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National d’Histoire Naturelle, 75005 Paris, France

†SMILE (Stochastic Models for the Inference of Life Evolution), UMR 7241 CIRB, Collège
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Abstract1

Demographic inferences based on the observed genetic diversity of current populations rely2

on the use of summary statistics such as the Site Frequency Spectrum (SFS). Demographic3

models can be either model-constrained with numerous parameters such as growth rates,4

timing of demographic events and migration rates, or model-flexible, with an unbounded5

collection of piecewise constant sizes. It is still debated whether demographic histories can be6

accurately inferred based on the SFS. Here we illustrate this theoretical issue on an example7

of demographic inference for an African population. The SFS of the Yoruba population8

(data from the 1000 Genomes Project) fits to a simple model of population growth described9

with a single parameter (e.g., foundation time). We infer a time to the most recent common10

ancestor of 1.7 million years for this population. However, we show that the Yoruba SFS11

is not informative enough to discriminate between several different models of growth. We12

also show that for such simple demographies, the fit of one-parameter models outperforms13

the model-flexible method recently developed by Liu and Fu. The use of this method on14

simulated data suggests that it tends to overfit the noise intrinsically present in the data.15
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INTRODUCTION16

Inference of the human population history relies on demographic models as a complement17

to archaeological knowledge, owing to the large amount of polymorphism data now available18

in human populations. Polymorphism data can be viewed as an imprint left by past demo-19

graphic events on the current genetic diversity of a population (see, e.g., review by Pool20

et al. 2010).21

There are several means of analyzing this observed genetic diversity for demographic22

inference. The polymorphism data can be used to reconstruct a coalescence tree of the sam-23

pled individuals. The demography of the sampled population can be inferred by comparing24

this reconstructed tree with theoretical predictions under a constant size model (Pybus25

et al. 2000). For example, in an expanding population, the reconstructed coalescent tree will26

have relatively longer terminal branches than the reference coalescent tree in a population27

of constant size. However, methods based on a single reconstructed tree are flawed because28

of recombination (Lapierre et al. 2016), since the genealogy of a recombining genome is29

described by as many trees as there are recombining loci.30

The genome-wide distribution of allele frequencies is a function of the average genealogies,31

and can thus be used as a summary statistic for demographic inference. This distribution,32

called the Site Frequency Spectrum (SFS), reports the number of mutated sites at any given33

frequency. The demographic history of a population affects the shape of its SFS (Adams34

and Hudson 2004; Marth et al. 2004). For example, an expanding population carries35

an excess of low-frequency variants, compared with the expectation under a constant size36

model. The shape of the SFS is also altered by selection, which results in an excess of low-37

and high-frequency variants (Fay and Wu 2000). However, selection acts mainly on the38

coding parts of the genome and the non-coding segments linked to them, while demography39

impacts the whole genome. Furthermore, unlike methods using reconstructed trees to infer40

demography, methods using the SFS are not biased by recombination. Quite on the contrary,41

by averaging the SFS over many correlated marginal genealogies, recombination lowers the42
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variance of the SFS while its expectation remains unchanged (Wall 1999). Therefore, the43

SFS of a sample is a summary of the genetic diversity, averaged over all the genome due to44

recombination, that can be analyzed in terms of demography.45

Several types of methods exist to infer the demography of a population based on its SFS. A46

specific demographic model can be tested by computing a pseudo-likelihood function for this47

model, based on the comparison of the observed SFS and the SFS estimated by Monte Carlo48

coalescent tree simulations (Nielsen 2000; Coventry et al. 2010; Nelson et al. 2012).49

This method can be extended to infer demographic scenarios of several populations, using50

their joint SFS (Excoffier et al. 2013). Methods based on Monte Carlo tree simulations51

are typically very costly in computation time. Other approaches rely on diffusion processes:52

they use the solution to the partial differential equation of the density of segregating sites53

as a function of time (Gutenkunst et al. 2009; Lukić et al. 2011).54

Whereas all these methods are model-constrained, i.e., they use the SFS to test the55

likelihood of a given demographic model, more flexible methods are developed. Recently,56

Bhaskar et al. (2015) derived exact expressions of the expected SFS for piecewise-constant57

and piecewise-exponential demographic models. Liu and Fu (2015) developed a model-58

flexible method based on the SFS: the stairway plot. This method infers the piecewise-59

constant demography which maximizes the composite likelihood of the SFS, without any60

previous knowledge on the demography. This optimization is based on the estimation of a61

time-dependent population mutation rate θ. Although they show that their method infers62

efficiently some theoretical demographies, they do not test the goodness of fit of the expected63

SFS reconstructed under the demography they infer, with the input SFS on which they apply64

their method.65

All these methods are widely used for the inference of demography in humans and other66

species, but doubts remain on the identifiability of a population demography based on its67

SFS. It has been shown theoretically that a population size function is unidentifiable from68

the population SFS (Myers et al. 2008; Terhorst and Song 2015). Myers et al. (2008)69
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showed that for any given population size function N(t), there exists an infinite number of70

smooth functions F (t) such that ξN = ξN+F where ξN is the SFS of a population of size71

function N(t). However, other theoretical works have recently shown that for many types of72

population size functions commonly used in demography studies, such as piecewise constant73

or piecewise exponential functions, demography can be inferred based on the SFS, provided74

the sample is large enough (Bhaskar and Song 2014). These studies argued that the75

unidentifiability proven by Myers et al. (2008) relied on biologically unrealistic population76

size functions involving high frequency oscillations near the present.77

In this study, we use the SFS of an African population (the Yoruba population, data78

from The 1000 Genomes Project Consortium 2015) as an example of an expect-79

edly simple demography, to illustrate the risks of over-confidence in demographic scenarios80

inferred. Namely, we highlight two issues potentially arising even in the case of simple81

demographies: unidentifiability of models and poor goodness of fit of inferences. We first82

infer the Yoruba demography with a model-constrained method, using diverse one-parameter83

models of growth, and then with a model-flexible method, the stairway plot (Liu and Fu84

2015). For the model-constrained method, we test four different growth models derived from85

the standard neutral framework used in the vast majority of population genetics studies,86

also compared with a more uncommon type of model based on a branching process. Let87

us mention that individual-based models such as the branching process are widely used in88

population ecology (Lambert 2010): the population is modeled as individuals which die89

and give birth at given rates independently. These models are not commonly used in popu-90

lation genetics although they provide interesting features of fluctuating population sizes for91

example, and benefit from a strong mathematical framework.92

MATERIALS AND METHODS93

1 000 Genomes Project data: Variant calls from the 1 000 Genomes Project phase 394

were downloaded from the project ftp site (The 1000 Genomes Project Consortium95
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2015). The sample size for the Yoruba population is n = 108 individuals (polymorphism96

data available for both genome copies of each individual, i.e., 2n = 216 sequences). We kept97

all single nucleotide bi-allelic variants to plot the sample SFS. To avoid possible bias due to98

sequencing errors, we ignored singletons (mutations appearing in only one chromosome of99

one individual in the sample) for the rest of the study.100

Site Frequency Spectrum definition and graphical representation: The Site Fre-101

quency Spectrum (SFS) of a sample of n diploid individuals is described as the vector102

ξ = (ξ1, ξ2, ..., ξ2n−1) where for i ∈ [1, 2n− 1], ξi is the number of dimorphic (i.e., with ex-103

actly two alleles) sites with derived form at frequency i/2n. To avoid potential orientation104

errors, we assumed that the ancestral form is unknown for all sites: we worked with a folded105

spectrum, where we consider the frequency of the less frequent (or minor) allele. In this106

case, the folded SFS is described as the vector η = (η1, η2, ..., ηn) where ηi = ξi + ξ2n−i for107

i ∈ [1, n− 1] and ηn = ξn. For a better graphical representation, all SFS were transformed108

as follows: we plot φi normalized by its sum, where109

• for unfolded SFS, φi = i ξi for i ∈ [1, 2n− 1]110

• for folded SFS, φi = ηi
i(2n−i)

2n
for i ∈ [1, n− 1] and φn = n ηn111

The transformed SFS has a flat expectation (i.e., constant over all values of i) under the112

standard neutral model (Nawa and Tajima 2008; Achaz 2009).113

Demographic models used for the model-constrained method: We inferred the114

demography of the Yoruba population using five growth models (Figure 1), compared with115

the predictions of the standard model with constant population size. Time is measured in116

coalescent units of 2N generations, where the scaling parameter N has the same dimension117

as the current population size, which we will not estimate. Time starts at 0 (present time)118

and increases backward in time. Four models are based on the standard Kingman coalescent119
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(Kingman 1982), amended with demography. Three of them are described with an explicit120

demography: either Linear growth since time τ , Exponential growth at rate 1/τ or Sudden121

growth from a single ancestor to the entire population at time τ . We also use another model122

based on the Kingman coalescent, with an implicit demography: the Conditioned model.123

This model is based on a standard constant size model, but the Time to the Most Recent124

Common Ancestor (TMRCA) is conditioned on being reached before time τ . The fifth model,125

Birth-Death, is not based on the standard Kingman coalescent, but on a critical branching126

process measured in units of 2N generations. In forward time (from the past to the present),127

the process starts with a founding event of one individual. Individuals give birth and die at128

equal rate 1. The process is conditioned on not becoming extinct before a period of time τ ,129

and on reaching on average 2N individuals.130

Stairway plot inference on the Yoruba SFS: We applied the model-flexible stairway131

plot method developed by Liu and Fu (2015) on the unfolded Yoruba SFS. Inferences are132

made on 200 SFS as suggested by their method. We use the script they provide to create133

199 bootstrap samples of the Yoruba SFS. We also ignore the singletons for this method,134

and use the default parameter values suggested in their paper for the optimization.135

SFS simulation with demography: We used two different method to simulate SFS under136

the four demographic models derived from the Kingman coalescent (Linear, Exponential,137

Sudden and Conditioned) or under a piecewise-constant demography reconstructed by the138

stairway plot method.139

Method 1: A first method is to simulate l independent topologies under the Kingman coa-140

lescent on which mutations are placed at rate θ (population mutation rate) (Hudson et al.141

1990). This allows to simulate the SFS of l independent loci.142
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Method 2: Another way to simulate SFS is using the following formula:143

E[ξi] =
θ

2

2n−i+1∑
k=2

k E[tk]P(k, i) (1)

where θ is the population mutation rate, tk is the time during which there are k lines in the144

tree (hereafter named state k) and P(k, i) is the probability that a randomly chosen line at145

state k gives i descendants in the sample of size 2n (i.e., at state 2n) (Fu 1995). For all146

models, the neutrality assumption ensures that147

P(k, i) =

(
2n−i−1
k−2

)(
2n−1
k−1

)
for i ∈ [1, 2n− 1] and k ∈ [2, 2n− i+ 1]. Using this probability allows to average over the148

space of topologies. This reduces considerably computation time since the space of topologies149

is very large, and produces smooth SFS for which only the tk need to be simulated to obtain150

the expectations E[tk].151

The expectations E[tk] are obtained as follow: for k ∈ [2, 2n], times in the standard152

coalescent t∗k are drawn in an exponential distribution of parameter
(
k
2

)
. For the Linear153

and Exponential models, and for the piecewise-constant demographies reconstructed by the154

stairway plot method, these times are then rescaled to take into account the given explicit155

demography (see, e.g., Hein et al. 2004, chap.4). For the Sudden model, we assume the156

coalescence of all lineages at time τ if the common ancestor has not been reached yet. For157

the Conditioned model, we keep only simulations for which
2n∑
k=2

t∗k ≤ τ where τ is the model158

parameter. The expectations E[tk] are obtained by averaging over 107 simulations.159

For the Birth-Death model, we use the explicit formula for the SFS given in Delaporte160

et al. (2016).161

We normalize the transformed SFS computed under all these models so that their sum162

equals 1. This normalization removes the dependence on the mutation rate parameter θ.163

Consequently, the standard model has no parameters while all others have exactly one (τ).164
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Optimization of the parameter τ : For each demographic model, we optimize the pa-165

rameter τ by minimizing the weighted square distance d between the observed SFS of the166

Yoruba population and the predicted SFS under the model. With ηmodel and ηobs the folded167

SFS in the tested model and in the data respectively,168

d(ηmodel, ηobs) =
n∑
i=2

(ηmodeli − ηobsi )2

ηmodeli

The sum starts at i = 2 because we ignore ηobs1 , corresponding to singletons, to avoid bias169

due to sequencing errors. To calculate the distance d′ between the SFS predicted by two170

models A and B, we weight the terms by the mean of the two models:171

d′(ηA, ηB) =
n∑
i=2

(ηAi − ηBi )2

(ηAi + ηBi )/2

Scaling of the coalescent time: Optimized values of the parameter τ̂ for each model are172

expressed in coalescent time units, i.e., scaled in 2N generations. As the present population173

size N is unknown, to scale these coalescent time units in numbers of generations and conse-174

quently in years, we used the expected number of mutations per site M . From the dataset,175

we have M obs = S/L where S is the number of single nucleotide mutations (a k-allelic SNP176

accounts for k− 1 mutations) and L is the length of the accessible sequenced genome in the177

1 000 genomes project (90% of the total genome length, The 1000 Genomes Project178

Consortium). We can state that M theo = µ T̂totC, where we know the mutation rate µ179

from the literature and the total tree length expressed in coalescent time units T̂tot from180

the SFS simulations. Here C is the coalescent factor, that is the number of generations per181

coalescent time unit, also corresponding to 2Ne(0) where Ne(0) is the effective population182

size at present time. The total number of generations in the tree is T̂totC from which we183

derive the total number of mutations per site M theo. Thus, equaling M obs with M theo, we184

can estimate C by S/(µL T̂tot). We assumed a mutation rate of 1.2× 10−8 per base pair185

per generation (Conrad et al. 2011; Campbell et al. 2012; Kong et al. 2012). With the186

coalescent factor C, we can then convert a coalescent time unit into a number of generations,187
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or into a number of years assuming 24 years as generation time (Scally and Durbin 2012).188

Graphical representation of the inferred demographies: To represent the inferred189

explicit demographies (models Linear, Exponential and Sudden), we plot the shape of the190

demography with the optimized value τ̂ for each model. For the implicit demographies191

(models Conditioned and Birth-Death), as there is no explicit demographic shape, we plot the192

mean trajectory of fixation of a new allele in the population: in forward time, these fixation193

trajectories illustrate the expansion in the population of the descendance of the sample’s194

ancestor. For the Conditioned model, we use the Wright-Fisher diffusion conditioned upon195

fixation (Lambert 2008) to simulate trajectories of fixation:196

dXt = (1−Xt)dt+
√
Xt(1−Xt) dBt

where Xt is the random variable accounting for the frequency of the allele at time t and Bt is197

Brownian motion. We simulate the trajectories starting at X0 = 0.01 with dt = 0.0001 and198

we stop the trajectories when Xt reaches 1. To account for the specificity of the Conditioned199

model, we keep only trajectories that reach fixation in a time smaller than the optimized200

parameter value τ̂ . Similarly, for the Birth-Death model, we use the critical Feller diffusion201

(Lambert 2008):202

dXt =
√

2XtdBt

and we run trajectories until time reaches the optimized parameter value τ̂ . We keep tra-203

jectories for which Xτ̂ ∈ (Un, Un+1), where Uk =
∑k

i=1 Vi and the Vi’s are independent expo-204

nential random variables with mean 1/n, which amounts to conditioning upon sampling n205

individuals at time τ̂ . For both models, we average over 5 000 trajectories.206

Comparing the model-constrained and model-flexible methods for Linear de-207

mography inference: We applied both methods on simulated SFS under the Linear model.208

To test the stairway plot method on a Linear model demography, we simulate 200 indepen-209

dent SFS using method 1, with θ = 100 (arbitrary value removed by normalization) and a210
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foundation time τ (here we used τ̂ = 2.48 that we estimated for the Yoruba population, see211

Results). The SFS are simulated with either 103, 104 or 105 independent loci. We run the212

stairway plot method with the default parameter values suggested in the method, and with213

the same mutation rate (1.2× 10−8 per base pair per generation) and generation time (24214

years) than in our study.215

To test the one-parameter inference method on these SFS simulated under the Linear216

model, we run the parameter optimization on a SFS simulated with either 103, 104, 105 or217

106 loci. The search of the parameter value that minimizes the distance d was optimized218

with a Newton-Raphson algorithm. Derivatives were calculated at t ± 0.05 where t is the219

parameter value being optimized. The optimization stopped when the optimization step of220

the parameter value was smaller than 10−3.221

Data and software availability The 1000 genomes project data used in this study is222

publicly available at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/.223

The code in Python and C written for the study is available at https://github.com/224

lapierreM/Yoruba_demography. The code in C used for the method 1 of SFS simulation is225

available upon request to G. Achaz.226

RESULTS227

We inferred the demography of the Yoruba population (Africa), from the whole-genome228

polymorphism data of 108 individuals (data from the 1 000 Genomes Project, The 1000229

Genomes Project Consortium), with SFS-based methods, either model-constrained or230

model-flexible.231

It has been shown that human populations have been growing since their emergence in232

Africa, and that African populations were supposedly non-affected by the Out of Africa233

bottleneck described for Eurasian populations (Marth et al. 2004; Gutenkunst et al.234

2009). Based on this previous knowledge, for the model-constrained method, we chose to235
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infer the Yoruba demography with simple models of growth, i.e., with only one phase of236

growth characterized by a single parameter. These five models are: Linear, Exponential237

or Sudden growth, a Conditioned model where the TMRCA is conditioned on being smaller238

than the given parameter, and a critical Birth-Death model based on a branching process239

(Figure 1). To infer the Yoruba demography with this method, we fit the SFS predicted under240

each model with the observed Yoruba SFS (all SFS are folded). The SFS were normalized241

to remove the population mutation rate parameter θ, so that each model is characterized by242

one single parameter τ which has the dimension of a time duration. We fit this parameter243

by least-square distance between the observed SFS and the predicted SFS. For the model-244

flexible inference, we used the stairway plot method developed recently by Liu and Fu245

(2015), which infers a piecewise-constant demography based on the SFS. For this method,246

the number of parameters to be estimated is determined by a likelihood-ratio test. It can247

range from 1 to 2n− 1 where 2n is the number of sequences in the sample.248

The Yoruba SFS was constructed by taking into account the entire genome. Removing249

the coding parts of the genome to avoid potential bias due to selection does not affect the250

shape of the SFS (Figure S1) as the coding parts represent a very small fraction of the251

human genome. The first bin of the observed SFS, accounting for mutations found in one252

chromosome of one individual in the sample (black dot in the observed SFS in Figure 3B)253

seemed to lie outside the rest of the distribution. Because this could be due to sequencing254

errors being considered as singletons (Achaz 2008), we chose to ignore this value for the255

model optimization.256

The analysis of the Yoruba SFS with the stairway plot method results in a complex257

demography with several bottlenecks in the last 160 000 years (Figure 2). The current258

effective population size Ne(0) is 28 500. The demographic history earlier than 160 000 years259

shows spurious patterns that should not be interpreted, according to Liu and Fu (2015).260

The inference of the Yoruba demography with one-parameter models was done by min-261

imizing the distance between observed and predicted SFS. This gave an optimized value τ̂262
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of the parameter τ (Figure 3A and Table 1) (with τ̂ in coalescent units, Linear : τ̂ = 2.48,263

Exponential : τ̂ = 1.79, Sudden: τ̂ = 1.36, Conditioned : τ̂ = 1.89, Birth-Death: τ̂ = 2.28).264

Plotting the predicted SFS with the optimized parameter value τ̂ confirmed their goodness265

of fit with the observed Yoruba SFS (Figure 3B). Compared to the standard model with-266

out demography, the addition of just one parameter allows for a surprisingly good fit of267

the observed Yoruba SFS. The Yoruba demography thus seems to be compatible with a268

simple scenario of growth. On the other hand, the demography inferred by the stairway269

plot predicts a SFS which does not fit well the observed Yoruba SFS: the distance between270

the observed Yoruba SFS and the expected SFS under the stairway plot demography is ten271

times the distance between any of the one-parameter model SFS and the data (Figure 3B272

and Table 1).273

The best fitting SFS under each of the five demographic models all have a least square274

distance d of the order of 10−4 with the observed Yoruba SFS (Figure 3A and Table 1) and275

have highly similar shapes (Figure 3B). This shows that the five demographic models used276

to infer the demography of the Yoruba are indistinguishable based on only the observed SFS.277

To back up this assertion, we computed the expected TMRCA based on the predicted SFS278

using (1): as the SFS predicted under each model are very similar, it means that they have279

roughly the same estimated time durations tk while there are k branches in the coalescent280

tree of the Yoruba sample. From these expected tk we can compute TMRCA =
2n∑
i=2

tk. Under281

each of four models (excluding the Birth-Death model for which there is no obvious common282

time scaling), the inferred TMRCA for the Yoruba population is 1.3 in coalescent units. By283

using the number of mutations per site in the data and the total tree length inferred from284

the simulations, we scaled back this TMRCA in number of generations and in years, assuming285

a mutation rate of 1.2× 10−8 per base pair per generation (Conrad et al. 2011; Campbell286

et al. 2012; Kong et al. 2012) and a generation time of 24 years (Scally and Durbin 2012)287

(see Methods). The TMRCA of the Yoruba population inferred under the four demographic288

models is of 87 100 generations corresponding to 1.7 million years. The inferred demographic289
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models, with scaling in coalescent units, number of generations and number of years, are290

shown on Figure 4. The coalescent unit of 67 000 estimated to scale the inferred coalescent291

times in number of years corresponds to a present effective population size Ne(0) of 33 500.292

The demography inferred by the stairway plot method for the Yoruba population is a293

piecewise-constant demography showing much more complex patterns of growth and bottle-294

necks than our one-parameter models (Figure 2). Moreover, the expected SFS under this295

inferred demography does not fit well the observed Yoruba SFS (Figure 3B). To understand296

what could produce such a complex demography, we simulated SFS under the Linear model297

with the foundation time τ̂ = 2.48 inferred for the Yoruba population. The SFS where sim-298

ulated with different numbers of loci, to obtain SFS with more or less noise (solid lines on299

Figure 5A). We applied the two inference methods to these SFS. The demographies inferred300

by the stairway plot method are strongly affected by the noise of the SFS, as shown on301

Figure 5B. When the number of simulated loci is very large (200 × 106 loci), the stairway302

plot gives a good approximation of the true demography, and the expected SFS under the303

inferred demography fits the input SFS. However, for smaller numbers of loci (200× 105 loci304

or less), the stairway plot shows complex patterns of growth and bottlenecks incompatible305

with the true demography, and the expected SFS under the inferred demographies do not fit306

the input SFS. On the contrary, the one-parameter method infers a Linear demography with307

a foundation time close to the true value for SFS simulated with 104 loci or more (Table 2).308

DISCUSSION309

In this study, we fit the SFS of the Yoruba population with five simple demographic models310

of growth described by one parameter. Surprisingly, even though these five models are311

quite distinct in the way they model population growth, their fitting on the Yoruba data312

results in strongly similar SFS, which all show an excellent goodness of fit with the observed313

Yoruba SFS. Fitting the same SFS with the stairway plot method (Liu and Fu 2015), a314

model-flexible method which infers a piecewise-constant demography, resulted in a complex315
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demography with several bottlenecks in the last 160 000 years. The poor goodness of fit of316

the expected SFS under this inferred demography with the Yoruba SFS indicates that this317

complex demography is not to be trusted and suggests that the way the method estimates318

the number of change points is too flexible.319

The results obtained by the model-constrained and model-flexible methods showed some320

similarities: the current population size Ne(0) of about 30 000 inferred with the stairway plot321

corresponds roughly to the coalescent unit of 67 000 years (equivalent to 2Ne(0) in the coa-322

lescent theory) found with the one-parameter models. Similarly, the TMRCA of ∼1.7 million323

years inferred with the one-parameter models seems to match with the last time point of the324

stairway plot, at about 1.9 million years.325

We postulate that the complexity of the demography inferred by the stairway plot method326

is due to the fitting of irregularities of the observed Yoruba SFS. Two concurrent non-327

exclusive explanations can be put forward for these irregularities. First, they can be due328

to the sampling and thus be considered as noise that should not be interpreted as evidence329

for demography. Second, these irregularities could be biologically relevant and result from330

a very complex demographic history. To assess the impact of noise on the stairway plot331

method, we tested it on simulated SFS under the Linear model. These SFS were simulated332

with different numbers of independent loci: the more loci, the less noise in the simulated333

SFS. The stairway plot inference on these SFS shows that the method is strongly affected334

by the noise in the SFS simulated data: whereas the demography inferred for a smooth SFS335

(corresponding to a high number of independent loci) corresponds to the true demography336

approximated as piecewise constant, the demographies inferred for smaller numbers of loci337

show complex patterns of bottlenecks and deviate strongly from the true demography. This338

method captures the signal contained in these irregularities and infers a demography taking339

them into account, whereas the one-parameter models fit the global trend of the SFS shape340

and can thus infer the true demography for much smaller numbers of loci. One solution341

could be to constrain the number of parameters allowed for model-flexible methods: it seems342
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that determining it by likelihood-ratio test, as it is done in the stairway plot method, is343

not conservative enough, as it does not prevent from overfitting the noise. If the number344

of parameters was forced to be small, the method might capture the global trend of the345

demography and avoid this issue.346

The five one-parameter demographic models all predict virtually the same SFS for the347

Yoruba population. This implies that they predict the same TMRCA for the Yoruba popula-348

tion. This TMRCA of ∼1.3 in coalescent units corresponds, with our scaling of coalescent time349

based on the number of mutations per site, to ∼1.7 million years. This estimation is simi-350

lar to results concerning the whole human population, obtained by Blum and Jakobsson351

(2011) or reviewed in Garrigan and Hammer (2006). Although the commonly admitted352

date of emergence of the anatomically modern human is around 200 000 years ago, Blum and353

Jakobsson showed that finding a much older TMRCA was compatible with the single-origin354

hypothesis, assuming a certain ancestral effective population size. These ancient times to355

most recent common ancestor could also be explained by gene flow in a structured ancestral356

population (Garrigan and Hammer 2006).357

Although all five models predict the same TMRCA, the predictions of the population’s358

foundation time differ largely between the models (Figure 2A). The comparison of the in-359

ferred demographies (Figure 3) suggests that in the time range further behind the TMRCA,360

little information is carried by the sample. Thus, the inferred demographies differ in this361

time range, making the inferred foundation time of the Yoruba population unreliable.362

Among the five tested demographic models, two pairs of models seem to predict partic-363

ularly similar SFS (pairs of models with the two smallest values of d in Table 1). First, the364

Linear (L) and Exponential (E) growth models predict almost identical SFS for the Yoruba365

population (d(ηL, ηE) = 2.2× 10−5). Figure 3 shows that, in the time range where informa-366

tion is conveyed by the mean coalescent tree of the population, i.e., between present time367

and the TMRCA, these two demographies are very similar. This explains why their SFS are368

almost indistinguishable, and shows that in this parameter range, it is impossible to distin-369
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guish linear from exponential growth. Second, the two models with implicit demography,370

Conditioned (C) and Birth-Death (BD), predict so similar SFS that they are completely371

overlaid on Figure 2B (d(ηC , ηBD) = 3.5× 10−6). This raises a question on how these two372

models, based on different processes — a Wright-Fisher model or a branching process —373

compare and in particular why their SFS are so similar.374

The outlying first bin of the Yoruba SFS, corresponding to singletons, was removed from375

our inference because it can be spoiled by sequencing errors. However, as this first bin376

accounts for the mutations that occur in the terminal branches of the coalescent tree, this377

excess of singletons could alternatively be due to very recent and massive growth, aspects378

that we cannot capture with our one-parameter demographic models.379

For non-African human population, the SFS based on the 1 000 Genomes Project data380

are not monotonous: their shape is more complex than the SFS of the Yoruba population.381

Thus, one-parameter models cannot capture the complexity of the demographic histories382

underlying these types of observed SFS. The stairway plot method shows more flexibility383

and could capture the signal for more complex demographic histories, provided that the384

number of independent loci is very large so that there is no bias due to noise.385

Overall, this study shows that even in the case of a simple demography, the scenario386

inferred by a model-flexible method like the stairway plot can show spuriously complex387

patterns of growth and decline and can predict SFS poorly fitting with the initial SFS data.388

This can be explained by overfitting of the method to the noise present in the observed389

SFS, which can be expected for a reasonable number of loci. We also show that simple390

models described by one parameter can have an excellent goodness of fit to the data and391

avoid the issue of noise overfitting. The results indicate that the demography of the Yoruba392

population is compatible with simple one-parameter models of growth, and that the expected393

TMRCA of this population can be estimated at ∼1.7 million years. However, the SFS does394

not allow to determine which model characterizes better the Yoruba demographic growth,395

and estimations of the foundation time of the population, that depend on the chosen model,396
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are thus unreliable. More generally, this study illustrates the issue of non-identifiability397

of demographies based on the SFS. It also highlights the need to constrain model-flexible398

methods to avoid interpreting noise as signal in demographic inferences.399
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Figure 1: The five demographic models. Each model has one single time parameter τ .
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Figure 2: Stairway plot inference of the Yoruba demography. The inferred effective size Ne

of the Yoruba population is plotted from present time (0) to the past. The inset is a zoom
between 0 and 160 000 years. The thick brown line is the median Ne, the light brown area
is the [2.5, 97.5] percentiles interval. The inference is based on 200 bootstrap samples of the
unfolded Yoruba SFS. The singletons are not taken into account for the optimization of the
stairway plot.
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Figure 3: Inference of the Yoruba demography with one-parameter models. A) Weighted
square distance d(η, ηobs) between the Yoruba SFS ηobs and the predicted SFS η under each
of the five models, depending on the value of the parameter τ (Purple: Sudden, Blue:
Conditioned, Red: Birth-Death, Yellow: Exponential, Green: Linear). B) Predicted SFS
under each of the five models, with the optimized value τ̂ of the parameter, and under
the demography inferred by the stairway plot (brown dotted line). The Yoruba SFS is
shown in empty circles. The first dot, colored in black, accounting for the singletons, was
not taken into account for the optimization of τ to avoid potential bias due to sequencing
errors. The grey dashed line is the expected SFS under the standard neutral model without
demography. Colors match the plot above (the predicted SFS under the models Birth-Death
and Conditioned are indistinguishable). The SFS are folded, transformed and normalized
(see Methods).
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Figure 4: Demographic histories and reconstructed tree estimated from the Yoruba SFS.
The tree shown has internode durations tk during which there are k lineages consistent with
the SFS (the topology was chosen uniformly among ranked binary trees with 2n tips). Time
is given in coalescent units, and scaled in number of generations and in millions of years.
The demographic histories (solid lines: explicit models, dashed lines: implicit models) are
plotted with their optimized τ̂ values.
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Figure 5: Stairway plot inference of a linear demography SFS with noise. A) Solid lines:
mean of 200 SFS simulated independently under the Linear growth model, with either 105

loci (purple), 104 loci (blue) or 103 loci (yellow). Dotted lines: expected SFS under the
demography reconstructed by the stairway plot method for different number of loci (same
colors than solid lines). The grey dashed line is the expected SFS under the standard neutral
model without demography. The SFS are transformed and normalized (see Methods). B)
Stairway plot demographic inference on the 200 simulated SFS for each number of loci (colors
match the plot above). The true demography is the green dashed line. The inferred effective
size Ne is plotted from present time (0) to the past.
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Data Linear Exponential Sudden Conditioned Birth-Death
Linear 3.0× 10−4 0
Exponential 4.1× 10−4 2.2× 10−5 0
Sudden 3.4× 10−4 3.5× 10−4 5.5× 10−4 0
Conditioned 2.3× 10−4 1.6× 10−4 5.5× 10−4 3.7× 10−5 0
Birth-Death 2.2× 10−4 1.7× 10−4 3.1× 10−4 4.1× 10−5 3.5× 10−6 0
Stairway plot 2.9× 10−3 3.1× 10−3 3.3× 10−3 2.8× 10−3 2.8× 10−3 2.9× 10−3

Table 1: Least-square distance d between pairs of observed Yoruba SFS and optimized SFS
under the five demographic models or the stairway plot method.
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Number of loci 5% percentile Mean τ̂ 95% percentile
103 2.569 2.713 2.893
104 2.463 2.503 2.540
105 2.473 2.485 2.498
106 2.478 2.483 2.487

Table 2: Inference of the foundation time τ̂ under the Linear model on SFS with noise.
Mean, 5% and 95% percentile of the foundation time inferred with a Linear model. The
SFS on which the inference is made are simulated with a foundation time τ of 2.48, with
different number of loci, using the method with topology reconstruction.
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