, yaw and phase selectivity index. Colour coding indicates p value of test for significance
of speed modulation. Mean yaw modulation index is the mean between the modulation indexes of the
yaw tuning curves for clockwise and counter-clockwise directions. (B) Mutual information values for
speed, yaw and step cycle. (C) Mutual information values of the two vectorial components of speed,
pitch and yaw. Colour coding indicates the value of mutual information of firing rate and speed.
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Figure 6: Mutual information of locomotion speed and firing rate. (A) Normalised mutual information
of four example units for different time lags; predictive units are shown in dashed lines and retrospective
units in solid lines; for each type, two examples are shown: one that either increases or decreases with
time and one with a peak either before or after zero lag. (B) Top: Histogram of the distribution of the
peaks at which maximal mutual information is found for units responsive to movement and modulated
by speed (bin size = 50 ms). Bottom: maximal mutual information values of the units responsive to
movement and modulated by speed with respect to the time lag.
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Figure 7: Population decoding of cerebellar neurons reconstruct speed. (A) Diagrammatic represen-
tation of the optimal (least MSE) linear decoder used to reconstruct locomotion speed showing one
example experiment with 15 units. Top: Time course of original and reconstructed locomotor speed
signal. Bottom, normalised firing rate of all units used for the decoder. Right: firing rates of all
units are weighted and linearly summed with the result then being half-wave rectified (diode symbol).
(B) Reconstruction quality as a function of the number of the units used for the decoder of the same
example experiment shown in A. Box plots show first and third quartile with middle horizontal line
indicating the median of 2N combinations of populations’ accuracy. (C) Mean reconstruction quality
as a function of the number of the units for 6 different experiments. The average of the most correlated
ensembles is plot together with the mean of the randomly formed ensembles.
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Figure 1 - supplement 1. Behaviour in virtual reality environment. (A) Top: normalised longitu-
dinal position of a mouse in the virtual corridor with respect to time during a few example trials with
lick events and water pump activations. The mouse starts licking when it gets closer to the end as it
expects the liquid reward for completing the task. Gray areas indicate inter-trial periods (duration =
6 seconds) during which there is no virtual reality projection and a black screen stimulus is presented.
Bottom: speed signal as recorded by the computer mice positioned on the spherical treadmill. (B) A
few example traces from the same experiment in A showing the trajectories in the virtual corridor.
Please note the different scales along along the transverse and longitudinal directions. Black line
indicate the mean trajectory of the trials shown.

32

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 5, 2016. ; https://doi.org/10.1101/078873doi: bioRxiv preprint 

https://doi.org/10.1101/078873
http://creativecommons.org/licenses/by-nc-nd/4.0/


if > 60 ISI if mouse is still ≥ 2.5s 
consecutively

Purkinje 
cell (n=82)

granule
cell (n=18)

interneuron (n=129)

unipolar brush
cell

basket/stellate
cell (n=129)

Golgi
cell

slow 
basket/stellate

cell

CV2mean≤0.24
CVlog≥0.17
or
ISI-5%≤0.022s

MedISI≤0.3s MedISI≥0.32s

step 1 step 2

step 3 step 4 step 5 step 6

MSF<30Hz MSF≥0.6Hz & CVlog≤0.34

MSF≤0.5Hz 
or
CVlog≥0.38

(MSF≥30Hz & 5bits≤H≤7.5bits)
or
(MAD ISI <= 0.01 & 
CV2mean >= 0.20)

CV2mean≥0.28 CVlog<0.15 & ISI-5%>0.022

CELL CLASSVIFICATION PARAMETERS
MSF : mean spiking frequency;
H : entropy of ISI distribution;
CVlog : natural logarithm of the coefficient of variation of 
interspike intervals (ISI);
MAD_ISI : median absolute difference from the median 
interpike interval;
CV2mean : mean of two times the absolute difference of 
successive ISIs divided by the sum of both intervals;
ISI-5% : value of the 5th percentile of ISIs;
MedISI : median of ISIs;
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Figure 1 - supplement 2. Identity classification of units. (A) Schematic of the classification
algorithm based on the decision tree algorithm from Van Dijck et al., 2013 and Hensbroek et al., 2014.
Purkinje, granule and interneuron cells are identified in the first three steps by using the parameters
indicated on the figure. (B) Breakdown of the units that were not classifiable with reason and/or steps
in which did not pass parameters thresholds. (C) Entropy and mean spontaneous spiking frequency
of all units. Black lines show parameter thresholds for the first step of the classification algorithm.
(D) Logarithm of the coefficient of variation of two consecutive ISIs and mean spontaneous spiking
frequency of all units. Black line shows the parameter threshold for first classification step. Panel
C and D are produced for comparison purposes with data shown by Van Dijck et al., 2013 in their
research article.
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Figure 2 - figure supplement 1. No differences in the neural populations recorded in näıve or
trained animals. (A) The speed modulation indexes are not significantly different between näıve (total
number of units=58, units modulated by speed=29) or trained animals (total number of units=253,
units modulated by speed=110) for unresponsive or speed modulated units. (B) Classification of
speed-response profiles in the näıve versus trained conditions: the percentages of each type is similar
in both conditions. (C) Both the mean and the absolute difference between the modulation indexes
between CW and CCW yaw tuning curve (delta yaw modulation index) are not significantly different.
(D) No significant difference is found in the phase selectivity index (PSI) in the näıve versus the
trained animals.
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Figure 2 - figure supplement 2. Modulation of speed tuned units. (A) Modulation indexes of all
units significantly modulated by speed, divided by response type. (B) Modulation indexes shown as
a function of spontaneous firing rate (i.e. during stationary periods), divided by response type.
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Figure 2 - figure supplement 3. Count of units per recording. (A) Count of units for every
recording used in this study classified according to their response profile to locomotion speed. Black
and white bars are used only to help distinguishing between consecutive animals; ticks on the recordings
axes sign the switch to different animal. (B) Poll of units responsive to movement with respect to the
depth of each recording.
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Figure 3 - figure supplement 1. Yaw tuning responses with respect to speed tuning responses.(A)
Out of the 58 units with an absolute difference in modulation indexes between CW and CCW yaw
tuning curve (delta yaw modulation index) larger than 0.2, more than half are not modulated by
speed, while the rest are evenly spread amongst the other response categories. (B) A large delta
yaw modulation index is not related to the speed modulation index (n=311). The dashed line is the
threshold that separates the 58 units represented in A.
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Figure 6 - figure supplement 1. Mutual information versus speed modulation index. Mutual
information of locomotion speed computed at zero lag as a function of the modulation index for speed
modulated for all units. P values of Mann-Whitney U-test between the three distributions.
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