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2 Abstract

2% The FANTOMS5 consortium recently characterized 38,554 robust hu-
25 man enhancers from 808 cell and tissue types using the Cap Analysis of
26 Gene Expression technology. We used the distribution of guanine and
27 cytosine nucleotides at enhancer regions to distinguish two classes of en-
28 hancers harboring distinct DNA structural properties. A functional anal-
29 ysis of their predicted gene targets highlighted one class of enhancers as
30 significantly enriched for associations with immune response genes. More-
31 over, these enhancers were specifically enriched for regulatory motifs rec-
32 ognized by TFs involved in immune response. We observed that immune
33 response enhancers were cell type specific, preferentially activated upon
34 bacterial infection, and with long-lasting response activity. Looking at
35 chromatin capture data, we found that the two classes of enhancers were
36 lying in distinct topologically-associated domains and chromatin loops.
37 Our results suggest that specific DNA sequence patterns encode for classes
38 of enhancers that are functionally distinct and specifically organized in the
39 human genome.

« Background

a1 Gene expression is regulated through many layers, one of which being the reg-
« ulation of the transcription of DNA segments into RNA. Transcription factors
1 (TFs) are key proteins regulating this process through their specific binding
« to the DNA at regulatory elements, the TF binding sites (TFBSs) [1]. These
s regulatory elements are located within larger regulatory regions, the promot-
s ers and enhancers [2]. While promoters are situated around transcription start
« sites (TSSs), enhancers are distal to the genes they regulate. The canonical
s view is that chromatin conformation places enhancers in close 3D proximity to
w0 their target gene promoters through DNA looping [3-5]. High-resolution chro-
so matin conformation capture (Hi-C) technology maps genomic regions in spatial
st proximity within cell nuclei [6]. The Hi-C technology identified specific genomic
s neighbourhoods of chromatin interactions, the topologically associating domains
53 (TADs), which represent chromatin compartments that are stable between cell
s« types and conserved across species [7,8].

55 Studies have shown relationships between the composition of a DNA se-
ss quence in guanine (G) and cytosine (C) and chromatin organization, for instance
v in relation to nucleosome positioning [9,10]. Furthermore, sequence composition
s is intrinsically linked to the three-dimensional structure of the DNA. Topologi-
5o cal studies have used sequence properties to predict four structural features of
o0 DNA: helix twist (HelT), minor groove width (MGW), propeller twist (ProT),
s and Roll [11,12]. These topological properties have been shown to inform the
e analysis of protein-DNA interactions obtained from high-throughput experi-
s ments [13-16], emphasizing the importance of DNA sequence composition in
¢ transcriptional regulation.

6 DNA sequence composition and other features of promoter regions have been
e extensively studied, including such key advances as the discovery of CpG is-
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o7 lands. The analysis of promoter regions in the human genome was accelerated
¢ by the development of the Cap Analysis of Gene Expression (CAGE) technol-
o0 ogy [17,18], which identifies active TSSs in a high-throughput manner based on
7 5 capped RNA isolation. Using CAGE data, a large scale identification of the
7 precise location of T'SSs in human [19] led to the classification of promoters into
22 four classes based on G+C content (%GC) [20]. The study highlighted that
7z GC-rich promoters are associated with genes involved in various binding and
72 protein transport activities while GC-poor promoters are associated with genes
7 responsible for environmental defense responses. While promoters overlapping
7% CpG islands are commonly assumed to be ubiquitous drivers of housekeeping
77 genes, comprehensive analysis of CAGE data from > 900 human samples showed
7 that a subset deliver cell type-specific expression [21].

79 Large-scale computational analyses of enhancer regions have been hampered
so by a limited set of bona fide enhancers. An advantage of the CAGE technology
a1 is its capacity to identify in vivo-transcribed enhancers. Specifically, it identifies
22 active enhancer regions in biological samples by capturing bidirectional RNA
3 transcripts at enhancer boundaries [22]. Using this characteristic of CAGE data,
sa  the FANTOMS project identified 38,554 “robust” human enhancers across 808
&5 samples [22]. Sequence property analysis suggested that the enhancers share
s properties with CpG-poor promoters. The findings shed light on the structure,
&7 organization, and function of human enhancers.

88 As enhancers are distal to the genes they regulate, it is challenging to predict
s these relationships. Based on cross-tissue correlations between histone modifica-
o0 tions at enhancers and CAGE-derived expression at promoters within 1,000 bp,
o enhancer-promoter links have been shown to be conserved across cell types [23].
e As the CAGE technology captures the level of activity for both promoters and
s enhancers in the same samples, predicting the potential targets of the enhancers
« was obtained by correlating the activity levels of these regulatory regions over
s hundreds of human samples from the FANTOMS5 consortium [22]. Using the
o predicted enhancer-gene associations, the authors unveiled that closely spaced
o7 enhancers were linked to genes involved in immune and defense responses. These
e results stress that predictions of enhancer-promoter associations are critical to
o decipher the functional roles of enhancers.

100 Here, we used the distribution of G+C nucleotides along the sequences of
1w human CAGE-derived enhancer regions to define two classes of enhancers. The
02 specific sequence features of the two classes encoded for distinct topological DNA
w3 shape patterns. The enhancers from the GC-poor class were predicted to be
s functionally associated with genes involved in the immune response whereas the
105 enhancers from the other class were associated with genes involved in biological
ws processes related to transcription. Accordingly, regulatory motifs associated
w7 with immune response TFs like NF-xB are enriched in the DNA sequence of
108 the immune response-related set of enhancers. Independent functional analysis
wo of histone modification and CAGE data highlighted a cell type specificity of
o these enhancers along with their activation upon bacterial infection. Moreover,
m  immune system enhancers were observed with a long-lasting response activity
2 pattern following cell stimulation in time-course data sets. Finally, we observed
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us  that the two classes of enhancers tended to be structurally organized in the
14 human chromosomes within distinct TADs and DNA chromatin loops.

» Results

s Guanine and cytosine nucleotide patterns identified two
i classes of human enhancers with distinct DNA structural
us  properties

no To analyze the sequence properties of human enhancers, we considered the set of
120 38,554 CAGE-derived enhancers found to be significantly active in at least one
1 primary cell or tissue sample in the FANTOMS project [21,22]. We extracted
122 500 bp DNA sequences 5" and 3’ of the mid-point of the enhancers as defined
13 by Andersson et al. [22]. We sought to identify distinct classes of enhancers
e based on the distribution of guanines (Gs) and cytosines (Cs) along the en-
s hancer regions. Specifically, each enhancer was represented by a 1,001 bp-long
s binary vector with 1s representing G4C and Os representing adenines (As) and
7 thymines (Ts). We clustered the enhancers by applying the k-means clustering
s algorithm [24] on the vectors. To select the number of clusters k, we consid-
19 ered silhouette plots, which provide a visual representation of how close each
1w enhancer in one cluster is to enhancers in neighbouring clusters [25]. A visual
1w inspection of cluster silhouettes with k € [2,5] revealed that the best cluster-
1w ing was obtained with k = 2 (Figure S1). We extracted two classes (k = 2)
13 of enhancers with distinct distributions of G+C along the enhancer regions
1 (Figure 1la). The two classes were composed of 14,204 and 24,343 enhancers,
135 hereafter referred to as class 1 and class 2, respectively. While enhancers from
s class 1 were more GC-rich than enhancers from class 2, separating the enhancers
1w solely based on GC content would have resulted in a different classification (i.e.
138 there is an overlap between the classes in terms of G4+C content, as shown in
139 Figure lb)

140 As DNA sequence and shape are intrinsically linked, we next considered
w four DNA shape features computed from DNA sequences with the DNAshape
w2 tool [12]: helix twist (HelT), minor groove width (MGW), propeller twist (ProT),
13 and Roll. We applied the k-means clustering algorithm with & = 2 to vectors
e combining DNA shape feature values extracted from the GBshape database [11]
us at 1,001 bp-long enhancer regions centered around enhancers’ mid-points. We
us obtained two sets containing 15,259 (set 1) and 23,288 (set 2) enhancers, re-
w7 spectively. These sets of enhancers derived from DNA shape features were very
us similar to classes 1 and 2 that were obtained using G+C patterns at enhancer
uo regions. Indeed, class 1 and set 1 have a Jaccard similarity of 0.85; class 2 and
10 set 2 have a Jaccard similarity of 0.90.

151 We plotted the distribution of the four DNA shape features along the en-
12 hancer regions from the two classes obtained with the G+C pattern-based clus-
153 tering (Figure le-f). Similarly, we plotted DNA shape features for the two sets
15« obtained from the DNA shape-based clustering (Figure S2). We consistently
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Figure 1: DNA sequence features at enhancers. Features associated with human
enhancers from class 1 and class 2 are represented in blue and green, respectively.
a. G+C values (y-axis) of the k-means cluster centers along DNA regions 500 bp
centered at enhancer center points (x-axis). b. Histogram of the %GC content of the
enhancers. c-f. Average DNA shape values (y-axis) along the DNA regions +2, 000 bp
centered at enhancer middle-points (x-axis) for DNA shape features HelT (c), MGW
(d), ProT (e), and Roll (f).
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155 observed that class 1 enhancers harboured lower HelT values at the centre of
155 the enhancers as well as about 500 bp away from the enhancers’ mid-points
57 (Figure 1c¢). je observed a symmetrical pattern for MGW with width decrease
s at the central positions of the enhancers as well as at the edges (~ 50-150 bp
150 away from the mid-points) of the enhancers (Figure 1d). ProT and Roll signals
o were also distinct between enhancers from the two classes (Figure le-f). The
11 patterns observed for the DNA shape features were in agreement with the two
12 distinct patterns of G4C composition computed along the enhancers from the
63 two classes (Figure 1a).

164 The similarity between G+C- and DNA shape-based clustering stresses that
s the G+C pattern is the key discriminant between the two classes of enhancers
16 while the shape represents a secondary effect of the G+C pattern. We therefore
17 focused on the two classes of enhancers derived from their G4+C pattern in this
168 report, except otherwise stated. Taken together, these results described two
160 subsets of human enhancers distinguishable by their distribution of G+C along
o their length and reflected in their DNA structural properties.

n  The two classes of human enhancers associated with specific
» biological processes

3 Different classes of mammalian promoters, derived from their nucleotide com-
s position, were observed to be associated with genes linked to distinct biological
s functions [20]. Following the same approach, we sought for a functional inter-
s pretation of the classification that we obtained. Based on correlations between
17 promoter and enhancer activities derived from CAGE data in human samples,
ws  Andersson et al. linked enhancers to their potential gene promoter targets [22].
o To infer the biological functions of enhancers, we assumed that each enhancer
10 was associated with the same biological functions as the genes it was predicted
w1 to regulate. Class 1 enhancers were predicted to target 7,713 genes whereas
12 class 2 enhancers were linked to 7,857 genes (Table S1). In aggregate, the en-
13 hancers corresponded to a set of 11,271 genes, of which 4,299 were common to
e the two classes (representing ~ 56%, ~ 55% and ~ 38% of class 1, class 2, and
s the combined set of genes, respectively). We submitted the two sets of genes
s associated to class 1 and class 2 enhancers to the GOrilla tool [26] to predict
w7 enriched (p-value < 1 x 107!!) gene ontology (GO) biological processes. Note
s that the aggregated set of 11,271 genes was used as the background set of genes
19 for enrichment analyses.

190 Biological processes linked to RNA transcription were found to be enriched
1 for genes associated with class 1 enhancers (Figures 2a and S3 and Table S2).
12 Specifically, the directed acyclic graph (Figure S3) of the enriched GO terms
3 highlighted two leafs corresponding to the terms 'transcription, DNA-templated’
1w (FDR g-value = 8.7 x 107!?) and ’regulation of transcription, DNA-templated’
w5 (q = 7.8 x 10712). When considering the genes predicted to be regulated by
s enhancers from class 2, only two GO biological processes were predicted to be
w7 enriched (Figures 2b and S4 and Table S3): ’immune system process’ (q =
s 6.1 x 107?) and ’regulation of immune response’ (q = 3.2 x 107%).
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Figure 2: Functional enrichment analysis. Enriched GO biological processes
associated with genes predicted to be regulated by enhancers from class 1 (a) and
class 2 (b) were obtained using the GOrilla tool [26]. Nodes in the graphs represent
enriched GO biological processes. The color of a node represents the FDR g-value of
the corresponding enriched GO biological process, the more red, the lower the g-value
(min = 1.37 x 107", max = 3.8 x 107%). The size of a node represents the number of
genes associated with class 1 (a) and class 2 (b) enhancers in the corresponding GO
biological process (min = 761, max = 3,832). Edges between two nodes indicate the
number of common genes between corresponding processes. The larger the number
of overlapping genes (min = 264, max = 860), the larger the edge between the two
corresponding nodes. FDR, false discovery rate; GO, gene ontology.
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199 These functional enrichment results were specific to the classification of
20 the enhancers using the pattern of G+C along the enhancer regions. Indeed,
21 we considered a segregation of human enhancer regions solely based on %GC
20 (mean = 46.62, median = 46.15, and standard deviation = 10.56) with GC-
23 poor enhancer regions (%GC < 46.15) assigned to a first set and GC-rich ones
e (%GC > 46.15) to a second set. We submitted the sets of genes linked to the
205 enhancers from the %GC-based classification to GOrilla and observed that the
205 immune system-related GO terms were found enriched for both sets (Figures S5
200 and S6)

208 Taken together, the functional enrichment results revealed that a classifi-
200 cation based on the distribution of Gs and Cs along human enhancer regions
a0 featured two sets of enhancers predicted to be regulating genes with distinct
au biological functions. While the first class was linked to genes associated with
a2 transcription, the second class highlighted enhancers predicted to regulate im-
213 mune system related genes.

x4 Distinct transcription factors predicted to act upon the two
xs classes of human enhancers and their predicted promoter
26 targets

27 We sought to identify TF binding motifs enriched within each class of enhancers,
28 to suggest driving TFs for the distinct biological functions. We considered
20 1,001 bp-long DNA sequences centered at the enhancers’ mid-points. Posi-
20 tional motif enrichment analyses were performed using the Centrimo tool [27] to
a1 predict TF binding motifs over-represented around the enhancers’ mid-points.
22 Class 1 enhancer regions were compared to class 2 regions and vice-versa to
23 highlight specific motifs (Figure 3a,c and Data S1). Motifs associated with the
24 Specificity Protein/Kriippel-like Factor (SP/KLF) TFs were enriched in class 1
»s enhancer regions (Figure 3a and Data S1). Members of the SP/KLF family have
26 been associated to a large range of core cellular processes such as cell growth,
2 proliferation, and differentiation [28]. The most enriched motifs in class 2 en-
»s hancer regions were associated with nuclear factor kappa-light-chain-enhancer
2o of activated B cells (NF-xB)/Rel TFs (Figure 3c and Data S1). As NF-xB is
20 known to have a central role in immune response [29], the enrichment is consis-
2 tent with an involvement of class 2 enhancers in the immune response biological
22 function (Figure 2b). Other enriched motifs in class 2 enhancers were associ-
23 ated with BACH1/2 TFs, involved in acquired and innate immunity [30], and
24 chromatin remodelling TFs BPTF [31] and SMARCC1 [32].

235 Linked enhancers and promoters were predicted to be driven by similar sets
26 of TF binding motifs when enhancer-promoter links were derived from a dis-
2 tinct collection of CAGE data from time-course studies [33]. We assessed such
238 associations by extending our positional motif enrichment analyses to the pro-
29 moters of genes associated with classes 1 and 2 enhancers, respectively. We used
20 Centrimo to predict motifs locally enriched in 1,001 bp regions centered around
an - corresponding T'SSs. Motifs associated with SP1 and NF-kB TFs were specifi-
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Figure 3: Motif enrichment analysis at enhancer and promoter regions.
Regions of £500 bp around enhancer mid-points (a, ¢) and associated genes’ TSSs
(b, d) were subjected to positional motif enrichment analyses using the Centrimo
tool [27]. Enhancers and associated gene targets from class 1 (a, b) and class 2 (c,
d) were analyzed separately. The x-axis represents the distance to the enhancer mid-
point (a, ¢) and associated gene TSSs (b, d), respectively. The y-axis represents the
probability of predicting TFBSs associated with the motifs given in the legend boxes.
Plain lines represent the distribution of predicted TFBSs in the foreground sequences
(from class 1 in panels a-b and class 2 in panels c¢-d). Similarly, dashed lines represent
the distribution of predicted TFBSs in the background sequences (from class 2 in panels
a-b and class 1 in panels c-d). TSSs, transcription start sites; TFBSs, transcription
factor binding sites.
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a2 cally enriched about 100 bp and 80 bp upstream of T'SSs associated with class 1
23 and class 2 enhancers, respectively (Figure 3b,d and Data S1). It confirmed
24 that promoters predicted to be targets of enhancers shared the same motifs.
25  Centrimo also predicted SMAD3 and FOXC2 motifs in class 1 promoters and
26 JUN and P63 motifs in class 2 promoters, upstream of TSSs.

247 We confirmed the motif-based enrichment of NF-£B binding in class 2 regions
28 by using ChIP-seq data obtained in GM12878 cells for the RELA TF, which is
29 involved in NF-xB heterodimer formation. By combining data capturing histone
»0  modification marks, TF binding, and open chromatin regions from a specific
51 cell type, the ChromHMM [34] and Segway [35] tools segment the genome into
2 regions associated to specific chromatin states. Focusing on predictions from
253 ChromHMM and Segway combined, we found 1,802 (~ 12%) and 2,813 (~ 11%)
»4  active enhancer regions from classes 1 and 2, respectively. We observed that
5 class 2 enhancers were preferentially bound by RELA. Specifically, 591 active
6 class 1 enhancers and 1,226 active class 2 enhancers overlapped RELA ChIP-
»7 seq peaks (p-value = 2.3 x 10713). A similar analysis focusing on predicted
253 promoters identified an enrichment for active promoters in class 2 (8,962, ~ 59%,
s class 1 and 10,752, ~ 63%, class 2 active promoters, p-value = 4.5 x 1077).
%0 Furthermore, class 2 promoters were preferentially bound by RELA with 1,966
s class 1 and 3,179 class 2 active promoters overlapping RELA ChlIP-seq peaks
% (p-value < 2.2 x 10716).

263 Together, these results reinforced the predictions of biological functions spe-
26 cific to class 1 and class 2 enhancers (Figure 2) through the presence of associated
»%s TF binding motifs in both enhancers and predicted target promoters.

w6 Lhe two classes of human enhancers exhibited distinct ac-
«w  tivity patterns

s We further investigated the functional differences between the two classes of
%0 human enhancers by analyzing their patterns of activity across cell types. In
a0 previous studies, enhancer activity has been inferred either from histone modi-
on fications or eRNA transcription signatures [5,34-36]. We considered these two
o approaches. Namely, we considered histone modification data from 6 cell lines
zs  and CAGE data from 71 cell types produced by the ENCODE [37] and FAN-
e TOMS5 [22] projects, respectively.

275 We retrieved the segmentation of the human genome obtained using a com-
a6 bination of ChromHMM and Segway in the tiers 1 and 2 cell types from EN-
on CODE [37]. For each cell type, we overlapped enhancers with predicted genome
;s segments to assign an activity state to the enhancer. As an example, Figure 4a
79 presents the proportion of enhancers from classes 1 and 2 that were overlapping
20 With segments associated with active, CTCF, and repressed chromatin states in
21 embryonic stem cells (HI-hESC). We consistently observed that enhancers from
2 class 1 were significantly more active than those from class 2, which were found
23 to be enriched in repressed genomic segments (Figures 4a and S7). Class 1
2+ enhancers were also associated with segments characterized by CTCF binding.

10
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Figure 4: Human enhancers and genome segmentation. a. Histogram of
the proportion of human enhancers (y-axis) in class 1 (blue) and class 2 (green)
lying within genome segments (x-axis) as annotated by combined predictions from
ChromHMM [34] and Segway [35] on human embryonic stem cells (H1-hESC from the
ENCODE project [37]). Statistical significance (Bonferroni-corrected p-value < 0.01)
of enrichment for enhancers from a specific class is indicated by **’. b. Stacked his-
togram of the fraction of human enhancers (y-axis) from class 1 and class 2 predicted
to be activated (red) or inhibited (blue). Predictions were obtained using genomic
segments predicted by ChromHMM [34] on human dendritic cells before and after in-
fection with Myobacterium tuberculosis [38]. Stacked histogram including unchanged
activity is provided in Figure S8.
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Figure 5: Cell type expression specificities of human enhancers. The differ-

ence in cell type expression specificities derived from FANTOMS5 CAGE datasets [22]
for enhancers in class 1 and class 2 is provided as a heat map. The color (see scale)
represents the difference in fraction of expressed enhancers in each cell type (columns)

found in each expression specificity range (rows). Positive (respectively negative) val-

ues indicate a higher fraction of class 2 (respectively class 1) enhancers.

The heat

maps corresponding to the enhancers in each class are provided in Figure S9. CAGE,

Cap Analysis of Gene Expression.
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285 Through CAGE expression analysis in 808 human samples, Andersson et
25 al. [22] assigned a cell type-specificity score to human enhancers. Seventy one
27 cell types were defined by grouping cell and tissue samples [22]. Following
28 the enhancer expression specificity analysis performed by Andersson et al., we
x9 considered enhancers from class 1 and class 2 separately to highlight potential
20 activity differences in the 71 cell types (Figure S9). Comparing enhancer activity
20 specificity over all the cell types between class 1 and class 2, enhancers from
2 class 2 appeared to be more cell type specific (Figure 5). While immune cells,
203 neurons, neuronal stem cells, and hepatocytes were previously described to use a
20« higher fraction of human enhancers [22], the elevated utilization was even more
s pronounced for class 2 enhancers (Figures 5 and S9b).

206 Taken together, these results derived from histone marks and transcriptional
27 data highlighted that enhancers from class 1 were more ubiquitously active over
208 human cell types than enhancers from class 2, which were more cell type specific.
209 In our previous functional analyses, we inferred the biological functions of the
w0 two classes of enhancers from the genes they were predicted to regulate. Here, we
s further confirmed specific functionalities for the two classes based on enhancer
s2  activity analyses, which corroborated with our functional analysis described
w3 above. Class 1 enhancers were found to be enriched in transcriptional biological
s processes, which are required for transcription in all cell types. Enhancers from
s class 2 were more cell type specific, with an emphasis in cell types associated
36 with the immune system, in agreement with the functional enrichment analysis.

w Predicted immune system enhancers were activated upon
ws cell infection

a0 We sought to further confirm the association of class 2 enhancers with transcrip-
a0 tional control of immune responses. Pacis et al. [38] generated genome-wide
su DNA methylation, histone marks, and chromatin accessibility data in normal
sz dendritic cells (DCs) and DCs after infection with Mycobacterium tuberculosis
sz (MTB). The data provided the opportunity to study the chromatin state changes
us  after infection obtained using the ChromHMM tool [34]. As for the above analy-
s1is  sis, we overlapped chromatin state information with the enhancers from classes 1
sis  and 2. To highlight the key epigenetic changes at enhancers, we classified the
air  transition of activities before and after MTB infection into three groups: acti-
as vated (from inactive before MTB infection to active after infection), inhibited
a0 (active to inactive) or unchanged (Figures 4b and S8). We observed that the
20 enhancers from class 2 were significantly more activated (p-value < 2.2 x 10716)
21 and less inhibited (p-value < 2.2 x 10716) when compared to class 1 enhancers
22 upon MTB infection (Figure 4b). These results reinforced the potential role of
33 class 2 enhancers in immune response.
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Figure 6: Expression dynamics of human enhancers and associated promot-
ers. Response patterns (x-axis) of human enhancers (a) and promoters (b) in time
courses were classified by Arner et al. [33]. The percentage (y-axis) of enhancers and
promoters from class 1 (blue) and class 2 (green) in each response pattern category
are provided as histograms in the two panels. A significant difference (Bonferroni-
corrected p-value < 0.01) between class 1 and class 2 enhancers or promoters in a
specific category is highlighted by "**’.
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» Predicted immune system enhancers showed long lasting
»s response activity

»s  Based on time-courses of differentiation and activation, Arner et al. analyzed the
w7 transcriptional dynamics of enhancers and promoters [33]. They profiled time-
us  courses with CAGE at a high temporal resolution within a 6 hour time-frame
9 to classify enhancers and promoters into distinct dynamic response patterns
a0 of early response activity. We overlaid our classification of human enhancers
s and their predicted target promoters with the dynamic response pattern data
s (Figure 6). Within the enhancers associated to any dynamic response pattern
s (n = 2,694; 1,533 and 1,161 from class 1 and class 2, respectively), class 1
54 enhancers were enriched (p-value < 2.2 x 10716).

335 We focused on the set of 2,694 enhancers classified in the dynamic response
s patterns. Looking at the peaks of activity specific to early time points ('rapid
s short response’ and ’early standard response’), class 1 enhancers were found
18 to be upregulated while class 2 enhancers were downregulated (Figure 6a).
330 Enhancers from class 2 showed significant activity dynamics corresponding to
s long lasting and later responses (up-regulated in ’rapid long response’; ’late
s standard response’, and ’long response’) when compared to class 1 enhancers
s (down-regulated in ’late standard response’) (Figure 6a). The promoters asso-
sz clated with class 1 were upregulated in the ’late standard response’ dynamic.
s Class 2 promoters exhibited significant up-regulation in the ’late response’ dy-
us  namic while class 1 promoters were downregulated in the same dynamic.

346 Taken together, these results identified different dynamics between class 1
s and class 2 enhancers. Class 1 enhancers were more dynamic than class 2 en-
us  hancers in the FANTOMS5 time-course, activated early and for a short period of
s time while class 2 enhancers harboured long-lasting rapid and late activities. As
30 previously observed [33], the activity of the enhancers were followed by peaks of
1 activity for the associated promoters at later stages (enrichment in late response
s categories).

s Enhancers from the same class co-localized within chro-
s matin domains

5 The organization of the chromatin in cell nuclei is a key feature in gene ex-
16 pression regulation by forming regulatory region interactions within TADs [8].
37 Genes within the same TAD tend to be coordinately expressed across cell types
s and tissues, and clusters of functionally related genes requiring co-regulation
30 tend to lie within the same TADs [8,40]. Similar to these studies analyzing gene
w0 organization observed in chromatin domains, we focused on how the two classes
s of enhancers were organized with respect to TADs. We compared the distribu-
32 tion of enhancers from the two classes within a set of TADs [7]. Specifically, we
33 assessed whether individual TADs were biased for containing more enhancers
e associated with a specific class than expected by chance using the Binomial test.
s The distribution of the corresponding p-values was compared to those obtained
w6 by randomly assigning classes 1 and 2 labels to the enhancers. The results high-
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Figure 7: Chromosomal organization of class 1 and class 2 enhancers. a. For
each TAD [7], we computed the p-value of the Binomial test to assess the enrichment
for enhancers from a specific class. The plot compares the density (y-axis) of p-
values for Binomial tests (x-axis) applied to classes 1 and 2 enhancers (red) and 1,000
random assignments of class labels to the enhancers (black). b. The same analysis
as in panel a. was performed using chromatin loops predicted in lymphoblastoid
GM12878 cells [39]. c. Density (y-axis) of distances (x-axis) between enhancers and
chromatin loop centers defined using Hi-C data in GM12878 cells [39]. The distances
were normalized by the length of the loops. Enhancers at the center of the loops were
found at distance 0.0 while enhancers at chromatin loops boundaries were found at
distance 0.5. Results associated with class 1 and class 2 enhancers are depicted in blue
and green, respectively.
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s lighted that TADs were enriched for enhancers from a specific class (Figure 7a),
w8 showing a genomic organization of human enhancers with respect to chromatin
30 domains.

370 TADs represent interactions within megabase-sized domains of chromatin,
sn which can be subdivided into kilobase-sized chromatin loops of chromatin inter-
w2 actions [39]. We refined our analyses of class-based enhancer co-localization by
w3 focusing on chromosomal loops derived from 8 cell lines [39]. Similar to what
s we observed at the TAD level, we found that chromatin loops tended to contain
w5 enhancers from a specific class (Figures 7b and S10). Furthermore, class 2 en-
srs hancers were evenly distributed within the chromatin loops whereas enhancers
sz from class 1 were consistently observed to be situated close to the loop bound-
s aries (Figure 7c). This observation is in agreement with the enrichment for
s class 1 enhancers in CTCF chromatin segments (Figure 4a) as chromatin loop
s0  boundaries are known to be enriched for CTCF binding [39].

w 1Discussion

s We have analyzed the sequence properties of FANTOMS5 human enhancers de-
3 rived from CAGE experiments to reveal that a subset with low G+C content is
;s associated with immune response genes. This set of enhancers harbours a G+C
;s pattern that corresponds to characteristic HelT, MGW, ProT and Roll confor-
s mation of the DNA. The predicted immune system enhancers tend to co-localize
s7  within chromatin domains, exhibit cell type specificity, are activated upon in-
s fection, and are observed with long lasting response activity. In summary, our
s study of sequence composition patterns along enhancer regions culminates with
s0  the identification of human enhancers associated with immune response that
s harbour specific sequence composition, activity, and genome organization.

302 The analyses of sequence properties in regulatory regions, most prominently
s CpG islands at promoters, have been key to understanding gene expression
s« regulation [9,10,20]. The predicted immune response enhancers exhibit a cell-
s type specific expression pattern and have low %GC. Nevertheless, it remains
36 unclear how and why immune response enhancers have emerged with these
s sequence properties.

308 While enhancers predicted to be associated with immune response are GC-
s poor, a dichotomy of enhancers solely based on GC-content did not highlight a
a0 specific set of enhancers associated with immune response genes. This observa-
w1 tion might reflect the importance of the DNA sequence, with the DNA shape
w2 conformation at enhancer regions as a secondary effect. DNA structural proper-
w03 ties were shown to be linked with DNA flexibility, nucleosome positioning, and
ws  gene expression regulation [41-45]. The more negative ProT in class 2 (Fig-
ws ure le) corresponds to lower GC content [46]. This could relate to 3 hydrogen
ws  bonds in G/C pairs versus 2 in A /T pairs, which determines the ability of a base
w7 pair to form a ProT angle. Moreover, the differences in DNA shape features be-
w8 tween the two classes of enhancers might relate to differences in conformational
w0 flexibility. Indeed, we observed class 1 enhancers with less negative ProT, lower
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a0 HelT, wider MGW, larger Roll compared to class 2 enhancers (Figure lec-f).
a1 These characteristics all relate to increased flexibility of the DNA [47], which
a2 could provide a topological explanation for the differences observed between the
a3 two classes.

a1 The classification of human enhancers was performed from basic feature vec-
a5 tors summarizing G4C patterns along enhancer regions. Our observations are
a6 reminiscent of the ”enhancer—core-promoter specificity” observed in Drosophila [48].
a7 Zabidi et al. uncovered two classes of enhancers regulating ”housekeeping”
as  versus “developmental” genes, which differ in genomic distribution and in the
a9 presence of distinct regulatory elements [48]. Each enhancer appears to have
a0 acquired specific DNA features to most effectively regulate the particular pro-
21 moters it has to regulate [49]. This hypothesis is in agreement with our identi-
4 fication of two classes of enhancers that were defined based on DNA sequence
23 composition and predicted to target promoters associated with genes of distinct
«2¢  biological functions. Similar to Zabidi et al. [48], we found distinct genomic
a5 organizations between two classes of enhancers, one more ubiquitously active
w26 while the other was more cell type-specific.

a27 A recent perspective on immunological memory suggested that transient
w28 modifications to chromatin along with inducible noncoding RNAs could medi-
w290 ate a “short-term memory” in immune cells [50]. The principle of this short-term
.0 memory is that some histone modifications and regulatory molecules like mi-
= croRNAs and TFs would be persistent after stimulation, even though limited in
2 time. Mediators of response to stimuli were categorized into (i) labile mediators
a3 of activation and (ii) long-lasting mediators of short term memory [50]. It repre-
s sents a way for both the adaptive and innate immune cells to be more effective
a5 in responding to secondary stimulations. Our results suggest that enhancers
a6 could also be mediators of the immune response to stimuli lying in the two
w7 categories presented by Monticelli et al. [50]. Indeed, we observed that class 2
s enhancers, associated with immune response genes, were showing a long-term
a0 response activity to stimuli, as opposed to short-term patterns of activity for
wo class 1 enhancers (Figure 6). We hypothesize that (i) class 1 enhancers are
a1 used for a rapid but short response to stimuli, representing labile mediators of
w2 activation and (ii) class 2 enhancers correspond to robust long-lasting media-
w3 tor of short-term memory to memorize which genes need to be activated after
as  stimulation. Dedicated experiments will be necessary to assess this hypothesis.

« Materials and Methods

uws Human enhancers clusterization

w7 We retrieved the hgl9 positions of the 38,554 FANTOMS5 robust human en-
us  hancers in BED12 format from http://enhancer.binf .ku.dk/presets/robust_
w9 enhancers.bed [22]. We extracted DNA sequences for regions of 1,001 bp cen-
w0 tered at the enhancer mid-points (columns 7-8 of the BED12 file) using the
s BEDTools [51]. We created binary vectors representing the enhancer sequences
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2 with 1s and Os corresponding to G or C and A or T, respectively. Note that
3 7 enhancers were not considered as the 1,001 bp regions contained undefined
s nucleotides (Ns). The vectors were clustered into k = 2 classes using the k-
s means algorithm implemented in the KMeans function of the scikit Python
s module [52]. The silhouette plots (Figure S1) were constructed for k € [2, 5] us-

w7 ing the silhouette_samples function of the scikit Python module. Formally, the
b—a)

maz(a,b

w0 where a is the mean intra-cluster euclidian distance and b the mean near(est)—
w0 cluster euclidian distance.

461 Similarly, we created vectors representing the enhancers by combining the
w2 values of HelT, MGW, ProT, and Roll at the enhancer sequences. The DNA
w3 shape values for the hg19 version of the human genome were retrieved as bigWig
s files from the GBshape database [11]. DNA shape feature values at enhancer
w65 regions were obtained by using bwtool [53]. It resulted in vectors of 4,004 values
w6 each that were submitted to the Kmeans function of the scikit Python module.

ss  silhouette plots display the silhouette coefficient for each enhancer as

« Enhancer gene targets

w8 The enhancer-RefSeq promoter associations were retrieved from http://enhancer.
wo  binf.ku.dk/presets/enhancer_tss_associations.bed [22]. The correspond-
a0 ing official gene symbols were considered for the functional enrichment analyses.

s DINA shape feature plots

a2 The values of DNA structural features HelT, MGW, ProT, and Roll computed
as using the DNAshape tool [12] were obtained from the GBshape browser [11]
an as bigwig files at ftp://rohslab.usc.edu/hgl9/. We retrieved the averaged
a5 DNA shape values at the enhancer regions from class 1 and class 2 using the
ws agg subcommand of the bwtool tool [53].

= (Gene ontology functional enrichment

as Official symbols corresponding to the RefSeq promoters associated with en-
av hancers from class 1 and class 2 were submitted to GOrilla [26] at http:
s //cbl-gorilla.cs.technion.ac.il/ using the March 5th 2016 update. We
a1 used the two unranked list option with genes associated with class 1 or class 2
2 enhancers as targets and the aggregated set of 11,271 genes associated with
w3 the full set of enhancers as background. We searched for enriched GO biological
w  processes with the most stringent p-value threshold (< 107!!). The DAG repre-
a5 sentation of the results in Figures S3-S4 were downloaded from the output page
a6 of GOrilla. The visual representation of the results in Figure 2 was constructed
v manually using Cytoscape 3.4.0 [54]. The same procedure has been applied
s to genes associated with enhancers classified with respect to their GC-content
s (Figures S2-S3).
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Motif enrichment

We applied Centrimo [27] from the MEME suite version 4.11.1 with default
parameters to DNA sequences of regions +500 bp around the mid-points of
enhancers from class 1 and class 2. Class 1 enhancer regions were used as
foreground and class 2 enhancer regions as background and vice-versa. The
MEME databases of motifs considered for enrichment were derived from [55]
(jolma2013.meme), JASPAR [56] (JASPAR_CORE_2016_vertebrates.meme), Cis-
BP [57] (Homo_sapiens.meme), Swiss Regulon [58] (Swiss_Regulon_human_and_mouse.meme),
and HOCOMOCO [59] (HOCOMOCOv10_-HUMAN _mono_meme_format.meme).
The same procedure was applied to promoter regions (500 bp around TSSs)
associated with class 1 and class 2 enhancers.

Figure 3 has been obtained from the html output of Centrimo by selecting
the 3 most enriched motifs (ranked using the Fisher E-value). We did not
consider inferred motifs in Cis-BP [57].

Genome segmentation
ENCODE genome segmentation

The genome segmentation using the combination of results from ChromHMM [34]
and Segway [35] for ENCODE tier 1 and tier 2 cell types GM12878, Hlhesc,
HelaS3, HepG2, HUVEC, and K562 were retrieved at http://hgdownload.
cse.ucsc.edu/goldenPath/hgl9/encodeDCC/wgEncodeAwgSegmentation/.

Genome segmentation in dendritic cells

The genome segmentation of DCs before and after MTB infection [38] was
computed using ChromHMM [34] and retrieved at http://132.219.138.157:
8080/DC_NI_7_segments_modID.bed.gz and http://132.219.138.157:8080/
DC_MTB_7_segments_modID.bed.gz.

Genome segmentation overlap with enhancers

The overlap between enhancers and genome segments were obtained using the
intersect subcommand of the BEDTools requiring a minimum overlap of 50%
of the enhancer lengths. We considered enhancers as in active states if they
overlapped the TSS, promoter flank, enhancer, weak enhancer, and transcribed
segments.

RELA ChIP-seq data analyses

The ENCODE RELA ChIP-seq data in GM12878 cells was retrieved at http://
hgdownload.cse.ucsc.edu/goldenPath/hgl9/encodeDCC/wgEncodeAwgTfbsUniform/
wgEncodeAwgTfbsSydhGm12878NfkbTnfalggrabUniPk.narrowPeak.gz. To iden-

tify active FANTOMS5 enhancers in GM12878, we considered the overlap be-

tween 1,001 bp-long regions around enhancer’s mid-points and genome segments
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so7 - predicted by ChromHMM and Segway combined as enhancer or weak enhancer.
ss  Similarly, active FANTOMS promoters were obtained by overlapping 1,001 bp-
s20 long regions around T'SSs and genome segments predicted as TSS or promoter
s flanks by ChromHMM and Segway combined. The identified 1,001 bp-long ac-
sn  tive enhancer and promoter regions were further overlapped with RELA ChIP-
s seq peaks. All overlaps were computed with the intersect subcommand of the
53 BEDTools.

s Enhancer expression specificity

The cell-type expression specificity of enhancers was computed as

entropy (enhancer expression)

log, (number of cell types)

s35 in [22]. The binary matrix of enhancer usage across FANTOMS5 samples was ob-
s tained at http://enhancer.binf.ku.dk/presets/hgl9_permissive_enhancer_
s usage.csv.gz. The association between FANTOMS5 samples and cell types was
s3 obtained from Tables S10-S11 in [22]. Heat maps in Figure 5 were computed
s using the colormesh function of the matplotlib.pyplot Python module [60].

s Enhancer dynamics

sa . FANTOMS classification in the 14 dynamics displayed in Figure 6 was obtained
s22  from Auxiliary data table S3 in [33]. The classification provided response class
s3 - assignments to 1,533 and 1,161 class 1 and class 2 enhancers, respectively. Re-
s sponse classes were assigned to 2,311 and 2,407 promoters associated with class 1
sss  and class 2 enhancers, respectively. Note that enhancers and promoters can be
sss  assigned to multiple response classes.

547 Corresponding plots (Figures 6) and enrichment analyses were performed
s using pandas Python data structure [61] and the scipy Python library [62] in
s the IPython environment [63].

ss0o. Chromatin conformation data

ss1. The enrichment for enhancers associated to a specific class in each TAD or
52 chromatin domain (see below) was computed using Binomial test p-values as
3 implemented by the binom.test function in the R environment [64]. As a con-
ssa  trol, we randomly assigned the labels class 1 and class 2 to the enhancers and
ss5  computed the corresponding Binomial test p-values; this procedure was applied
ss6  to 1,000 random trials.

s 'Topologically associating domains

sss As TADs have been shown to be conserved between cell types and species,
0 we retrieved the TADs defined in the first study describing them [7]. The
sso  TADs were predicted in mouse embryonic stem cells and we used the liftOver
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sst tool from the UCSC genome browser at https://genome.ucsc.edu/cgi-bin/
se2 hgLiftOver to map them to hgl9 coordinates.

s Chromatin loops

s« The positions of the chromatin loops computed with the HICCUPS tools [39]
sss  from Hi-C data on the GM12878, HMEC, HUVEC, HeLa, IMR90, K562, KBM7,
sss and NHEK human cell lines were retrieved from GEO at http://www.ncbi.
ssv nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525.

s Enrichment p-values

se0  P-values throughout the manuscript were computed using the Fisher exact test
s except otherwise stated.
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Figure S1: Silhouette plots of k-means clusters. Silhouette plots for clus-
ters obtained using the k-means clusterization algorithm for k£ = 2 (a), k = 3
(b), k =4 (c), and k = 5 (d). After clusterization of the enhancers using
the k-means algorithm, the silhouette score was computed for each enhancer
vector. For each k-means clusterization corresponding to each panel, clusters
are represented with different colors. The scores range from -1 to 1 with -1
indicating a possible assignment of the enhancer vector to the wrong cluster, 0
indicating that the vector is close to the boundary between two clusters, and
1 indicating that the vector is far away from the boundary between two clus-
ters. The silhouette score is calculated as (b— a)/max(a, b) where a is the mean
intra-cluster distance and b the mean nearest-cluster distance for each sample
as implemented in the scikit learn silhouette_score function. The red dashed
lines represent the average silhouette score over all the enhancer vectors (0.019
for k =2, 0.009 for k£ =3, 0.005 for k = 4, and 0.002 for k = 5).

Figure S2: DNA shape features at enhancers from DINA shape-based
clusterization. DNA shape feature values are provided for human enhancers
from set 1 and set 2 in blue and green, respectively. Average DNA shape values
(y-axis) along the DNA regions 42,000 bp centered at enhancer mid-points
(x-axis) for DNA shape features HelT (a), MGW (b), ProT (c), and Roll (d).

Figure S3: Functional enrichment for genes associated to class 1 en-
hancers. Directed acyclic graph of the enriched GO biological processed ob-
tained using GOrilla on the set of genes predicted to be regulated by enhancers
from class 1.

Figure S4: Functional enrichment for genes associated to class 2 en-
hancers. Directed acyclic graph of the enriched GO biological processed ob-
tained using GOrilla on the set of genes predicted to be regulated by enhancers
from class 2.

Figure S5: Functional enrichment for genes associated to GC-poor en-
hancers. Genes predicted to be regulated by %GC poor (%GC < 46.15) were
submitted to GOrilla. The figure represents the directed acyclic graph of the
enriched GO biological processed obtained.

Figure S6: Functional enrichment for genes associated to GC-rich en-
hancers. Genes predicted to be regulated by %GC poor (%GC > 46.15) were
submitted to GOrilla. The figure represents the directed acyclic graph of the
enriched GO biological processed obtained.
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Figure S7: Human enhancers and genome segmentation. Histograms of
the proportion of human enhancers (y-axis) in class 1 (blue) and class 2 (green)
lying within genome segments (x-axis) as annotated by combined results of
ChromHMM [34] and Segway [35] on human lymphoblastoid (GM12878; a),
cervical cancer (HeLa-S3; b), liver carcinoma (HepG2; c), umbilical vein en-
dothelial (HUVEC; d), and chronic myelogenous leukemia (K562; e) cell lines
from the ENCODE project [37]. Statistical significance (Bonferroni-corrected

p-value < 0.01) of enrichment for enhancers from a specific class is indicated by
kK

Figure S8: Enhancer activation upon MTB infection. Stacked histogram
of the fraction of human enhancers (y-axis) from class 1 and class 2 predicted
to be activated (red), inhibited (blue), or with unchanged activity (grey). Pre-
dictions were obtained using genomic segments predicted by ChromHMM [34]
on human dendritic cells before and after infection with Myobacterium tuber-
culosis [38].

Figure S9: Cell type expression specificities of human enhancers. The
cell type expression specificities derived from FANTOM5 CAGE datasets [22]
is provided as a heat map for human enhancers in class 1 (a) and class 2 (b).
The color (see scale) represents the fraction of expressed enhancers in each cell
type (columns) found in each expression specificity range (rows). CAGE, Cap
Analaysis of Gene Expression.

Figure S10: Enrichment of enhancers from a single class within chro-
matin loops. For each chromatin loop predicted in HeLa (a), HMEC (b),
HUVEC (c), IMR90 (d), K562 (e), KBM7 (f), and NHEK (g) cell lines, we
computed the p-value of the Binomial test to assess enrichment for enhancers
from a single class. The plots compare the density (y-axis) of p-values for Bino-
mial tests (x-axis) applied to classes 1 and 2 enhancers (red) and 1,000 random
assignments of class labels to the enhancers (black).

Figure S11: Organization of enhancers within chromatin loops. Den-
sity (y-axis) of distances (x-axis) between enhancers and chromatin loop cen-
ters/anchors. The distances were normalized by the lengths of the loops. En-
hancers at the center of the loops were found at distance 0.0 while enhancers
at chromatin loops boundaries/anchors were found at distance 0.5. Results
associated with class 1 and class 2 enhancers are depicted in blue and green,
respectively. HeLa (a), HMEC (b), HUVEC (c), IMR90 (d), K562 (e), KBM7
(f), and NHEK (g) cell lines were considered.

Table S1: List of genes associated with class 1 (first column) and class 2 (second
column) enhancers derived from Andersson et al. [22].
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Table S2: Enriched GO biological processes associated with genes predicted to
be regulated by class 1 enhancers.

Table S3: Enriched GO biological processes associated with genes predicted to
be regulated by class 2 enhancers.

Data S1: Centrimo motif enrichment analyses. Centrimo was ap-
plied to regions of 1,001 bp centered around enhancers’ mid-points
from class 1 (centrimo_classlvs2_enhancers.html) and class 2 (cent-
rimo_class2vs1_enhancers.html). Promoter regions of 1,001 bp centered
around TSSs associated with class 1 (centrimo_classlvs2_promoters.html) and
class 2 (centrimo_class2vsl_promoters.html) were also subjected to Centrimo.
Position enrichment of motifs were focussed around enhancer mid-points for
enhancers and all regions for promoters.
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