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Abstract
Gene co-expression networks capture biologically important patterns in gene expression data, en-
abling functional analyses of genes, discovery of biomarkers, and interpretation of regulatory genetic
variants. Most network analyses to date have been limited to assessing correlation between total
gene expression levels in a single or small sets of tissues. Here, we have reconstructed networks that
capture a much more complete set of regulatory relationships, specifically including regulation of rel-
ative isoform abundance and splicing, and tissue-specific connections unique to each of a diverse set
of tissues. Using the Genotype-Tissue Expression (GTEx) project v6 RNA-sequencing data across
44 tissues in 449 individuals, we evaluated shared and tissue-specific network relationships. First, we
developed a framework called Transcriptome Wide Networks (TWNs) for combining total expression
and relative isoform levels into a single sparse network, capturing the complex interplay between the
regulation of splicing and transcription. We built TWNs for sixteen tissues, and found that hubs
with isoform node neighbors in these networks were strongly enriched for splicing and RNA binding
genes, demonstrating their utility in unraveling regulation of splicing in the human transcriptome,
and providing a set of candidate shared and tissue-specific regulatory hub genes. Next, we used
a Bayesian biclustering model that identifies network edges between genes with co-expression in a

single tissue to reconstruct tissue-specific networks (TSNs) for 27 distinct GTEx tissues and for four
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subsets of related tissues. Using both TWNs and TSNs, we characterized gene co-expression patterns
shared across tissues. Finally, we found genetic variants associated with multiple neighboring nodes
in our networks, supporting the estimated network structures and identifying 33 genetic variants
with distant regulatory impact on transcription and splicing. Our networks provide an improved
understanding of the complex relationships between genes in the human transcriptome, including
tissue-specificity of gene co-expression, regulation of splicing, and the coordinated impact of genetic

variation on transcription.

Introduction

Gene co-expression networks are an essential framework for elucidating gene function and interactions,
identifying sets of genes that respond in a coordinated way to environmental and disease conditions,
and identifying regulatory relationships and potential drug targets (Penrod et al., 2011; Xiao et al.,
2014; Yang et al., 2014). Each edge in a co-expression network represents a correlation between two
transcriptional products, represented as nodes (Stuart et al., 2003). The majority of gene co-expression
networks, traditionally estimated from microarray data, have focused on correlation between total gene
expression levels, with edges representative of transcriptional co-regulation. However, post-transcriptional
modifications, including alternative splicing, have significant effects on the abundance of specific RNA
isoforms (Matlin et al., 2005); Mutations that lead to disruption of splicing play an important role in
tissue- and disease-specific pathways (Li et al., 2016b; Lee et al., 2012; Wang et al., 2008; DeBoever
et al., 2015; Ward and Cooper, 2010; Lépez-Bigas et al., 2005), including tumor progression (Ghigna
et al., 2008) and risk of Alzheimer’s disease (Hutton et al., 1998; Glatz et al., 2006). While a number of
splicing factors are known, regulation of splicing and the specific regulatory genes involved remain poorly
understood relative to the regulation of transcription (Melé et al., 2015; Scotti and Swanson, 2015).
RNA-sequencing now allows quantification of isoform-level expression, providing an opportunity to study
regulation of splicing through network analysis. However, current research estimating RNA isoform-level
networks (Li et al., 2014, 2015, 2016a) has not used detailed network representations that distinguish
identification of splicing regulation—using relative quantities such as isoform ratios—from transcription
regulation—using absolute quantities such as total expression level of each isoform. Moreover, these
methods, and initial work on clustering relative quantities, have not be applied to large RNA-seq studies

for well-powered network reconstruction in diverse contexts (Dai et al., 2012; Iancu et al., 2015).
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Another important gap in our interpretation of regulatory effects in complex traits is a global char-
acterization of gene co-expression networks that are only identified in a disease-relevant tissue type. Per-
tissue networks have been estimated for multiple tissues (Pierson et al., 2015; Piro et al., 2011), but have
been based on limited sample size. Recent studies have recognized the essential role that tissue-specific
pathways play in disease etiology (Greene et al., 2015), but have developed these per-tissue networks by
aggregating single tissue samples across multiple studies. However, differences in study design, technical
effects, and tissue-specific expression will make the cross-study results difficult to interpret mechanisti-
cally, with large groups of genes expressed in similar tissues and studies tending to be highly connected
rather than providing detailed network structure (Lee et al., 2004). Most importantly, these analyses do
not directly separate effects unique to each tissue from shared, cross-tissue effects.

In this work, we reconstructed co-expression networks from the Genotype Tissue Expression (GTEx)
v6 RNA-sequencing data (GTEx Consortium, 2015). These data include 449 human donors with geno-
type information and 7,051 RNA-sequencing samples across 44 tissues. Here, we identified networks
that reveal novel relationships from previous analyses and address two important goals in regulatory
biology: identification of edges reflecting regulation of splicing, and discovery of edges arising from gene
relationships unique to specific tissues.

To do this, we first built co-expression networks for sixteen tissues, with our framework of Transcriptome-
Wide Networks (TWNs), including as variables both total gene expression levels and transcript isoform
ratios. Hub genes in these networks with many isoform ratio neighbors were significantly enriched for RNA
binding genes and genes known to be involved in splicing, demonstrating the utility of this framework
in characterizing regulation of splicing. From the GTEx tissue TWNs, we identified novel candidates of
both shared and per-tissue transcriptional regulators of relative isoform abundance and splicing. Next, we
built tissue-specific gene co-expression networks across 27 tissues, where each network edge corresponds
to correlation between genes that is uniquely found in a single tissue. We show that the TSN nodes
with greatest connectivity correspond to genes that are essential for tissue-specific processes. Finally, we
confirmed specific network edges from both network analyses by testing associations between a regulatory
genetic variant local to one gene with the neighbors of that gene in the co-expression networks. Through
this analysis, we provided a list of tissue-specific trans-expression QTLs (trans-eQTLs) and trans-splicing
QTLs (trans-sQTLs). Interpretation of regulatory and disease studies will benefit greatly from these net-

works, providing a much more comprehensive description of regulatory processing including alternative
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splicing across diverse tissues.

Results

Reconstructing Transcriptome-Wide Networks (TWNs) across human tissues

First, we aimed to identify networks that capture a global view of regulation across the transcriptome
of diverse human tissues using the GTEx project v6 data. We developed an approach for learning
Transcriptome- Wide Networks (TWNs) from RNA-seq data, which capture diverse regulatory relation-
ships beyond co-expression, including co-regulation of alternative splicing across multiple genes, and
interactions between transcription and splicing. To build a TWN, we first quantified both total ex-
pression levels and isoform expression levels of each gene in each RNA-seq sample, and then computed
isoform ratios (Fig. 1A), representing the relative, rather than total, abundance of each isoform with
respect to the total expression of the gene. All values were projected to quantiles of a standard normal
distribution. We included both isoform ratios and total expression levels as network nodes, as opposed
to estimating a network across all isoform expression levels. This allowed us to distinguish relationships
driven by transcriptional regulation from relationships driven by regulation of relative isoform abundance
(including alternative splicing). For example, a network over isoform expression levels instead of ratios
would represent the effects of a transcription factor on its target with edges to all isoform levels of the
target gene, and the same would be true for a splicing factor. In contrast, in a TWN, a transcription
factor would only be connected to the total expression node of its target, and a splicing factor to isoform
ratio nodes. (Fig. 1C). TWNs can therefore capture, in interpretable form, relationships such as the total
expression of a splicing factor affecting relative isoform abundance of other genes (Sveen et al., 2015).
We then applied graphical lasso (Friedman et al., 2008) to estimate edge weights of a sparse Gaussian
Markov Random Field (GMRF) (Rue and Held, 2005) over all nodes jointly, including both the total
expression of each gene and the isoform ratio for each isoform (Fig. 1B), Methods). A sparse GMRF
captures direct relationships between nodes — a nonzero entry in the precision matrix (interpreted as an
edge between two nodes) indicates that the nodes are directly correlated even controlling for effects of all
other nodes in the network (i.e., a partial correlation) (Schéfer and Strimmer, 2005). We modified the
basic graphical lasso approach to penalize edges between different node types with different weights, and

selected the ¢; regularization parameters for edges between different node types each based separately on
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the scale-free network property (Methods, Supplementary Table 1, Supplementary Fig. 1-2).

We reconstructed TWNs independently for each of 16 human tissues from the GTEx project v6 data,
restricting to tissues with samples from at least 200 donors. We focused on a subset of 6,000 expression
level and 9,000 isoform ratio nodes for each tissue, based on expression levels, gene mappability, and
isoform variability (Methods). We excluded chromosome Y, non-coding genes, and mitochondrial genes.
Both technical and biological confounding factors such as batch, RNA Integrity Number (RIN), and sex
may introduce correlations among genes in transcription studies (Leek et al., 2010), resulting in numerous
false positives in co-expression network analysis (Buettner et al., 2015). Therefore, before applying
graphical lasso, we corrected expression data from each tissue for known and unobserved confounding
factors using HCP (Mostafavi et al., 2013) (Methods). Additionally, we excluded edges that were unlikely
to represent meaningful biological relationships from downstream analysis, including edges connecting
gene pairs with overlapping positions in the genome, edges connecting gene pairs with that have been
shown to have RNA-seq read cross-mapping potential, and edges between distinct features of the same
gene (Methods).

On average, each TWN contained 60,697 total edges, with 24,527 strictly between total expression
nodes, 18,539 strictly between isoform ratio nodes, and 17,631 connecting total expression to isoform
ratio nodes (Fig. 2A). We found many “hub” nodes, or nodes with large numbers of neighbors, as expected
in biological networks and scale free networks more generally (Barabasi and Oltvai, 2004). Based on a
threshold of ten or more neighbors, TWNs had a mean of 1853 “TE-TE” hub genes (total expression
nodes connected to many total expression neighbors) and 325 “TE-IR” hub genes (total expression nodes
connected to many isoform ratio neighbors) across tissues (Fig. 2A). Hubs with numerous total expression
neighbors were more common, but hubs with isoform ratio neighbors were also found in every tissue
(Fig. 2A). Complete TWNs for all 16 tissues are available at http://gtexportal.org (in progress).

Reconstructing co-expression networks requires estimation of a large number of parameters (in our
case, over 2 x 10%) despite a small number of samples (< 430); robustness and replicability of network
edges are thus important considerations. While there are not other large-scale RNA-sequencing data
sets for most GTEx tissues, we replicated relationships identified by our GTEx whole blood TWN using
an independent whole blood RNA-seq data set on 922 individuals of European ancestry, the Depression
Genes and Networks study (DGN) (Battle et al., 2014; Mostafavi et al., 2014). First, we tested whether

expression levels and /or isoform ratios directly connected by an edge in the GTEx whole blood TWN were
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Figure 1. Transcriptome-Wide Network conceptual framework. (A) Schematic of the effect of
a splicing regulator on inclusion of a cassette exon, and resulting total expression and isoform ratios of
the target gene. Splicing factor expression levels can affect splicing of target genes (Sveen et al., 2015).
Higher expression of a splicing regulator S (first row) results in relatively more transcripts of isoform-1
and fewer of isoform-2. Total expression level is constant (5), but isoform ratios are different (0.4 and
0.6) as splicing factor S levels change. (B) The (4,7)th cell of the sample covariance matrix contains
covariance (C;;) between ith and jth feature in data. We created a sparse precision matrix © (inverse
covariance) from the sample covariance matrix using graphical lasso to estimate parameters of a
Gaussian Markov Random Field. A non-zero value (6;;) in the precision matrix denotes an edge
between ith feature and jth feature in the network. (C) Edges in a TWN represent diverse relationships
between total expression (TE) and isoform ratio (IR) nodes. Dotted rectangles group together isoform
ratios for different isoforms of the same gene. Of particular focus are network “hub” nodes; in a TWN,
there are four possible hub configurations depending on the node type of the central and neighboring
nodes.


https://doi.org/10.1101/078741
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/078741; this version posted October 2, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

A W TE-TE M R-R W TE-TE 1 IR-TE B [l GTEx Whold Blood TWN
M TE-IR M TE-R M R-R Random-1 [l Random-2 [l Random-3

Whole Biood o | [ I o I g

Thyroid o | N g s0%
Skin - Sun Exposed o | [T 3 ] o
Skin - Not Sun Exposed o { [ NN | o DR O | 2

Muscle - Skeletal » { [N I B ® 0%
Nerve - Tibial « | [N I . 3
Lung - | TN I N >
Heart - Left Venticle o { [ o I i

Cells - Transformed Fibroblasts - { [ I . L 40%
Esophagus - Muscularis © | [ o | IR 5,
Esophagus - Mucosa e { I o I I ®

Breast - Mammary » | [l o ] G 20%

Artery - Tiial o | I N g, 20%
Artery - Aorta » | I | - EEECCOE |
Adipose - Visceral » | [ I N 9

Adipose - Subcutaneous o | [T 3 ] E 0%

0 25 50 75 0 2 4 6 IR-IR TE-IR TE-TE
Number of edges (K) Number of hubs (K) Edge type

Figure 2. GTEx Transcriptome-Wide Networks summary and replication. A) For each
tissue, number of edges and number of hub nodes (> 10 neighbors), segmented by the type of nodes
connected by each edge (total expression or isoform ratio). For instance, a “TE-IR” hub is a total
expression node with multiple isoform ratio neighbors, whereas a “IR-TE” hub is an isoform ratio node
with multiple total expression neighbors. B) Fraction of whole blood TWN edges replicating in an
independent RNA-seq sample (DGN) (Battle et al., 2014; Mostafavi et al., 2014).

also correlated in DGN. For all edge types, we found that a much higher fraction of the pairs connected
by an edge in the GTEx TWN were significantly correlated in DGN compared to those from random
networks (84.7% versus 45.6%, 31.9% versus 5.9%, and 20.9% versus 2.6% for TE-TE, TE-IR and IR-IR
edges, respectively; FDR < 0.05; Fig. 2B). Next, we constructed a TWN from DGN data over genes
and isoforms common in both data sets. All pairs of nodes connected directly or indirectly in the GTEx
whole blood TWN had significantly shorter network path distances in the DGN network compared to the
distance in the same networks with the node labels shuffled (Wilcoxon rank-sum test, p < 2.2 x 10716;
Supplementary Fig. 3). Together, these results show that, for each category of relationship identified
in the GTEx TWN, including connections among isoform ratio nodes, we found support for shared
relationships in DGN. This provides replication in an independent sample for the same tissue, despite

different alignment and isoform quantification pipelines between the two data sets.

TWN hubs are enriched for regulators of splicing

We used the sixteen TWNs to characterize the regulation of relative isoform abundance in each GTEx
tissue. Here, we focused on evaluation of network hubs. Hub genes, or genes with a high number of

neighbors, in a biological network tend to be essential in biological mechanisms and, in co-expression
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networks, are more likely to have regulatory function (Barabasi and Oltvai, 2004; Jeong et al., 2001;
Albert, 2005). Unlike traditional networks, TWNs have two different types of nodes—total expression
and isoform ratio— therefore, we have four categories of hub genes that likely reflect different essential
and regulatory function (Fig. 1C). For instance, a transcription factor may appear as a total expression
node with many total expression neighbors. On the other hand, a hub arising from a total expression
node connected to a large number of isoform ratio nodes may reflect a gene important in regulation of
alternative splicing. We identified the top hub nodes by degree centrality for all categories in each of
the 16 tissues (Supplementary Table 2). To avoid bias due to different numbers of isoforms per gene, we
measured degree centrality of a node by the number of unique genes among neighboring nodes in each

category (Methods).
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Figure 3. Enrichment of candidate splicing regulators among TWN hubs. A) In each
per-tissue TWN, the odds ratio and p-value of enrichment among the top 500 TE-IR hub genes for GO
annotations reflecting RNA binding and RNA splicing. B) Among consensus TE-IR, hubs across all
tissues, enrichment for GO annotations reflects RNA binding and RNA splicing functions.

We investigated whether hub nodes with many isoform ratio neighbors were likely to be regulators of
alternative splicing. For each tissue, we evaluated the top TE-IR hubs for enrichment of Gene Ontology
(GO) terms related to RNA splicing, and observed a significant abundance of known RNA splicing genes
(annotated with GO:0008380) among the top TE-IR hubs. Indeed, 13 of 16 tissues (81.25%) showed
significant enrichment of RNA splicing genes in the top 500 TE-IR hubs (significance assessed at BH

corrected p < 0.05; median across all tissues p < 6.22 x 10, Fisher’s exact test), and every tissue had
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larger than unit odds ratio of RNA splicing genes among the top hubs (Fig. 3A). Enrichment was robust
to choice of hub degree threshold (Supplementary Fig. 4). Next, we tested for enrichment of RNA-binding
proteins, many of which are known to be important regulators of RNA splicing and processing (Witten
and Ule, 2011; Wang and Burge, 2008; Chen and Manley, 2009). We found that RNA binding genes
(annotated with GO:0003723) were also significantly enriched, at Benjamini-Hochberg (BH) corrected
p < 0.05, among the top TE-IR hubs of every tissue except heart — left ventricle (median p < 3.17 x 10™%;
Fig 3A). Consider all GO terms, splicing, RNA binding, and RNA processing terms were consistently
among the most enriched for TE-IR hubs across tissues (Supplementary Tables 3,4). The replication
network estimated from the DGN data also indicated enrichment of both RNA splicing and RNA binding
genes among TE-IR hubs (RNA splicing: p < 1.07 x 107, odds ratio 2.72; RNA binding: p < 2.5x 10711,
odds ratio 2.37).

Many regulatory relationships are in fact shared between tissues, and assessing hubs across all tissues
jointly may improve robustness to noise in network reconstruction from limited data (Ballouz et al., 2015).
Therefore, we identified TE-IR hubs shared across tissues (Table 1) using rank-product (Zhong et al.,
2014). We first assigned lower ranks to hub genes with higher numbers of neighbors in each network,
then aggregated the ranks of those genes across all networks by computing the product of these ranks.
We sorted genes by rank product to find the top TE-IR hubs, having the largest number of neighbors in
the most tissues (Methods). We again tested for enrichment of RNA splicing and RNA binding genes.
Both p-values (Fisher’s exact test) and odds ratios were noticeably stronger in the joint analysis than in
individual tissues; for example, we observed odds ratios of 9.8 for RNA splicing and 5.8 for RNA binding
among the top 50 shared hubs (Fig. 3B).

Many of the top ranked TE-IR hubs shared across tissues are indeed known to regulate splicing.
RBM14 (rank two), a RNA binding gene also known as CoAA, interacts with a transcription regulator
TRBP to regulate splicing in a promoter-dependent manner (Auboeuf et al., 2004, 2002). Another RNA
binding gene PPP1R10 (rank four) has been implicated in pre-mRNA splicing using mass spectrometry
analysis (Du et al., 2014). SRRM?2 (rank eight) and SRSF11 (rank nine) are also known splicing regula-
tors (Chen and Manley, 2009; Blencowe et al., 2000; Zhang and Wu, 1996; Wu et al., 2006). For eleven
of the top twenty cross-tissue TE-IR hubs, we found previous work supporting a role in the regulation of
splicing (Table 1). Together, these results suggested that TWN hubs are informative of splicing regulation

and consistent with previous results showing that RNA binding proteins are principal splicing regulators.
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Uncharacterized TE-IR hub genes in a TWN are good candidates for investigating potential effects on

splicing and relative isoform abundance.

Rank Hub gene #Tissues Evidence

1 TMEM160 16

2 RBM14 15 Nuclear receptor coactivator that interacts with TRBP to regulate
splicing in a promoter-dependent manner. (Auboeuf et al., 2004,
2002; Sui et al., 2007)

3 ZMAT1 16

4 PPPIR10 15 Mass spectrometry analysis suggests its involvement in pre-mRNA
splicing through interaction with ZNF638 (Du et al., 2014)

5 0ODC1 16

6 MGEAS5 16

7 KLHLY9 14

8 SRRM?2 15 Helps forming large splicing enhancing complexes (Chen and Man-

ley, 2009). A mutation in SRRM2 predisposes papillary thyroid
carcinoma by changing alternative splicing (Tomsic et al., 2015).
9 SRSF11 14 A known serine/arginine-rich splicing factor (Zhang and Wu, 1996;
Wu et al., 2006)
10 ZNF692 15

11 ARGLUI1 16 Arginine/glutamate rich gene modulates splicing affecting neurode-
velopmental defects (Magomedova et al., 2016).

12 PPRC1 16 Encodes protein similar to PPARGC1 that regulates multiple splic-
ing events (Martinez-Redondo et al., 2016).

13 LUCTLS 15 Regulates splice-site selection (Zhou et al., 2008) and affects cardiac
sodium channel splicing regulation. (Gao et al., 2013)

14 DUSP1 16

15 FOSL2 16

16 XPO1 16 Interacts with TBX3 (Kulisz and Simon, 2008) that regulates al-
ternative splicing in vivo (mouse). (Kumar P. et al., 2014)

17 PNISR 15 Interacts with PNN, a suggested splicing regulator, and colocal-
izes with SRrp300, a known component of the splicing machinery
(Zimowska et al., 2003).

18 PNN 12 Likely to be involved in RNA metabolism including splicing (Li
et al., 2003)

19 PTMS 12 Involved in RNA synthesis processing (Vareli et al., 2000).

20 CCDC85B 15

Table 1. Top 20 cross-tissue TE-IR hubs. Rank is the rank-product rank of the gene. #Tissues
is the number of tissues, out of 16, for which the hub gene (total expression) has at least one isoform
ratio neighbor.

Co-regulation of expression and isoform ratios reflect biological pathways

It has been observed that genes with similar function or that participate in the same pathway often

have correlated patterns of gene expression (Khatri et al., 2012; Hormozdiari et al., 2015). In the GTEx
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TWNs, we observed enrichment of edges between transcription factors and known target genes (Methods,
Supplementary Fig. 5), as expected (Prieto et al., 2008; Roider et al., 2009). We also observed enrichment
of closely connected genes for a number of Reactome pathways (Fabregat et al., 2016) as compared with
permuted networks (95 — 180 pathways enriched per tissue at Bonferroni corrected p < 0.05, Wilcoxon

rank-sum test; Fig. 4A, Methods).
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Figure 4. Pathway enrichment in TWNs The colors representing the tissues are matched with
tissue names in Fig. 1. (A) Per-tissue, the number of Reactome pathways enriched among connected
components / total number of tested pathways for that tissue, considering only total expression nodes.
(B) Enrichment for shared Reactome pathway annotation among gene pairs connected by edges
between two isoform ratio nodes. (C) Enrichment for shared Reactome pathway annotation among gene
pairs connected by an edge between a total expression node and an isoform ratio node.

In contrast to correlations among total expression levels of genes, patterns of correlation among relative
isoform abundances are far less well-studied, and it has not been established whether or not the regulation
of splicing is coordinated across functionally related genes. Initial studies have identified such correlation
in particular tissues (Iancu et al., 2015) and specific processes (Dai et al., 2012). We evaluated each TWN
for enrichment of edges between functionally related genes. For all 16 tissues, the TWNs demonstrated
significant abundance of edges between isoform ratios of two distinct genes that participate in the same
Reactome pathway (all tissues significant at BH corrected p < 0.05; median p < 10~!4; Fig. 4A). Similarly,
edges between total expression of one gene and isoform ratio of a second gene were enriched for a gene

annotation in the same pathway (median p < 107°; Fig. 4B). As expected, we also observed pathway
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enrichment for edges between total expression nodes (Supplementary Fig. 6). The patterns of functional
enrichment were in fact somewhat stronger among total expression nodes, which could be influenced
by more accurate quantification of total expression compared with isoform ratios from RNA-seq data,
derivation of functional annotation from gene expression studies, or tighter co-regulation of transcription
compared with splicing of functionally related genes. These results provide evidence in a large, multi-
tissue data set that functionally related genes display correlated variation in relative isoform abundance,
indicative of co-regulation of splicing. Leveraging this finding allows TWNs to be used to identify sets
of possibly co-functional genes, or to predict the function of unknown genes (Warde-Farley et al., 2010)

based on a more comprehensive understanding of co-regulation including regulation of splicing.

Comparison between TWNs reveals per-tissue hub genes

We evaluated the overall similarity of the TWNs between tissues. We tested concordance of hubs between
each pair of tissues using Kendall’s rank correlation computed over genes ordered by degree centrality
(Supplementary Fig. 7). We observed greater than random levels of similarity between most tissues
for all hub types (median p < 1.0 x 1075 for each hub type) and functionally related tissues displaying
greater levels of similarity. For example, the two skin tissues were grouped together for each hub type,
and were found to be similar to esophagus — mucosa, which contains primarily epithelial tissue (Squier
and Kremer, 2001). Skeletal muscle and heart — left ventricle grouped together, and breast was highly
similar to the two adipose tissues, reflecting shared adipose cell type composition. While these results
may be partially influenced by overlap in donors, they provide evidence that splicing displays variability
between tissues and is regulated in a tissue-specific manner (Qian et al., 2005; Ong and Corces, 2011).
To identify candidate tissue-specific regulatory genes, we evaluated TE-IR hubs that were ranked high
by degree centrality in related tissues, but ranked low among unrelated tissues (Methods, Supplementary
Table 5). Several of the top ranked tissue-specific hubs were genes with evidence of known tissue-specific
function or relevance. In the tissue group including breast and two adipose tissues, the top tissue-specific
TE-IR hub was TTC36, a gene highly expressed in breast cancer (Liu et al., 2008). The top ranked
gene hub for the skeletal muscle and heart — left ventricle tissues group was PLEKHG/, which has been

reported to be associated with cardiac failure in mice (Mullick et al., 2006).
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Tissue-specific networks identify gene co-expression patterns unique to tissues

To directly assess the tissue-specificity of co-expression relationships, we built tissue=specific networks
by considering all GTEx samples across tissues simultaneously, decomposing co-expression signal into
co-expression signals shared across tissues and those specific to individual tissues. To do this, we applied
a Bayesian biclustering framework, BicMix, and reconstructed tissue-specific networks from the fitted
model (Gao et al., 2016). BicMix uses a sparsity-inducing prior to differentiate between co-expression
relationships specific to a single tissue and those shared across tissues, controlling for batch effects,
population structure, and shared individual effects across tissues (Gao et al., 2016). The strength of this
joint approach applied to over 7,000 RNA-seq samples is that, with more thorough and comprehensive
sampling of heterogeneous tissues types, we are able to isolate co-expression signals unique to single
tissues and to reconstruct much more precise tissue-specific networks (TSNs).

We built TSNs for 27 GTEx tissues. Here, we limited network nodes to total gene expression rather
than isoform ratio for simplicity. Across the 27 TSNs, the mean number of nodes (considering only genes
with tissue-specific edges) was 48, and the average number of edges was 436. However, this average is
driven by four larger networks (Supplementary Table 6; Supplementary Fig. 8) with over 100 nodes
each: thyroid (216), stomach (179), whole blood (174), and vagina (101). There are many fewer nodes
in these TSNs as compared to the TWNs because we only included genes in the network that had one
or more tissue-specific edge. For the eight tissues for which we also constructed TWNs, we found that
tissue-specific networks indeed overlapped with the TWNs, generally showing greater concordance for the
matched tissue (Supplementary Fig. 9). As expected, TSNs contained a small subset of edges from full
per-tissue TWN) representing the co-expression components that are tissue-specific rather than shared.

Additionally, we built four tissue-specific networks for subsets of similar tissues (GTEx Consortium,
2015) to capture gene relationships common within each subset but unique compared with all other tissues.
Most tissues showed expression patterns close to at least one other assayed tissue (Supplementary Fig.
10), leading to a depletion of tissue-specific effects, and motivating evaluation of similar tissues together.
We considered four groups: 1) all 13 brain tissues; 2) two adipose tissues and breast; 3) two heart tissues
and three artery tissues and 4) four digestive tissues. On average, these tissue subset networks contained
4,779 edges and 189 nodes. However, this was skewed by the brain network, which contained 18,854 edges
connecting 648 nodes. Excluding the brain network, we found 87 edges and 36 nodes on average across

the other three tissue subset networks. The 27 single tissue TSNs and the four tissue subset networks
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are available at http://gtexportal.org (in progress).

Functional analysis of tissue-specific networks. We investigated the functional properties of the
genes and edges identified in each tissue-specific network. First, we measured sharing of network compo-
nents between the 27 distinct TSNs. We found minimal sharing of network nodes and even less sharing
of network edges among all pairs of tissues (Jaccard coefficient; Fig. 5A). This was expected as a result
of BicMix’s strong control over shared individuals and gene expression levels across tissues. Tissue pairs
that appeared to share genes predominantly included brain tissues. We confirmed enrichment of known
tissue-specific genes in the TSNs using a previously defined list of Gene Ontology (GO) terms (Ashburner
et al., 2000) indicative of tissue-specific function available for eleven tissues (Pierson et al., 2015). We
found four TSNs nominally enriched for genes with specificity in the matched tissue, namely artery —
coronary (B-H corrected p < 0.23), EBV transformed lymphoblastoid cell lines (with blood, B-H corrected
p < 0.09), skeletal muscle (B-H corrected p < 0.13), and stomach (B-H corrected p < 0.13). Significant
cross tissue enrichments were observed in a small number of tissues. In the vagina TSN, pituitary genes
were significantly enriched (B-H corrected p < 4.35 x 107°) and in the artery — aorta TSN, pituitary
genes were significantly enriched (B-H corrected p < 0.0049).

Next, we evaluated the hub genes in each TSN, considering three thresholds of centrality: > 5 edges
(“small hubs”), > 10 edges (“hubs”), and > 50 edges (“large hubs”). Hubs were not enriched overall
for cross-tissue transcription factors (TFs) (hypergeometric test across all TSNs, p < 0.84; small and
large hubs showed similar results), or for cross-tissue and tissue-specific TFs (hypergeometric test across
all TSNs, p < 0.90; small and large hubs showed similar results); this result echos previous work on
transcription factor enrichment in genes with cis-eQTLs that appear to have broad regulatory effects on
transcription (Jo et al., 2016; Weiser et al., 2014). However, hubs in several networks included genes
known to play a role in tissue-specific function and disease. Specifically, we found that the single large
hub in brain - caudate, MAGOH, which is a part of the exon junction complex that binds RNA, has
been found to regulate brain size in mice through its role in neural stem cell division (Silver et al., 2010).
The single large hub for artery — aorta, MAB21L1, has been shown to be an essential gene for embryonic
heart and liver development in mice by regulating cell proliferation of proepicardial cells (Saito et al.,
2012).

Additionally, we measured enrichment of known pathways in the TSNs. While we did not observe
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Figure 5. Cross tissue comparison of TSN results. (A) Jaccard coefficient quantified on shared
edges (upper triangular) and shared nodes (lower triangular) across pairs of TSNs; (B) Gene expression
levels, removing factors from BicMix not included in the network, for the genes identified in the TSN
for artery — aorta. The y-axis is ordered by similarity to artery — aorta, with a star by the samples from
artery — aorta. The colors on the y-axis correspond to the GTEx tissue legend above. The x-axis is
ordered by expression similarity (i.e., hierarchical clustering), and hub genes are labeled with the large
hub denoted in bold; (C) tissue-specific network for artery — aorta. Node size reflects betweenness
centrality of the nodes. Orange nodes reflect replication in the BioCarta acute myocardial infarction
(AMI) pathway; orange edges show the neighbors of the AMI pathway nodes.
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enrichment across all tissues, we found that the hematopoietic cell lineage KEGG pathway was signif-
icantly enriched in the TSN for EBV transformed lymphoblastoid cell lines (LCLs; Fisher’s test, B-H
adjusted p < 0.05); a hematopoietic stem cell is the developmental precursor of leukocytes, reflecting
the expression signature of the parent cell type. The LCL TSN also had significant enrichment in the
BioCarta IL-17 signaling and T cytotozic cell surface molecules pathways (LCLs; Fisher’s test, B-H ad-
justed p < 1.50 x 10™%). IL-17 is a cytokine produced from T-cells that is involved in inflammation, and
the cytotoxic t-cell pathway is involved in eliminating cells with certain surface antibodies. Although not
significant after multiple testing correction, artery — coronary showed enrichment in four tissue-relevant
pathways (uncorrected p < 0.016 for all): the ACE2 pathway, which regulates heart function, acute
myocardial infarction (AMI) pathway, the intrinsic prothrombin activation pathway, which is involved in
one phase of blood coagulation, the platelet amyloid precursor protein (APP) pathway, which includes
genes involved in anti-coagulation functions in platelets and senile plaques, and the vitamin C in the

brain pathway, which is responsible for the cellular uptake of reduced ascorbate from platelets (Fig. 5).

Integration of networks with regulatory genetic variants

Both TWNs and TSNs were estimated using gene expression data alone. However, the GTEx v6 data
also include genotype information for each donor. We intersected the edges detected by our networks with
QTL (quantitative trait locus) association statistics to replicate specific network edges through evidence
of conditional associations with genetic variants across those edges and to increase power to detect long
range (trans) effects of genetic variation on gene regulation. First, we demonstrated that, for both TWNs
and TSNs, there was enrichment for associations between the top cis-eVariant (the variant with lowest
p-value per gene with a significant cis-eQTL) for each gene and the expression level or isoform ratio of its
network neighbors based on QTL mapping in the corresponding tissue (Fig. 6). This provides evidence
of a relationship between the pairs of genes connected by an edge. For TWNs, among total expression
nodes with an isoform ratio neighbor, we found evidence for 61 trans (i.e., inter-chromosomal) associations
and 86 intra-chromosomal associations tested between a cis-eVariant for the total expression gene and
the isoform ratio of the neighboring node (FDR < 0.05), providing support for these TWN edges. Our
top two associations were between two variants, rs113305055 in artery — tibial and rs59153288 in breast
(both near TMEM160), with isoform ratios of CST3 (p < 9.3 x 1078, and p < 4.0 x 1077, respectively).
TMEM160 is the top cross-tissue hub in our TWNs with many IR neighbors (Table 1). Thus, we tested for
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association of these variants with all isoform ratios genome-wide and observed a substantial enrichment of
low p-values in numerous tissues (Fig 6A; Supplementary Fig. 11). In the TSNs, we identified seven cis-
eVariants across five tissues associated with eight different trans-eGenes through seven unique cis-eGene
targets, one of which was intra-chromosomal (FDR < 0.2; Supplementary Table 7). We also observed
enrichment for low p-values over the tests corresponding to each network edge (Fig. 6B).

We used the TWNs and TSNs in a trans-QTL discovery framework that does not rely on prior
cis-eQTL association testing. In the test described above, it is possible that artifactual correlations
among gene expression levels, identified as edges in the networks, may also lead to artifactual trans-
eQTL associations among cis-eVariants and the neighboring genes of the cis-eGene detected from the
same data. However, large-scale, independent RNA-seq data sets are unavailable for most of the tissue
types represented in GTEx, and identifying trans-eQTLs from a standard genome-wide association test
has proven challenging (Jo et al., 2016), in part due to the large number of statistical tests. Restricting
association tests to a plausible subset, according to prior knowledge (Jo et al., 2016) such as network
relationships (Weiser et al., 2014) can increase statistical power substantially.

Here, we identified novel trans-splicing QTLs (trans-sQTLs) and trans-expression QTLs (trans-eQTLs)
by restricting the set of tests to those suggested by the TWNs and TSN edges in the corresponding tis-
sue. From the TWNs, we sought to identify trans-splicing QTLs (sQTLs) based on TE-IR hub genes,
using the top 500 hubs by degree centrality. We tested every SNP within 20 Kb of the TE hub-gene’s
transcription start site (TSS) for association with isoform ratios of each neighbor in the TWN. Using
this approach, we identified 58 trans-sQTLs corresponding to six unique genes (sGenes) at FDR < 0.2
(Table 2). For example, we identified a trans-sQTL association in skeletal muscle between rs115419420
and CARNS1 (p < 2.18 x 107°) that is supported by a cis association with the TE-IR hub CRELD].
This eVariant also showed enrichment for low p-values with numerous isoform ratios genome wide (Fig.
6C). In the TSNs, we identified 27 trans-eQTLs using variants within 20 Kb of each gene and testing
for association with the neighbors of those genes in the gene expression data of the same tissue (FDR
< 0.2; Supplementary Table 8). All of these associations were with inter-chromosomal. Overall, we saw a
substantial enrichment of p-values for association between genetic variants local to a gene and the genes’

neighbors in each network (Fig. 6B).
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Figure 6. Association of local genetic variants with distant network neighbors (A)
Enrichment of association between rs113305055, a genetic variant near a cross-tissue TWN hub
TMEM160, with all isoform ratios genome-wide in artery — tibial. (B) Enrichment of associations
between local genetic variants (either the top cis-eVariant or any variant with 20 Kb) of each gene, and

network neighbors in the tissue-specific networks. (C) Enrichment of association between rs115419420,
a genetic variant local to CRELD1, with all isoform ratios in skeletal muscle.

variant trans-eTranscript trans-sGene local gene p-value FDR tissue

rs6122466 ENST00000496440.1  CEP350 PPDP 9.08 x 107 0.09  Adipose — Visceral
rs397828484 ENST00000528430.1 PPPIR16A NMRK2 1.66 x 1076 0.10  Muscle — Skeletal
rs7668429 ENST00000340875.5 MEF2D CLOCK 481 x107% 0.10 Muscle — Skeletal
rs7980880 ENST00000409273.1 XIRP2 CALCOCO1 991 x107% 0.11  Muscle — Skeletal
rsb6359342  ENST00000396435.3 IQSEC2 CRAMPIL 1.43 x 107 0.14  Muscle — Skeletal
rs115419420 ENST00000531388.1 CARNS1 CRELD1 2.18 x 107° 0.19  Muscle — Skeletal

Table 2. Trans-sQTLs detected based on TWN hubs. P-value and FDR for association between the
variant and the trans-sGene listed. Local gene target listed for reference.

Discussion

We reconstructed co-expression networks that capture novel regulatory relationships in diverse human

tissues using large-scale RNA-seq data from the GTEx project. First, we specified an approach for inte-

grating both total expression and relative isoform ratios in a single sparse Transcriptome-Wide Network

(TWN) based on graphical lasso. Splicing is a critical process in a number of tissue- and disease-specific

processes and pathways (Ghigna et al., 2008; Hutton et al., 1998; Glatz et al., 2006; D’Souza et al.,

1999), but, critically, isoform ratios have not been included in co-expression network analysis to allow

the study of splicing regulation. We estimated TWNs from sixteen tissues and demonstrated that hubs

in TWNs are strongly enriched for genes involved in RNA binding and RNA splicing. We found that,
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across tissues, the top hub genes with isoform ratio neighbors included many genes with known impact
on splicing such as RBM14, a hub in all 16 tissues with TWNs. We identified a number of novel shared
and tissue-specific candidate regulators of alternative splicing. TWNs may be extended to include di-
verse expression phenotypes such as allelic expression or individual splicing event frequencies. As more
large-scale RNA-seq studies become available, this method will be useful for analyzing diverse types of
regulatory relationships in disease, longitudinal, and context-specific studies.

Next, we estimated tissue-specific networks for 27 single tissues and across four tissue subsets; these
networks represent co-expression relationships unique to individual tissues and sets of closely related
tissues. Distinguishing between shared and tissue-specific structure across single tissue co-expression
networks is challenging, but is essential for understanding tissue-specific regulatory processes in disease.
From these tissue-specific networks, we identified hub genes involved in the essential tissue-specific reg-
ulation of transcription, such as MAGOH in the brain — caudate specific network and MAB21L1 in the
artery — aorta specific network, both of which are essential for the development of their specific organs.
We used these networks to quantify shared relationships across tissues, and found minimal sharing of
relationships across these 27 tissues. Finally, we replicated edges in our networks using integration of
genetic variation, and we identified 33 novel trans-QTLs affecting both expression and splicing. To-
gether, our results provide the most comprehensive map of gene regulation, splicing, and co-expression
in the largest set of tissues available to date. These networks will provide a basis for interpreting the
transcriptome-wide effects of genetic variation, differential expression and splicing in complex disease,

and impact of diverse regulatory genes in the human genome.

Methods

RNA-seq data from GTEx project data

The NIH Common Fund’s Genotype-Tissue Expression (GTEx) consortium (GTEx Consortium, 2015)
provides RNA-seq and microarray experiments. The original GTEx RNA-seq samples have been obtained
from recently deceased donors (samples collected within 24 hours), between ages 21 and 70, BMI 18.5 to
35, and not under exclusionary medical criteria such as whole-blood transfusion within 24 hours or infec-
tion with HIV. The blood samples have been extracted for both genotyping with Illumina HumanOmni

2.5M and 5M BeadChips, as well as EBV-transformation of lymphoblastoids into cell lines. Then, biop-
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sies from a set of tissues from different body sites (averaging about 28 per individual) have been obtained,
stabilized with PAXgene Tissue kits, and then shipped to designated facilities for paraffin embedding, sec-
tioning, and analyses of histology. After quality control protocols that checked for evidence of autolysis,
inflammation and other pathology that could affect RNA-seq results, the stabilized tissue samples were
sent to sequencing facilities for DNA/RNA extraction from the samples and performing both microarray
and RNA-seq experiments. In particular, the RNA-seq experiments were performed with Illumina Hi-Seq
2000 following the TrueSeq RNA protocol, yielding 76-bp paired-end reads averaging approximately 50

million reads per sample. As a result, we have 8,551 total experiments from 449 individuals for phase 1.

RNA-sequencing alignment and transcript quantification

The RNA-seq processing pipeline follows previously described steps (McDowell et al., 2016). Adapter
sequences and overrepresented contaminant sequences, identified by FastQC (v.0.10.1) (Andrews, 2010),
were trimmed using Trimmomatic (v.0.30) (Bolger et al., 2014) with 2 seed mismatches and a simple clip
threshold of 20. Leading and trailing nucleotides (low quality or Ns) were trimmed from all reads until a
canonical base was encountered with quality greater than 3. For adaptive quality trimming, reads were
scanned with a 4-base sliding window, trimming when the average quality per base dropped below 20.
Any remaining sequences shorter than 30 nucleotides were discarded.

We aligned the RNA-seq reads using the Star aligner in 2-pass mode (Dobin et al., 2013). After
preparing the genome with STAR aligner genomeGenerate mode using a splice junction database (sjd-
bGTFfile) set to GENCODE v.19 annotation, the splice junction database overhang (sjdbOverhang) set
to 75 bp, and defaults for all remaining settings. STAR aligner alignReads mode was run using default
settings except outFilterMultimapNmax was set to 1 so that only uniquely mapping reads were retained.

We performed transcript and gene quantification using RSEM v1.2.20 (Li and Dewey, 2011). We used

default settings, allowing for four threads and using paired-end aware quantification.

Pre-processing for per-tissue TWNs

We considered only protein-coding genes on the autosomes and X chromosome to construct TWNs in
all tissues. We filtered genes and isoforms using a threshold of 10 samples with > 1 TPM and > 10
samples with > 6 reads. We also filtered out genes where the Ensembl gene ID did not uniquely map

to a single HGNC gene symbol. Isoform ratio was computed by using annotated isoforms in Gencode
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V19 annotation, and undefined ratios (0/0, when none of the isoforms was expressed) were imputed
from the mean ratio per isoform across individuals. Each gene’s least abundant isoform was excluded to
avoid linear dependency between isoform ratio values. We log-transformed the total expression data and
standardized both total expression levels and isoform ratios. To correct hidden confounding factors, we
applied HCP (Hidden covariates with prior) (Mostafavi et al., 2013), whose parameters were selected based
on an external signal relevant to regulatory relationships. Namely, we selected parameters that produced
maximal replication of an independent set of trans-eQTLs from meta-analysis of a large collection of
independent whole blood studies (Westra et al., 2013). For both total expression levels and isoform ratios
of genes in all tissues, the best HCP parameters (k = 10, A = 1, 01 = 5, 02 = 1), which consistently
reproduced a largest subset of the gold-standard trans-eQTLs in GTEx whole blood samples even when
subsetting the number of samples, were used for correcting data. Finally, quantile-normalization to a
standard normal distribution was applied.

To avoid spurious associations due to miss-mapped reads, we filtered out genes and isoforms with
mappability score constraints (> 0.97). We first downloaded mappability scores of all 75-mers and
36-mers in the human reference genome (hgl9) from the UCSC genome browser for exonic regions and
untranslated regions (UTRs), respectively (accession: wgEncodeEH000318, wgEncodeEH00032) (Derrien
et al., 2012). For each gene, we then measured mappability scores for either exonic regions or UTRs with
corresponding k-mers matched to the regions and aggregated the mappability scores for two regions by
computing their weighted average. The weights were proportional to the total length of exonic regions
and UTRs.

We filtered out isoforms of a gene if the mean IR of a most dominant isoform was > 0.95. In each
tissue, we further reduced the number of features to 6,000 genes and 9,000 isoforms for computational
tractability. To do so, we first considered genes or isoforms if > 10 samples have TPM > 2 or reads > 6.
To obtain the final set of genes, we first considered the top 9,000 genes based on their average expression
levels and then selected the top 6,000 highly variable genes across individuals. Similarly, to obtain the
final set of isoforms, we first considered the 13,500 genes with the highest expressed isoform levels on
average. We reduced this to 11,250 genes based on the entropy of isoform ratios across individuals,
normalized by the maximum entropy possible with the same number of isoforms, and finally took the top

9,000 most highly variable isoforms in terms of TPM values.
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Per tissue Transcriptome-Wide Networks (T'WNs)

We built per-tissue Transcriptome-Wide Networks (TWNs) using scalable graphical lasso (Hsieh et al.,
2011). We estimated a sparse precision matrix (©) by optimizing the following objective with A specifying

different penalties for different types of edges:

© = argmin — logdet © +tr(SO) + [A o O], 1)
C

where the entry in rth row and cth column of A was

Ad ifr=c
As if r # ¢ and gene(r) = gene(c)
Are =9 Ay if gene(r) # gene(c) and type(r) = type(c) = ‘TE’ (2)

Ati if gene(r) # gene(c) and {type(r),type(c)} = {'TE’ IR’}

i if gene(r) # gene(c) and type(r) = type(c) = ‘IR’

Here, gene(k) denotes the gene that the kth feature belongs to. type(k) denotes whether or not the kth
feature represents total expression (‘TE’) or isoform ratio (‘IR’).

We did not penalize diagonal entries (Ay = 0), and put a small non-zero penalty for edges between
distinct features belonging to the same gene (A\; = 0.05), such as distinct isoforms of the same gene. We
selected the other penalties (Mg, Ati, Ais) such that the network has a scale-free topology with a reasonable
number of edges. The empirical pairwise correlations distribution for different types of edges were differ-
ent: correlations between two total expression nodes were generally much higher than those between two
isoform ratio nodes or between a total expression node and an isoform ratio node (Supplementary Fig 1),
while the later two distributions were apparently similar. We tried all (Ay, Ai, Ai;) combinations where
A++€{0.3,0.35,0.4,0.45,0.5}, A4;€{0.25,0.3,0.35,0.4}, and A\y; = Aj;. We measured the scale-free property
by the square of correlation (R?) between log(p(d)) and log(d), where d is an integer and p(d) represents
the fraction of nodes in the network with d neighbors (Zhang and Horvath, 2005). We selected penalty
parameters so that R? ~ 0.85 and there were at least 5,000 edges of each type. Selected parameters for
each tissue are shown in Supplementary Table 1. Each non-zero element in A,.. in the precision matrix

with selected penalty parameters represents an edge between the rth and cth features in our network.
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We excluded some edges from our networks for quality purpose and interpretability. In other words,
we excluded edges between nodes belonging to same gene for downstream analysis. Then, we aligned
every 75-mer in exonic regions and 36-mers in UTRs of every gene with mappability < 1.0 to the reference
human genome (hg19) using Bowtie (v 1.1.2) (Langmead et al., 2009). If any of the alignments started
within an exon or a UTR of another gene, then these two genes were considered “cross-mappable”, and
we excluded edges between these pairs of genes. We also excluded edges between genes with overlapping

positions in the reference genome to avoid mapping artifacts.

Replication of whole blood TWN

We replicated our network edges with GTEx whole blood tissue in an independent RNA-seq data set:
Depression Genes and Networks (DGN) (Battle et al., 2014; Mostafavi et al., 2014). These RNA-seq data
include 15,231 genes and 12,080 isoforms from whole blood in 922 samples, out of which 5,609 genes and
1,464 isoforms were uniquely mapped to the set of genes and isoforms used in GTEx whole blood network
construction. Firstly, to check if the genes and isoforms directly connected in the GTEx whole blood
network were supported by correlation in the DGN data set, we computed the fraction of significantly
correlated (Spearman correlation, FDR < 0.05) gene-gene/gene-isoform /isoform-isoform pairs in DGN.
We then compared these fractions with those in random pairs generated by permuting genes/isoforms
labels in the TWN. Next, to verify if our method could reproduce relationships in GTEx whole blood
network from DGN data, we tested if node pairs connected directly or indirectly in the GTEx whole
blood network had a shorter distance between them in the DGN network compared to the same network
with the node labels shuffled. We performed a one-sided Wilcoxon rank-sum test between two groups:
i) pairwise distances between GTEx-connected TE-TE / TE-IR / IR-IR pairs in the DGN network. ii)
those in random DGN networks generated by permuting genes/isoforms among themselves. Here we

generated random networks ten times to estimate the null distribution.

Hub ranking

We ordered the network hubs by degree centrality for each tissue according to the number of unique
gene-level connections to avoid the effect of different number of isoforms per gene. To do this, we created
a gene-level network from original TWNs by keeping TE nodes as they were and grouping all isoforms

of the same gene together to form a compound IR node. We put an edge between a compound IR node
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and a total expression node (or another compound isoform ratio node) if any isoform of the compound
had an edge with the TE node (or any isoform of the other compound) in the original TWN, and the
weight is equal to the sum of absolute weights of all such edges in the original TWN. TE-TE and IR-TE
hubs were ordered by the number of TE nodes they were connected with. TE-IR and IR-IR hubs were
ordered by the number of compound IR nodes they were connected with. If multiple hubs had the same

number of connections, ties were broken by the sum of corresponding edge weights.

Splicing and RNA binding enrichment in top TE-IR hubs

We downloaded a list of human genes annotated with RNA Splicing (GO:0008380) and RNA Binding
(GO:0003723) using topGO (Alexa and Rahnenfuhrer, 2016). We computed the enrichment of these RNA
splicing and RNA binding genes in top 500 TE-IR hubs using Fisher’s exact test. The set of all genes

represented in the corresponding network was used as background.

General hubs and tissue-specific hubs

We used rank-product (Zhong et al., 2014) to find hubs generally ranked high in a set of tissues. We first
ranked genes by the number of neighbors in the gene-level network. If a gene had no edge in the network,
its rank was considered to be the number of genes with neighbors plus one. A gene’s rank-product is the
product of its ranks from each network. The top general hub gene had the least rank-product.

To find hubs specific to a group of tissues, we used rank-product to rank hubs in both the target
group of tissues, and all other tissues, separately. Then, we normalized ranks so that the top- and
bottom-ranked hub have a score of 1 and 0, respectively. Let the normalized rank of a gene in the target

group of tissues and other tissue be r; and r,, respectively. Then, the F-score for the gene (r):

2
=T 1 (3)

Tt 1—r,

will be high if it ranks high in the target group, but low in other tissues.

We computed specific hubs for six groups of related tissues: 1) skin— sun exposed and skin — not sun
exposed, 2) adipose — subcutaneous, adipose — visceral and breast, 3) heart — left ventricle and skeletal
muscle, 4) esophagus — mucosa and esophagus —~muscularis, 5) artery — aorta and artery — tibial, and 6)

nerve — tibial and artery — tibial.

24


https://doi.org/10.1101/078741
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/078741; this version posted October 2, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

TF-Target Enrichment in TE-TE edges

We downloaded transcription factors (TFs) and their known targets from ChEA (Lachmann et al., 2010).
We measured the number of known TF-target relationships captured by a network, i.e., a TF and its
target’s total expression nodes were directly connected with each other. We generated the null distribution
of the number of known TF-target relationships by computing same test statistics for random networks,
generated by permuting gene names among network nodes 1000 times. Then, we computed the empirical
p-value as the proportion of those iterations for which the random network had at least as many known
TF-Target edges as the test network. We fitted a Weibull distribution on the log(1-+fraction of known

TF-Target edges) to quantify the p-values.

Per-pathway enrichment in TE-TE edges

We downloaded Reactome pathway genes from the Molecular Signature Database (c2.cp.reactome.v5.1) (Sub-
ramanian et al., 2005). For each Reactome pathway with at least ten genes, we tested whether the genes
in the pathway had significantly smaller pairwise distances in our network than those in a random net-
work, generated by permuting gene names among nodes in a network, using a Wilcoxon rank-sum test

(Bonferroni corrected p < 0.05).

Same-pathway edge enrichment in TWN edges

We used Fisher’s exact test to check whether or not our networks were enriched with edges between genes
from the same Reactome pathway. The null hypothesis was that two genes sharing an edge did not come

from the same pathway.

Tissue-specific networks (TSNs)

We built tissue-specific gene co-expression networks (TSNs) using an unsupervised Bayesian biclustering
model, BicMix, on the gene level quantification from all of the GTEx v6 samples jointly (Gao et al.,
2016). We performed 40 runs of BicMix on these data. We selected factors to build the tissue-specific
covariance matrix estimate by including those for which non-zero factor values were exclusive to samples
from the tissue of interest. We inverted these matrices and used GeneNet (Schafer and Strimmer, 2005),

as in previous work, to build tissue-specific networks for each run (Gao et al., 2016). To build the final
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networks, we looked across each run with a network specific to a tissue, and every edge that appeared
in > r runs was included in the final network. The parameter r was chosen for each tissue based on the

number of runs with networks and the number of samples and genes in the run specific networks.

Genotypes from GTEx data

The 2.5M and 5M BeadChip genotypes were merged to yield approximately 1.9 million genotyped SNPs.
A greater set of genotypes were imputed using IMPUTE2 (Howie et al., 2009), yielding a satisfactory
distribution of imputation scores for MAF > 0.01 (mean INFO of 0.888 and median of 0.951 for variants
with MAF between 0.01 and 0.05). The genotypes were filtered for MAF > 0.05, leaving approximately
6 million variants. In order to take full advantage of SNP imputation, we used continuous (MLE of the
dosage, ranging from 0 to 2) genotypes in association mapping. The genotype-level principle components

were computed with the imputed genotypes.

eQTL mapping

For each tissue, the gene expression values were projected to the quantiles of a standard normal, and
Matrix-eQTL (Shabalin, 2012) was used to test all SNPs within the 150 Kb window of a gene’s tran-
scription start site (TSS) or end site (TES) using an additive linear model. For cis-eQTL analyses, we
optimized the number of PEER factors by tissue to a test chromosome (chromosome 11) to maximize the
number of identified cis-eQTLs. We included in association mapping a tissue-specific number of PEER
factors, sex, genotyping batch, and three genotype principal components. The correlation between SNP
and gene expression levels was evaluated using the estimated t-statistic from this model. False discover
rate (FDR) was calculated using the g-value R package (Storey, 2003; Dabney et al., 2010). We used

these cis-eQTLs for the trans-eQTL analysis for the TSN edge replication.

Trans-splicing QTLs

We computed trans-splicing QTLs using two approaches. In the first approach, we computed the best
cis-associated variant per gene (smallest p-value) located within 1 Mb from the transcription start site
(TSS) of the gene (Aguet et al., 2016). Then for every total expression node connected with an isoform

ratio in the network, we measured association between the gene’s best cis-associated variant and all the
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isoform ratio neighbors using Matrix-eQTL (Shabalin, 2012), controlling for the first three genotype PCs
and genotype platform. We corrected for false discovery (BH FDR < 0.05). In the second approach,
for each of the top 500 TE-IR hubs, we took all variants within 20 Kb of its TSS and tested their
association with isoforms located in a different chromosome and connected with the total expression hub

using Matrix-eQTL. Here, we used FDR < 0.2 for multiple tests correction.

Data Access

The Genotype-Tissue Expression v6 data are available through dbGaP, accession phs000424.v6 and the
GTEx portal http://gtexportal.org. TWNs for 16 tissues, TSNs for 27 tissues, and four tissue subset
networks are available for download at http://gtexportal.org (in progress).

Genotype, raw RNA-seq, quantified expression, and covariate data for the DGN cohort are avail-
able by application through the National Institute of Mental Health (NIMH) Center for Collabora-
tive Genomic Studies on Mental Disorders. Instructions for requesting access to data can be found at
the NIMH Repository and Genomics Resource (RGR; https://www.nimhgenetics.org/access_data_
biomaterial.php), and inquiries should reference the “Depression Genes and Networks study (D. Levin-

son, PI)”.

Acknowledgments

The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of
the Director of the National Institutes of Health. Additional funds were provided by the NCI, NHGRI,
NHLBI, NIDA, NIMH, and NINDS. Donors were enrolled at Biospecimen Source Sites funded by NCI
\SAIC-Frederick, Inc. (SAIC-F) subcontracts to the National Disease Research Interchange (10XS170),
Roswell Park Cancer Institute (10XS171), and Science Care, Inc. (X10S172). The Laboratory, Data
Analysis, and Coordinating Center (LDACC) was funded through a contract (HHSN268201000029C)
to The Broad Institute, Inc. Biorepository operations were funded through an SAIC-F subcontract to
Van Andel Institute (10ST1035). Additional data repository and project management were provided
by SAIC-F (HHSN261200800001E). The Brain Bank was supported by a supplements to University
of Miami grants DA006227 & DA033684 and to contract NOIMHO000028. Statistical Methods devel-

27


https://doi.org/10.1101/078741
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/078741; this version posted October 2, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

opment grants were made to the University of Geneva (MH090941 & MH101814), the University of
Chicago (MH090951, MH090937, MH101820, MH101825), the University of North Carolina - Chapel Hill
(MH090936 & MH101819), Harvard University (MH090948), Stanford University (MH101782), Washing-
ton University St Louis (MH101810), and the University of Pennsylvania (MH101822). AB is supported
by the Searle Scholars Program, NIH grant 1RO1MH109905, NIH grant RO1HG008150 (NHGRI; Non-
Coding Variants Program), and NIH grant ROIMH101814 (NIH Common Fund; GTEx Program). AG
and BJ are funded by NIH grant 2T32HG003284-11. BEE is funded by NIH R00 HG006265, NIH RO1

MH101822, NTH U01 HG007900, and a Sloan Faculty Fellowship.

Disclosure Declaration

The authors declare no competing interests.

References

Aguet, F., Brown, A. A., Castel, S., Davis, J. R., Mohammadi, P., Segre, A. V., Zappala, Z., Abell, N. S.,
Fresard, L., Gamazon, E. R., et al., 2016. Local genetic effects on gene expression across 44 human

tissues. bioRxiv, .
Albert, R., 2005. Scale-free networks in cell biology. Journal of Cellular Science, 118(Pt 21):4947-4957.
Alexa, A. and Rahnenfuhrer, J., 2016. topGO: Enrichment Analysis for Gene Ontology.
Andrews, S., 2010. FastQC: a quality control tool for high throughput sequence data.

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski,
K., Dwight, S. S., Eppig, J. T., et al., 2000. Gene Ontology: tool for the unification of biology. Nature
Genetics, 25(1):25-29.

Auboeuf, D., Dowhan, D. H., Li, X., Larkin, K., Ko, L., Berget, S. M., and O’Malley, B. W., 2004.
CoAA, a Nuclear Receptor Coactivator Protein at the Interface of Transcriptional Coactivation and

RNA Splicing. Molecular and Cellular Biology, 24(1):442-453.

Auboeuf, D., Honig, A., Berget, S. M., and O’Malley, B. W., 2002. Coordinate regulation of transcription

and splicing by steroid receptor coregulators. Science, 298(5592):416-9.

28


https://doi.org/10.1101/078741
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/078741; this version posted October 2, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Ballouz, S., Verleyen, W., and Gillis, J., 2015. Guidance for RNA-seq co-expression network construction

and analysis: Safety in numbers. Bioinformatics, 31(13):2123-2130.

Barabasi, A. L. and Oltvai, Z. N., 2004. Network biology: Understanding the cell’s functional organization
[Review]. Nature Reviews Genetics, 5(2):101-NIL.

Battle, A., Mostafavi, S., Zhu, X., Potash, J. B., Weissman, M. M., McCormick, C., Haudenschild,
C. D., Beckman, K. B., Shi, J., Mei, R., et al., 2014. Characterizing the genetic basis of transcriptome

diversity through RNA-sequencing of 922 individuals. Genome Research, 24(1):14-24.

Blencowe, B. J., Baurén, G., Eldridge, A. G., Issner, R., Nickerson, J. A., Rosonina, E.; and Sharp, P. A
2000. The SRm160/300 splicing coactivator subunits. RNA, 6(1):111-20.

Bolger, A. M., Lohse, M., and Usadel, B., 2014. Trimmomatic: A flexible trimmer for Illumina sequence

data. Bioinformatics, :btul70.

Buettner, F., Natarajan, K. N., Casale, F. P., Proserpio, V., Scialdone, A., Theis, F. J., Teichmann, S. A.,
Marioni, J. C., and Stegle, O., 2015. Computational analysis of cell-to-cell heterogeneity in single-cell

RNA-sequencing data reveals hidden subpopulations of cells. Nature Biotechnology, 33(2):155-160.

Chen, M. and Manley, J. L., 2009. Mechanisms of alternative splicing regulation: insights from molecular

and genomics approaches. Nature Reviews Molecular Cell Biology, 10(11):741-54.

Dabney, A., Storey, J. D., and Warnes, G., 2010. qvalue: Q-value estimation for false discovery rate

control. R Package Version, 1(0).

Dai, C., Li, W., Liu, J., and Zhou, X. J., 2012. Integrating many co-splicing networks to reconstruct

splicing regulatory modules. BMC Systems Biology, 6(Suppl 1):S17.

DeBoever, C., Ghia, E. M., Shepard, P. J., Rassenti, L., Barrett, C. L., Jepsen, K., Jamieson, C. H.,
Carson, D., Kipps, T. J., and Frazer, K. A., et al., 2015. Transcriptome sequencing reveals potential
mechanism of cryptic 3’ splice site selection in SF3B1-mutated cancers. PLoS Computational Biology,

11(3):e1004105.

Derrien, T., Estellé, J., Sola, S. M., Knowles, D. G., Raineri, E., Guigd, R., and Ribeca, P., 2012. Fast

computation and applications of genome mappability. PLoS ONE, 7(1).

29


https://doi.org/10.1101/078741
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/078741; this version posted October 2, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and
Gingeras, T. R., 2013. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics, 29(1):15-21.

Du, C., Ma, X., Meruvu, S., Hugendubler, L., and Mueller, E., 2014. The adipogenic transcriptional
cofactor ZNF638 interacts with splicing regulators and influences alternative splicing. Journal of Lipid

Research, 55(9):1886-96.

D’Souza, 1., Poorkaj, P., Hong, M., Nochlin, D., Lee, V. M.-Y., Bird, T. D., and Schellenberg, G. D., 1999.
Missense and silent tau gene mutations cause frontotemporal dementia with parkinsonism-chromosome
17 type, by affecting multiple alternative RNA splicing regulatory elements. Proceedings of the National
Academy of Sciences, 96(10):5598-5603.

Fabregat, A., Sidiropoulos, K., Garapati, P., Gillespie, M., Hausmann, K., Haw, R., Jassal, B., Jupe, S.,
Korninger, F., McKay, S., et al., 2016. The Reactome pathway knowledgebase. Nucleic Acids Research,
44(D1):D481-D487.

Friedman, J., Hastie, T., and Tibshirani, R., 2008. Sparse inverse covariance estimation with the graphical

lasso. Biostatistics, 9(3):432-441.

Gao, C., McDowell, 1. C., Zhao, S., Brown, C. D., and Engelhardt, B. E., 2016. Context specific
and differential gene co-expression networks via Bayesian biclustering. PLoS Computational Biology,

12(7):e1004791.

Gao, G., Dudley, S. C., and Jr., 2013. RBM25/LUC7L3 function in cardiac sodium channel splicing

regulation of human heart failure. Trends in Cardiovascular Medicine, 23(1):5-8.

Ghigna, C., Valacca, C., and Biamonti, G., 2008. Alternative splicing and tumor progression. Current

Genomics, 9(8):556-570.

Glatz, D. C., Rujescu, D., Tang, Y., Berendt, F. J., Hartmann, A. M., Faltraco, F., Rosenberg, C.,
Hulette, C., Jellinger, K., Hampel, H., et al., 2006. The alternative splicing of tau exon 10 and its
regulatory proteins CLK2 and TRA2-BETA1 changes in sporadic Alzheimer’s disease. Journal of
Neurochemistry, 96(3):635-644.

Greene, C. S., Krishnan, A., Wong, A. K., Ricciotti, E., Zelaya, R. A., Himmelstein, D. S., Zhang, R.,

30


https://doi.org/10.1101/078741
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/078741; this version posted October 2, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Hartmann, B. M., Zaslavsky, E., Sealfon, S. C., et al., 2015. Understanding multicellular function and

disease with human tissue-specific networks. Nature Genetics, 47(6):569-576.

GTEx Consortium, 2015. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene
regulation in humans. Science, 348(6235):648-660.

Hormozdiari, F., Penn, O., Borenstein, E., and Eichler, E. E., 2015. The discovery of integrated gene

networks for autism and related disorders. Genome Research, 25:142-154.

Howie, B. N., Donnelly, P., and Marchini, J., 2009. A flexible and accurate genotype imputation method

for the next generation of genome-wide association studies. PLoS Genetics, 5(6).

Hsieh, C.-J., Sustik, M. A., Dhillon, I. S., and Ravikumar, P., 2011. Sparse Inverse Covariance Matrix
Estimation Using Quadratic Approximation. Advances in Neural Information Processing Systems,

24:2330-2338.

Hutton, M., Lendon, C. L., Rizzu, P., Baker, M., Froelich, S., Houlden, H., Pickering-Brown, S.,
Chakraverty, S., Isaacs, A., Grover, A., et al., 1998. Association of missense and 5’-splice-site mu-

tations in tau with the inherited dementia FTDP-17. Nature, 393(6686):702-705.

Tancu, O. D., Colville, A., Oberbeck, D., Darakjian, P., McWeeney, S. K., and Hitzemann, R., 2015. Cos-
plicing network analysis of mammalian brain RNA-Seq data utilizing WGCNA and Mantel correlations.

Frontiers in Genetics, 6.

Jeong, H., Mason, S. P., Barabdsi, a. L., and Oltvai, Z. N., 2001. Lethality and centrality in protein
networks. Nature, 411(6833):41-42.

Jo, B., He, Y., Strober, B. J., Parsana, P., Aguet, F., Brown, A. A., Castel, S. E., Gamazon, E. R.,
Gewirtz, A., Gliner, G., et al., 2016. Distant regulatory effects of genetic variation in multiple human

tissues. bioRziv, :074419.

Khatri, P., Sirota, M., and Butte, A. J., 2012. Ten years of pathway analysis: Current approaches and

outstanding challenges. PLoS Computational Biology, 8(2).

Kulisz, A. and Simon, H.-G., 2008. An evolutionarily conserved nuclear export signal facilitates cyto-

plasmic localization of the Thx5 transcription factor. Molecular and Cellular Biology, 28(5):1553-64.

31


https://doi.org/10.1101/078741
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/078741; this version posted October 2, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Kumar P., P., Franklin, S., Emechebe, U., Hu, H., Moore, B., Lehman, C., Yandell, M., Moon, A. M.,
Rodriguez, M., Aladowicz, E., et al., 2014. TBX3 Regulates Splicing In Vivo: A Novel Molecular
Mechanism for Ulnar-Mammary Syndrome. PLoS Genetics, 10(3):e1004247.

Lachmann, A., Xu, H., Krishnan, J., Berger, S. I., Mazloom, A. R., and Ma’ayan, A., 2010. ChEA: tran-
scription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics,

26(19):2438-2444.

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S., 2009. 2C- Ultrafast and memory-efficient align-

ment of short DNA sequences to the human genome. Genome Biology, 10(3):R25.

Lee, H. K., Hsu, A. K., Sajdak, J., Qin, J., and Pavlidis, P., 2004. Coexpression analysis of human genes

across many microarray data sets. Genome Research, 14(6):1085-1094.

Lee, Y., Gamazon, E. R., Rebman, E., Lee, Y., Lee, S., Dolan, M. E., Cox, N. J., and Lussier, Y. A.,

2012. Variants Affecting Exon Skipping Contribute to Complex Traits. PLoS Genetics, 8(10).

Leek, J. T., Scharpf, R. B., Bravo, H. C., Simcha, D., Langmead, B., Johnson, W. E., Geman, D.,
Baggerly, K., and Irizarry, R. A., 2010. Tackling the widespread and critical impact of batch effects in
high-throughput data. Nature Reviews Genetics, 11(10):733-739.

Li, B. and Dewey, C. N., 2011. RSEM: accurate transcript quantification from RNA-Seq data with or

without a reference genome. BMC' Bioinformatics, 12(1):1.

Li, C., Lin, R.-I., Lai, M.-C., Ouyang, P., and Tarn, W.-Y., 2003. Nuclear Pnn/DRS protein binds
to spliced mRNPs and participates in mRNA processing and export via interaction with RNPSI.
Molecular and Cellular Biology, 23(20):7363-76.

Li, H.-D., Menon, R., Eksi, R., Guerler, A., Zhang, Y., Omenn, G. S., and Guan, Y., 2016a. A Network
of Splice Isoforms for the Mouse. Scientific Reports, 6:24507.

Li, H-D., Omenn, G. S., and Guan, Y., 2015. MIsoMine: a genome-scale high-resolution data portal of
expression, function and networks at the splice isoform level in the mouse. Database : The Journal of

Biological Databases and Curation, 2015:bav045.

32


https://doi.org/10.1101/078741
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/078741; this version posted October 2, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Li, W., Kang, S., Liu, C.-C., Zhang, S., Shi, Y., Liu, Y., and Zhou, X. J., 2014. High-resolution functional
annotation of human transcriptome: predicting isoform functions by a novel multiple instance-based

label propagation method. Nucleic Acids Research, 42(6):e39.

Li, Y. I., van de Geijn, B., Raj, A., Knowles, D. A., Petti, A. A., Golan, D., Gilad, Y., and Pritchard, J. K.,
2016b. Rna splicing is a primary link between genetic variation and disease. Science, 352(6285):600—
604.

Liu, Q., Gao, J., Chen, X., Chen, Y., Chen, J., Wang, S., Liu, J., Liu, X., and Li, J., 2008. HBP21: a
novel member of TPR motif family, as a potential chaperone of heat shock protein 70 in proliferative

vitreoretinopathy (PVR) and breast cancer. Molecular Biotechnology, 40(3):231-240.

Lépez-Bigas, N.; Audit, B., Ouzounis, C., Parra, G., and Guigd, R., 2005. Are splicing mutations the
most frequent cause of hereditary disease? FEBS Letters, 579(9):1900-1903.

Magomedova, L., Tiefenbach, J., Zilberman, E., Voisin, V., Robitaille, M., Gueroussov, S., Irimia, M.,
Ray, D., Patel, R., Xu, C., et al., 2016. ARGLU1 is a Glucocorticoid Receptor Coactivator and Splicing

Modulator Important in Stress Hormone Signaling and Brain Development. bioRziv, .

Martinez-Redondo, V., Jannig, P. R., Correia, J. C., Ferreira, D. M. S., Cervenka, I., Lindvall, J. M.,
Sinha, 1., Izadi, M., Pettersson-Klein, A. T., Agudelo, L. Z., et al., 2016. Peroxisome proliferator-
activated receptor gamma coactivator-1 alpha isoforms selectively regulate multiple splicing events on

target genes. Journal of Biological Chemistry, 291(29):15169-15184.

Matlin, A. J., Clark, F., and Smith, C. W. J., 2005. Understanding alternative splicing: towards a cellular
code. Nature Reviews Molecular Cell Biology, 6(5):386-98.

McDowell, 1. C., Pai, A. A., Guo, C., Vockley, C. M., Brown, C. D., Reddy, T. E., and Engelhardt, B. E.,
2016. Many long intergenic non-coding RNAs distally regulate mRNA gene expression levels. bioRXiv

preprint 044719, .

Melé, M., Ferreira, P. G., Reverter, F., DeLuca, D. S., Monlong, J., Sammeth, M., Young, T. R.,
Goldmann, J. M., Pervouchine, D. D., Sullivan, T. J., et al., 2015. The human transcriptome across

tissues and individuals. Science, 348(6235):660-665.

33


https://doi.org/10.1101/078741
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/078741; this version posted October 2, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Mostafavi, S., Battle, A., Zhu, X., Potash, J., Weissman, M., Shi, J., Beckman, K., Haudenschild, C.,
McCormick, C., Mei, R., et al., 2014. Type I interferon signaling genes in recurrent major depression:
increased expression detected by whole-blood RNA sequencing. Molecular Psychiatry, 19(12):1267—
1274.

Mostafavi, S., Battle, A., Zhu, X., Urban, A. E., Levinson, D., Montgomery, S. B., and Koller, D., 2013.
Normalizing RNA-sequencing data by modeling hidden covariates with prior knowledge. PloS ONE,
8(7):e68141.

Mullick, A., Leon, Z., Min-Oo, G., Berghout, J., Lo, R., Daniels, E., and Gros, P., 2006. Cardiac Failure

in C5-Deficient A/J Mice after Candida albicans Infection. Infection and Immunity, 74(8):4439-4451.

Ong, C.-T. and Corces, V. G., 2011. Enhancer function: new insights into the regulation of tissue-specific

gene expression. Nature Reviews Genetics, 12(4):283-93.

Penrod, N. M., Cowper-Sal-Lari, R., and Moore, J. H., 2011. Systems genetics for drug target discovery.
Trends in Pharmacological Sciences, 32(10):623-630.

Pierson, E., Koller, D., Battle, A., Mostafavi, S., Consortium, G., et al., 2015. Sharing and specificity of

co-expression networks across 35 human tissues. PLoS Computational Biology, 11(5):1004220.

Piro, R. M., Ala, U., Molineris, I., Grassi, E., Bracco, C., Perego, G. P., Provero, P., and Di Cunto,
F., 2011. An atlas of tissue-specific conserved coexpression for functional annotation and disease gene

prediction. European Journal of Human Genetics, 19(11):1173-1180.

Prieto, C., Risueno, A., Fontanillo, C., and De Las Rivas, J., 2008. Human gene coexpression landscape:

Confident network derived from tissue transcriptomic profiles. PLoS ONE, 3(12).

Qian, J., Esumi, N.; Chen, Y., Wang, Q., Chowers, 1., and Zack, D. J., 2005. Identification of regulatory
targets of tissue-specific transcription factors: application to retina-specific gene regulation. Nucleic

Acids Research, 33(11):3479-3491.

Roider, H. G., Manke, T., O’keeffe, S., Vingron, M., and Haas, S. A., 2009. PASTAA: Identifying

transcription factors associated with sets of co-regulated genes. Bioinformatics, 25(4):435-442.

Rue, H. and Held, L., 2005. Gaussian Markov Random Fields: Theory and Applications. Monographs

on Statistics and Applied Probability. Chapman & Hall, London.

34


https://doi.org/10.1101/078741
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/078741; this version posted October 2, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Saito, Y., Kojima, T., and Takahashi, N., 2012. Mab2112 is essential for embryonic heart and liver
development. PLOS One, 7(3):€32991.

Schafer, J. and Strimmer, K., 2005. A shrinkage approach to large-scale covariance matrix estimation
and implications for functional genomics. Statistical Applications in Genetics and Molecular Biology,

4:Article32.

Schafer, J. and Strimmer, K., 2005. An empirical Bayes approach to inferring large-scale gene association

networks. Bioinformatics, 21(6):754-764.

Scotti, M. M. and Swanson, M. S., 2015. RNA mis-splicing in disease. Nature Reviews Genetics, 17(1):19—
32.

Shabalin, A. A., 2012. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics,
28(10):1353-8.

Silver, D. L., Watkins-Chow, D. E., Schreck, K. C., Pierfelice, T. J., Larson, D. M., Burnetti, A. J.,
Liaw, H.-J., Myung, K., Walsh, C. A., Gaiano, N., et al., 2010. The exon junction complex component

Magoh controls brain size by regulating neural stem cell division. Nature Neuroscience, 13(5):551-558.

Squier, C. A. and Kremer, M. J., 2001. Biology of oral mucosa and esophagus. Journal of the National
Cancer Institute. Monographs, 2001(29):7-15.

Storey, J. D., 2003. The positive false discovery rate: A Bayesian interpretation and the g-value. Annals
of Statistics, :2013-2035.

Stuart, J. M., Segal, E., Koller, D., and Kim, S. K., 2003. R ESEARCH A RTICLES A Gene-Coexpression
Network. Science, 302(5643):249-255.

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A.,
Pomeroy, S. L., Golub, T. R., Lander, E. S., et al., 2005. Gene set enrichment analysis: A knowledge-
based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy

of Sciences, 102(43):15545-15550.

Sui, Y., Yang, Z., Xiong, S., Zhang, L., Blanchard, K. L., Peiper, S. C., Dynan, W. S.; Tuan, D., and Ko,
L., 2007. Gene amplification and associated loss of 5’ regulatory sequences of CoAA in human cancers.

Oncogene, 26(6):822-835.

35


https://doi.org/10.1101/078741
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/078741; this version posted October 2, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Sveen, A., Kilpinen, S., Ruusulehto, A., Lothe, R., and Skotheim, R., 2015. Aberrant RNA splicing in

cancer; expression changes and driver mutations of splicing factor genes. Oncogene, .

Tomsic, J., He, H., Akagi, K., Liyanarachchi, S., Pan, Q., Bertani, B., Nagy, R., Symer, D. E., Blencowe,
B. J., and de la Chapelle, A., et al., 2015. A germline mutation in SRRM2, a splicing factor gene, is

implicated in papillary thyroid carcinoma predisposition. Scientific Reports, 5:10566.

Vareli, K., Frangou-Lazaridis, M., van der Kraan, I., Tsolas, O., and van Driel, R., 2000. Nuclear
distribution of prothymosin alpha and parathymosin: evidence that prothymosin alpha is associated
with RNA synthesis processing and parathymosin with early DNA replication. Ezxperimental Cell
Research, 257(1):152-61.

Wang, E. T., Sandberg, R., Luo, S., Khrebtukova, 1., Zhang, L., Mayr, C., Kingsmore, S. F., Schroth,
G. P., and Burge, C. B., 2008. Alternative isoform regulation in human tissue transcriptomes. Nature,

456(7221):470-6.

Wang, Z. and Burge, C. B., 2008. Splicing regulation: from a parts list of regulatory elements to an
integrated splicing code. RNA, 14(5):802-13.

Ward, A. J. and Cooper, T. A., 2010. The pathobiology of splicing. The Journal of Pathology, 220(2):152—
163.

Warde-Farley, D., Donaldson, S. L., Comes, O., Zuberi, K., Badrawi, R., Chao, P., Franz, M., Grouios, C.,
Kazi, F., Lopes, C. T., et al., 2010. The GeneMANTIA prediction server: biological network integration

for gene prioritization and predicting gene function. Nucleic Acids Research, 38(suppl 2):W214-W220.

Weiser, M., Mukherjee, S., and Furey, T. S., 2014. Novel distal eqtl analysis demonstrates effect of

population genetic architecture on detecting and interpreting associations. Genetics, 198(3):879-893.

Westra, H.-J., Peters, M. J., Esko, T., Yaghootkar, H., Schurmann, C., Kettunen, J., Christiansen, M. W.,
Fairfax, B. P., Schramm, K., Powell, J. E., et al., 2013. Systematic identification of trans eQTLs as

putative drivers of known disease associations. Nature Genetics, 45(10):1238-43.

Witten, J. T. and Ule, J., 2011. Understanding splicing regulation through RNA splicing maps. Trends
in Genetics, 27(3):89-97.

36


https://doi.org/10.1101/078741
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/078741; this version posted October 2, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Wu, J. Y., Kar, A., Kuo, D., Yu, B., and Havlioglu, N., 2006. SRp54 (SFRS11), a regulator for tau exon
10 alternative splicing identified by an expression cloning strategy. Molecular and Cellular Biology,

26(18):6739-47.

Xiao, X., Moreno-moral, A., Rotival, M., Bottolo, L., and Petretto, E., 2014. Multi-tissue Analysis of Co-
expression Networks by Higher-Order Generalized Singular Value Decomposition Identifies Functionally

Coherent Transcriptional Modules. PLoS Genetics, 10(1).

Yang, Y., Han, L., Yuan, Y., Li, J., Hei, N., and Liang, H., 2014. Gene co-expression network analysis re-
veals common system-level properties of prognostic genes across cancer types. Nature Communications,

5:1-9.

Zhang, B. and Horvath, S., 2005. A general framework for weighted gene co-expression network analysis.

Statistical Applications in Genetics and Molecular Biology, 4:Articlel7.

Zhang, W. J. and Wu, J. Y., 1996. Functional properties of p54, a novel SR protein active in constitutive

and alternative splicing. Molecular and Cellular Biology, 16(10):5400-8.

Zhong, R., Allen, J. D., Xiao, G., and Xie, Y., 2014. Ensemble-based network aggregation improves the

accuracy of gene network reconstruction. PLoS ONE, 9(11):1-10.

Zhou, A., Ou, A. C., Cho, A., Benz, E. J., and Huang, S.-C., 2008. Novel splicing factor RBM25
modulates Bel-x pre-mRNA 5’ splice site selection. Molecular and Cellular Biology, 28(19):5924-36.

Zimowska, G., Shi, J., Munguba, G., Jackson, M. R.; Alpatov, R., Simmons, M. N., Shi, Y., and Sugrue,
S. P., 2003. Pinin/DRS/memA Interacts with SRp75, SRm300 and SRrp130 in Corneal Epithelial

Cells. Investigative Opthalmology € Visual Science, 44(11):4715.

37


https://doi.org/10.1101/078741
http://creativecommons.org/licenses/by-nc-nd/4.0/

