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Abstract23

The FANTOM5 consortium recently characterized 38,554 robust hu-24

man enhancers from 808 cell and tissue types using the Cap Analysis of25

Gene Expression technology. We used the distribution of guanine and26

cytosine nucleotides at enhancer regions to distinguish two classes of en-27

hancers harboring distinct DNA structural properties. A functional anal-28

ysis of their predicted gene targets highlighted one class of enhancers as29

significantly enriched for associations with immune response genes. More-30

over, these enhancers were specifically enriched for regulatory motifs rec-31

ognized by TFs involved in immune response. We observed that immune32

response enhancers were cell type specific, preferentially activated upon33

bacterial infection, and with long-lasting response activity. Looking at34

chromatin capture data, we found that the two classes of enhancers were35

lying in distinct topologically-associated domains and chromatin loops.36

Our results suggest that specific DNA sequence patterns encode for classes37

of enhancers that are functionally distinct and specifically organized in the38

human genome.39

Background40

Gene expression is regulated through many layers, one of which being the reg-41

ulation of the transcription of DNA segments into RNA. Transcription factors42

(TFs) are key proteins regulating this process through their specific binding43

to the DNA at regulatory elements, the TF binding sites (TFBSs) [1]. These44

regulatory elements are located within larger regulatory regions, the promot-45

ers and enhancers [2]. While promoters are situated around transcription start46

sites (TSSs), enhancers are distal to the genes they regulate. The canonical47

view is that chromatin conformation places enhancers in close 3D proximity to48

their target gene promoters through DNA looping [3–5]. High-resolution chro-49

matin conformation capture (Hi-C) technology maps genomic regions in spatial50

proximity within cell nuclei [6]. The Hi-C technology identified specific genomic51

neighbourhoods of chromatin interactions, the topologically associating domains52

(TADs), which represent chromatin compartments that are stable between cell53

types and conserved across species [7, 8].54

Studies have shown relationships between the composition of a DNA se-55

quence in guanine (G) and cytosine (C) and chromatin organization, for instance56

in relation to nucleosome positioning [9,10]. Furthermore, sequence composition57

is intrinsically linked to the three-dimensional structure of the DNA. Topologi-58

cal studies have used sequence properties to predict four structural features of59

DNA: helix twist (HelT), minor groove width (MGW), propeller twist (ProT),60

and Roll [11, 12]. These topological properties have been shown to inform the61

analysis of protein-DNA interactions obtained from high-throughput experi-62

ments [13–16], emphasizing the importance of DNA sequence composition in63

transcriptional regulation.64

DNA sequence composition and other features of promoter regions have been65

extensively studied, including such key advances as the discovery of CpG is-66
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lands. The analysis of promoter regions in the human genome was accelerated67

by the development of the Cap Analysis of Gene Expression (CAGE) technol-68

ogy [17,18], which identifies active TSSs in a high-throughput manner based on69

5’ capped RNA isolation. Using CAGE data, a large scale identification of the70

precise location of TSSs in human [19] led to the classification of promoters into71

four classes based on G+C content (%GC) [20]. The study highlighted that72

GC-rich promoters are associated with genes involved in various binding and73

protein transport activities while GC-poor promoters are associated with genes74

responsible for environmental defense responses. While promoters overlapping75

CpG islands are commonly assumed to be ubiquitous drivers of housekeeping76

genes, comprehensive analysis of CAGE data from > 900 human samples showed77

that a subset deliver cell type-specific expression [21].78

Large-scale computational analyses of enhancer regions have been hampered79

by a limited set of bona fide enhancers. An advantage of the CAGE technology80

is its capacity to identify in vivo-transcribed enhancers. Specifically, it identifies81

active enhancer regions in biological samples by capturing bidirectional RNA82

transcripts at enhancer boundaries [22]. Using this characteristic of CAGE data,83

the FANTOM5 project identified 38,554 “robust” human enhancers across 80884

samples [22]. Sequence property analysis suggested that the enhancers share85

properties with CpG-poor promoters. The findings shed light on the structure,86

organization, and function of human enhancers.87

As enhancers are distal to the genes they regulate, it is challenging to predict88

these relationships. Based on cross-tissue correlations between histone modifica-89

tions at enhancers and CAGE-derived expression at promoters within 1,000 bp,90

enhancer-promoter links have been shown to be conserved across cell types [23].91

As the CAGE technology captures the level of activity for both promoters and92

enhancers in the same samples, predicting the potential targets of the enhancers93

was obtained by correlating the activity levels of these regulatory regions over94

hundreds of human samples from the FANTOM5 consortium [22]. Using the95

predicted enhancer-gene associations, the authors unveiled that closely spaced96

enhancers were linked to genes involved in immune and defense responses. These97

results stress that predictions of enhancer-promoter associations are critical to98

decipher the functional roles of enhancers.99

Here, we used the distribution of G+C nucleotides along the sequences of100

human CAGE-derived enhancer regions to define two classes of enhancers. The101

specific sequence features of the two classes encoded for distinct topological DNA102

shape patterns. The enhancers from the GC-poor class were predicted to be103

functionally associated with genes involved in the immune response whereas the104

enhancers from the other class were associated with genes involved in biological105

processes related to transcription. Accordingly, regulatory motifs associated106

with immune response TFs like NF-κB are enriched in the DNA sequence of107

the immune response-related set of enhancers. Independent functional analysis108

of histone modification and CAGE data highlighted a cell type specificity of109

these enhancers along with their activation upon bacterial infection. Moreover,110

immune system enhancers were observed with a long-lasting response activity111

pattern following cell stimulation in time-course data sets. Finally, we observed112
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that the two classes of enhancers tended to be structurally organized in the113

human chromosomes within distinct TADs and DNA chromatin loops.114

Results115

Guanine and cytosine nucleotide patterns identified two116

classes of human enhancers with distinct DNA structural117

properties118

To analyze the sequence properties of human enhancers, we considered the set of119

38,554 CAGE-derived enhancers found to be significantly active in at least one120

primary cell or tissue sample in the FANTOM5 project [21, 22]. We extracted121

500 bp DNA sequences 5’ and 3’ of the mid-point of the enhancers as defined122

by Andersson et al. [22]. We sought to identify distinct classes of enhancers123

based on the distribution of guanines (Gs) and cytosines (Cs) along the en-124

hancer regions. Specifically, each enhancer was represented by a 1,001 bp-long125

binary vector with 1s representing G+C and 0s representing adenines (As) and126

thymines (Ts). We clustered the enhancers by applying the k-means clustering127

algorithm [24] on the vectors. To select the number of clusters k, we consid-128

ered silhouette plots, which provide a visual representation of how close each129

enhancer in one cluster is to enhancers in neighbouring clusters [25]. A visual130

inspection of cluster silhouettes with k ∈ [2, 5] revealed that the best cluster-131

ing was obtained with k = 2 (Figure S1). We extracted two classes (k = 2)132

of enhancers with distinct distributions of G+C along the enhancer regions133

(Figure 1a). The two classes were composed of 14,204 and 24,343 enhancers,134

hereafter referred to as class 1 and class 2, respectively. While enhancers from135

class 1 were more GC-rich than enhancers from class 2, separating the enhancers136

solely based on GC content would have resulted in a different classification (i.e.137

there is an overlap between the classes in terms of G+C content, as shown in138

Figure 1b).139

As DNA sequence and shape are intrinsically linked, we next considered140

four DNA shape features computed from DNA sequences with the DNAshape141

tool [12]: helix twist (HelT), minor groove width (MGW), propeller twist (ProT),142

and Roll. We applied the k-means clustering algorithm with k = 2 to vectors143

combining DNA shape feature values extracted from the GBshape database [11]144

at 1,001 bp-long enhancer regions centered around enhancers’ mid-points. We145

obtained two sets containing 15,259 (set 1) and 23,288 (set 2) enhancers, re-146

spectively. These sets of enhancers derived from DNA shape features were very147

similar to classes 1 and 2 that were obtained using G+C patterns at enhancer148

regions. Indeed, class 1 and set 1 have a Jaccard similarity of 0.85; class 2 and149

set 2 have a Jaccard similarity of 0.90.150

We plotted the distribution of the four DNA shape features along the en-151

hancer regions from the two classes obtained with the G+C pattern-based clus-152

tering (Figure 1c-f). Similarly, we plotted DNA shape features for the two sets153

obtained from the DNA shape-based clustering (Figure S2). We consistently154
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Figure 1: DNA sequence features at enhancers. Features associated with human
enhancers from class 1 and class 2 are represented in blue and green, respectively.
a. G+C values (y-axis) of the k-means cluster centers along DNA regions ±500 bp
centered at enhancer center points (x-axis). b. Histogram of the %GC content of the
enhancers. c-f. Average DNA shape values (y-axis) along the DNA regions ±2, 000 bp
centered at enhancer middle-points (x-axis) for DNA shape features HelT (c), MGW
(d), ProT (e), and Roll (f).
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observed that class 1 enhancers harboured lower HelT values at the centre of155

the enhancers as well as about 500 bp away from the enhancers’ mid-points156

(Figure 1c). je observed a symmetrical pattern for MGW with width decrease157

at the central positions of the enhancers as well as at the edges (∼ 50-150 bp158

away from the mid-points) of the enhancers (Figure 1d). ProT and Roll signals159

were also distinct between enhancers from the two classes (Figure 1e-f). The160

patterns observed for the DNA shape features were in agreement with the two161

distinct patterns of G+C composition computed along the enhancers from the162

two classes (Figure 1a).163

The similarity between G+C- and DNA shape-based clustering stresses that164

the G+C pattern is the key discriminant between the two classes of enhancers165

while the shape represents a secondary effect of the G+C pattern. We therefore166

focused on the two classes of enhancers derived from their G+C pattern in this167

report, except otherwise stated. Taken together, these results described two168

subsets of human enhancers distinguishable by their distribution of G+C along169

their length and reflected in their DNA structural properties.170

The two classes of human enhancers associated with specific171

biological processes172

Different classes of mammalian promoters, derived from their nucleotide com-173

position, were observed to be associated with genes linked to distinct biological174

functions [20]. Following the same approach, we sought for a functional inter-175

pretation of the classification that we obtained. Based on correlations between176

promoter and enhancer activities derived from CAGE data in human samples,177

Andersson et al. linked enhancers to their potential gene promoter targets [22].178

To infer the biological functions of enhancers, we assumed that each enhancer179

was associated with the same biological functions as the genes it was predicted180

to regulate. Class 1 enhancers were predicted to target 7,713 genes whereas181

class 2 enhancers were linked to 7,857 genes (Table S1). In aggregate, the en-182

hancers corresponded to a set of 11,271 genes, of which 4,299 were common to183

the two classes (representing ∼ 56%, ∼ 55% and ∼ 38% of class 1, class 2, and184

the combined set of genes, respectively). We submitted the two sets of genes185

associated to class 1 and class 2 enhancers to the GOrilla tool [26] to predict186

enriched (p-value < 1 × 10−11) gene ontology (GO) biological processes. Note187

that the aggregated set of 11,271 genes was used as the background set of genes188

for enrichment analyses.189

Biological processes linked to RNA transcription were found to be enriched190

for genes associated with class 1 enhancers (Figures 2a and S3 and Table S2).191

Specifically, the directed acyclic graph (Figure S3) of the enriched GO terms192

highlighted two leafs corresponding to the terms ’transcription, DNA-templated’193

(FDR q-value = 8.7× 10−13) and ’regulation of transcription, DNA-templated’194

(q = 7.8 × 10−12). When considering the genes predicted to be regulated by195

enhancers from class 2, only two GO biological processes were predicted to be196

enriched (Figures 2b and S4 and Table S3): ’immune system process’ (q =197

6.1× 10−9) and ’regulation of immune response’ (q = 3.2× 10−8).198
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Figure 2: Functional enrichment analysis. Enriched GO biological processes
associated with genes predicted to be regulated by enhancers from class 1 (a) and
class 2 (b) were obtained using the GOrilla tool [26]. Nodes in the graphs represent
enriched GO biological processes. The color of a node represents the FDR q-value of
the corresponding enriched GO biological process, the more red, the lower the q-value
(min = 1.37× 10−13, max = 3.8 × 10−8). The size of a node represents the number of
genes associated with class 1 (a) and class 2 (b) enhancers in the corresponding GO
biological process (min = 761, max = 3, 832). Edges between two nodes indicate the
number of common genes between corresponding processes. The larger the number
of overlapping genes (min = 264, max = 860), the larger the edge between the two
corresponding nodes. FDR, false discovery rate; GO, gene ontology.
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These functional enrichment results were specific to the classification of199

the enhancers using the pattern of G+C along the enhancer regions. Indeed,200

we considered a segregation of human enhancer regions solely based on %GC201

(mean = 46.62, median = 46.15, and standard deviation = 10.56) with GC-202

poor enhancer regions (%GC < 46.15) assigned to a first set and GC-rich ones203

(%GC > 46.15) to a second set. We submitted the sets of genes linked to the204

enhancers from the %GC-based classification to GOrilla and observed that the205

immune system-related GO terms were found enriched for both sets (Figures S5206

and S6).207

Taken together, the functional enrichment results revealed that a classifi-208

cation based on the distribution of Gs and Cs along human enhancer regions209

featured two sets of enhancers predicted to be regulating genes with distinct210

biological functions. While the first class was linked to genes associated with211

transcription, the second class highlighted enhancers predicted to regulate im-212

mune system related genes.213

Distinct transcription factors predicted to act upon the two214

classes of human enhancers and their predicted promoter215

targets216

We sought to identify TF binding motifs enriched within each class of enhancers,217

to suggest driving TFs for the distinct biological functions. We considered218

1,001 bp-long DNA sequences centered at the enhancers’ mid-points. Posi-219

tional motif enrichment analyses were performed using the Centrimo tool [27] to220

predict TF binding motifs over-represented around the enhancers’ mid-points.221

Class 1 enhancer regions were compared to class 2 regions and vice-versa to222

highlight specific motifs (Figure 3a,c and Data S1). Motifs associated with the223

Specificity Protein/Krüppel-like Factor (SP/KLF) TFs were enriched in class 1224

enhancer regions (Figure 3a and Data S1). Members of the SP/KLF family have225

been associated to a large range of core cellular processes such as cell growth,226

proliferation, and differentiation [28]. The most enriched motifs in class 2 en-227

hancer regions were associated with nuclear factor kappa-light-chain-enhancer228

of activated B cells (NF-κB)/Rel TFs (Figure 3c and Data S1). As NF-κB is229

known to have a central role in immune response [29], the enrichment is consis-230

tent with an involvement of class 2 enhancers in the immune response biological231

function (Figure 2b). Other enriched motifs in class 2 enhancers were associ-232

ated with BACH1/2 TFs, involved in acquired and innate immunity [30], and233

chromatin remodelling TFs BPTF [31] and SMARCC1 [32].234

Linked enhancers and promoters were predicted to be driven by similar sets235

of TF binding motifs when enhancer-promoter links were derived from a dis-236

tinct collection of CAGE data from time-course studies [33]. We assessed such237

associations by extending our positional motif enrichment analyses to the pro-238

moters of genes associated with classes 1 and 2 enhancers, respectively. We used239

Centrimo to predict motifs locally enriched in 1,001 bp regions centered around240

corresponding TSSs. Motifs associated with SP1 and NF-κB TFs were specifi-241
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Figure 3: Motif enrichment analysis at enhancer and promoter regions.
Regions of ±500 bp around enhancer mid-points (a, c) and associated genes’ TSSs
(b, d) were subjected to positional motif enrichment analyses using the Centrimo
tool [27]. Enhancers and associated gene targets from class 1 (a, b) and class 2 (c,
d) were analyzed separately. The x-axis represents the distance to the enhancer mid-
point (a, c) and associated gene TSSs (b, d), respectively. The y-axis represents the
probability of predicting TFBSs associated with the motifs given in the legend boxes.
Plain lines represent the distribution of predicted TFBSs in the foreground sequences
(from class 1 in panels a-b and class 2 in panels c-d). Similarly, dashed lines represent
the distribution of predicted TFBSs in the background sequences (from class 2 in panels
a-b and class 1 in panels c-d). TSSs, transcription start sites; TFBSs, transcription
factor binding sites.
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cally enriched about 100 bp and 80 bp upstream of TSSs associated with class 1242

and class 2 enhancers, respectively (Figure 3b,d and Data S1). It confirmed243

that promoters predicted to be targets of enhancers shared the same motifs.244

Centrimo also predicted SMAD3 and FOXC2 motifs in class 1 promoters and245

JUN and P63 motifs in class 2 promoters, upstream of TSSs.246

We confirmed the motif-based enrichment of NF-κB binding in class 2 regions247

by using ChIP-seq data obtained in GM12878 cells for the RELA TF, which is248

involved in NF-κB heterodimer formation. By combining data capturing histone249

modification marks, TF binding, and open chromatin regions from a specific250

cell type, the ChromHMM [34] and Segway [35] tools segment the genome into251

regions associated to specific chromatin states. Focusing on predictions from252

ChromHMM and Segway combined, we found 1,802 (∼ 12%) and 2,813 (∼ 11%)253

active enhancer regions from classes 1 and 2, respectively. We observed that254

class 2 enhancers were preferentially bound by RELA. Specifically, 591 active255

class 1 enhancers and 1,226 active class 2 enhancers overlapped RELA ChIP-256

seq peaks (p-value = 2.3 × 10−13). A similar analysis focusing on predicted257

promoters identified an enrichment for active promoters in class 2 (8,962, ∼ 59%,258

class 1 and 10,752, ∼ 63%, class 2 active promoters, p-value = 4.5 × 10−9).259

Furthermore, class 2 promoters were preferentially bound by RELA with 1,966260

class 1 and 3,179 class 2 active promoters overlapping RELA ChIP-seq peaks261

(p-value < 2.2× 10−16).262

Together, these results reinforced the predictions of biological functions spe-263

cific to class 1 and class 2 enhancers (Figure 2) through the presence of associated264

TF binding motifs in both enhancers and predicted target promoters.265

The two classes of human enhancers exhibited distinct ac-266

tivity patterns267

We further investigated the functional differences between the two classes of268

human enhancers by analyzing their patterns of activity across cell types. In269

previous studies, enhancer activity has been inferred either from histone modi-270

fications or eRNA transcription signatures [5, 34–36]. We considered these two271

approaches. Namely, we considered histone modification data from 6 cell lines272

and CAGE data from 71 cell types produced by the ENCODE [37] and FAN-273

TOM5 [22] projects, respectively.274

We retrieved the segmentation of the human genome obtained using a com-275

bination of ChromHMM and Segway in the tiers 1 and 2 cell types from EN-276

CODE [37]. For each cell type, we overlapped enhancers with predicted genome277

segments to assign an activity state to the enhancer. As an example, Figure 4a278

presents the proportion of enhancers from classes 1 and 2 that were overlapping279

with segments associated with active, CTCF, and repressed chromatin states in280

embryonic stem cells (H1-hESC). We consistently observed that enhancers from281

class 1 were significantly more active than those from class 2, which were found282

to be enriched in repressed genomic segments (Figures 4a and S7). Class 1283

enhancers were also associated with segments characterized by CTCF binding.284
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ba

Figure 4: Human enhancers and genome segmentation. a. Histogram of
the proportion of human enhancers (y-axis) in class 1 (blue) and class 2 (green)
lying within genome segments (x-axis) as annotated by combined predictions from
ChromHMM [34] and Segway [35] on human embryonic stem cells (H1-hESC from the
ENCODE project [37]). Statistical significance (Bonferroni-corrected p-value < 0.01)
of enrichment for enhancers from a specific class is indicated by ’**’. b. Stacked his-
togram of the fraction of human enhancers (y-axis) from class 1 and class 2 predicted
to be activated (red) or inhibited (blue). Predictions were obtained using genomic
segments predicted by ChromHMM [34] on human dendritic cells before and after in-
fection with Myobacterium tuberculosis [38]. Stacked histogram including unchanged
activity is provided in Figure S8.
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Figure 5: Cell type expression specificities of human enhancers. The differ-
ence in cell type expression specificities derived from FANTOM5 CAGE datasets [22]
for enhancers in class 1 and class 2 is provided as a heat map. The color (see scale)
represents the difference in fraction of expressed enhancers in each cell type (columns)
found in each expression specificity range (rows). Positive (respectively negative) val-
ues indicate a higher fraction of class 2 (respectively class 1) enhancers. The heat
maps corresponding to the enhancers in each class are provided in Figure S9. CAGE,
Cap Analysis of Gene Expression.
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Through CAGE expression analysis in 808 human samples, Andersson et285

al. [22] assigned a cell type-specificity score to human enhancers. Seventy one286

cell types were defined by grouping cell and tissue samples [22]. Following287

the enhancer expression specificity analysis performed by Andersson et al., we288

considered enhancers from class 1 and class 2 separately to highlight potential289

activity differences in the 71 cell types (Figure S9). Comparing enhancer activity290

specificity over all the cell types between class 1 and class 2, enhancers from291

class 2 appeared to be more cell type specific (Figure 5). While immune cells,292

neurons, neuronal stem cells, and hepatocytes were previously described to use a293

higher fraction of human enhancers [22], the elevated utilization was even more294

pronounced for class 2 enhancers (Figures 5 and S9b).295

Taken together, these results derived from histone marks and transcriptional296

data highlighted that enhancers from class 1 were more ubiquitously active over297

human cell types than enhancers from class 2, which were more cell type specific.298

In our previous functional analyses, we inferred the biological functions of the299

two classes of enhancers from the genes they were predicted to regulate. Here, we300

further confirmed specific functionalities for the two classes based on enhancer301

activity analyses, which corroborated with our functional analysis described302

above. Class 1 enhancers were found to be enriched in transcriptional biological303

processes, which are required for transcription in all cell types. Enhancers from304

class 2 were more cell type specific, with an emphasis in cell types associated305

with the immune system, in agreement with the functional enrichment analysis.306

Predicted immune system enhancers were activated upon307

cell infection308

We sought to further confirm the association of class 2 enhancers with transcrip-309

tional control of immune responses. Pacis et al. [38] generated genome-wide310

DNA methylation, histone marks, and chromatin accessibility data in normal311

dendritic cells (DCs) and DCs after infection with Mycobacterium tuberculosis312

(MTB). The data provided the opportunity to study the chromatin state changes313

after infection obtained using the ChromHMM tool [34]. As for the above analy-314

sis, we overlapped chromatin state information with the enhancers from classes 1315

and 2. To highlight the key epigenetic changes at enhancers, we classified the316

transition of activities before and after MTB infection into three groups: acti-317

vated (from inactive before MTB infection to active after infection), inhibited318

(active to inactive) or unchanged (Figures 4b and S8). We observed that the319

enhancers from class 2 were significantly more activated (p-value < 2.2×10−16)320

and less inhibited (p-value < 2.2× 10−16) when compared to class 1 enhancers321

upon MTB infection (Figure 4b). These results reinforced the potential role of322

class 2 enhancers in immune response.323
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Figure 6: Expression dynamics of human enhancers and associated promot-
ers. Response patterns (x-axis) of human enhancers (a) and promoters (b) in time
courses were classified by Arner et al. [33]. The percentage (y-axis) of enhancers and
promoters from class 1 (blue) and class 2 (green) in each response pattern category
are provided as histograms in the two panels. A significant difference (Bonferroni-
corrected p-value < 0.01) between class 1 and class 2 enhancers or promoters in a
specific category is highlighted by ’**’.
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Predicted immune system enhancers showed long lasting324

response activity325

Based on time-courses of differentiation and activation, Arner et al. analyzed the326

transcriptional dynamics of enhancers and promoters [33]. They profiled time-327

courses with CAGE at a high temporal resolution within a 6 hour time-frame328

to classify enhancers and promoters into distinct dynamic response patterns329

of early response activity. We overlaid our classification of human enhancers330

and their predicted target promoters with the dynamic response pattern data331

(Figure 6). Within the enhancers associated to any dynamic response pattern332

(n = 2, 694; 1,533 and 1,161 from class 1 and class 2, respectively), class 1333

enhancers were enriched (p-value < 2.2× 10−16).334

We focused on the set of 2,694 enhancers classified in the dynamic response335

patterns. Looking at the peaks of activity specific to early time points (’rapid336

short response’ and ’early standard response’), class 1 enhancers were found337

to be upregulated while class 2 enhancers were downregulated (Figure 6a).338

Enhancers from class 2 showed significant activity dynamics corresponding to339

long lasting and later responses (up-regulated in ’rapid long response’, ’late340

standard response’, and ’long response’) when compared to class 1 enhancers341

(down-regulated in ’late standard response’) (Figure 6a). The promoters asso-342

ciated with class 1 were upregulated in the ’late standard response’ dynamic.343

Class 2 promoters exhibited significant up-regulation in the ’late response’ dy-344

namic while class 1 promoters were downregulated in the same dynamic.345

Taken together, these results identified different dynamics between class 1346

and class 2 enhancers. Class 1 enhancers were more dynamic than class 2 en-347

hancers in the FANTOM5 time-course, activated early and for a short period of348

time while class 2 enhancers harboured long-lasting rapid and late activities. As349

previously observed [33], the activity of the enhancers were followed by peaks of350

activity for the associated promoters at later stages (enrichment in late response351

categories).352

Enhancers from the same class co-localized within chro-353

matin domains354

The organization of the chromatin in cell nuclei is a key feature in gene ex-355

pression regulation by forming regulatory region interactions within TADs [8].356

Genes within the same TAD tend to be coordinately expressed across cell types357

and tissues, and clusters of functionally related genes requiring co-regulation358

tend to lie within the same TADs [8,40]. Similar to these studies analyzing gene359

organization observed in chromatin domains, we focused on how the two classes360

of enhancers were organized with respect to TADs. We compared the distribu-361

tion of enhancers from the two classes within a set of TADs [7]. Specifically, we362

assessed whether individual TADs were biased for containing more enhancers363

associated with a specific class than expected by chance using the Binomial test.364

The distribution of the corresponding p-values was compared to those obtained365

by randomly assigning classes 1 and 2 labels to the enhancers. The results high-366

15

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 30, 2016. ; https://doi.org/10.1101/078477doi: bioRxiv preprint 

https://doi.org/10.1101/078477
http://creativecommons.org/licenses/by-nc/4.0/


a b

c

Figure 7: Chromosomal organization of class 1 and class 2 enhancers. a. For
each TAD [7], we computed the p-value of the Binomial test to assess the enrichment
for enhancers from a specific class. The plot compares the density (y-axis) of p-
values for Binomial tests (x-axis) applied to classes 1 and 2 enhancers (red) and 1,000
random assignments of class labels to the enhancers (black). b. The same analysis
as in panel a. was performed using chromatin loops predicted in lymphoblastoid
GM12878 cells [39]. c. Density (y-axis) of distances (x-axis) between enhancers and
chromatin loop centers defined using Hi-C data in GM12878 cells [39]. The distances
were normalized by the length of the loops. Enhancers at the center of the loops were
found at distance 0.0 while enhancers at chromatin loops boundaries were found at
distance 0.5. Results associated with class 1 and class 2 enhancers are depicted in blue
and green, respectively.
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lighted that TADs were enriched for enhancers from a specific class (Figure 7a),367

showing a genomic organization of human enhancers with respect to chromatin368

domains.369

TADs represent interactions within megabase-sized domains of chromatin,370

which can be subdivided into kilobase-sized chromatin loops of chromatin inter-371

actions [39]. We refined our analyses of class-based enhancer co-localization by372

focusing on chromosomal loops derived from 8 cell lines [39]. Similar to what373

we observed at the TAD level, we found that chromatin loops tended to contain374

enhancers from a specific class (Figures 7b and S10). Furthermore, class 2 en-375

hancers were evenly distributed within the chromatin loops whereas enhancers376

from class 1 were consistently observed to be situated close to the loop bound-377

aries (Figure 7c). This observation is in agreement with the enrichment for378

class 1 enhancers in CTCF chromatin segments (Figure 4a) as chromatin loop379

boundaries are known to be enriched for CTCF binding [39].380

Discussion381

We have analyzed the sequence properties of FANTOM5 human enhancers de-382

rived from CAGE experiments to reveal that a subset with low G+C content is383

associated with immune response genes. This set of enhancers harbours a G+C384

pattern that corresponds to characteristic HelT, MGW, ProT and Roll confor-385

mation of the DNA. The predicted immune system enhancers tend to co-localize386

within chromatin domains, exhibit cell type specificity, are activated upon in-387

fection, and are observed with long lasting response activity. In summary, our388

study of sequence composition patterns along enhancer regions culminates with389

the identification of human enhancers associated with immune response that390

harbour specific sequence composition, activity, and genome organization.391

The analyses of sequence properties in regulatory regions, most prominently392

CpG islands at promoters, have been key to understanding gene expression393

regulation [9, 10, 20]. The predicted immune response enhancers exhibit a cell-394

type specific expression pattern and have low %GC. Nevertheless, it remains395

unclear how and why immune response enhancers have emerged with these396

sequence properties.397

While enhancers predicted to be associated with immune response are GC-398

poor, a dichotomy of enhancers solely based on GC-content did not highlight a399

specific set of enhancers associated with immune response genes. This observa-400

tion might reflect the importance of the DNA sequence, with the DNA shape401

conformation at enhancer regions as a secondary effect. DNA structural proper-402

ties were shown to be linked with DNA flexibility, nucleosome positioning, and403

gene expression regulation [41–45]. The more negative ProT in class 2 (Fig-404

ure 1e) corresponds to lower GC content [46]. This could relate to 3 hydrogen405

bonds in G/C pairs versus 2 in A/T pairs, which determines the ability of a base406

pair to form a ProT angle. Moreover, the differences in DNA shape features be-407

tween the two classes of enhancers might relate to differences in conformational408

flexibility. Indeed, we observed class 1 enhancers with less negative ProT, lower409
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HelT, wider MGW, larger Roll compared to class 2 enhancers (Figure 1c-f).410

These characteristics all relate to increased flexibility of the DNA [47], which411

could provide a topological explanation for the differences observed between the412

two classes.413

The classification of human enhancers was performed from basic feature vec-414

tors summarizing G+C patterns along enhancer regions. Our observations are415

reminiscent of the ”enhancer–core-promoter specificity” observed in Drosophila [48].416

Zabidi et al. uncovered two classes of enhancers regulating ”housekeeping”417

versus ”developmental” genes, which differ in genomic distribution and in the418

presence of distinct regulatory elements [48]. Each enhancer appears to have419

acquired specific DNA features to most effectively regulate the particular pro-420

moters it has to regulate [49]. This hypothesis is in agreement with our identi-421

fication of two classes of enhancers that were defined based on DNA sequence422

composition and predicted to target promoters associated with genes of distinct423

biological functions. Similar to Zabidi et al. [48], we found distinct genomic424

organizations between two classes of enhancers, one more ubiquitously active425

while the other was more cell type-specific.426

A recent perspective on immunological memory suggested that transient427

modifications to chromatin along with inducible noncoding RNAs could medi-428

ate a “short-term memory” in immune cells [50]. The principle of this short-term429

memory is that some histone modifications and regulatory molecules like mi-430

croRNAs and TFs would be persistent after stimulation, even though limited in431

time. Mediators of response to stimuli were categorized into (i) labile mediators432

of activation and (ii) long-lasting mediators of short term memory [50]. It repre-433

sents a way for both the adaptive and innate immune cells to be more effective434

in responding to secondary stimulations. Our results suggest that enhancers435

could also be mediators of the immune response to stimuli lying in the two436

categories presented by Monticelli et al. [50]. Indeed, we observed that class 2437

enhancers, associated with immune response genes, were showing a long-term438

response activity to stimuli, as opposed to short-term patterns of activity for439

class 1 enhancers (Figure 6). We hypothesize that (i) class 1 enhancers are440

used for a rapid but short response to stimuli, representing labile mediators of441

activation and (ii) class 2 enhancers correspond to robust long-lasting media-442

tor of short-term memory to memorize which genes need to be activated after443

stimulation. Dedicated experiments will be necessary to assess this hypothesis.444

Materials and Methods445

Human enhancers clusterization446

We retrieved the hg19 positions of the 38,554 FANTOM5 robust human en-447

hancers in BED12 format from http://enhancer.binf.ku.dk/presets/robust_448

enhancers.bed [22]. We extracted DNA sequences for regions of 1,001 bp cen-449

tered at the enhancer mid-points (columns 7-8 of the BED12 file) using the450

BEDTools [51]. We created binary vectors representing the enhancer sequences451
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with 1s and 0s corresponding to G or C and A or T, respectively. Note that452

7 enhancers were not considered as the 1,001 bp regions contained undefined453

nucleotides (Ns). The vectors were clustered into k = 2 classes using the k-454

means algorithm implemented in the KMeans function of the scikit Python455

module [52]. The silhouette plots (Figure S1) were constructed for k ∈ [2, 5] us-456

ing the silhouette samples function of the scikit Python module. Formally, the457

silhouette plots display the silhouette coefficient for each enhancer as (b−a)
max(a,b)458

where a is the mean intra-cluster euclidian distance and b the mean nearest-459

cluster euclidian distance.460

Similarly, we created vectors representing the enhancers by combining the461

values of HelT, MGW, ProT, and Roll at the enhancer sequences. The DNA462

shape values for the hg19 version of the human genome were retrieved as bigWig463

files from the GBshape database [11]. DNA shape feature values at enhancer464

regions were obtained by using bwtool [53]. It resulted in vectors of 4,004 values465

each that were submitted to the Kmeans function of the scikit Python module.466

Enhancer gene targets467

The enhancer-RefSeq promoter associations were retrieved from http://enhancer.468

binf.ku.dk/presets/enhancer_tss_associations.bed [22]. The correspond-469

ing official gene symbols were considered for the functional enrichment analyses.470

DNA shape feature plots471

The values of DNA structural features HelT, MGW, ProT, and Roll computed472

using the DNAshape tool [12] were obtained from the GBshape browser [11]473

as bigwig files at ftp://rohslab.usc.edu/hg19/. We retrieved the averaged474

DNA shape values at the enhancer regions from class 1 and class 2 using the475

agg subcommand of the bwtool tool [53].476

Gene ontology functional enrichment477

Official symbols corresponding to the RefSeq promoters associated with en-478

hancers from class 1 and class 2 were submitted to GOrilla [26] at http:479

//cbl-gorilla.cs.technion.ac.il/ using the March 5th 2016 update. We480

used the two unranked list option with genes associated with class 1 or class 2481

enhancers as targets and the aggregated set of 11,271 genes associated with482

the full set of enhancers as background. We searched for enriched GO biological483

processes with the most stringent p-value threshold (< 10−11). The DAG repre-484

sentation of the results in Figures S3-S4 were downloaded from the output page485

of GOrilla. The visual representation of the results in Figure 2 was constructed486

manually using Cytoscape 3.4.0 [54]. The same procedure has been applied487

to genes associated with enhancers classified with respect to their GC-content488

(Figures S2-S3).489
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Motif enrichment490

We applied Centrimo [27] from the MEME suite version 4.11.1 with default491

parameters to DNA sequences of regions ±500 bp around the mid-points of492

enhancers from class 1 and class 2. Class 1 enhancer regions were used as493

foreground and class 2 enhancer regions as background and vice-versa. The494

MEME databases of motifs considered for enrichment were derived from [55]495

(jolma2013.meme), JASPAR [56] (JASPAR CORE 2016 vertebrates.meme), Cis-496

BP [57] (Homo sapiens.meme), Swiss Regulon [58] (Swiss Regulon human and mouse.meme),497

and HOCOMOCO [59] (HOCOMOCOv10 HUMAN mono meme format.meme).498

The same procedure was applied to promoter regions (±500 bp around TSSs)499

associated with class 1 and class 2 enhancers.500

Figure 3 has been obtained from the html output of Centrimo by selecting501

the 3 most enriched motifs (ranked using the Fisher E-value). We did not502

consider inferred motifs in Cis-BP [57].503

Genome segmentation504

ENCODE genome segmentation505

The genome segmentation using the combination of results from ChromHMM [34]506

and Segway [35] for ENCODE tier 1 and tier 2 cell types GM12878, H1hesc,507

HelaS3, HepG2, HUVEC, and K562 were retrieved at http://hgdownload.508

cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgSegmentation/.509

Genome segmentation in dendritic cells510

The genome segmentation of DCs before and after MTB infection [38] was511

computed using ChromHMM [34] and retrieved at http://132.219.138.157:512

8080/DC_NI_7_segments_modID.bed.gz and http://132.219.138.157:8080/513

DC_MTB_7_segments_modID.bed.gz.514

Genome segmentation overlap with enhancers515

The overlap between enhancers and genome segments were obtained using the516

intersect subcommand of the BEDTools requiring a minimum overlap of 50%517

of the enhancer lengths. We considered enhancers as in active states if they518

overlapped the TSS, promoter flank, enhancer, weak enhancer, and transcribed519

segments.520

RELA ChIP-seq data analyses521

The ENCODE RELA ChIP-seq data in GM12878 cells was retrieved at http://522

hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/523

wgEncodeAwgTfbsSydhGm12878NfkbTnfaIggrabUniPk.narrowPeak.gz. To iden-524

tify active FANTOM5 enhancers in GM12878, we considered the overlap be-525

tween 1,001 bp-long regions around enhancer’s mid-points and genome segments526
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predicted by ChromHMM and Segway combined as enhancer or weak enhancer.527

Similarly, active FANTOM5 promoters were obtained by overlapping 1,001 bp-528

long regions around TSSs and genome segments predicted as TSS or promoter529

flanks by ChromHMM and Segway combined. The identified 1,001 bp-long ac-530

tive enhancer and promoter regions were further overlapped with RELA ChIP-531

seq peaks. All overlaps were computed with the intersect subcommand of the532

BEDTools.533

Enhancer expression specificity534

The cell-type expression specificity of enhancers was computed as

entropy(enhancer expression)

log2(number of cell types)

in [22]. The binary matrix of enhancer usage across FANTOM5 samples was ob-535

tained at http://enhancer.binf.ku.dk/presets/hg19_permissive_enhancer_536

usage.csv.gz. The association between FANTOM5 samples and cell types was537

obtained from Tables S10-S11 in [22]. Heat maps in Figure 5 were computed538

using the colormesh function of the matplotlib.pyplot Python module [60].539

Enhancer dynamics540

FANTOM5 classification in the 14 dynamics displayed in Figure 6 was obtained541

from Auxiliary data table S3 in [33]. The classification provided response class542

assignments to 1,533 and 1,161 class 1 and class 2 enhancers, respectively. Re-543

sponse classes were assigned to 2,311 and 2,407 promoters associated with class 1544

and class 2 enhancers, respectively. Note that enhancers and promoters can be545

assigned to multiple response classes.546

Corresponding plots (Figures 6) and enrichment analyses were performed547

using pandas Python data structure [61] and the scipy Python library [62] in548

the IPython environment [63].549

Chromatin conformation data550

The enrichment for enhancers associated to a specific class in each TAD or551

chromatin domain (see below) was computed using Binomial test p-values as552

implemented by the binom.test function in the R environment [64]. As a con-553

trol, we randomly assigned the labels class 1 and class 2 to the enhancers and554

computed the corresponding Binomial test p-values; this procedure was applied555

to 1,000 random trials.556

Topologically associating domains557

As TADs have been shown to be conserved between cell types and species,558

we retrieved the TADs defined in the first study describing them [7]. The559

TADs were predicted in mouse embryonic stem cells and we used the liftOver560
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tool from the UCSC genome browser at https://genome.ucsc.edu/cgi-bin/561

hgLiftOver to map them to hg19 coordinates.562

Chromatin loops563

The positions of the chromatin loops computed with the HICCUPS tools [39]564

from Hi-C data on the GM12878, HMEC, HUVEC, HeLa, IMR90, K562, KBM7,565

and NHEK human cell lines were retrieved from GEO at http://www.ncbi.566

nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525.567

Enrichment p-values568

P-values throughout the manuscript were computed using the Fisher exact test569

except otherwise stated.570
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Figure S1: Silhouette plots of k-means clusters. Silhouette plots for clus-
ters obtained using the k-means clusterization algorithm for k = 2 (a), k = 3
(b), k = 4 (c), and k = 5 (d). After clusterization of the enhancers using
the k-means algorithm, the silhouette score was computed for each enhancer
vector. For each k-means clusterization corresponding to each panel, clusters
are represented with different colors. The scores range from -1 to 1 with -1
indicating a possible assignment of the enhancer vector to the wrong cluster, 0
indicating that the vector is close to the boundary between two clusters, and
1 indicating that the vector is far away from the boundary between two clus-
ters. The silhouette score is calculated as (b−a)/max(a, b) where a is the mean
intra-cluster distance and b the mean nearest-cluster distance for each sample
as implemented in the scikit learn silhouette score function. The red dashed
lines represent the average silhouette score over all the enhancer vectors (0.019
for k = 2, 0.009 for k = 3, 0.005 for k = 4, and 0.002 for k = 5).

Figure S2: DNA shape features at enhancers from DNA shape-based
clusterization. DNA shape feature values are provided for human enhancers
from set 1 and set 2 in blue and green, respectively. Average DNA shape values
(y-axis) along the DNA regions ±2, 000 bp centered at enhancer mid-points
(x-axis) for DNA shape features HelT (a), MGW (b), ProT (c), and Roll (d).

Figure S3: Functional enrichment for genes associated to class 1 en-
hancers. Directed acyclic graph of the enriched GO biological processed ob-
tained using GOrilla on the set of genes predicted to be regulated by enhancers
from class 1.

Figure S4: Functional enrichment for genes associated to class 2 en-
hancers. Directed acyclic graph of the enriched GO biological processed ob-
tained using GOrilla on the set of genes predicted to be regulated by enhancers
from class 2.

Figure S5: Functional enrichment for genes associated to GC-poor en-
hancers. Genes predicted to be regulated by %GC poor (%GC < 46.15) were
submitted to GOrilla. The figure represents the directed acyclic graph of the
enriched GO biological processed obtained.

Figure S6: Functional enrichment for genes associated to GC-rich en-
hancers. Genes predicted to be regulated by %GC poor (%GC > 46.15) were
submitted to GOrilla. The figure represents the directed acyclic graph of the
enriched GO biological processed obtained.
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Figure S7: Human enhancers and genome segmentation. Histograms of
the proportion of human enhancers (y-axis) in class 1 (blue) and class 2 (green)
lying within genome segments (x-axis) as annotated by combined results of
ChromHMM [34] and Segway [35] on human lymphoblastoid (GM12878; a),
cervical cancer (HeLa-S3; b), liver carcinoma (HepG2; c), umbilical vein en-
dothelial (HUVEC; d), and chronic myelogenous leukemia (K562; e) cell lines
from the ENCODE project [37]. Statistical significance (Bonferroni-corrected
p-value < 0.01) of enrichment for enhancers from a specific class is indicated by
’**’.

Figure S8: Enhancer activation upon MTB infection. Stacked histogram
of the fraction of human enhancers (y-axis) from class 1 and class 2 predicted
to be activated (red), inhibited (blue), or with unchanged activity (grey). Pre-
dictions were obtained using genomic segments predicted by ChromHMM [34]
on human dendritic cells before and after infection with Myobacterium tuber-
culosis [38].

Figure S9: Cell type expression specificities of human enhancers. The
cell type expression specificities derived from FANTOM5 CAGE datasets [22]
is provided as a heat map for human enhancers in class 1 (a) and class 2 (b).
The color (see scale) represents the fraction of expressed enhancers in each cell
type (columns) found in each expression specificity range (rows). CAGE, Cap
Analaysis of Gene Expression.

Figure S10: Enrichment of enhancers from a single class within chro-
matin loops. For each chromatin loop predicted in HeLa (a), HMEC (b),
HUVEC (c), IMR90 (d), K562 (e), KBM7 (f), and NHEK (g) cell lines, we
computed the p-value of the Binomial test to assess enrichment for enhancers
from a single class. The plots compare the density (y-axis) of p-values for Bino-
mial tests (x-axis) applied to classes 1 and 2 enhancers (red) and 1,000 random
assignments of class labels to the enhancers (black).

Figure S11: Organization of enhancers within chromatin loops. Den-
sity (y-axis) of distances (x-axis) between enhancers and chromatin loop cen-
ters/anchors. The distances were normalized by the lengths of the loops. En-
hancers at the center of the loops were found at distance 0.0 while enhancers
at chromatin loops boundaries/anchors were found at distance 0.5. Results
associated with class 1 and class 2 enhancers are depicted in blue and green,
respectively. HeLa (a), HMEC (b), HUVEC (c), IMR90 (d), K562 (e), KBM7
(f), and NHEK (g) cell lines were considered.

Table S1: List of genes associated with class 1 (first column) and class 2 (second
column) enhancers derived from Andersson et al. [22].
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Table S2: Enriched GO biological processes associated with genes predicted to
be regulated by class 1 enhancers.

Table S3: Enriched GO biological processes associated with genes predicted to
be regulated by class 2 enhancers.

Data S1: Centrimo motif enrichment analyses. Centrimo was ap-
plied to regions of 1,001 bp centered around enhancers’ mid-points
from class 1 (centrimo class1vs2 enhancers.html) and class 2 (cent-
rimo class2vs1 enhancers.html). Promoter regions of 1,001 bp centered
around TSSs associated with class 1 (centrimo class1vs2 promoters.html) and
class 2 (centrimo class2vs1 promoters.html) were also subjected to Centrimo.
Position enrichment of motifs were focussed around enhancer mid-points for
enhancers and all regions for promoters.
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