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Abstract 
Mapping cis-acting expression quantitative trait loci (cis-eQTL) has become a popular approach 
for characterizing proximal genetic regulatory variants. However, measures used for quantifying 
the effect size of cis-eQTLs have been inconsistent and poorly defined. In this paper, we describe 
log allelic fold change (aFC) as a biologically interpretable and mathematically convenient unit 
that represents the magnitude of expression change associated with a given genetic variant. This 
measure is mathematically independent from expression level and allele frequency, applicable to 
multi-allelic variants, and generalizable to multiple independent variants. We provide tools and 
guidelines for estimating aFC from eQTL and allelic expression data sets, and apply it to GTEx 
data. We show that aFC estimates independently derived from eQTL and allelic expression data 
are highly consistent, and identify technical and biological correlates of eQTL effect size. We 
generalize aFC to analyze genes with two eQTLs in GTEx, and show that in nearly all cases these 
eQTLs are independent in their regulatory activity. In summary, aFC is a solid measure of cis-
regulatory effect size that allows quantitative interpretation of cellular regulatory events from 
population data, and it is a valuable approach for investigating novel aspects of eQTL data sets. 

Introduction 
Non-coding genetic variation affecting gene regulation and other cellular phenotypes has a key 
role in phenotypic variation and disease susceptibility (Albert and Kruglyak 2015). One of the 
most commonly used methods to characterize genetic variants that affect gene expression is 
eQTL mapping (Schadt et al. 2003; Lappalainen et al. 2013; GTEx Consortium 2015), which 
identifies genetic loci where genotypes of genetic variants are significantly associated to gene 
expression in a population sample. Genes and variants with significant associations are often 
called eGenes and eVariants, respectively, and the eVariant with the best p-value in a given locus 
usually used as the proxy for the causal variant. The association between genotype and gene 
expression is typically tested by regressing gene expression on the number of alternative alleles 
using a linear model, and the significance of the regression slope is used to measure significance 
of the eQTL (Shabalin 2012; Ongen et al. 2016). eQTLs can occur either in trans through altering 
diffusible factors that affect gene expression distally or in cis through allelic, physical interactions 
on the same chromosome typically less than 1 Mb away from the eGene, which are the focus of 
this study. The allelic effect of cis-regulation leads to unequal expression of the two haplotypes 
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(allelic imbalance) in individuals that are heterozygous for a cis-acting eVariant (Fig. 1A).  

The effect size of an eQTL describes the magnitude of the effect that it has on gene expression 
and is an important statistic for characterizing the nature of regulatory variants. Estimating the 
relative effect of eQTL alleles on expression levels has applications in computational functional 
genetics analysis, as well as in analysis of genetic regulatory variants by experimental assays such 
as genome editing (Tewhey et al. 2016; Ulirsch et al. 2016; Vockley et al. 2015; Arnold et al. 
2013; Canver et al. 2015; Wright and Sanjana 2016). However, thus far there has been no 
consensus definition for eQTL effect size, let alone one that allows a direct biological 
interpretation, with previous eQTL studies using different units and approaches. The most widely 
used measure of effect size is simply the regression slope, a readily available statistic from eQTL 
calling tools (Shabalin 2012; Gutierrez-Arcelus et al. 2013; Tung et al. 2015; Lee et al. 2015). 
Other statistics include slope of linear regression based on log-transformed expression (Flutre et 
al. 2013; Battle et al. 2014), and estimation of the difference between genotype classes, such as 
the mean difference in expression between heterozygous and the more common homozygote 
class, sometimes with log transformation or scaling by mean (Gutierrez-Arcelus et al. 2015; 
Josephs et al. 2015). The proportion of expression variance in the population explained by an 
eQTL is a widely used statistic that is informative of population variance but not of the molecular 
effect of an eQTL (Wright et al. 2014; Kirsten et al. 2015; Grundberg et al. 2012). A recent 
method, developed simultaneously and independently from our work, uses the ratio between the 
slope and intercept of the linear regression in a variance stabilized model (Palowitch et al. 2016). 
While all these approaches provide estimates that are generally correlated with cis-regulatory 
effect of a given variant, they often lack a well-defined unit that enables biological interpretation 
of the effect size. Furthermore, many of these statistics are confounded by nuisance variables 
such as genotype frequency, gene expression level or technical or environmental variation. These 
limitations can confound downstream analysis.   

cis-acting regulatory variation is known to be reflected in both allele-specific expression (ASE), 
and total gene expression data as incorporated in previous statically involved cis-eQTL calling 
methods (Pickrell et al. 2010; Sun 2012; van de Geijn et al. 2015; Hu et al. 2015; Kumasaka et al. 
2016). In this study, based upon the mechanistically justified model of additive cis genetic effects 
on gene expression, we define the log-ratio between the expression of the haplotype carrying the 
alternative allele to the one carrying the reference allele, the log allelic fold change (aFC), as a 
biologically interpretable and mathematically convenient measure of cis-regulatory effect size. 
We provide a thorough description of the derivation and properties of this measure, including its 
generalizations that enable analysis of multi-allelic genetic variants and joint modeling of 
multiple cis-regulatory variants. We make the calculation of eQTL effect sizes accessible to the 
wide eQTL community by practical guidelines and tools, and provide effect sizes for all cis-
eQTLs in the GTEx data set (co-submitted -(Aguet et al. 2016)). We characterize the empirical 
trends across the effect sizes in GTEx data, demonstrating a good fit between the empirical results 
and simulations, and describing factors correlated with observed allelic fold changes. Finally, we 
demonstrate application of cis-regulatory model extended for joint analysis of allelic fold changes 
in eGenes with two eQTLs in GTEx data. 
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Results 
1. Model  
1.1 Additive model of regulation 
For a given gene and a given cis-regulatory variant, v, with two alleles in population, v0 and v1, 
we define allelic expressions e0, and e1 as the amount of transcript produced from the gene when 
it is located on the same chromosome copy as alleles v0, and v1, respectively. We assume that the 
allelic expression is determined by a shared basal expression of the gene, eB, driven by the 
cellular regulatory environment, and allele-specific factors k0, k1 ≥0, that represent distinctive 
effect of the allele v0, and v1 on transcription, respectively (Fig. 1A): 

𝑒! = 𝑘!𝑒!
𝑒! = 𝑘!𝑒!

 (1) 

Under the cis-regulatory model, the regulatory effect of an allele does not depend on the genotype 
on the other chromosome copy, and ei,j, the total expression of the gene in an individual with 
alleles vi and vj on the first and second haplotype is 

𝑒!,! = 𝑘! + 𝑘! 𝑒! ,     𝑖, 𝑗 ∈ {0,1} (2) 

 

Figure 1.  A) Schematic representation of cis-regulatory eQTL model in Eq. 1, 2.  B) Example 
of allelic expression (eVariant chr5:96252589 T/C; eGene ERAP2) in GTEx Adipose 
Subcutaneous. C-D) eGene expression for the same example eQTL. The green dashed line 
connects the median expression of the two homozygous classes. Expression is linear with 
number of alternative alleles (C), but the linearity is lost after log-transformation (D).  
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However, observational population data generally includes only relative expression 
quantifications. Using δi,j=ki/kj in Eq.1, the expression of haplotype carrying the alternative allele 
v1 is given as 

𝑒! = δ!,!𝑒! (3) 
relative to e0, the expression of the haplotype carrying the reference allele. Similarly, the total 
relative expression of the gene is 

𝑒!,! = δ!,! + δ!,! 𝑒!,     𝑖, 𝑗 ∈ {0,1} (4) 
For a given cis-acting eVariant, we define log allelic fold change, 𝑠!,! = log! δ!,!, as the relative 
cis-regulatory strength of the allele v1 versus the reference allele v0. This quantity is similar to the 
widely used log expression fold change of differentially expressed genes, but defined between 
two alleles of a genetic variant. Allelic fold change of a biallelic eVariant can be directly 
quantified from allelic gene expression in heterozygous individuals (Fig. 1A-B; Box 1), or from 
summary statistics of standard eQTL linear regression between genotypes and total expression 
levels (Fig. 1C; Box 2). A further challenge in eQTL effect size estimation is the 
heteroscedasticity of noise in expression data, which violates the data normality assumptions of 
linear regression. Although different RNA measurement platforms such as RNA-sequencing, 
microarrays and other techniques have distinct technical variation profiles, biological variation in 
gene expression data is generally considered to be log-normally distributed (Tu et al. 2002; 
Whitehead and Crawford 2006; Anders and Huber 2010). However, after the commonly used 
variance stabilization by log transformation, gene expression is no longer a linear function, and as 
such cannot be solved efficiently (Fig. 1D; Methods). Thus, we introduce an efficient heuristic 
method to estimate allelic fold change from log-transformed gene expression data in linear time 
(Box 3). The method generates a set of four candidate aFC estimates: The first three estimates are 
calculated by using only two out of the three eQTL genotype classes at a time. The fourth 
estimate is derived using loglinear regression, utilizing the fact that log-transformed eQTL data 
approaches a linear function in weak eQTLs as log allelic fold change goes to zero (𝑠!,! → 0; 
Methods). The candidate aFC that minimizes the residual variance in log-transformed data is 
reported as the final estimate (Methods).  
1.2 Generalization to multiple eVariants with multiple alleles 
Beside clear biological interpretation, log allelic fold change has several convenient mathematical 
properties that facilitate downstream analysis of the values (Box 4, Supplemental methods), and 
allow generalization to analysis of multi-allelic genetic variants, as well as to joint analysis of 
multiple independent eQTLs for the same eGene. Here we consider the case of N eVariants, 
𝑣1,… , 𝑣n,… 𝑣N acting on the same eGene independently with m1, … mn, … mN alleles, 
respectively. Let 𝑖!… 𝑖!… 𝑖!  denote a haplotype carrying the in-th allele of the 𝑣n, the relative 
expression on this haplotype is: 

𝑒 !!… !!…!! = 𝑒! δ!!,!
!!

!

!!!

 (5) 

Where δ!!,!
!!  denotes the allelic fold change associated with allele in, at the nth eVariant 𝑣n versus 

its reference allele 0, e0 is the reference expression associated with the case, 𝑒 !… !…! , where the 
haplotype carries reference alleles for all eVariants. Thus the log allelic fold difference between 
two haplotypes 𝑖!…  𝑖! … 𝑖!  and 𝑗!…  𝑗! … 𝑗!  is 
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s !!… !!…!! , !!… !!…!!  = s!!,!!
!!

!

!!!

 (6) 

Where s!!,!!
!!  denotes the log allelic fold change associated with two, alleles in and jn, at the nth 

eVariant. The total expression of the eGene given the genotype is  

e !!… !!…!! , !!… !!…!!  = 𝑒! δ!!,!
!!

!

!!!

+ δ!!,!
!!

!

!!!

 (7) 

Following the cis-regulatory model, this inherently takes into account the independent expression 
of the two haplotypes according to the alleles that they carry, which is different from a simple 
additive model of multiple eQTLs that ignores their haplotype configuration. The last two 
equations can be used to simultaneously estimate effect sizes of N eVariants from allelic 
expression or transcription profiles of genotyped individuals, respectively. 

Input:  
• Allelic expression in N individuals heterozygous for the top eVariant of an eQTL of 

interest: (c0,1, c1,1) ... (c0,N, c1,N) 

1. Get median ratio of the allelic counts: 

δ!,! = median
!!!…!

𝑐!,!
𝑐!,!

 

where (c0,n, c1,n) are allelic counts from the 1st, and 2nd haplotype in the nth individual.  

Output: Report effect size: s1,0=log2 δ1,0 

Box 1: Calculating aFC from allelic expression data. 

 

Input:  
• eGene expression in N individuals: y1 ... yN, , where yn ∈ [0, +∞) 
• Number of alternative alleles in each individual: t1 ... tN, where tn ∈ {0,1,2} 

1. Use simple linear regression to model expression as a function of tn:   

𝑦! = 𝑏! + 𝑏!𝑡! + noise 

2. Use the slope b1 and intercept b0 to calculate: 

δ!,! =
2𝑏!
𝑏!

+ 1 

Output: Report effect size: s1,0 =log2 δ1,0 

Box 2: Calculating aFC from gene expression data (see Methods for derivations). 
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Input:  
• eGene expression in N individuals in log2 scale: z1 ... zN, , where zn ∈ [–∞, +∞) 
• Number of alternative alleles in each individual: t1 ... tN, where tn ∈ {0,1,2} 

1. Calculate m0, m1, m2 as geometric mean of expression for individuals with tn= 0, 1, and 2, 
respectively. 

2. Calculate the following three candidate estimates: 

𝛿!,!∗! =
𝑚!

𝑚!
                    

𝛿!,!∗! = 2
𝑚!

𝑚!
− 1

!!

𝛿!,!∗! = 2
𝑚!

𝑚!
− 1         

 

3. Use simple linear regression to model log2 expression as a function of tn:   

𝑧! = 𝑐!𝑡! + 𝑐! + noise 

4. Use the slope c1 times two as the fourth candidate estimate: 

𝛿!,!∗! = 2!!! 

5. Use each of the four estimates 𝛿!,!∗! , 𝑘 = 1… 4 to calculate: 

𝑟! 𝑖 = 𝑧! − log! 2 − 𝑡! + 𝑡!𝛿!,!∗!  
where 2 − 𝑡! + 𝑡!𝛿!,!∗!  is predicted gene expression in nth individual using the ith estimate.  

6. Pick the estimate that provides the lowest variance in the residuals: 

𝛿!,! = argmin
!∈!…!

V 𝑟 𝑖  

Output: Report effect size: s1,0 =log2 δ1,0 

Box 3: Linear time algorithm for estimating aFC from log-transformed gene expression data (see 
Methods for derivations). 
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1. Zero log aFC indicates the absence of regulatory difference: 𝑠!,!  = 0 
2. Choice of reference allele only affects the sign of log aFC: 𝑠!,!  = −𝑠!,! 
3. Log aFC is additive:   

𝑠!,!  = 𝑠!,! + 𝑠!,! 

4. Log aFC associated with joint effect of independent regulatory variants, v1…vN is sum 
of their individual aFCs: 

s !!… !!…!! , !!… !!…!!  = s!!,!!
!!

!

!!!

 

where 𝑖!…  𝑖! … 𝑖!  and 𝑗!…  𝑗! … 𝑗!  are the set of present alleles on each of the 
haplotypes. 

5. Absolute value of log aFC, 𝑑!,! = 𝑠!,! , is a pseudo-metric:  
i) 𝑑!,! ≥ 0 
ii) 𝑑!,!  = 0 
iii) 𝑑!,!  = 𝑑!,! 
iv) 𝑑!,! ≤ 𝑑!,! + 𝑑!,! 

Box 4: Mathematical properties of log aFC as a relative measure of cis-regulatory effect size (see 
Supplemental methods for proofs). 

 
2. Simulation without noise 
Regression slope is probably the most common measure used for estimating cis-eQTL effect size. 
However, compared to aFC, it lacks a clear biological interpretation, and is prone to systematical 
biases introduced by expression level and allele frequency. We demonstrate this by simulation of 
cis-eQTLs without noise (Eq. 3, 4), and comparing estimates of effect size by log aFC (Box 2, 3; 
since there is no noise, both methods yield identical results) linear regression slope (b1 in Box 2), 
and regression slope after log-transformation of the expression data (c1 in Box 3). We consider 
two eQTLs: one with four times higher expression of the alternative than the reference allele and 
another the opposite. The three measures of effect size were calculated for a fixed reference allele 
frequency of 50% and varying gene expression levels (Fig. 2A), and for a fixed gene expression 
level and varying allele frequency (Fig. 2B). Our results show that linear expression slope varies 
with gene expression levels, and the loglinear slope varies with allele frequency, and neither 
provides a quantitative estimate of the four-fold expression difference between alleles. The log 
aFC estimate remains insensitive to both confounding factors, and yields the correct estimate of 
the eQTL effect size.  
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Figure 2: Comparison of three eQTL effect 
size measurements in simulations without 
noise. Log aFC is compared to linear and 
loglinear regression slopes for simulated 
eVariants with the alternative allele 
expressed four times higher compared to 
the reference (blue) and vice versa (red), 
for varying expression levels of the 
homozygous reference genotype (A) and 
varying allele frequencies (B). The results 
demonstrate that log aFC quantifies the 
biological expression difference between 
alleles, and is robust to changing allele 
frequencies and expression levels. 

3. Noise distribution in eQTL data and simulation with realistic noise 
Next, we used simulation to evaluate how our three alternative methods for calculating aFC 
perform under a realistic expression noise level: M1) Linear method that uses linear regression 
coefficients from eQTL data as benchmark for speed (Box 2); M2) Nonlinear method that directly 
solves the regression problem in Eq. 17 using a standard nonlinear least square optimization tool 
(Methods) as a benchmark for accuracy; M3) Nonlinear approximation that solves the nonlinear 
regression problem from Eq. 17 using our heuristic solution (Box 3, Fig. 3C). In this simulation, 
we used simulated data of 10,000 eQTLs with varying allele frequencies and effect sizes (Eq. 3, 
4), with noise added to the expression levels at 40% coefficient of variation within genotype 
groups (log10 εn ~ norm[0, σ = 0.17], Eq. 17) similar to what is observed in real data from GTEx 
(Supplementary Fig. 1). We found that at this level of noise all three methods provide highly 
accurate and similar estimates (Fig. 3). All estimates, especially the linear method (M1), 
deteriorate in eQTLs in which lower expressed allele has also a low frequency (Fig. 3B). This 
problem is inherent to cis-eQTL data and is expected to occur regardless of the expression 
measurement platform. Overall, the aFC estimates from the nonlinear model (M2) provided the 
lowest root mean squared deviation (RMSD) from the true values, with the its approximation 
(M3) providing only 10% worse RMSD than the nonlinear model at 1.8 times the runtime of the 
linear model. The linear model was 84 times faster than the nonlinear model but provided 64% 
higher RMSD. 
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Figure 3: Comparison of the aFC estimation methods using simulated data. We simulated 10,000 
eQTLs with noise (40% coefficient of variation), and uniformly selected log2 aFC (range: [-5,5]), 
and reference allele frequency (range: [0,1]). A) True aFC used in simulation versus identified 
values using linear model (M1), nonlinear model (M2), and the nonlinear model approximation 
(M3). At this level of noise M2 performed the best, with M1 and M3 having RMSDs of 164% and 
110% of M2.  B) Quality of the effect size estimates as a function of allele frequency and the true 
effect size, evaluated by average error relative to the true log2 aFC. All three estimates and 
particularly M1 deteriorate when the lower expressed allele is the minor allele. C-D) Schematic 
representation of the nonlinear model approximation method (Box 3), based on four different 
candidate estimates (C), and the selected estimate with minimum residual variance for each 
simulated eQTL as a function of reference allele frequency and the true aFC (D). 
 

4. Application to GTEx eQTLs 
Next, we applied our methods for effect size estimation to the cis-eQTLs discovered in the 
Genotype Tissue Expression (GTEx) (GTEx Consortium 2013; 2015) v6p dataset, with eQTL 
data from 44 tissues (70-361 individuals per tissue; co-submitted (Aguet et al. 2016)), calculating 
aFC for all the reported eQTLs in each tissue, using the eVariant with the best p-value for each 
eGene. Allelic fold changes were estimated from both allele-specific expression (ASE; Box 1) 
and eQTL data (Box 2-3). For ASE data, we used haplotypic expression at eGenes calculated by 
summing allelic expression from all phased heterozygous SNPs within the gene. aFC was 
reported for an average of 57% of eGenes per tissue, requiring haplotypic coverage of at least 10 
reads in at least 5 individuals (co-submitted (Aguet et al. 2016)). For eQTL-based aFC estimates, 
we log transformed normalized read counts, and corrected for confounding factors identified 
using PEER (Stegle et al. 2012) and the top three principal components of the genotype matrix 
(see methods, Eqs. 23-24). The log aFCs for the eQTLs were calculated using the three models as 
in the simulation study, and constrained to ±log 100. All three eQTL methods provided highly 
similar aFC estimates with high concordance to ASE-based estimates (Fig. 4A, C). The effect 
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sizes were more discordant between ASE and eQTL-based estimates when the rare allele was the 
lower expressed allele, as predicted by the simulation study (Fig. 4B). The nonlinear model 
provided the best estimates as evaluated by RMSD from ASE-based estimates, and was closely 
trailed by the nonlinear approximation method (Fig. 4C). Thus, for the rest of the analyses we 
used only the nonlinear approximate method as it provided both high accuracy and speed. Finally, 
we tested the effect of quantile normalization that enforces log-normality of expression data 
within each genotype. While this is commonly used to avoid outlier effects, we did not observe 
improvement of the effect size estimates (Fig. 4D).  

 

Figure 4: Comparison of the methods for estimating aFC using GTEx data. A) Allelic fold change 
as estimated from ASE data versus estimates from eQTL data using linear model (M1), nonlinear 
model (M2), and the nonlinear model approximation (M3) for all top eQTLs in Adipose 
Subcutaneous. All three estimates are ~75% correlated with estimates form ASE data. B) Quality 
of the eQTL estimates as a function of allele frequency and the aFC estimate from allelic 
expression data, evaluated by average relative error between aFC from ASE data and from eQTL 
estimates. C) Concordance between the estimates from allelic expression and eQTL data as 
evaluated by RMSD between the most accurate method, M2, and the other two methods. Each dot 
represents one tissue in GTEx. D) Concordance between the estimates from ASE and eQTL data as 
evaluated by RMSD, comparing M3 to M3 applied after quantile normalization within each 
genotype group. Each dot represents one tissue in GTEx.  
 

The empirical distributions of aFCs for eQTLs detected in different GTEx tissues are highly 
dependent on the sample size, since tissues with lower sample size lack power to detect weak 
eQTLs (Fig. 5A). The effect size estimates from eQTL and ASE data are highly similar, but on 
average 1.45% (CI: [1.3, 1.6]) smaller across the tissues when estimated from ASE data (Fig. 5B, 
C). This mild overestimation of the effect size involving weaker eQTLs is consistent with 
potential winner’s curse in the eQTL calling stage (Fig. 5D). This highlights the added value of 
ASE-based estimates alongside eQTL data. We next analyzed the correlation of aFC with other 
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properties of the eVariant or eGene. Low-frequency eVariants tend to have higher effect sizes 
(Fig. 5E), likely due to differences in power to detect eQTLs and other statistical artifacts. 
eGenes with high expression levels, expression in multiple tissues, and high coding region 
conservation measured by RVIS (Petrovski et al. 2013) have lower effect sizes (Fig. 5F-H), 
which suggests that genes under strong selective constraint are less likely to tolerate regulatory 
variants with high effect sizes. Further biological interpretation of effect sizes across eVariants in 
different annotations and eGenes of different biotypes and eQTLs that are tissue-specific or 
shared is described in ((Aguet et al. 2016); co-submitted). In these and other downstream analyses 
of eQTL effect sizes, it is important to correct for correlated factors such as sample size and allele 
frequency. Even though our simulations demonstrate that aFC is highly robust to key 
confounders, differences in the power of eQTL mapping will always affect the properties of 
discovered eQTLs, including effect size distribution. 

 

Figure 5: Empirical properties of the aFC distributions in GTEx data. All aFC values are 
calculated with the nonlinear approximation method (M3). A) Distribution of absolute log2 aFC 
across tissues as a function of sample size. Each point represents a tissue in GTEx data, and 90%, 
50%, and 10% quantiles of absolute aFC across a tissue are shown. B-C) Correlation of log2 aFC 
estimates (B), and the median ratio of aFC estimates (C), derived from eQTL and ASE data. Each 
point corresponds to one GTEx tissue. D) Difference between the aFC estimates from allelic 
expression (sASE), and eQTL (seQTL), as a function of absolute average aFC  (|sASE

 + seQTL|/2), with 
H, and L referring to higher and lower expressed alleles of each eQTL in Adipose Subcutaneous, 
respectively. Estimated effect size form ASE data tend to be smaller in weak eQTLs and larger for 
stronger eQTLs as compared to those derived using eQTL data. E-H) Distribution of absolute log2 
aFCs calculated from GTEx Adipose Subcutaneous as function of minor allele frequency (E), gene 
expression level (F), number of tissues where the gene is expressed >0.1 RPKM in ≥10 individuals 
(G), and logistic-transformed RVIS, a measure of each gene’s tolerance to variation in the coding 
region ((Petrovski et al. 2013); H). Red line shows fit by robust locally weighted scatterplot 
smoothing. 
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The allelic fold changes of GTEx eQTLs are provided in the GTEx portal (see Data Access 
section). Additionally, we implemented the linear model (M1) and the nonlinear approximation 
model (M3) in a python script (see Data Access) that takes as input the standard file formats used 
also by the FastQTL software for eQTL calling. This makes calculation of aFC for other eQTL 
datasets straightforward and fast.  
 
5. Independent eQTLs in GTEx 
Iterative greedy procedures have been utilized to find multiple independent eQTLs signals for 
each eGene in the GTEx data (co-submitted (Aguet et al. 2016)). We used GTEx eGenes with 
two independent eQTLs to demonstrate how the aFC calculation can be extended to gain 
mechanistic insight into more complex eQTL patterns. The expression model in Eq. 7 written for 
two biallelic eVariants was used in a nonlinear regression to simultaneously estimate the aFC 
associated with both eQTLs (Fig. 6A; Methods). These estimates were used to predict the 
relative expression of the two haplotypes between the 16 possible haplotypic combinations. We 
found that the predicted values from eQTL data correlate well with the observed values in ASE 
data across the genotypes (median r=0.81, Fig. 6B-D). While the used model accounts for 
specific arrangement of the alleles for the two eVariants on haplotypes (e !! , !! ≠ e !" , !" , Eq. 
7), it assumes that the two eVariants act independently (e !! = e !! 𝛿!,!!!𝛿!,!!! , Eq. 5). In order to 
analyze how well the data is described assuming the independence of the two eVariants, we 
relaxed this assumption by defining the joint genotype of the two eVariants as the genotype of a 
hypothetical variant with four possible alleles. We used Eq. 7 written for one four-allelic eVariant 
to separately estimate the aFC associated with each of the two eVariants, and aFC of their co-
occurrence. We found that the estimates from the two models generally agree very well (Fig. 6C). 
We used the Bayesian information criterion within a bootstrapping scheme to decide if relaxing 
the regulatory independence assumption provides a significantly better description of the data. 
This could be a sign of biological mechanisms such as epistasis or dosage compensation as well 
as confounding factors such as linkage disequilibrium or expression quantification artifacts 
(Brown et al. 2014; Hemani et al. 2014; Wood et al. 2014; Fish et al. 2016). After accounting for 
the increased model complexity and uncertainty associated with sampling distribution we found 
that only in 0.2% (range across tissues [0, 0.42]) of the two eQTLs for the same gene in GTEx 
data the regulatory independence model fails to provide an adequate fit (Fig. 6D, Table S1).  
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Figure 6: Joint analysis of aFCs for GTEx eGenes with two eQTLs. A) An example of relative 
expression of eGene ZC3H3 and the model fits for different genotype groups of its two eQTLs 
(eVariant1: chr8:144633728 A/G and eVariant2: chr8:144556836 G/A) in GTEx Adipose 
Subcutaneous. The effect size of the first and the second eQTLs are -0.77 and -0.14 as measured by 
log2 aFC. Each dot represents observed expression in one individual, scaled relative to the 
expression at all-reference genotype. The blue bars show model fits from the two-eQTL model 
based on regulatory independence assumption. Reference and alternative alleles are denoted by 0 
and 1, respectively, and haplotypes are separated by “|” sign (e.g. 10|11 corresponds to the cases 
that one haplotype carries alternative and reference alleles for eVariant1 and eVariant2, 
respectively, and the other haplotype carries the alternative allele of both eVariants.). B) 
Expression of the second haplotype relative to the first haplotype, observed in ASE data. The red 
bars show expected haplotype expression ratios based on the model in panel A, learned on the 
eQTL data. C) aFC between two haplotypes as predicted from eQTL data compared to aFC 
observed in ASE data for all eGenes with two eQTLs in Adipose Subcutaneous. Each dot 
represents one randomly selected genotype for on eGene. Red line indicates the robust linear fit 
(y=0.9x+0.002). D) Predicted and observed allelic fold change for all eGenes with two eQTLs, 
calculated from eQTL and ASE data, respectively, in each tissue with more than 200 eGenes with 
two eQTLs. E) cis-regulatory effect size associated with co-occurrence of the alternative alleles of 
the two eQTLs, as predicted under regulatory independence model or learned using the relaxed 
model. F) Percentage of the two eQTLs that are not well described using the independent 
regulatory assumption across all tissues with more than 200 eGenes with two eQTLs. 
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Discussion 
Despite over a decade of eQTL analysis and its increasingly widespread use in functional and 
medical genetics, eQTL effect size has lacked a clear, biologically interpretable, and 
computationally feasible definition. Here, we described log allelic fold change, a generalizable 
measure of cis-regulatory effect size that captures the independent regulation of haplotype 
expression in cis. Log aFC is consistent across expression levels, allele frequencies and holds 
mathematically convenient properties that facilitate its application for downstream analysis. aFC 
provides uniform estimates from both allelic expression and cis-eQTL data, and replication of cis-
eQTLs using orthologous ASE data from the same samples can complement classical replication 
with an independent sample. While the correlation between effect sizes estimated from ASE and 
eQTL data is high, this is still likely an underestimate, and could be improved by using methods 
that produce more accurate measures of haplotypic expression (Castel et al. 2016).  The two 
alternative aFC calculation methods provided use untransformed and log-transformed eQTL data 
to account for additive and multiplicative noise, respectively. We showed that the estimates that 
utilize log-transformed data are generally better. However, both methods perform well, and the 
preferred noise model can vary depending on the expression measurement platform and upstream 
preprocessing pipelines that have been utilized. We benchmarked aFC for RNA-sequencing data, 
the most popular platform for expression level quantification, but aFC is a general measure and 
the presented methods can be directly applied to data from other quantification platforms such as 
microarray and qPCR. Systematic extension of aFC-based model of cis-regulation to multiple 
alleles and multiple eQTLs, as demonstrated for the eGenes with two eQTLs in GTEx, allows 
investigating more complex problems while maintaining mechanistic interpretability of the 
results. Finally, we introduced practical guidelines and a tool for estimating aFC from real data, 
and provided a catalog of cis-eQTL effect sizes across all GTEx tissues as a resource for future 
studies. 
A biologically interpretable and well-defined eQTL effect size estimate enables better 
understanding of the effects of regulatory variants at many levels. In downstream analyses of 
GTEx effect sizes (co-submitted (Aguet et al. 2016)), we investigate differences in effect sizes 
between eGene types, eVariant annotations, and eQTL tissue specificity. Even though aFC itself 
is unbiased with respect to allele frequency and expression level, we showed here that it is 
essential for all downstream analyses to take into account factors that indirectly confound the 
effect size distribution via eQTL discovery power. eQTL effect size quantification will be 
valuable for making quantitative comparisons between effects on gene expression and other 
phenotypes at the cellular and physiological level. Indeed, our method is generally applicable to 
estimating effect size of cis-regulatory variants affecting other cellular traits such as methylation, 
chromatin state, and protein levels. Furthermore, the additive nature of log aFC makes it a useful 
tool for characterization of variation in eQTL activity across cellular or environmental contexts in 
the future. For disease-associated eQTLs, understanding the relationship between the quantitative 
expression effect in the cells and disease risk will be important for understanding molecular 
mediators of disease risk. Finally, the recent development of experimental approaches such as 
MPRA (Tewhey et al. 2016; Ulirsch et al. 2016), STARR-seq (Vockley et al. 2015; Arnold et al. 
2013) and CRISPR genome editing assays (Canver et al. 2015; Wright and Sanjana 2016) has 
created demand for translating summary statistics of eQTL mapping to quantifications that are 
interpretable as reflecting molecular events in the cell. Our biologically interpretable estimates of 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 30, 2016. ; https://doi.org/10.1101/078717doi: bioRxiv preprint 

https://doi.org/10.1101/078717
http://creativecommons.org/licenses/by-nc/4.0/


	 15	

cis-eQTL effect sizes from population data can be directly compared to in vitro quantification of 
regulatory variant effects. 

Methods 
1. Estimating cis-regulatory effect of an eVariant from allelic expression data 
Standard RNA sequencing reads can be used to measure the expression of each of the two gene 
copies, via allelic counts in individuals carrying a heterozygous SNP (aseSNP) inside the 
transcribed region of the gene (Castel et al. 2015). Allelic counts provide measurement of the true 
allelic expression e0, and e1 from Eq.1 in a given sample on a relative scale. Since both 
measurements are drawn from the same sample they share the same basal expression (eB in Eq. 1) 
and thus, in absence of noise, the ratio between the two allelic counts directly reflects the effect of 
the cis-regulatory variant. Given allelic expression data from a set N of individuals heterozygous 
for an eVariant of interest, the allelic fold change can therefore be robustly estimated as 

δ!,! = median
!!!…!

𝑐!,!
𝑐!,!

 (8) 

where c0,n and c1,n are the allelic counts in the nth individual for haplotype carrying reference and 
alternative allele for the cis-regulatory variant respectively. Here we assume phasing between the 
regulatory alleles and the aseSNP alleles are known. In cases when phasing information is not 
available the magnitude of the regulatory effect size can be calculated as 

𝑑!,! = log! δ!,! = median
!!!…!

log!
𝑐!,!
𝑐!,!

 (9) 

However, this estimate without phasing information is more sensitive to noise, and will 
systematically overestimate the effect size in cases where the true effect size is small in 
magnitude and the variation in allelic counts is dominated by measurement noise. 
 
2. Estimating cis-regulatory effect of an eVariant from gene expression data 
2.1 Gene expression is linear with the number of alternative alleles for biallelic eVariants 
Using Eq. 4 we can derive gene expression in an individual as function of the number of 
alternative alleles, t: 

𝑒 𝑡 = 2 − 𝑡 + 𝑡δ!,! 𝑒! (10) 
where t is 0,1, and 2 for individuals homozygous for reference allele, heterozygous, and 
homozygous for alternative allele, respectively. This equation can be written as 

𝑒 =  𝑏!𝑡 + 𝑏! (11) 
where 

𝑏! = 2𝑒!, 
 

(12a) 

𝑏! = 𝑒! δ!,! − 1  (12b) 
 showing that total gene expression under a cis-regulatory model is a linear with the number of 
alternative alleles of the variant (Fig. 1C). For estimating the aFC from expression data we 
consider two cases of noise distribution, additive and multiplicative noise.  
2.2 Estimating aFC from eQTL data with additive noise 
Under an additive noise model, the measured gene expression in the nth individual, yn, is the true 
expression, e(t), plus a normally distributed noise, εn, with zero mean and unknown variance. 
Using e(t) from Eq. 10: 
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𝑦! = 2 − 𝑡! + 𝑡!δ!,! 𝑒! + 𝜀! (13) 
where tn is the number of alternative allele in the individual. Similar to Eq. 10, Eq. 13 can be 
written in linear form: 

𝑦! = 𝑏!𝑡! + 𝑏! + 𝜀! (14) 
Maximum likelihood estimates for b0 and b1 can be derived efficiently using ordinary least 
squares, and solving Eqs. 12a and 12b, for δ1,0, the allelic fold change is:  

δ!,! =
2𝑏!
𝑏!

+ 1 (15) 

2.3 Estimating aFC from eQTL data with multiplicative noise 
Assuming a multiplicative noise model the measured gene expression in the nth individual, yn, is 
the true expression, e(t), multiplied by a noise, εn, such that log εn is normally distributed with 
zero mean and unknown variance. Substituting e(t) from Eq. 10 again: 

𝑦! = 2 − 𝑡! + 𝑡!δ!,! 𝑒!𝜀! (16) 
Due to the multiplicative noise, this equation can no longer be solved as a simple linear 
regression problem. Applying log transformation to both sides: 

𝑧! =  log! 𝑦! = log! 2 − 𝑡! + 𝑡!δ!,! +  log! 𝑒! + log! 𝜀! (17) 
the noise is captured by log2 εn, which is additive and normally distributed, but the right side of 
the equation is no longer linear with the number of alternative alleles (Fig. 1D). Using nonlinear 
least squares optimization Eq. 17 can be solved to derive maximum likelihood estimates for the 
effect size δ1,0 directly.  
2.4 Efficient approximation of aFC from eQTL data with multiplicative noise 
Nonlinear least squares optimization needed for solving regression problem in Eq. 17 is done 
using iterative numerical optimization that is relatively slow procedure and not always 
straightforward to implement. In order to improve efficiency, we use four simplified linear 
models to derive four candidate estimates of the effect size, and choose the one that provides the 
highest likelihood of the data. First, we derive three estimates of the regulatory effect size using 
the ratio of the expressions between each of the two genotypes: 

𝛿!,!∗! =
𝑚!

𝑚!
 (18a) 

𝛿!,!∗! =
1

2𝑚!
𝑚!

− 1
 (18b) 

𝛿!,!∗! = 2
𝑚!

𝑚!
− 1 (18c) 

where m0, m1, and m2 are the geometric means of expression in the samples homozygous for 
reference allele (tn = 0), heterozygous (tn = 1), and homozygous for the alternative allele (tn = 2) 
respectively (See Supplemental methods). When the cis-regulatory effect size approaches zero, 
the log transformed gene expression is linear with number of alternatives alleles (See 
Supplemental methods). Therefore, the nonlinear model in Eq. 17 can be well approximated 
with linear regression in cases where the effect size is small. We regress log-transformed 
expressions on the genotype: 

𝑧! = 𝑐!𝑡! + 𝑐! + log! 𝜀! (19) 
and calculate the fourth effect-size estimate as (See Supplemental methods) 

𝛿!,!∗! = 2!!! (20) 
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Residual of the fit, rn, in the nth sample for a given effect size estimate, 𝛿!,!∗! , is 
𝑟! 𝑘 = 𝑧! − log! 2 − 𝑡! + 𝑡!𝛿!,!∗!  (21) 

The estimate with lowest variance of the residuals among the four candidates is reported: 
𝛿!,! = argmin

!∈!…!
V 𝑟 𝑘  (22) 

3. Simulation experiment 
The simulated dataset includes 200 individuals, and 10,000 eGenes each associated to exactly one 
eQTL. Each eQTL has two alleles, frequency of the reference allele, f0, was drawn from a 
uniform distribution for each eQTL (f0 ~ uniform[0,1]). eQTL genotype in each individual was 
decided using two Bernoulli trials. Reference and alternative allele induce expressions e0, and e1= 
δ1,0 e0 in the eGene in cis-, respectively (Eqs. 1-2). The expression e0 is generated for each eGene 
randomly across four orders of magnitude (log10 e0 ~ uniform[0,4] ). Similarly, the aFC, δ1,0 , was 
assumed to be uniformly distributed in logarithmic scale (log2 δ1,0 ~ uniform[-5,5]) across 
simulated eQTLs. In order to choose a realistic noise level we used data from all eGenes 
associated with eQTLs in GTEx. For each eQTL genotype class expression mean and variance of 
the associated eGene was calculated. As expected gene expression was highly heteroskedastic 
with mean-variance relationship resembling that of multiplicative noise by log-normal 
distribution (Fig. S1). We used average within genotype standard deviation of log10 transformed 
gene expression to add log-normal noise in the simulation (log10 εn ~ norm[0, σ = 0.17], Eq. 17).  
4. Estimating aFC for GTEx eQTLs 
Haplotypic counts were generated as describe in ((Aguet et al. 2016) co-submitted). Briefly, 
allelic counts for each sample were generated from uniquely aligned RNA-seq reads for all 
heterozygous SNPs from OMNI Array imputed genotypes using the GATK ASEReadCounter 
tool (Castel et al. 2015). SNPs covered by less than 8 reads, those that showed bias in mapping 
simulations (Panousis et al. 2014), had a UCSC 50-mer mappability lower than 1, or those 
without evidence for heterozygosity (Castel et al. 2015), were filtered. Haplotypic counts were 
generated by summing allelic counts within each gene using population phasing. For eQTL data, 
expression counts were scaled for the total library size, and one pseudo-count was added to 
smooth the normalized counts. Log transformed expression data was corrected for confounding 
factors identified using PEER (Stegle et al. 2012) and the three top principal components of the 
genotype matrix uniformly for all three tested methods: linear, nonlinear, and nonlinear 
approximation. The correction was done in two steps: First, log transformed expression profile of 
the eGene in nth sample, zn, was modeled using linear regression:  

𝑧! = 𝜇 + 𝛼𝐶! + 𝛽!! + 𝜀! (23) 
where, Cn is the nth column of the matrix CM×N  containing M confounding factors, and tn ∈ {0, 1, 
2}, indicates the number of alternative alleles in the nth sample. All non-significant columns, for 
which 95% confidence interval of the regression coefficient in α overlapped zero, were discard 
from C. In the second step, the regression was repeated using the reduced covariate matrix and 
corrected expression were derived as 

𝑧 = 𝑧 − 𝛼𝐶 (24) 
Corrected expression vector, 𝑧, was used for effect size calculations. For direct estimation of aFC 
from Eq. 17 (the Nonlinear method, M2, in Fig. 3, 4), we used Matlab generic nonlinear least 
square solver (lsqnonlin). The effect size estimates used in Fig. 5, as well as those published on 
GTEx portal (http://gtexportal.org) were calculated using the nonlinear approximation method 
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(M3), and the 95% confidence intervals for the aFC estimates were calculated using the bias-
corrected and accelerated bootstrap (Efron 2012). 
5. Independent eQTL calling 
Multiple independent signals for a given expression phenotype were identified by forward 
stepwise regression followed by a backwards selection step. The gene-level significance threshold 
was set to be the maximum beta-adjusted P-value (correcting for multiple-testing across the 
variants) over all eGenes in a given tissue. At each iteration, we performed a scan for cis-eQTLs 
using FastQTL (Ongen et al. 2016), correcting for all previously discovered variants and all 
standard GTEx covariates. If the beta adjusted P-value for the lead variant was not significant at 
the gene-level threshold, the forward stage was complete and the procedure moved on to the 
backward stage. If this P-value was significant, the lead variant was added to the list of 
discovered cis-eQTLs as an independent signal and the forward step moves on to the next 
iteration. The backwards stage consisted of testing each variant separately, controlling for all 
other discovered variants. To do this, for an eGene with n eVariants we ran n cis scans (in effect n 
- 1 cis scans, as one replicates the final stage of the forward analysis). For each cis scan we 
control for all covariates and all but one of the discovered eVariants (the one dropped is the 
genetic signal that is being tested, conditioned on the full model). If no variant was significant at 
the gene-level threshold the variant in question was dropped, otherwise the lead variant from this 
scan, which controls for all other signals found in the forward stage, was chosen as the variant 
that represents the signal best in the full model. 
6. Joint analysis of two eQTLs 
6.1 Regulatory independent model  
Let us assume two biallelic eVariants, v1 and v2 regulating expression of the same eGene in cis. 
This is a special case of Eq. 5-7 where N=2, and m1=m2=2. Under independence assumption, 
regulatory effect of each eVariant allele on the expression of the carrying haplotype does not 
depend on the present allele for the other eVariant, and therefor, the expression of a haplotype 
carrying alleles i1 and i2 for the two eVariants is 

𝑒 !!!! = 𝑒!δ!!,!
!! δ!!,!

!!  (25) 
where indices 𝑖!, 𝑖! ∈ 0,1  indicate reference (zero) and the alternative allele (one), and δ!!,!

!! , 
and δ!!,!

!!  are the aFCs associated with the present alleles relative to the reference allele, for v1 and 
v2, respectively, and e0 is the expression of a haplotype carrying reference allele for both 
eVariants. Under this model the log ratio between the expressions of the two haplotypes is 

s !!!! , !!!!  = log!
𝑒 !!!!
𝑒 !!!!

 (26) 

where indices 𝑖!, 𝑖! ∈ 0,1  and  𝑗!, 𝑗! ∈ 0,1  indicate the present alleles on the first , and on the 
second haplotype, respectively. From definition of aFC 

δ!,! = δ!,!δ!,! (27) 
thus, after substituting haplotypic expressions from Eq. 25 in Eq. 26, the log ratio between the 
expressions of the two haplotypes is 

𝑠 !!!! , !!!!  = log! δ!!,!!
!! δ!!,!!

!! = 𝑠!!,!!
!! + 𝑠!!,!!

!!  (28) 
This equation presents the expected log aFC for a given genotype. Therefore, under regulatory 
independence model, joint effect of the two alternative alleles is sum of their individual effects: 

𝑠 !! , !!  = 𝑠!,!!! + 𝑠!,!!!  (29) 
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Under the cis-regulatory model, total expression of the eGene for each genotype is the some of 
the individual haplotype expressions: 

𝑒 !!!! , !!!!  = 𝑒 !!!! + 𝑒 !!!!  (30) 
Substituting Haplotypic expressions from Eq. 25, we can use measured expression profiles of 
genotyped individuals to estimate aFC associated with the two eVariants. Observed expression 
value for the eGene in the nth sample after log transformation is 

𝑧 !!,!!!,! , !!,!!!,! = log 𝑒! + log δ!!,!,!
!! δ!!,!,!

!! + δ!!,!,!
!! δ!!,!,!

!! + 𝛼𝐶! + 𝜀! (31) 

where indices 𝑖!,!, 𝑖!,!, 𝑗!,!, 𝑗!,! ∈ 0,1  indicate the present alleles, and Cn is the provided 
column vector of the confounding factors for the sample. The nonlinear regression problem can 
be solved to estimate reference expression e0, individual aFC effects δ!,!!! , δ!,!!! , and the cofactor 
weight vector α (By definition δ!,!!! , and δ!,!!!  are equal to 1). 
 
In order to estimate aFCs for eGenes with two eQTLs in GTEx data, we used PEER (Stegle et al. 
2012) and top three principal components of the genotype matrix as the confounding factors in 
matrix C. Generic nonlinear least square optimizer in Matlab (lsqnonlin) was used to derive 
parameter estimates for the Eq. 26 regression problem. Confidence intervals of the parameters 
were derived using the t-statistic estimated via Jacobean matrix calculated at the optimal function 
values (Matlab function: nlparci). Predicted aFCs for regulatory independence model presented in 
Fig. 6B-E, and Fig. S2C (blue bars) were derived using Eq. 28. 
6.2 Relaxed model 
In this model we relax the regulatory independence assumption, allowing the regulatory effect 
associated with co-occurrence of the two alternative alleles to be potentially different from sum of 
their individual effects. In contrast to Eq. 25, haplotype expression is 

𝑒 !!!! = 𝑒!δ !!!! , !!  (32) 
where, δ !!!! , !!  is the aFC associated to co-presence of the alleles i1 and i2 of the eVariants v1 
and v2 as compared to a haplotype carrying reference allele for both eVariants. This model is 
equivalent to a special case of models in Eq. 5-7 where N=1, and m1=4. From aFC definition  

δ !!!! , !! = δ !!!! , !!!! δ !!!! , !!  (33) 
and the log ratio between the expressions of the two haplotypes is 

𝑠 !!!! , !!!!  = log! δ !!!! , !!!! = 𝑠 !!!! , !! − 𝑠 !!!! , !!  (34) 
Total expression is the sum of the individual haplotypic expressions (Eq. 30), thus, the observed 
expression value for the eGene in the nth sample under the relaxed regulatory model after log 
transformation is 
𝑧 !!,!!!,! , !!,!!!,! = log 𝑒! + log δ !!,!!!,! , !! + δ !!,!!!,! , !! + 𝛼𝐶! + 𝜀! (35) 

where indices in,1, in,2, jn,1, jn,2 indicate the present alleles and Cn the covariates as described in Eq. 
31. The nonlinear regression problem can be solved for reference expression e0, joint aFC effects 
δ !! , !! , δ !! , !! , δ !! , !!  and the cofactor weight vector α  (By definition δ !! , !!  is equal to 
1).  
 
To  estimate aFCs in GTEx data, regression parameters and their confidence intervals were 
estimated as described for the regulatory independence model. Predicted aFCs for the relaxed 
model presented in Fig. 6E, and Fig. S2C (red bars) were derived using Eq. 34. 
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6.3 Model comparison 
In order to compare the two models of cis-regulation, the independence and the relaxed model, 
we calculated total data likelihood for each of the models under log-normality assumption: 

𝕃 𝑧 M =
1

𝜎 2𝜋
𝑒!

!!!
!!!

!

!!!

 (36) 

where, z, is the vector of N samples, and rn is the fit residual at the nth sample using the model 
considered M, and σ is the standard deviation of the fit residuals. Bayesian information criterion 
(BIC) for each of two models was calculated: 

BIC M = −2 log𝕃 𝑧 M + 𝜆 log𝑁 (37) 
where λ, the number of parameters in each model, is the number of cofactor coefficients plus 3 
and plus 4 for the regulatory independence, and the relaxed model, respectively. We used bias-
corrected and accelerated bootstrap (Efron 2012) to estimate confidence intervals for ΔBIC = 
BIC(Relaxed model) – BIC(Independence model) in cases where ΔBIC negative. The relaxed 
model was selected in cases were the upper bound for the 95% confidence interval for ΔBIC fell 
below zero, and for the rest of the cases the independence model that has fewer parameters was 
deemed adequate. Calculated aFCs for all eGenes in GTEx with two associated eQTLs are 
provided in Table S1. 

Data access 
The full data of the GTEx V6p release are available in dbGaP (study accession phs000424.v6.p1), 
and eQTL summary statistics, including the effect size estimates for the top eVariant–eGene pair 
per tissue [to be released at publication], are available from the GTEx Portal 
(http://gtexportal.org). Software for calculating allelic fold change from standard eQTL data is 
available in GitHub (https://github.com/secastel/aFC). 
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Supplemental methods 
Derivations and proofs 
1. Proof: Log-transformed eGene expression is linear in the number of alternative alleles 

as the cis-regulatory effect size approaches zero. 
Let α1 and α2 be the slope of the line connecting eGene expressions from reference 
homozygous to heterozygous, and from heterozygous to homozygous alternative genotype, 
respectively, in the piecewise linear model of log-transformed eQTL data (Fig. 1C): 

𝛼! = log 𝑒!,! − log 𝑒!,!
𝛼! = log 𝑒!,! − log 𝑒!,!

 (S1) 

In a linear model α1 is equal to α2. Substituting the allelic expressions from the main text Eq. 
4, the ratio between the two slopes for weak eQTLs is 

lim
!!,!→!

𝛼!
𝛼!

= lim
!!,!→!

log 2!!,! + 1 − log 2
log 2 + log 2!!,! − log 2!!,! + 1

 (S2) 

where, s1,0 = log2 δ1,0 is the eQTL effect size. Since, the limit value for both nominator and the 
denominator is 0, we apply L'Hôpital's rule 

lim
!!,!→!

𝛼!
𝛼!

= lim
!!,!→!

𝛼!′
𝛼!′

= lim
!!,!→!

!
!!!,!!!

!
!!!,! −

!
!!!,!!!

=
!

!!!
!
! −

!
!!!

= 1 (S3) 

Thus, the two slopes, α1 and α2 are equal in weak eQTLs as s!,! → 0. 
2. Derivations: Approximate nonlinear model for aFC estimation 

Let us assume tn is the number of alternative allele in nth sample, and m0, m1, and m2 are the 
geometric means of expression in the samples homozygous for reference allele (tn = 0), 
heterozygous (tn = 1), and homozygous for the alternative allele (tn = 2) respectively. First, we 
use the expression ratio between each of the two genotype classes to estimate aFC. From Eq. 
17, the expected log-transformed expression at each eQTL genotype class is 

E 𝑧! 𝑡! = 0 = log! 𝑒! + 1                          (S4a) 
E 𝑧! 𝑡! = 1 = log! 𝑒! + log! δ!,! + 1  (S4b) 
E 𝑧! 𝑡! = 2 = log! 𝑒! + log! δ!,! + 1    (S4c) 

Using Eqs. S4a, and S4c, the log2 aFC is 
E 𝑧! 𝑡! = 2 −  E 𝑧! 𝑡! = 0 = log! δ!,! (S5) 

Substituting observed geometric means 𝑚! = 2! !! !!!! , and exponentiating both sides of 
the equation, the aFC is 

δ!,! =  
𝑚!

𝑚!
 (S6) 

Next, we use Eqs. S4b, and S4c: 
E 𝑧! 𝑡! = 2 −  E 𝑧! 𝑡! = 1 = log! δ!,! + 1 − log! δ!,! + 1  (S7) 

Exponentiating the both sides we have 
2! !! !!!!

2! !! !!!!
=

2δ!,!
δ!,! + 1

  

after substituting geometric means and rearranging the terms, the aFC is given: 

δ!,! =
1

2𝑚!
𝑚!

− 1
 (S8) 

Using Eqs. S4a, and S4b 
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E 𝑧! 𝑡! = 1 −  E 𝑧! 𝑡! = 0 = log! δ!,! + 1 − 1 (S9) 
aFC can be similarly derived: 

δ!,! = 2
𝑚!

𝑚!
− 1 (S10) 

As a fourth estimate, we use loglinear regression to derive another aFC estimate. This is an 
accurate model for weak eQTLs where the piece-wise linear eQTL model approaches 
linearity (see Eqs. S1-3). The regression line passes E 𝑧! 𝑡! = 0  at tn= 0, and E 𝑧! 𝑡! = 2  
at tn= 2, therefore the slope, c1, of the line is 

𝑐! =
E 𝑧! 𝑡! = 2 − E 𝑧! 𝑡! = 0

2 − 0
=
log! δ!,!

2
 (S11) 

Thus aFC is given as 
δ!,! = 2!!! (S12) 

It is worth noting that under the cis-regulatory model of Eqs. 4a-c, the expression in the 
heterozygous class is at least half of that of the higher expressed homozygous class, taking 
place when the weak allele is effectively zero expressed, thus: 

−∞ ≥ E 𝑧! 𝑡! = 2 − E 𝑧! 𝑡! = 1 ≥ 1 (S13a) 
−∞ ≥ E 𝑧! 𝑡! = 0 − E 𝑧! 𝑡! = 1 ≥ 1 (S13b) 

In practice, the observed expression of the genotype classes, m0, m1, and m2, can occasionally 
fall outside these boundaries due to noise or other confounding biological factors beyond the 
considered cis-regulatory model. Therefore, the ratios !!

!!
 and !!

!!
 in Eqs. S8 and S10 should 

be bound to be ≥0.5 to avoid negative aFC estimates. 
3. Mathematical properties of log aFC 

Recalling log aFC definition: 
𝑠!,! = log! δ!,! 
      = log! 𝑒! − log! 𝑒! 
      = log! 𝑘! − log! 𝑘! 

 

We show that the following statements are true: 
a. Zero log aFC indicates the absence of regulatory difference: 𝒔𝒊,𝒊  = 𝟎 

𝑠!,!  = log! 𝑘! − log! 𝑘! = 0 
b. Choice of reference allele only affects the sign of log aFC: 𝒔𝒊,𝒋  = −𝒔𝒋,𝒊 

 
𝑠!,! = log! 𝑘! − log! 𝑘!         

= − log! 𝑘! − log! 𝑘!  
= −𝑠!,!                                

 

c. Log aFC is additive: 𝒔𝒊,𝒌  = 𝒔𝒊,𝒋 + 𝒔𝒋,𝒌 
𝑠!,! = log! 𝑘! − log! 𝑘!                                              

= log! 𝑘! − log! 𝑘! +  log! 𝑘! − log! 𝑘!         
= log! 𝑘! − log! 𝑘! +  log! 𝑘! − log! 𝑘!
= 𝑠!,! + 𝑠!,!                                                             

 

d. aFC associated with joint effect of independent regulatory variants, v1…vN is 
sum of their individual log aFCs: 

𝐬 𝒊𝟏… 𝒊𝒏…𝒊𝑵 , 𝒋𝟏… 𝒋𝒏…𝒋𝑵  = 𝐬𝒊𝒏,𝒋𝒏
𝒗𝐧

𝑵

𝒏!𝟏
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where 𝒊𝟏…  𝒊𝒏… 𝒊𝑵  and 𝒋𝟏…  𝒋𝒏… 𝒋𝑵  are the set of present alleles on each of 
the haplotypes. 

Assuming that variants affect gene expression independently, haplotype expression in 
Eq. 1 in the main text can be written for N eVariants as 

𝑒 !!… !!…!! = 𝑒! 𝑘!!
!!

!

!!!

 

where 𝑘!!
!! denotes the regulatory effect on the eGene expression specific to allele in 

of the nth eVariant. Therefore, the joint aFC is 

s !!… !!…!! , !!… !!…!!  = log!
𝑒 !!… !!…!!
𝑒 !!… !!…!!

 

                                        = log!
𝑒! 𝑘!!

!!!
!!!

𝑒! 𝑘!!
!!!

!!!
 

                                        = log!
𝑘!!
!!

𝑘!!
!!

!

!!!

 

                                        = log!
𝑘!!
!!

𝑘!!
!!

!

!!!

 

                                        = s!!,!!
!!

!

!!!

 

 

e. Absolute value of log aFC, 𝒅𝒊,𝒋 = 𝒔𝒊,𝒋 , is a pseudo-metric:  
i. 𝒅𝒊,𝒋 ≥ 𝟎  

ii. 𝒅𝒊,𝒊  = 𝟎 
iii. 𝒅𝒊,𝒋  = 𝒅𝒋,𝒊 
iv. 𝒅𝒊,𝒌 ≤ 𝒅𝒊,𝒋 + 𝒅𝒋,𝒌 

The first condition is met by definition and the second and third conditions are trivial 
considering the aFC properties S.I and S.II shown above. In order to demonstrate the 
truth of the fourth condition we consider two cases: 
1) When si,j and sj,k are both positive or both negative; in such cases due to additivity 
of log aFC (Statement S.III), si,k will also have the same sign, and therefore, di,k = di,j 
+ dj,k is trivial.  
2) When si,j and sj,k have different signs; Let us assume si,j ≥ 0 and sj,k ≤ 0, from S.III: 
𝑠!,! = 𝑠!,! + 𝑠!,!   

= 𝑑!,! − 𝑑!,!  
≤ 𝑑!,! + 𝑑!,!  

 

Additionally, 
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−𝑠!,! = − 𝑠!,! + 𝑠!,!                         
= 𝑑!,! − 𝑑!,!                               
≤ 𝑑!,! + 𝑑!,!                              
⇒ 𝑠!,! ≥ − 𝑑!,! + 𝑑!,!

 
 

Combining the last two statements 𝑑!,! = 𝑠!,! ≤ −𝑑!,! + 𝑑!,!. The opposite case 
where si,j ≤ 0 and sj,k ≥ 0, is the same. 
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Supplemental figures 

Figure S1: Gene expression noise distribution in GTEx data. A) Mean and variance of eGene 
expression within genotype classes of the top eQTL for five example tissues in GTEx data. 
Each dot corresponds to data from one eGene within an eQTL genotype class. Red line 
indicates the best expected mean-variance dependence from lognormal distributed data, and 
blue lines shows the optimal linear regression line. This pattern shows that variance structure 
eQTL data is highly similar to lognormal distribution. B) Coefficient of variation, the ratio 
between the standard deviation and mean, for eGene expression within eQTL genotype 
classes for the same tissues.  
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Figure S2: An example of two eQTLs regulating the expression of the same gene that is not 
well described by their individual regulatory effects acting independently (eGene: HLA-
DQB1-AS1; eVariant1: chr6:32627082 A/G and eVariant2:  chr6:32609813 T/C; Tissue: 
LCL) A). Estimated log aFC associated with the alternative alleles for the first (s10), and the 
second eSNP (s01) individually, along with the estimated log aFC associated with co-
occurrence of the alternative alleles (s11). The independent regulation model is shown in blue, 
where s10 , s01 and s11 are estimated from the data with the constraint of s11 = s10 + s01. The red 
bars show estimates from the alternative, relaxed model which allows for non-independence 
or epistatic-like interaction between the two eVariants, and s10 , s01 and s11 are estimated 
without assuming s11 = s10 + s01. The support for non-independent effects comes from the 
difference between this estimated s11 to the sum of s10 and s01 from the relaxed model (gray 
dashed bar), which represents the expected joint effect of the two alternative alleles had they 
acted independently. B) Relative expression of the eGene and the model fits for the different 
genotype classes. Each dot is the expression observed in one individual, and expression levels 
are shown relative to the all-reference genotype. The blue and red bars show best fits 
achieved with and without the regulatory independence assumption, respectively. The model 
assuming regulatory independence between the two eVariants fails to adequately describe the 
observed data as measured by significance of BIC difference. C) Expression of the second 
haplotype relative to the first haplotype shown for different genotype groups. The dots 
indicate the observed values in ASE data and the blue and red bars show predicted values 
from the model fitted on eQTL data (as shown in panel B) using regulatory independence and 
the relaxed model, respectively. Genotypes in panel B and C are labeled following the 
notation in Fig. 6, and classes identical with regard to the cis-regulatory model are collapsed 
together in each panel.  
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