bioRxiv preprint doi: https://doi.org/10.1101/078667; this version posted October 2, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Integrating Molecular QTL Data into Genome-wide Genetic
Association Analysis: Probabilistic Assessment of Enrichment and

Colocalization

Xiaoquan Wen*!, Roger Pique-Regi®3, and Francesca Luca??

"Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109,
USA
2Center for Molecular Medicine and Genetics, Wayne State University, Detroit,
MI 48201, USA
3Department of Obstetrics and Gynecology, Wayne State University, Detroit,

MI 48201, USA

Abstract

We propose a novel statistical framework for integrating genetic data from molecular
quantitative trait loci (QTL) mapping into genome-wide genetic association analysis of
complex traits, with the primary objectives of quantitatively assessing the enrichment of
the molecular QTLs in complex trait-associated genetic variants and the colocalizations of
the two types of association signals. We introduce a natural Bayesian hierarchical model

that treats the latent association status of molecular QTLs as SNP-level annotations for
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candidate SNPs for complex traits. We detail a computational procedure to seamlessly
perform enrichment, fine-mapping and colocalization analyses, which is a distinct feature
compared to the existing colocalization analysis procedures in the literature. The proposed
approach is computationally efficient and requires only summary-level statistics. We eval-
uate and demonstrate the proposed computational approach through extensive simulation
studies and the analysis of blood lipid data and the whole blood eQTL data from the GTEx
project. In addition, a useful utility from our proposed method enables the computation
of expected colocalization signals, which is analogous to the power calculation in genetic
association studies. Using this utility, we further illustrate the importance of enrichment
analysis on the ability of discovering colocalized signals and the potential limitations of

currently available molecular QTL data.

1 Introduction

Genome-wide association studies (GWAS) have successfully identified many genomic loci that
impact complex diseases and complex traits. Nevertheless, the molecular pathways that connect
genetic variants to complex traits are still poorly understood, largely because a considerable
proportion of trait-associated signals are located in the non-coding region of the genome. With
recent advancements in high-throughput sequencing technology, systematic investigations of cel-
lular phenotypes have revealed an abundance of non-coding molecular quantitative trait loci
(QTLs) (Ardlie et al., 2015, McVicker et al., 2013, [Banovich et all 2014} Degner et al., 2012).
Integrating molecular QTL data into GWAS analyses has shown great potential in unveiling the
missing links between trait-associated genetic variants and organismal phenotypes (Gamazon

et al. 2015, Nica et all 2010, Teslovich et al., 2010).

In this paper, we focus on a specific type of integrative analysis that aims to assess the overlap-

ping/colocalization of causal GWAS hits and causal molecular QTLs (also known as quantitative
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trait nucleotides, or QTNs). Following |Giambartolomei et al.| (2014]), we define that a GWAS hit
and a molecular QTN are colocalized if a single genetic variant is causally associated with both
the complex and molecular traits of interest. Colocalizing genetic variants that jointly affect both
molecular and organismal phenotypes provides an intuitive starting point for exploring the role
of genetic variants in disease etiology. Taking expression quantitative trait loci (eQTL) mapping
as an example, colocalizing an eQTL signal with a GWAS hit naturally suggests that the target
gene of the eQTL may play an important role in the molecular pathway of the complex traits.
Additionally, other types of available integrative analysis approaches, e.g., Sherlock (He et all
2013), PrediXcan (Gamazon et al., [2015) and other similar approaches (Gusev et al., [2016] Zhu
et al. [2016), can also benefit from accurate colocalization analysis, either for improved power

(as in the case of Sherlock) or better interpretation of the inference results (as in the case of

PrediXcan).

Considering a practical setting in which GWAS and molecular QTL data are obtained from
different sets of samples, we propose a natural Bayesian hierarchical model for integrating the
two types of association data. Specifically, we regard the (latent) association status of each
candidate SNP with respect to the molecular phenotype of interest as an SNP-level annotation,
and we attempt to quantify the odds of an annotated SNP being causally associated with the
complex trait of interest, which is statistically equivalent to evaluating the enrichment level of
annotated SNPs in the causal GWAS hits. Subsequently, the resulting enrichment estimates are
utilized in the downstream fine-mapping (of GWAS hits) and colocalization analyses. Within
our Bayesian hierarchical model, we show that the problems of enrichment estimation, fine-
mapping and colocalization testing can be seamlessly solved in a unified inference framework. In
addition, our approach is computationally efficient and requires only summary-level data from

both molecular QTL mapping and GWAS.

Our proposed method is most similar to the probabilistic model-based approaches coloc (Gi-

ambartolomei et al., 2014) and eCAVIAR (Hormozdiari et al., [2016)), which represent the state-
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of-the-art in the current literature. The advantages of the model-based colocalization analysis
methods over the empirical methodologies (e.g., Nica et al.| (2010))) have been fully demonstrated
through both rigorous theoretical arguments (Wallace, 2013| |Giambartolomei et al., |2014) and
carefully constructed simulation studies (Hormozdiari et al., 2016). In this paper, we show that
both coloc and eCAVIAR can be viewed as special cases of the proposed approach with ad-
ditional simplifying assumptions. Consequently, our approach shares the advantages of both

existing approaches, but it enjoys additional flexibility and improved statistical rigor.

2 Method

2.1 Model and Notation

Without loss of generality, we consider a GWAS of a quantitative trait and describe its associa-

tions with p candidate SNPs and n unrelated samples using a multiple linear regression model,

p
y=> Big,+e e~NO7 '), (1)

=1

where we assume that both the phenotype and genotypes are centered (the intercept term is
therefore exactly 0) and denote the complete collection of genotypes as G := [g,,...,g,]. We
further denote the latent binary association status of each SNP ¢ by dichotomizing its genetic
effect 5;, i.e., v; = 1 indicates that SNP i is causally associated and ; # 0 otherwise. It can be
argued that the aim of the GWAS is to make inference of the binary vector v := (1, ...,7). In
addition, we assign the standard spike-and-slab prior for each regression coefficient 3; and a flat

gamma prior for the residual error variance parameter 7.

Suppose that a quantitative annotation (categorical or continuous) is available for each candidate
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genetic variant. We integrate the SNP-level annotation into the association analysis by specifying

a natural logistic prior for each candidate SNP 1, i.e.,

08 | B | = a0+ auds )

In particular, we denote the complete collection of the SNP annotation data as d := (dy, ..., d,),
and we refer to a := (ap, 1) as the enrichment parameter: for a binary annotation, a positive
oy value indicates that SNPs with the feature have increased odds of being associated with the

trait of interest, i.e., the annotated feature is enriched in the trait-associated genetic variants.

In this paper, we consider a special setting in which the annotation is derived from the association
analysis of molecular QTL data, namely, (Y ,u, G,u). Intuitively, the true association status of
each SNP with the molecular phenotype can be naturally incorporated as annotations for GWAS
analysis. However, due to the intrinsic limitations in the molecular QTL mapping, e.g., imperfect
power and complication of LD among SNPs, the desired binary association status of each SNP
with respect to the molecular phenotype of interest, d, is practically impossible to obtain. Rather,
we propose using the posterior distribution of d, Pr(d | Y 4u, Gg4u), to represent a “fuzzy” version
of the annotation to naturally account for the uncertainty. Specifically, we modify the prior model
and regard the annotation data d as unobserved but a realization from the joint posterior
distribution obtained from the Bayesian multi-SNP association analysis of the molecular QTL

data, i.e.,
d~Pr(d|Y 4 Gu) (3)

Furthermore, the uncertainties attached to both v and d from the genetic association analysis

give rise to the problem of colocalization: it is natural to quantify the colocalization of association
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signals for SNP ¢ using the following probability statement

PF(%‘ = 17di =1 | Yy, G7 thl; thl), (4)

where both v; and d; are regarded as random variables.

Given observed complex trait data, (y,G), and the true annotation d (assuming observed), our
recent work (Wen et al., 2016) demonstrated that the proposed Bayesian hierarchical model can
be efficiently fit based on an algorithm named deterministic approximation of posteriors (DAP)
by adopting an empirical Bayes strategy. In brief, the inference procedure divides the genome
into roughly independent LD blocks (Berisa and Pickrell, [2016) and proceeds in two stages
of analysis. In the first stage, we obtain the maximum likelihood estimate of the enrichment
parameter, &, using an EM algorithm by treating « as missing data. Subsequently, in the
second stage, we perform multi-SNP fine-mapping conditional on & within each LD block and
report the posterior distribution of 4. In the following sections, we discuss an extended inference
framework to account for the fuzzy annotations in the prior model (3|) and solve the colocalization

problem.

2.2 Enrichment Analysis of Molecular QTLs in GWAS Hits

The primary objective of the enrichment analysis is to estimate the hyper-parameter a given
the observed summary statistics from GWAS and the fuzzy annotation of molecular QTLs. Note
that if the binary molecular QTL annotation is indeed known, then the EM algorithm described
in [Wen et al.| (2015] 2016) can be directly applied to obtain the maximum likelihood estimate of
a. With incomplete information on annotation data, we adopt a principled statistical strategy
in missing data inference known as multiple imputation (Rubin| 1987, [Little and Rubin| 2002]).

Specifically, the multiple imputation procedure creates m complete data sets by filling in, i.e.,


https://doi.org/10.1101/078667

bioRxiv preprint doi: https://doi.org/10.1101/078667; this version posted October 2, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

imputing, the missing entries of the binary annotation data. The imputed data sets are then
individually analyzed using the existing EM algorithm, and the distinct estimates of & from
multiple imputed data sets are combined into a final estimate using a set of rather simple rules
(Appendix . The key to implementing this strategy is to impute the annotations, which, in
our case, is achieved by sampling from the posterior distribution Pr(d | Y ,u, G,u). Note that
sampling from the joint posterior distribution (compared to simply using the marginal posterior
inclusion probability of each SNP) preserves the uncertainty from identifying causal molecular
QTNs due to LD, particularly in the presence of multiple cis-eQTL signals, and improves the

accuracy of the enrichment estimate.

The number of imputed data sets (m) necessary for reliable estimation has been systematically
studied in the missing data theory. The common consensus in the statistical literature is that
m should be determined by the percentage of missingness, and various theoretical and empirical
studies (Schafer, 1999, (Graham et al., 2007) roughly agree that 20 imputations are required
for 10% to 30% missing information and that 40 imputations are required for 50% missing
information. Although the true annotation d is completely unobserved in our context, we are
certain that d; = 0 for the vast majority of the candidate SNPs by inspecting the posterior
distribution Pr(d | Y ,u, Gqu). In fact, by examining the analysis results of cis-eQTLs from the
GTEx whole blood data, we find that there are only ~ 1.5% cis candidate SNPs with a posterior
inclusion probability > 0.01. Guided by this empirical evidence, we choose to impute m = 25
QTL data sets for each analysis. (We have also experimented with 50 and more imputed data

sets in the simulations, and the inference results are virtually unchanged.)

Additionally, we observed that detectable GWAS hits and eQTLs (with currently available sample
sizes) are both relatively sparse in practice, which can lead to large variances for the estimated
enrichment parameter 4. To illustrate this point, we consider that both « and d are observed;
it is then trivial to estimate &; using a 2 X 2 contingency table. Because each binary vector

contains only very few non-zero entries, the resulting contingency table is extremely imbalanced.
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Consequently, the variance of &; (approximately equal to the inverse of the smallest cell count)
can be large, and the point estimate can be unstable. To stabilize the estimate of the enrichment
parameter, we modify the original EM algorithm and apply an Iy penalty with a shrinkage
parameter A in the M-step to shrink the estimate toward 0. This strategy is informed by the
statistical principle of “variance-bias trade-off”. Alternatively, this can be viewed as assigning a
N(0,1/X) prior to ay. In practice, we select A in a data-driven manner by assessing the degree
of imbalance of the unobserved contingency table based on the association data (Appendix ,

which assigns stronger penalties for larger degrees of imbalance.

2.3 Fine-mapping Incorporating Molecular QTL Annotations

Given the point estimate of the enrichment parameter, we adopt an empirical Bayes procedure
to infer the true association status, =, for all SNPs in GWAS. Specifically, the prior for each SNP
¢ in multi-SNP fine-mapping can be computed in a straightforward manner by a two-component
mixture, i.e.,

6@0 6@0 +d1

= — - (1—9;
14 e2o ( )+

Pr(v; =1[Y g, G, &) - 04, (5)

1+ e®o+aén

where 6; := Pr(d; = 1 | Y ,G ), ie., the marginal posterior inclusion probability (PIP) of

SNP i being a causal molecular QTN obtained from the eQTL mapping.

Given the prior , the adaptive DAP algorithm described in (Wen et al) 2016) can be applied
to each LD block separately for multi-SNP fine-mapping. The inference results are represented
by the joint distribution of 4 and by the marginal posterior inclusion probability, Pr(~; = 1 |
Y, G.Y 4, Gy, &), which highlights the importance of each individual SNP while accounting for
LD. As with the enrichment estimate, in Appendix [E] we show that the multi-SNP fine-mapping

can be performed relying only on summary-level statistics from GWAS using the adaptive DAP
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algorithm.

Because our primary objective in this paper is to assess the colocalization signals (rather than
identify multiple independent GWAS signals), we adopt an alternative strategy that efficiently
computes approximate GWAS PIPs for putative associations of interest for colocalization anal-
ysis. For each pre-identified GWAS signal (from either single or multiple SNP association anal-
ysis), we specify an LD block that contains a set of candidate SNPs. Within each candidate
SNP set, we assume that there exists at most a single causal GWAS hit and apply the DAP-1
algorithm using the summary-level statistics to perform fine-mapping analysis incorporating the
prior model . Overall, this strategy is similar to the fine-mapping approaches described in
Pickrell (2014), [Veyrieras et al.| (2008), Maller et al.| (2012). However, in contrast to the afore-
mentioned approaches, our prior specification allows the colocalization /fine-mapping analysis to
utilize different LD block units that are completely independent of the estimation of the enrich-
ment parameters. We call this strategy the “signal-centric” approach and demonstrate its use in

our simulation and real data examples.

2.4 Colocalization Analysis of GWAS and Molecular QTL Data

Colocalization analysis aims to quantify the overlap between the causal GWAS hits and molecular
QTNs at the SNP level. Within our probabilistic framework, it can be conveniently formulated

as the evaluation of the joint posterior probability

Pr(,}/l = 17dz =1 | yaGantlanthd)a

for each SNP 1.

Given the fine-mapping PIP result Pr(y; = 1|y, G, Y 4, Gy, &), the colocalization probability
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for SNP i can be computed as
Pr(% - 1752 =1 ‘ Y, GJthl7 thbd)

16 14 ©)

51’ ' e + eQo+an

= Pr(’% =1 | Yy, G7 thl7 thl’ d)/ |:1 +

by solving a simple linear system (Appendix . We refer to this quantity as the SNP-level

colocalization probability (henceforth referred to as SCP).

Note that the resulting SNP-level colocalization probabilities still carry uncertainties due to LD.
We demonstrate this point by considering a hypothetical example of two perfectly correlated
SNPs and assuming that they are in complete linkage equilibrium with the remaining candidate
SNPs. If one of the two SNPs is genuinely associated with the molecular phenotype, it should
follow that §; = d2 = 0.5 in a well-powered molecular QTL analysis, indicating the certainty
that one of the SNPs is the causal QTN; however, there is no further information to distinguish
the two. Consequently, the two SNPs carry the same prior for the GWAS analysis and obtain
the same marginal posterior inclusion probabilities. In the case that one of the two SNPs is also
genuinely associated with the complex trait (it is possible that the causal GWAS SNP is different
than the molecular QTN), we should similarly find that Pr(y; =1 | y, G, Y 4, Ggu, &) = Pr(y, =
1|y,G,Y g, Gy, &) = 0.50 with sufficient power. Furthermore, as shown in Equation (6]), the
SNP-level colocalization probabilities for the two SNPs are also identical, with the actual value
depending on the estimate of the enrichment parameter a;: as &; — 0, both take a value of 0.25,

whereas when &; — oo, both take a value of 0.50.

Following Guan and Stephens (2011), |Wen et al.| (2015), we propose computing a regional colo-
calization probability, or RCP, by summing up the SNP-level colocalization probabilities (SCPs)
of correlated SNPs within an LD block. RCP is naturally interpreted as the probability of a
genomic region harboring a colocalized signal. In our hypothetical example of two perfectly

linked SNPs, the RCP — 1 if &; — oo, which indicates near certainty that one of the SNPs is

10
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both a QTN and the causal GWAS hit (i.e., a colocalized signal); in contrast, when &; — 0,
the resulting RCP value implies that there is an approximately 50% chance that the molecular
QTL and the GWAS signals are not colocalized. We plot the functional relationship of RCP
with respect to oy in Figure |1 which illustrates the impact of the enrichment estimation on
the quantitative assessment of colocalized signals. In general, we find that RCPs can be more

informative and easier to interpret than SCPs in the presence of LD.

2.4.1 Connection to Existing Probabilistic Colocalization Approaches

In this section, we show that Equation @ represents a generalization of existing probabilistic

approaches for colocalization analysis, namely, eCAVIAR and coloc.

If we assume that eQTLs and GWAS hits are independent a priori, i.e., aq is restricted to 0,
then the prior for each SNP in GWAS becomes irrelevant to the eQTL data, and Equation @

can be subsequently simplified to

PI‘(’)/Z = ]-a 51 =1 | Yy, G7 thl) thlu d) = PI‘(*}/Z =1 | v, G7 OA[O) : Pr(dz =1 | thl7 thl)u (7)

which coincides with the colocalization posterior probability (CLPP) proposed in eCAVIAR.

We present the detailed derivation that connects our general model to the coloc model in Ap-
pendix [D] and describe the additional simplifying assumptions made by coloc. More importantly,
we show that the required prior probabilities in the coloc model can be equivalently parametrized
by our enrichment parameter . However, in contrast to our proposed approach that estimates
the enrichment parameter from the data, the prior probabilities in coloc are pre-specified subjec-

tively.

11
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2.4.2 Bayesian Hypothesis Testing of Colocalization

In colocalization analysis, it is occasionally of interest to test the following hypothesis:

Hj : Genomic region ¢ does not contain a colocalized signal,

for each locus i. Here, we show that the above hypothesis testing problem can be conveniently

solved through the posterior inference within the proposed Bayesian framework.

Given a set of rejected hypotheses, M, the Bayesian false discovery rate (FDR) can be intuitively

estimated by
ZieM(l - RCPi)
| M| ’

FDR(M) =

where |M| denotes the number of rejected hypotheses (Newton et al., 2004, Miiller et al., 2004,
Wen, 2016). Therefore, at a pre-defined FDR level «, the Bayesian FDR control procedure
simply ranks all candidate loci according to increasing values of (1 — RCP;) and rejects the null
hypotheses for the largest set M, where

ZieM(l B RCPi) <
| M| -

Q.

2.4.3 Estimating Expected Value of Colocalized Association Signals

One of the useful utilities of the proposed hierarchical model and enrichment analysis is to esti-
mate the expected number of colocalized association signals prior to delving into individual loci.
The estimation is based on the proposed prior model and is analogous to the power calculation

in, e.g., genetic association studies. We denote the marginal probabilities p., := Pr(y; = 1) and

12
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pa = Pr(d; = 1). Recall that e* = %, and it follows from simple algebra that

Py
Pr(vi=1,dj=1)= — 21 8
I‘(ry ) 1 + ]_;5(1 e_al ( )

Note that the quantity

1

1— _
1 + Pd e~ a1
Pd

p=Pr(di=1|v=1)=

represents the the fraction of causal GWAS hits overlapping causal molecular QTNs.

The interplay of pq, p, and a; with respect to p can be intuitively understood in some extreme
scenarios. For example, if the vast majority of the genome is annotated as molecular QTNs,
ie., if ps — 1, then p — 1 and Pr(y; = 1,d; = 1) — p,. This is because if every SNP in the
genome is likely a molecular QTN then every causal GWAS SNP is also likely a molecular QTN.
More generally, the colocalization probability is impacted by the level of enrichment of molecular
QTNs in the GWAS hits. Specifically, if a3 — 00, p = 1 and Pr(y; = 1,d; = 1) — p,, i.e., all
GWAS hits are expected to be molecular QTNs. Alternatively, if a; = 0, it follows that p = py
and Pr(y; = 1,d; = 1) = p,pg, 1.e., the two types of associations are mutually independent.
Moreover, if molecular QTLs are depleted in the GWAS hits, i.e., a; < 0, p is expected to be

< Dd.

To estimate the expected number of colocalized association signals, we simply compute

M
E [Number of colocalized causal variants] = _—m, (10)
14+ 1-pg e~
Pd

where M represents the total number of interrogated genetic variants.

13
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3 Results

3.1 Simulation Study

First, we perform simulation studies to benchmark the performances of the proposed enrichment

and colocalization analysis approaches.

We design the simulation scheme to generate realistic single SNP association z-statistics that
are similar to the observed GWAS results. Specifically, we select real genotypes of 2.7 million
overlapping SNPs used by both [Wood et al.| (2014)) and the GTEx project from the European
samples from the 1000 Genomes Project. For each SNP, we obtain its binary eQTL annotation
by drawing from the posterior distribution of GTEx whole blood cis-eQTLs the GTEx. This
particular posterior distribution is obtained by performing multi-SNP fine-mapping of the GTEx
whole blood data via the adaptive DAP algorithm (Wen et al) 2016). In total, we roughly
annotate ~ 6,000 SNPs per simulation. We then simulate the association status of each SNP
i () by drawing from a Bernoulli distribution whose success rate is determined by the logistic
model with pre-determined o and «; values. Subsequently, a quantitative trait is simulated
using a standard multiple linear regression model for which the residual error variance is set to 1
and the effect size of each causal SNP is drawn from a N(0, ¢?) distribution. Finally, we compute
the single SNP association z-statistic for each SNP as the input for both the enrichment and
the colocalization analyses. Although the sample size in the 1000 Genomes Project European
panel is limited, we are able to adjust the values of o (which determines the prevalence of the
causal associations) and ¢ (which determines the signal-to-noise ratio of the genetic effects) to
roughly match the z-value distributions from the available large-scale GWAS meta-analysis. In
particular, we estimate ag and ¢ by analyzing the height data reported in Wood et al.| (2014]),
and we set g = —8.4 and ¢ = 0.4. Consequently, the distributions of the simulated z-statistics

closely resemble the actual observed GWAS height data (Supplementary Figure [S1). We vary

14
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the value of ay across simulations for different levels of enrichment.

3.1.1 Evaluation of Enrichment Analysis

We examine the performance of the proposed inference procedure in estimating the enrichment
parameter «. In particular, we vary the true o value in the range of 0.0 to 5.0 in the simulations.
For each «; value, we simulate 100 data sets and estimate «; for each simulated data set using

the proposed multiple imputation approach.

For comparison, we also estimate «; using two additional approaches with added information.
The first approach represents a best case scenario in which the true association indicators of
each SNP in GWAS and eQTL mapping, i.e., v; and d;, are assumed to be observed. In this
case, « is trivially estimated using a 2 x 2 contingency table. The second approach assumes
that the association indicator of GWAS, ~;, is unobserved but that the true eQTL annotation for
each SNP, d;, is known, which presents a type of integrative analysis considered in our previous
work (Wen et al) 2016). In this scenario, we apply the EM-DAP1 algorithm implemented in
the software package TORUS (Wen, 2016) to estimate ;. Note that both of these approaches
require additional information that is practically unattainable. Nevertheless, the results from
these analyses highlight the intrinsic difficulty of the task and the theoretical ceiling of any

realistic computational approach.

The results obtained using various estimation approaches are summarized in Figure 2 Impor-
tantly, note that when the enrichment level is low, the accurate estimation of a4 is difficult even
in the best case scenario: the point estimates show large variance even when the true values of
v; and d; are known. In comparison, we observe that the estimates are significantly stabilized by
applying the proposed adaptive shrinkage. As «; increases to relatively large values (> 3.0), the
effects of shrinkage gradually diminish for all approaches: in the case that the true QTL annota-

tion is known, the estimates become practically unbiased, although for the multiple imputation
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procedure, the resulting estimates still notably biased toward 0. Nonetheless, we note that the

degree of bias has minimal impact on the subsequent colocalization analysis (Figure |3)).

Because the overall accuracy of the estimate (rather than bias or variance individually) is more
relevant to our downstream fine-mapping and colocalization analyses, we further investigate the
precision of the estimate &; by computing the root-mean-square error (RMSE) for all methods.
To this end, we also include two additional ad hoc imputation strategies for enrichment estima-
tion. The first strategy applies “mean imputation”, i.e., for each SNP, we regard the marginal
PIP of each SNP (which is also the posterior mean of the corresponding d; value) as a contin-
uous annotation. The second strategy, known as “best SNP imputation”, annotates the best
associated cis candidate SNP of each eGene (i.e., the gene harboring at least one causal eQTL)
as the causal eQTL. For all compared methods, we compute the RMSE based on the true oy
and estimated &; values across 600 simulated data sets. We find that the proposed multiple
imputation approach outperforms both of the alternative imputation strategies in terms of the
accuracy of the point estimates, and its precision is close to the case in which the true eQTL
annotation is known (Table . It is highly expected that differences in performance will be
observed between the multiple imputation and the best SNP imputation because the latter case
ignores the uncertainty due to LD and the potential multiple independent eQTLs within a gene.
We observe that the mean imputation approach consistently (and occasionally severely) overes-
timates «aq, particularly for large o values, which becomes a serious concern for inflating type I
errors in the downstream hypothesis testing of colocalization. In addition, the inability to apply
the adaptive shrinkage (which is specifically designed for binary annotations) also contributes
to the considerably larger RMSE result. Note that the use of mean imputation in our scenario
is different than the case of mean genotype imputation commonly applied in GWAS. This is
because in GWAS, the mean genotype imputation is typically highly accurate and there is also
generally a stringent threshold for filtering out inaccurate imputation for downstream association

analysis, whereas in our case, the PIPs are much less accurate representations for the true eQTL
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association status, particularly for true eQTNs.

In addition, we examine the statistical performance of the proposed approach for testing the null
hypothesis
HO L = 0,

by inspecting the corresponding estimate of the 95% confidence interval from each simulated
data set. Our results indicate that the testing results based on the proposed multiple imputation
approach properly control type I error at the 5% level with the actual type error rate = 0.01.
Although it achieves nearly perfect power as the true a; > 4, it only displays modest power
(53%) for cr; = 3 and little power for smaller a; values. Furthermore, despite the point estimates
being downward biased, we observe that the proposed multiple imputation procedure provides
excellent 95% interval estimates in the range of the «; values examined experimentally: the

coverage probability reaches 94.8%.

Finally, the benchmarked computational time indicates that the proposed multiple imputation
approach is highly efficient. We take advantage of the fact that the multiple imputation scheme
is parallelizable and analyze each simulated data set on 8 simultaneous threads. Consequently,

each enrichment analysis only takes approximately 4 to 5 minutes of real computing time.

3.1.2 Evaluation of Colocalization Analysis

To evaluate the performance of the colocalization analysis, we focus on the simulation setting
of a; = 4, which is close to our enrichment estimate of blood eQTLs in HDL GWAS hits. For
each simulated data set, we perform the proposed colocalization analysis using two different fine-
mapping strategies. The first strategy utilizes the individual-level genotype data from GWAS
and obtains the GWAS PIPs by multi-SNP fine-mapping using the adaptive DAP algorithm.

The second strategy assumes at most one causal GWAS hit within each LD block and computes
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the PIPs using the DAP-1 algorithm based only on the single-SNP association z-statistics. To
evaluate the impact of (imperfect) enrichment parameter estimate, we separately use the true
and estimated (o, o) values (by multiple imputations) to construct the SNP-level prior (5] for
fine-mapping when applying each strategy. For comparison, we also perform the colocalization
analysis of the simulated data assuming independence of molecular eQTLs and GWAS hits (i.e.,
set a; = 0 in prior model ), which resembles eCAVIAR as shown previously. In all cases, we

compute the RCPs for all the pre-defined LD blocks in each simulated dataset.

First, we construct receiver operating characteristic (ROC) curves to simultaneously evaluate the
sensitivity and specificity of various colocalization analysis approaches. Specifically, we classify
an LD block harboring a colocalized signal if the corresponding RCP is greater than a pre-
defined threshold. We vary the threshold from 1 to 0 to construct the ROC curve for each
analysis scheme. The results are presented in Figure [3, which highlights the performance of each
examined approach as the corresponding false positive rates (FPR) < 0.20. In summary, we find
that all approaches yield decent results in identifying true colocalized signals while controlling
for false positives (i.e., they are all well above the 45 degree diagonal line). In particular, we note
that 1) the ability to identify multiple independent GWAS hits within an LD block (i.e., in the
adaptive DAP algorithm) improves the performance of colocalization analysis; ii) the downward
bias in the enrichment parameter estimates by the proposed multiple imputation approach has
very little impact on the colocalization analysis at any given FPR threshold; and iii) neglecting

the enrichment analysis yields inferior colocalization results.

Note that the ROC curves rely only on the ranking of the corresponding RCPs and are invariant
under the rank preserving transformations. To investigate the statistical properties of the RCPs
reported by various analysis schemes as a probability measure, we further examine the Bayesian
false discovery rate (FDR) control of colocalization analysis based on RCPs in the hypothesis
testing setting described in the Method section. Figure 4| shows the comparison of estimated

FDRs and the realized FDRs for all analysis schemes in the simulations. All approaches (con-
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servatively) control the desired FDR levels; however, the scheme assuming «; = 0 is extremely
conservative, where the realized FDRs are nearly 0 and the power is significantly lower than all
the other competing schemes. We therefore conclude that the accurate enrichment estimation
has a critical impact on the quantification of the colocalized signals. In general, we find that the
power to detect colocalized association signals is low across different schemes, i.e., < 40% at the
20% FDR level (Figure . Because our simulated data closely mimic the reality of the currently
available GWAS and eQTL data, we attribute the lack of power reflected by these simulations
to the limitations of the currently available genetic association data. (This point will be further

demonstrated by the power calculation in the real data applications.)

Taken together, we conclude that the estimation of the enrichment parameters embedded in the
prior model impacts both the ranking and calibration of locus-level posterior probabilities
for colocalization. According to the ROC curves, the impact on the ranking can be relatively
insignificant with respect to non-trivial deviation from the truth for the enrichment parameter.
However, the calibration of the colocalization probabilities is considerably more sensitive to
such deviation, as evidenced by the power and the realized FDRs in the hypothesis testing of

colocalization.

3.2 Integrative Analysis of Blood eQTL and Lipid GWAS Data

To demonstrate the proposed computational approach in a practical setting, we perform the
integrative analysis of the eQTL data from the GTEx project (Ardlie et al.,2015) and the blood
lipid data originally reported in Teslovich et al| (2010). The blood lipid data consist of meta-
analysis results of four quantitative traits, including low-density lipoprotein (LDL) cholesterol,
high-density lipoprotein (HDL) cholesterol, triglycerides (T'G) and total cholesterol (TC), with an
aggregated sample size of ~ 100,000. We obtain the version of single-SNP association z-statistics

for the four traits re-analyzed by [Pickrell (2014), where additional z-statistics for untyped SNPs
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are imputed according to the 1000 Genomes Project phase I panel. In total, the complete data
set contains z-scores of ~ 6.1 million SNPs per trait. For most of our analysis, we focus on the
cis-eQTL data from the whole blood in the recent release (version 6) of the GTEx project. The
selection of the whole blood is informed by the consensus of multiple independent enrichment
analysis approaches (GTEx consortium, manuscript in prep.) to determine the relevant tissues
for the blood lipid traits. In addition to biological relevance, we suspect that one of the driving
factors is that the whole blood is one of the GTEx tissues with the largest sample size (338)
in the current release of the data; it therefore has better power to detect cis-eQTLs with small
to modest effects. The SNPs that are not directly genotyped are also imputed according to
the same 1000 Genomes panel by the GTEx consortium. We perform the Bayesian multi-SNP
fine-mapping analysis for the GTEx whole blood data using the adaptive DAP algorithm and
generate the joint posterior distribution Pr(d | Y ,u, G,u) while controlling for the SNP distance
to the transcription start site (T'SS) of the corresponding target gene. As shown in |Wen et al.

(2016)), [Wen| (2016]), this approach significantly improves the eQTL discovery.

3.2.1 Expectation Calculation for Colocalization Analysis

Before conducting the proposed integrative analysis, we first compute the expected fraction of
the GWAS hits of blood lipid traits that overlap blood cis-eQTLs using the approach described in
the Method section. The calculation only requires an approximate estimate of the genome-wide

prevalence of causal eQTLs. Here, we show two different approaches for obtaining the estimate.

The first approach utilizes the pre-computed posterior distribution of cis-eQTLs and calculates

the expected fraction of eQTNs from the posterior distribution by

E(Number of eQTNs)
ba = )
p

where the expected number of eQTNs can be conveniently obtained by summing up PIPs for all

20


https://doi.org/10.1101/078667

bioRxiv preprint doi: https://doi.org/10.1101/078667; this version posted October 2, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

gene-SNP pairs. For the GTEx whole blood data, we calculate the posterior expected number
of eQTNs as 8945.9, and hence, py ~ 1.47 x 1073,

Alternatively, we use a conservative ad hoc approach to estimate py without a Bayesian analysis
of the cis-eQTLs. In particular, we note that the GTEx portal reports 6,784 eGenes (i.e., genes
harboring cis-eQTLs) discovered in the whole blood samples at the 5% FDR level. Assuming
that each eGene contains exactly one causal variant, we then estimate pg ~ 6,784/6.1 x 10° =
1.11 x 1073. Compared to the previous approach, which is more statistically rigorous, this
estimate ignores potential multiple independent eQQTNs within an eGene and the uncertainty
embedded in the process of eGene discovery (e.g., a non-eGene could be mis-classified and indeed
harbor eQTNs). Nevertheless, the two estimates have the same order of magnitude: roughly, we

observe a causal cis-eQTL in 1 out of 1,000 SNPs.

We then calculate the expected fraction of GWAS hits overlapping causal eQTLs as a function
of enrichment parameter a; using the formula @ for both estimates of p;. The result (shown
in Figure [5)) indicates that the expected fraction of overlapped signals is largely determined by
the level of enrichment. With the current level of eQTL discovery (reflected by p4), we do not
expect a large fraction of the GWAS hits to overlap with the annotated cis-eQTLs unless the
enrichment level is extremely high. For example, even at a; ~ 5, which corresponds to a fold-
change at ~ 150, the expected fraction of colocalized GWAS signals is still less than 20% — in
the case of the genetic variants associated with HDL, the expected number of colocalized signals

is ~ 10.

3.2.2 Enrichment Analysis

Next, we apply the proposed multiple imputation procedure to estimate the enrichment level
of whole blood cis-eQTLs in the GWAS hits of the four lipid traits. As in the analysis of the

simulated data sets, we apply the multiple imputation approach for each lipid trait by imputing
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25 independent binary eQTL annotations from the joint posterior distribution of the blood cis-

eQTL data.

We show the enrichment estimates of blood cis-eQTLs in lipid traits and their corresponding
95% confidence intervals in Figure []] We find that the blood eQTLs are most enriched in the
GWAS hits of HDL with point estimate &; = 4.98, followed by TC (&; = 3.73), LDL (&1 = 2.95)
and finally TG (&; = 0.38). The behavior of the proposed enrichment analysis method is very
consistent with what we observed in the simulation studies, i.e., imperfect power for enrichment
estimates < 4 as we note that the corresponding 95% confidence intervals cross 0. We further
inspect the individual enrichment estimate from each imputed eQTL annotation for each trait
(Supplementary Figure . We find that the enrichment estimates for HDL and TG are quite
consistent across all imputed annotation data sets, whereas the estimates for HDL and TC show
relatively large variations across imputed annotations. Nevertheless, we observe that all point

estimates across all imputed annotations for all 4 traits are positive.

We then plug in the enrichment estimates and calculate the expected fraction of colocalized
GWAS hits for each trait from the previously constructed power curves. In summary, we expect
that 18%, 3%, 6% and 0.2% of GWAS hits in HDL, LDL, TC and TG overlap with causal cis-
eQTLs in whole blood. Although the true fractions of overlaps may have large variations due to
the uncertainty embedded in the enrichment estimates (as indicated by their large Cls), these
estimated expected fractions should reflect the relative difficulty in finding colocalized signals in

each lipid trait.

3.2.3 Colocalization Analysis

Given the enrichment estimates, we proceed to perform the colocalization analysis. Because the
blood lipid data are provided in the form of summary statistics, we adopt the “signal-centric”

approach that focuses on colocalizing the association signals of lipid traits identified in the single-
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SNP association analysis. Specifically, we apply the Bayesian FDR control procedure (Wen, |2016)
implemented in TORUS to identify the LD blocks (defined in |Berisa and Pickrell (2016))) that
harbor at least a single association signal at the 5% FDR level. Ultimately, we identify 72, 64,
78 and 52 genomic loci for HDL, LDL, TC and TG, respectively. Because Teslovich et al.| (2010)
controlled for the family-wise error rate (FWER) and used a stringent SNP-level genome-wide

significance threshold (i.e., 5 x 1078), their reported loci consist of a subset of ours.

Another practical issue arising in the eQTL analysis is that a single SNP can locate in the cis
regions of multiple genes. Our solution to this problem is to compute an RCP for each LD
block with respect to each gene that has at least one cis candidate SNP residing in the block.
In particular, we construct the SNP prior that is specific to each gene. Consequently, the
resulting RCP of the target LD block is also gene specific. One obvious advantage of this strategy

is that it naturally links the SNP-level association signal to a gene.

In summary, our analysis identifies 21 unique genomic region-gene pairs with RCP > 0.50. We
summarize the results in Table . In the hypothesis testing context, we reject 4 (RCP cutoff
0.902), 7 (RCP cutoff 0.832) and 16 (RCP cutoff 0.639) top-ranked RCP regions at the Bayesian
FDR levels of 5%, 10% and 20%, respectively. Within an LD block, we regard an SNP as a

potentially true colocalized signal if its SCP is > 0.001.

For a small proportion of the identified loci, we find that the colocalized signals can be effectively
narrowed down to only a few SNPs. For example, SNP rs103294, a cis-eQTL for gene LILRAS,
has an SCP value of 0.979, showing a strong SNP-level colocalization signal with the GWAS hit
of HDL. However, the majority of the loci still carry many candidate SNPs due to common LD
patterns present in the genetic data of both complex traits and molecular phenotypes. Figure
illustrates a colocalized association signal for HDL and the expression of UBASHS3B in a 52 kb
genomic region on chromosome 11. Our analysis identifies 54 SNPs with a joint RCP = 0.645;

however, the strongest individual SCP is merely 0.036. Additionally, the SNP-level PIPs for
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GWAS and cis-eQTL associations also exhibit a similar pattern: although there is not a single
SNP taking high PIP values, the cumulative PIPs of the region are close to 1 for both GWAS
and cis-eQTLs. We further compute the pair-wise LD of the 54 member SNPs based on the

genotype data from the GTEx samples and confirm that all SNPs are indeed highly correlated.

For the significant loci reported by [Teslovich et al] (2010) (labeled by * in Table [2)), we compare
the genes suggested by our analysis and the reported genes therein. For 8 out of 14 cases, the
implicated genes are consistent (labeled by T in Table . Among the other 6 inconsistent cases, 3
involve the genomic region anchored by SNP rs629301, for which our analysis links to PSRC'1 and
Teslovich et al.| (2010)) links to SORT'1 by the more comprehensive molecular evidence presented
in [Musunuru et al.| (2010). Our examination of the current GTEx analysis results (version 6)
reveals that rs629301 shows little to no evidence of association with SORT1 but very strong
evidence of association with PSRCT in whole blood; however, in liver, rs629301 shows strong
associations with both genes with evidence for SORT! being stronger (source: GTEx portal
eQTL browser). In addition, the very SNP also shows strong association with CELSR2 in liver.
We repeat the colocalization analysis using the GTEx liver eQTL data. Not surprisingly, we find
that the same genomic region presents the strongest colocalization signals with all 3 genes among
all liver-expressed genes, with RCPs = 0.691, 0.684 and 0.675 for SORT1, PSRC1 and CELSR2,
respectively. The decrease of the RCP values is attributed to the lower eQTL enrichment estimate
in liver (&; = 2.567 with 95% CI [—1.849,6.984]), which exhibits a considerably larger degree of
uncertainty than the whole blood estimate and is likely caused by the insufficient sample size in
the current GTEx liver data (sample size of 97 compared to 338 for whole blood). Additionally,
we find that the other 3 inconsistent cases can be similarly explained: the blood eQTLs for genes
RPL36P/, NTN5 and TMEM258 all display different association patterns in different types of

tissues.

Finally, we note that a single GWAS association can be colocalized to eQTL signals of multiple

genes. For example, our analysis indicates that the likely causal HDL variant in the genomic
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region chr2:85537312-85555478 is possibly associated with the expression levels of 3 different
genes (AC093162.5, TCF7L1 and ELMODS3). The case of SNP rs629301 in liver discussed
previously is also an example of this type. Although this phenomenon is relatively well known
in studies of molecular phenotypes, it certainly makes elucidating the molecular mechanism of

causal GWAS variants more challenging.

4 Discussion

In this paper, we have proposed a statistically rigorous and computationally efficient analytic
framework for performing integrative analyses of GWAS and molecular QTL data and providing
quantitative assessments of enrichment and colocalization of their association signals. One of the
intrinsic challenges in genetic association analysis is that the resolution of identified association
signals is always limited by LD. Consequently, it is generally impossible to pinpoint the causal
variants based solely on genetic association analysis, and it imposes a formidable challenge for
assessing enrichment and colocalization in the integrative analysis. To address this problem, we
formulate a missing data problem and adopt a well-established statistical strategy, i.e., multiple
imputation, to fully account for the uncertainty in identifying causal genetic variants for complex
traits and molecular phenotypes due to LD. These efforts result in not only more accurate
point estimates but also appropriate characterizations of uncertainties of our inference results in
enrichment and colocalization analysis. Particularly, in the colocalization analysis, our theoretical
demonstration and the real data example both clearly illustrate that individual SCPs can be
unimpressive in high LD regions even if we are confident that the region does harbor a colocalized
signal. In light of these findings, we propose and recommend reporting RCPs rather than placing

emphasis on colocalization probabilities of individual SNPs.

Compared to the existing methods for colocalization analysis, the most important distinction

of our proposed approach is the natural integration of the enrichment estimation. Throughout
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the paper, we have illustrated the importance of obtaining accurate enrichment estimates on the
downstream quantitative evaluations of colocalization. Our main conclusion is that the accurate
enrichment estimates based on currently available data may not have an overall large effect on
altering the ranking of potential colocalization signals; however, it is critically important for the
calibration of the corresponding colocalization probabilities and has a profound impact on the
outcome of formal statistical testing procedures. Existing probabilistic model-based approaches
typically make explicit assumptions on the enrichment levels of molecular QTLs in the causal
GWAS hits (although they may not be presented in the form of enrichment parameters), as we
have shown for the cases of coloc and eCAVIAR. We further hypothesize that all approaches,
including empirical methodologies, make implicit assumptions on the enrichment parameters,
which can be understood by the hypothetical example of two perfectly linked SNPs discussed
in the Method section. For example, if a method determines that the association signals are
colocalized in the hypothetical example (without enrichment estimation), it seemingly assumes
that the enrichment level — oo, which is a strong assumption. In summary, we have demonstrated
that the enrichment parameter plays an important role in colocalization analysis, and we believe
that the best strategy to deal with this parameter is to learn it from the observed data, as we

have demonstrated throughout.

Importantly, our simulation and real data analyses apparently illustrate the limitations of cur-
rently available association data: we have shown that the confidence intervals of enrichment
estimates are typically large and the expected fractions of colocalized GWAS signals are only
modest, which are consistent with our observations from practice in the field. In particular, we
note that most current molecular QTL (e.g., eQTL) studies are conducted with only modest
sample sizes due to cost considerations. Although many of these studies successfully identified
an abundance of trait-associated genomic loci with large effects, the power required to uncover
molecular QTLs with small to modest effects is lacking. As many molecular QTL studies have

started scaling up their sample sizes, we expect an elevated estimate of p; in the future. Ac-
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cordingly, based on Equation (@, we anticipate that a higher fraction of GWAS hits overlapping
molecular QTLs can be revealed. Similarly, improving the power of GWAS should also help

improve discoveries of colocalized signals, which is evident from Equation ([10]).

Our proposed statistical model and inference procedure are completely general for analyzing two
sources of genetic association data. Note that it is statistically equivalent to treating GWAS
data as annotations for eQTL mapping. Our choice of presenting eQTL as an annotation is
simply motivated by better biological interpretation of the model and our enrichment analysis.
It is trivial to prove that when individual-level data are available for both eQTL mapping and
GWAS analysis, the choice of annotation should not alter the inference results under the proposed
model. More generally, the proposed statistical framework is applicable for analyzing any pair
of phenotypes to colocalize the association signals, as in applications demonstrated by Pickrell

et al.|(2016).

Note that caution should be exercised when attempting to interpret the biological relevance of
the identified colocalization signals. In colocalizing an eQTL and a GWAS hit, a seemingly
obvious implication is the relevance of the target gene of the eQTL in the disease process.
However, as we demonstrated in the analysis of the blood lipid data, there are cases in which
other important biological factors should be considered: for example, the relevance of the tissue
where the eQTLs are derived from. Although it is generally possible to statistically evaluate the
relevance of eQTLs from different tissues for a specific complex trait through enrichment analysis,
the currently available GTEx data are not satisfactory for this purpose because of the significant
variations in sample size across tissues. (We anticipate that this issue will likely be resolved by
the end of the GTEx project, and we should re-visit the problem then.) A more elegant solution is
to utilize eQTL annotations generated from joint multi-tissue eQTL mapping approaches (Flutre
et al., 2013, Li et al), |2013), which enables simultaneous colocalization analysis across multiple
tissues. Although conceptually straightforward, the difficulty in implementing a computationally

efficient procedure incorporating multi-tissue eQTL data should not be underestimated. We will
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address this challenge in our future work.

In Teslovich et al.| (2010), the authors went to great lengths to establish the biological, clinical
and population relevance of genomic loci uncovered in the GWAS, in which integrative genetic
association analysis is only a part of the overall process. Despite its own importance, we should
acknowledge that integrative analysis of genetic association data is merely a starting point for

uncovering the molecular pathway from genetic variants to complex traits.

5 Acknowledgments

We thank the GTEx Consortium and the Global lipids Genetic Consortium for releasing valuable

data in a timely fashion.

6 Resources

The URLs for data presented herein are as follows:
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e GTEx data, http://www.gtexportal.org/home/datasets

e Global Lipids Genetic Consortium results (2010), http://csg.sph.umich.edu//abecasis/

public/1ipids2010/
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Appendices

Appendix A  Multiple Imputation Procedure

In this section, we outline the multiple imputation procedure used for estimate ;.

We first analyze the GTEx whole blood cis-eQTL using the adaptive DAP algorithm, and obtain
the joint distribution of Pr(d | Y u, Geu) for each gene. Subsequently, we create m = 25
imputed annotations by independent sampling from the corresponding posterior distribution of
each gene. We then perform the enrichment estimate for each imputed data set using the EM-
DAP1 algorithm implemented in the software package TORUS. In the end, we obtain a point

estimate of a, namely dgi), and its standard error, o for each imputed data set 1.

The multiple imputation procedure combines the estimates from individual imputed data sets in

the following way. First, the overall point estimate &; is simply given by
. 1 NG
a1:—2a§). (A1)

The variance of the point estimate is then computed by

0]2\4] = 0,23 +(1+ 1/m)012,v, (A.2)
where
1 =, 4
o= — 3 (0P, (4.3)
i=1
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and
2 = 1S (6§ - an)? A4
Ty (&7 — )™ (A.4)

A more detailed reference on multiple imputation procedure can be found in |Schafer| (1997)).

Appendix B Adaptive Shrinkage in Enrichment Estima-

tion

As discussed in the main text, the lack of strongly colocalized signals leads to unstable enrichment
estimate. Here we propose a data-driven empirical approach to remedy this issue. The general
statistical idea is to trade off the variance of the enrichment estimate against bias to achieve an

overall accurate prior estimate for the downstream fine-mapping and colocalization analyses.

In the EM algorithm detailed in [Wen et al.| (2015) and Wen| (2016)), we showed that the M-step
is equivalent to fitting a logistic regression model, which, in our context, regress the expected
association status estimated in the E-step on the imputed eQTL annotation for each SNP. To
apply the shrinkage on the estimate, we apply an [, penalty with a constant shrinkage parameter

A in fitting the logistic regression for each M-step, which is equivalent to assuming a normal prior

N(0,1/A) on .

We determine the shrinkage parameter in a data-adaptive way. Intuitively, a larger shrinkage is
desired if the data indicates more severe sparsity of overlapping association signals. If both =
and d are observed, we can construct a 2 X 2 contingency table and «; and its variance can be
estimated in a standard way. In particular, the variance of the log-odds ratio estimate can be
used as a measure for our purpose: e.g., the variance is small if all 4 cells have sufficient counts,

whereas if the count of one cell is small, the overall variance of the log-odds ratio estimate is
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large. For each imputed data set, d is indeed observed but -« remains latent. We therefore
estimate the cell count of the hypothetical 2 x 2 contingency table by computing the PIP of
each SNP in GWAS using the DAP-1 algorithm and assuming a; = 0. More specifically, let n;
denote the indicator if the SNP i is a molecular QTN in the imputed data set and let p; denote
the resulting PIP from the DAP-1 algorithm. Assuming there are total p candidate SNPs, we

estimate the 4 cell counts by

p

Lo = Z(l —pi)(1 =),
Eo = Z(l — Pi)"i,
= (B.1)

p
Ew =Y pi(l—m),
i=1
p
Ey = mez‘-
i=1
Finally, we set the shrinkage parameter A by
1 1 1 1
A= —-I——+——|——), B.2
(Eoo Eyn  Ew  Eu (B2)

which is the variance of the log-odds ratio estimate if true cell counts are indeed observed (instead

of estimated).

Appendix C Derivation of SNP-level Colocalization Prob-

ability

The SNP-level colocalization probability can be computed by noting the relationship between

the posterior probabilities Pr(y; = 1,6, = 1 | y,G,Y ju, G, &) and Pr(vy; = 1,6, = 1 |
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Y,G.Y ju, Gy, &) and their relationship to the marginal PIP in the GWAS data, i.e.,

Pr(v; =1y, G Y g, G, &) =

Pr(IYZ - 1a5z =1 | y7G7thl7thla&) ‘f‘Pr(% = ]-751 =0 | vy, G7 thlantlaé)a

(C.1)
and
Pr(yi=10i=1]y,G Y, Gu,&) e Pt
PI‘("}/@ = 17 52 = O ‘ y; G; thl, thl, d) - 1 _|_ ed0+d1 1 _ 61

Solving this linear system results in the SNP-level colocalization probability expression @

Appendix D Connection to coloc Model

Here we compare the statistical approach coloc to our proposed method. Specifically, we show
that coloc can be viewed as a rough approximation and a special case to our general integrative

analysis approach.

The method coloc requires pre-defining three SNP-level prior probabilities p;, ps and pis. Using

the notations of this paper, these three quantities can be formulated as

exp(ao)
h r(% ) dz ) 1+ exp(ao) [ r(dz )] )
p2 :=Pr(vy;, =0,d; = 1) L -Pr(d; = 1),

T 1+ exp(ag + )
_exp(ag + )
1+ exp(ap + )

-Pr(d; =1).

Additionally, the prior probability Pr(v; = 0,d; = 0) = 1 —p; —ps — p12 can be trivially computed
and represented by py. In comparison, we explicitly estimate oy and «; from the GWAS data.
Although we do not directly utilize the prior probability of a QTN, Pr(d; = 1) (rather, the inferred

posterior probability Pr(d; = 1| Y ,u, G,) is applied throughout our inference procedure), this
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very quantity can be straightforwardly estimated from the eQTL data, (Y 44, G4u), using the
EM-DAP1 algorithm (Wen et al., 2016).

Similar to our RCP quantification, the coloc method considers the existence of a colocalized
GWAS and molecular QTL signal within a LD block. Importantly the coloc model makes an
explicit assumption that there is at most a single GWAS hit and/or a single QTN within the
locus of interest, which enables highly efficient approximate computation for the RCP. Here we
show that, given the simplifying assumption and the pre-specified priors for pi, po and pis, coloc

yields identical result of RCP as the proposed method given pq, po and pis.

Suppose that there are m SNPs in the LD block of interest and let the binary m-vectors «, and d,
denote their association status with respect to the complex trait and the molecular phenotype,
respectively. Assuming that SNP [; is the colocalized association signal, it follows from our

proposed model that

Pr(Vli = 17 dli = 177l\i = 07 dl\z =0 ‘ Ya Ga thb thl)
Pr(7l = 07 dl =0 ’ Y7 G7 thla thl)

_ Pr(p=1]d,=1) P(Y |G,vi=1,v,=0) Pr(d, =1,dni = 0| Y qu, Gon)

~ Pr(y, =0]d, =0) P(Y |G,~,=0) Pr(d, = 0| Y g, Gaul)

_ Py, =1]d, =1)Pr(d, =1) PY | G,yvi=17,=0) . P(Y | Gou,dy, = 1,dp; = 0)
Pr(y, =0 dy, = 0) Pr(d;, = 0) P(Y |G,v,=0) P(Y qu | Ggu,di = 0)

~ P2 BF), gvas - BFan,
Do

(D.1)

where the marginal likelihood ratios are approximated by the Bayes factors of single-SNP asso-

ciation models for the complex trait and molecular phenotype, respectively.

Under the constraint imposed by the simplifying assumption, each possible configuration of

(7;,d;) can be enumerated, of which the corresponding posterior probability can be similarly
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computed as (D.1]). For example,

Pr(,yli = 17'71\1‘ =0,d,=0 | Y, G, thl7 thl)
Pr(v,=0,d,=0|Y,GY yu, Gg1)

(D.2)
~ ]2 : BFli,gwasa
Po
Y= 07 dli = 17 dl\z =0 ’ Y7 G7 thla thl)
Pr(’Yl = 07 dl =0 | Y, G7 thl7 thl) (D 3)
~ 22 : BFli,qtb
Po
and,
PT(%i = 17 dlj = 1a7l\i - 07 dl\] = 071 7&] | Y7 G7 thla thl)
Pr<7l = 07 dl =0 | Y, G, thl7 thl) (D 4)
~ P P2 B, s - BF
Po Po
In the end, coloc computes the RCP for the locus of interest by
1 piy -
RCPCOIOC — 5 : p_ Z (BFli,gwas : BFli,qtl) 5 (D5)
0 %=1

where C' denotes the normalizing constant and is computed by

_ Pr(Vladl | Y7 G7thl:thl)
¢= Z Pr(

v d Jeq Y = 07 dl =0 ’ Y7 G7 thla thl)’
12l

and the set €2 denotes the eligible (v,, d;) configurations under the constraint.

In summary, we have shown that the coloc approach can be derived as a special case from our

proposed general framework with the following added assumptions,

1. the prior values are pre-defined through pi, ps and p1o
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2. there is at most one causal GWAS variant in the region of interest

3. there is at most one causal molecular QTN in the region of interest

Appendix E Multi-SNP Analysis with Adaptive DAP Al-

gorithm using Summary-level Statistics

For practical and/or privacy considerations, many GWAS data are made available with only
summary-level statistics, typically in the forms of single-SNP testing p-values or z-scores. In
this section, we discuss the analytic strategy to perform proposed analysis using only summary-
level statistics from GWAS. Many authors have demonstrated that the SNP-level PIP in GWAS,
Pr(vi = 1|y, G Y 1, Ggu, &), can be approzimated from the summary-level statistics obtained
from single-SNP association testing results (Kichaev et al, 2014, Zhu and Stephens, 2016)). Here

we show their results extend to the application of the adaptive DAP algorithm.

In the case where individual-level genotype data are unavailable, the main computational diffi-
culty in applying adaptive DAP algorithm lies in calculating the marginal likelihood, i.e., Bayes
factor, for any given value of . The evaluation of the Bayes factor or marginal likelihood using
summary-level statistics has been systematically studied in the literature. In particular, we find
the results by (Chen et al.| (2015) (Equation (3)) and |Zhu and Stephens| (2016) (Equation (2.10))
are suitable approximations that are accurate and easy to compute. With these results, it then
becomes straightforward to apply the adaptive DAP algorithm to compute the PIPs for GWAS

using the informative priors that incorporate molecular QTL annotaions.
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Figure Legends

1.0

0.9

RCP

0.7

0.6

0.5

ay

Figure 1: Functional relationship between RCP and enrichment parameter a; in a hypothetical
example. We consider two perfectly linked SNPs: one is causally associated with the molecular
phenotype of interest, and one is causally associated with the complex trait of interest. Assuming
that the two SNPs are in complete linkage equilibrium with other SNPs, the plot shows the
functional relationship of the RCP value with respect to the enrichment parameter. Note that
we should conclude that the two association signals are colocalized (RCP — 1) only if the
enrichment level is sufficiently high. It is also theoretically possible that the RCP < 0.5 if the

molecular eQTLs are depleted in the GWAS hits, i.e., a; < 0.
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Figure 2: Enrichment parameter estimates in simulation studies. The proposed multiple imputa-
tion approach is compared to three methods utilizing added information that is unattainable in
practice. The “best case” uses the true association status for both complex traits and molecular
QTLs, whereas the “true annotation” utilizes the true association status from molecular QTLs
only. This figure highlights the difficulty in estimating &; even when additional information is
available. It shows the necessity of applying shrinkage to stabilize the point estimates in our

simulation setting.
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Individual-level GWAS data, true prior (AUC=0.869)
Individual-level GWAS data, estimated prior (AUC=0.866)
Summary-level GWAS data, true prior (AUC=0.844)
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Summary-level data, ;=0 (AUC=0.817)
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Figure 3: ROC curves for various colocalization analysis schemes in simulation studies. ROC
curves evaluate the ranking of the LD blocks that potentially harbor colocalized association sig-
nals. All schemes perform decently in the simulations. Notably, the inaccuracy of the estimated
enrichment parameters from the proposed multiple imputation procedure does not appear to
have a significant impact on the overall performance of the colocalization analysis. However,
the difference becomes highly visible for the case where oy is set to 0. In addition, multi-SNP

analysis in GWAS also improves the performance of the colocalization analysis.
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Figure 4: Evaluation of type I error rate and power for various colocalization analysis schemes

in simulation studies. This exercise helps to evaluate the calibration of the reported RCPs from

various analysis schemes. Better calibrated RCPs result in less conservative control of the type

I errors and improved power. Our results indicate that the RCPs are better calibrated for more

accurate enrichment estimates and/or the use of multi-SNP analysis in GWAS.
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Figure 5: Expected fraction of colocalized GWAS hits in GTEx whole blood cis-eQTLs. The
red and green curves are computed using the p; estimates from a model-based and an ad hoc
approach, respectively. Qualitatively, the two curves are similar. The expected fraction of GWAS
hits overlapping cis-eQTLs is largely determined by the enrichment parameter a;: if ay — 0, we
should expect few colocalization signals, whereas if «; is large, a large proportion of GWAS hits

are expected to overlap with eQTLs.
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Figure 6: The enrichment estimate of GTEx whole blood cis-eQTLs in the GWAS hits of
four blood lipid traits. For each trait, the point estimate and the corresponding 95% confidence

interval are plotted.
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An example of an identified colocalization signal in a high LD region. The region,

containing 54 candidate cis-eQTL SNPs for gene UBASH3B, harbors a GWAS hit for HDL. Pan-

els A, B and C plot the SCPs, eQTL PIPs and GWAS PIPs for each individual SNP, respectively.

No single SNP shows a particular high posterior probability in any of the three plots, but the

cumulative regional probabilities from all the SNPs are all high. Panel D plots the pairwise LD

pattern, measured by 72, for the 54 SNPs and indicates that all SNPs are tightly linked.
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Tables

Method RMSE
Best case®' 0.374
True annotation® 0.812
Multiple imputation 1.041
True annotation®? 1.153
Best SNP annotation 1.474
PIP annotation® 2.942

Table 1: Evaluation of the accuracy of various enrichment estimation approaches. Using the
simulated data sets, we compute the root-mean-square errors (RMSEs) to measure the precision
of the point estimates obtained by different approaches. The methods denoted by * use added
information that is unattainable in practice. The methods denoted by  do not apply shrinkage
to the enrichment estimate. The proposed multiple imputation approach yields the best accuracy

among approaches that are practically applicable.
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Trait \ Region \ Gene \ RCP \ # of SNPs \ Lead SNP \ Max SCP
HDL | chr1:109817192-109818530* | PSRC1 0.962 5 1s629301 0.439
HDL | chr2:85537312-85555478 AC093162.5 | 0.845 22 rs10460586 | 0.340
TCF7L1 0.828 27 rs10460586 | 0.208
ELMODS3 0.800 22 rs3184780 | 0.099
HDL | chr3:49971514-50146094 RBM6 0.712 22 rs7613875 | 0.380
HDL | chr6:34548206-34800435* C6orf1067 | 0.814 35 rs6907508 | 0.623
HDL | chr9:15303583-15304782* TTC39B1 0.627 2 rs686030 0.580
HDL | chr11:61557803-61623140* TMEM258 | 0.832 15 rs102275 0.584
HDL | chrl11:122500846-122553139* | UBASH3B' | 0.639 54 rs60494825 | 0.036
HDL | chrl12:109893156-110042348* | MVK 0.603 45 rs7964021 | 0.051
HDL | chr19:54796630-54799083* LILRAST 0.990 3 rs103294 0.979
HDL | chr22:21917450-21980894* UBE2LST 0.554 39 rs181360 0.052
LDL | chr1:109818306-109818530* | PSRC1 0.901 2 1s629301 0.879
LDL | chr9:136141870-136155000* | ABO' 0.582 5 rs550057 0.430
LDL | chr17:8107979-8161149 C1701f44 0.708 6 rs8078338 | 0.637
TC | chrl:109817590-109818530* | PSRC1 0.942 4 s629301 0.858
TC | chr9:136141870-136155000* | ABOT 0.509 4 1rs635634 0.327
TC | chr17:8107979-8161149 Cl17orf}4 0.745 5 rs8078338 | 0.671
TC | chr19:49206108-49219459* NTN5 0.662 7 15492602 0.177
TC | chr20:34124336-34160840* RPL36P 0.745 15 rs2277862 | 0.494

Table 2: Identified genomic regions that potentially harbor colocalized association signals of
whole blood cis-eQTLs and GWAS hits of blood lipid traits. A region is listed if its RCP is
> 0.5. We denote the region by * if it is also identified in [Teslovich et al|(2010). The symbol |
indicates that the same gene is linked to the same GWAS hit region in (Teslovich et al.| (2010)).
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Supplementary Figures
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Figure S1:  Comparison of the simulated summary Z-statistics and the observed data from
height GWAS Wood et al| (2014). The overall distributional patterns of z-statistics are quite
similar. The boxplot indicates that the extreme values from the two distributions are very much

comparable; the density plot suggests the simulated z-statistics are more concentrated around 0,
hence slightly conservative.
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Figure S2: Individual estimates and their corresponding 95% confidence intervals from each
imputed eQTL annotation data set in enrichment estimate of the four blood lipids traits.
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