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Abstract 19 

RNA viruses are notorious for their ability to evolve rapidly under selection in novel environments. It is known 20 

that the high mutation rate of RNA viruses can generate huge genetic diversity to facilitate viral adaptation. 21 

However, less attention has been paid to the underlying fitness landscape that represents the selection 22 

forces on viral genomes. Here we systematically quantified the distribution of fitness effects (DFE) of about 23 

1,600 single amino acid substitutions in the drug-targeted region of NS5A protein of Hepatitis C Virus (HCV). 24 

We found that the majority of non-synonymous substitutions incur large fitness costs, suggesting that NS5A 25 

protein is highly optimized in natural conditions. We characterized the adaptive potential of HCV by 26 

subjecting the mutant viruses to selection by the antiviral drug Daclatasvir. Both the selection coefficient and 27 

the number of beneficial mutations are found to increase with the level of environmental stress, which is 28 

modulated by the concentration of Daclatasvir. The changes in the spectrum of beneficial mutations in NS5A 29 

protein can be explained by a pharmacodynamics model describing viral fitness as a function of drug 30 

concentration. We test theoretical predictions regarding the distribution of beneficial fitness effects of mutations. 31 

We also interpret the data in the context of Fisher’s Geometric Model and find an increased distance to optimum 32 

as a function of environmental stress. Finally, we show that replication fitness of viruses is correlated with the 33 

pattern of sequence conservation in nature and viral evolution is constrained by the need to maintain protein 34 

stability. 35 

  36 
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Introduction 37 

In our evolutionary battles with microbial pathogens, RNA viruses are among the most formidable foes. 38 

HIV-1 and Hepatitis C Virus acquire drug resistance in patients under antiviral therapy. Influenza and Ebola 39 

virus cross the species barrier to infect human hosts. Understanding the evolution of RNA viruses is 40 

therefore of paramount importance for developing antivirals and vaccines and assessing the risk of future 41 

emergence events (Goldberg et al. 2012; Domingo et al. 2012; Metcalf et al. 2015). Comprehensive 42 

characterization of viral fitness landscapes, and the principles underpinning them, will provide us with a map 43 

of evolutionary pathways accessible to viruses and guide our design of effective strategies to limit antiviral 44 

resistance, immune escape and cross-species transmission (Turner and Elena 2000; Ke et al. 2015; Barton 45 

et al. 2016). 46 

Although the concept of fitness landscapes has been around for a long time (Wright 1932), we still know 47 

little about their properties in real biological systems. Previous empirical studies of fitness landscapes have 48 

been constrained by very limited sampling of sequence space. In a typical study, mutants are generated by 49 

site-directed mutagenesis and assayed for growth rate individually. We and others have recently developed 50 

a high-throughput technique, often referred to as “deep mutational scanning” or “quantitative high-resolution 51 

genetics”, to profile the fitness effect of mutations by integrating deep sequencing with selection experiments 52 

in vitro or in vivo (Hietpas et al. 2011; Wu et al. 2013; Thyagarajan and Bloom 2014; Qi et al. 2014; Fowler 53 

and Fields 2014). This novel application of next generation sequencing has raised an exciting prospect of 54 

large-scale fitness measurements (Olson et al. 2014; Puchta et al. 2015; Li et al. 2016; Wu et al. 2016) and a 55 

revolution in our understanding of molecular evolution (He and Liu 2016). 56 

The distribution of fitness effects (DFE) of mutations is a fundamental entity in genetics and reveals the 57 

local structure of a fitness landscape (Burch and Chao 2000; Eyre-Walker and Keightley 2007; Hietpas et al. 58 

2011; Desai 2013; Jacquier et al. 2013; Bataillon and Bailey 2014; Chevereau et al. 2015; Bank et al. 2015). 59 

Deleterious mutations are usually abundant and impose severe constraints on the accessibility of fitness 60 

landscapes. In contrast, beneficial mutations are rare and provide the raw materials of adaptation. 61 

Quantifying the DFE of viruses is crucial for understanding how these pathogens evolve to acquire drug 62 

resistance and surmount other evolutionary challenges.  63 

Most empirical studies of the DFE have been performed in a single, static environment (Eyre-Walker 64 

and Keightley 2007; Bataillon and Bailey 2014). A central challenge is to characterize the DFE, and its 65 

determinants, in fluctuating or heterogeneous environments where evolution typically occurs (e.g. fluctuating 66 
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drug concentrations or a gradient across space). Previous studies on yeast have investigated the change in 67 

DFE across different levels of temperature and salinity (Hietpas et al. 2013; Bank et al. 2014). For bacteria, 68 

the fitness effects of mutations at different drug concentrations have been studied (Firnberg et al. 2014). 69 

One recent study has demonstrated that drug concentration modulates the shape of the DFE and 70 

determines the evolvability under new environments (Stiffler et al. 2015). In another study, the implications of 71 

differing drug concentrations on the adaptive landscape have been examined in the context of resistance 72 

evolution (Ogbunugafor et al. 2016). For viruses, the fitness effects of mutations have been measured 73 

across different hosts (Lalić et al. 2011; Vale et al. 2012). The shape of DFE of viruses has been inferred 74 

from experimentally passaged populations (Foll et al. 2014) and from patient data (Renzette et al. 2017).  75 

In this study, we profile the DFE of ~1,600 single amino acid substitutions in a drug-targeted viral protein 76 

by combining selection experiment of a mutant library and deep sequencing. We examine the changes in 77 

DFE under varying levels of environmental stress by tuning the concentration of an antiviral drug. We test 78 

theoretical predictions regarding the distribution of beneficial fitness effects of mutations (Orr 2003). We also 79 

interpret the data in the context of Fisher’s Geometric Model (Martin and Lenormand 2006b) and find an 80 

increased distance to optimum as a function of environmental stress. Finally, we show that replication fitness 81 

of viruses is correlated with the pattern of sequence conservation in nature and viral evolution is constrained 82 

by the need to maintain protein stability.  83 

 84 

Results 85 

Profiling the fitness landscape of the drug-interacting domain of HCV NS5A protein 86 

The system used in our study is Hepatitis C Virus (HCV), a positive sense single-stranded RNA virus with a 87 

genome of ~9.6 kb. HCV has been studied extensively in the past two decades in patients and in laboratory 88 

and provides an excellent model system to study viral evolution. We applied high-throughput assays to map 89 

the fitness effects of all single amino acid substitutions in domain IA (amino acid 18-103) of HCV NS5A 90 

protein (Methods). This domain is the target of several directly-acting antiviral drugs, including the potent 91 

HCV NS5A inhibitor Daclatasvir (DCV) (Gao et al. 2010). 92 

To study the DFE of mutations of HCV NS5A protein, we conducted new selection experiments using a 93 

previously constructed saturation mutagenesis library of mutant viruses (Qi et al. 2014). Briefly, each codon 94 

in the mutated region was randomized to cover all possible single amino acid substitutions. We observed 95 

2520 non-synonymous mutations in the plasmid library, as well as 105 synonymous mutations. After 96 

transfection to reconstitute mutant viruses, we performed selection in an HCV cell culture system 97 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 9, 2018. ; https://doi.org/10.1101/078428doi: bioRxiv preprint 

https://doi.org/10.1101/078428
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

(Lindenbach et al. 2005; Wakita et al. 2005). The relative fitness of a mutant virus to the wild-type virus was 98 

calculated based on the changes in frequency of the mutant virus and the wild-type virus after one round of 99 

selection in cell culture (Supplementary Figure 1). In our selection experiment, we grew 5 small sub-libraries 100 

(~500 mutants each) separately to reduce the noise in fitness measurements (Methods). The fitness data 101 

reported in this study is highly correlated to an independent experiment using the same plasmid library 102 

(Supplementary Figure 2) (Qi et al. 2014).  103 

Our experiment provides a comprehensive profiling of the fitness effect of single amino acid substitutions 104 

(1565 out of 1634 possible substitutions, after filtering out low frequency mutants in the plasmid library). We 105 

grouped together non-synonymous mutations leading to the same amino acid substitution. As expected, the 106 

fitness effects of synonymous mutations were nearly neutral, while most non-synonymous mutations were 107 

deleterious (Figure 1). We found that the majority of single amino acid mutations had fitness costs and more 108 

than half of them were found to be significantly deleterious, or “lethal” (Methods). The fraction of lethal 109 

mutations (not shown explicitly in Figure 1) is 57.0% (932/1634) for single amino acid substitutions, 1.0% 110 

(1/105) for synonymous mutations and 90.6% (77/85) for nonsense mutations. The low tolerance of 111 

non-synonymous mutations in HCV NS5A, which is an essential protein for viral replication, is consistent with 112 

previous small-scale mutagenesis studies of RNA viruses (Sanjuan et al. 2004). Our data support the view 113 

that RNA viruses are very sensitive to the effect of deleterious mutations, possibly due to the compactness of 114 

their genomes (Elena et al. 2006; Rihn et al. 2013).  115 

Using the distribution of fitness effects of synonymous mutations as a benchmark for neutrality, we 116 

identified that only 2.3% (37/1634) of single amino acid mutations are beneficial (Methods). The estimated 117 

fraction of beneficial mutations is consistent with previous small-scale mutagenesis studies in viruses 118 

including bacteriophages, vesicular stomatitis virus, etc. (Sanjuan et al. 2004; Burch et al. 2007; Silander et 119 

al. 2007; Eyre-Walker and Keightley 2007). Our results indicate that HCV NS5A protein is under strong 120 

purifying selection, suggesting that viral proteins are highly optimized in their natural conditions. 121 

Adaptive potential as a function of environmental stress 122 

Beneficial mutations are the raw materials of protein adaptation (Eyre-Walker and Keightley 2007). In this 123 

study, we aimed to study the role of environmental stress in modulating the adaptive potential of 124 

drug-targeted viral proteins. In an independent study (Qi et al. 2014), the mutant library of HCV NS5A protein 125 

was selected under a single drug concentration ([DCV]=20 pM) to profile the effects of mutations on drug 126 

resistance. In this study, we selected the mutant library at 10, 40 and 100 pM of DCV. The drug 127 

concentrations were chosen based on in vitro IC50 of wild type HCV virus (~20 pM) to represent different 128 
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levels of environmental stress (mild, intermediate and strong).  129 

By tuning the concentration of DCV, we observed a change in the DFE (Supplementary Table 1&2), 130 

particularly of beneficial mutations (Figure 2A). At higher drug concentrations, we observed an increase in 131 

the median selection coefficient (Figure 2B) as well as the total number of beneficial mutations (Figure 2C, 132 

Supplementary Table 3). We further tested whether the shape of this distribution changed under drug 133 

selection. Previous empirical studies supported the hypothesis that the DFE of beneficial mutations is 134 

exponential (Orr 1998, 2003, 2006; Imhof and Schlötterer 2001; Sanjuan et al. 2004; Rokyta et al. 2005; 135 

Cowperthwaite et al. 2005; Kassen and Bataillon 2006; Burch et al. 2007; Carrasco et al. 2007; MacLean 136 

and Buckling 2009; Peris et al. 2010; Bataillon et al. 2011). Following a maximum likelihood approach, we fit 137 

the DFE of beneficial mutations to the Generalized Pareto Distribution (Supplementary Figure 3, Methods). 138 

The fitted distribution is described by two parameters: a scale parameter (τ), and a shape parameter (κ) that 139 

determines the behavior of the distribution’s tail. Using a likelihood-ratio test (Beisel et al. 2007), we found 140 

that our data are consistent with the null hypothesis that the DFE of beneficial mutations is exponential(κ = 0) 141 

(Supplementary Table 4).  142 

Furthermore, we used a maximum-likelihood approach to fit a displaced-gamma distribution to the DFE 143 

to estimate the distance to the phenotypic optimum in Fisher’s Geometric Model (FGM) (Martin and 144 

Lenormand 2006b; Bank et al. 2014) (Supplementary Figure 4). The displaced-gamma distribution has the 145 

shape of a negative gamma distribution, shifted by a parameter 0s  that indicates the distance of the initial 146 

genotype (i.e. wild-type) to the optimum (Methods). Estimated distances to the optimum under different 147 

conditions are summarized in Supplementary Table 5. In accordance with theoretical expectations, we found 148 

that the distance to the optimum increased as the level of environmental stress increased (i.e. increasing 149 

drug concentration). 150 

The effects of mutations on drug resistance and replication fitness 151 

Our results show that the adaptive potential of proteins is modulated by the strength of environmental stress. 152 

The changing spectra of beneficial mutations upon drug treatment can be explained by a 153 

pharmacodynamics model describing viral fitness as a function of drug concentration (i.e. phenotype-fitness 154 

mapping) (Figure 3A).  155 

50
0

50 [ ]
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+
 156 
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where 0f  is the fitness without drug selection and 50IC  is the half inhibitory concentration. The absolute 157 

fitness f  decreases with drug concentration[ ]drug . In this paper, we define a drug-resistant mutant as any 158 

viral variant that is less inhibited than the wild type for some drug concentration, i.e. higher 50IC than 159 

wild-type (Rosenbloom et al. 2012).  160 

Mutations that reduce a protein’s binding affinity to drug molecules (i.e. less inhibited by the drug) may 161 

come with a fitness cost (i.e. smaller 0f  than wild-type). Thus, a drug-resistant mutant that is deleterious in 162 

the absence of drug may become beneficial under drug selection, leading to an increase in the number of 163 

beneficial mutations. Moreover, the relative fitness of the drug-resistant mutant is expected to increase with 164 

stronger selection pressure (Figure 3A, dashed line). The dose response curves were previously measured 165 

for a set of mutants constructed by site-directed mutagenesis (Supplementary Figure 5) (Qi et al. 2014). 166 

Indeed, we found that the relative fitness of validated drug-resistant mutants increased at higher drug 167 

concentration (Figure 3B); in contrast, drug-sensitive mutants became less fit under drug selection.  168 

Furthermore, we showed that the effects of mutations on drug resistance can be estimated from the 169 

fitness data and the results were generally consistent with estimates based on the dose response curves 170 

(Supplementary Figure 6, Methods). Among all the non-lethal single amino acid substitutions profiled in our 171 

HCV NS5A protein library, we found that roughly half of the mutations increased resistance to DCV (i.e. 172 

improved new function) at the expense of replication fitness without drug (Figure 3C, Spearman’s ρ= -0.13, 173 

p=8.3×10-4). This group of resistance mutations (lower right section in Figure 3C) can become beneficial 174 

when the positive selection imposed by the antiviral drug is strong, leading to an increase in the supply of 175 

beneficial mutations at higher drug concentrations. We found no association between drug resistance and 176 

fitness cost (Fisher’s exact test, p=0.26), suggesting that there is no or very weak tradeoff in adaptation of 177 

NS5A protein under the two different environments (i.e. with and without DCV selection). 178 

Deleterious mutations as evolutionary constraints  179 

While beneficial mutations open up adaptive pathways to genotypes with higher fitness, mutations that 180 

severely reduce replication fitness impose constraints on the evolution of viruses and are less likely to 181 

contribute to adaptation through gain of function. We analyzed sequence diversity of HCV sequences 182 

identified in patients from the HCV sequence database of Los Alamos National Lab (Methods). As expected, 183 

we found that amino acid sites with high fitness costs are often highly conserved (Figure 4A). The sequence 184 

diversity at each site was highly correlated to the replication fitness (the median fitness of observed mutants 185 
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at each site) measured in our study (Spearman’s ρ=0.82, p=1.8×10-21).  186 

To understand the biophysical basis of mutational effects (Liberles et al. 2012), we took advantage of 187 

the available structural information (Supplementary Figure 7A). The crystal structure of NS5A domain I is 188 

available excluding the amphipathic helix at N-terminus (Tellinghuisen et al. 2005; Love et al. 2009). We 189 

found that the fitness effects of deleterious mutations at buried sites (i.e. with lower solvent accessibility) 190 

were more pronounced than those at surface exposed sites (Figure 4B, Spearman’s ρ=0.51, p=5.1×10-6; 191 

Supplementary Figure 8A) (Ramsey et al. 2011). Moreover, we performed simulations of protein stability for 192 

individual mutants using PyRosetta (Methods) (Das and Baker 2008; Chaudhury et al. 2010). A mutation 193 

with ΔΔG>0, i.e. shifting the free energy difference to favor the unfolded state, is expected to destabilize the 194 

protein. We found that mutations that decreased protein stability led to reduced viral fitness (Figure 4C, 195 

Spearman’s ρ= -0.57, p=1.5×10-7). For example, mutations at a stretch of highly conserved residues 196 

(F88-N91) that run through the core of NS5A protein tended to destabilize the protein and significantly 197 

reduced the viral fitness. Mutations that increase ΔΔG beyond a threshold (~5 Rosetta Energy Unit) were 198 

mostly lethal (Supplementary Figure 8B). This is consistent with the threshold robustness model, which 199 

predicts that proteins become unfolded after using up the stability margin (Bloom et al. 2005; Wylie and 200 

Shakhnovich 2011; Olson et al. 2014). Also, we note that mutations can be deleterious because they impair 201 

protein function rather than destabilize the protein, so the correlation between protein stability and fitness is 202 

not expected to be perfect. The level of correlation between ΔΔG and fitness that we observed is similar to 203 

previous studies in other proteins (Firnberg et al. 2014; Wu et al. 2015).  204 

 205 

Discussion 206 

Site-directed mutagenesis and experimental evolution are traditional approaches to examine the DFE 207 

(Domingo-Calap et al. 2009; Sanjuán 2010; Levy et al. 2015; Visher et al. 2016). Both methods provide 208 

pivotal insights into the shape of the DFE, yet with limitations. The site-directed mutagenesis approach 209 

requires fitness assays for each individual mutant and can only provide a sparse sampling of mutations. In 210 

experimental evolution, the sampling of sequence space via de novo mutations is biased towards 211 

large-effect beneficial mutations, as they are more likely to fix in the population. In contrast, the deep 212 

mutational scanning approach (Fowler and Fields 2014), which utilizes high-throughput sequencing to 213 

simultaneously assay the fitness or phenotype of a library of mutants, allows for unbiased and large-scale 214 

sampling of fitness landscapes and thus is ideal for studying the characteristics of empirical DFE. The 215 

downside of this high-throughput approach is that the fitness measurements can be noisy, especially for 216 
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large mutant libraries (Matuszewski et al. 2016). In our experiment, we divided the mutant library into smaller 217 

sub-libraries (~500 mutants) in selection experiments. We compared the data to an independent experiment 218 

and found that the fitness estimates were largely reproducible (Supplementary Figure 2). We also showed 219 

that the observed change in the DFE under different conditions was consistent with validation experiments 220 

(Figure 3). Since this study is focused on the properties of the entire distribution of mutations rather than the 221 

effects of specific mutations, our findings on the general patterns of DFE are robust to the errors in fitness 222 

estimates. Our study quantified the fitness effects of single amino acid substitutions in the drug-targeted 223 

region of an essential viral protein. In general, the empirical DFE of HCV NS5A was consistent with previous 224 

findings that viral proteins were highly optimized in the natural condition and very sensitive to the effects of 225 

deleterious mutations.  226 

One crucial but often overlooked point is that DFE will vary as a function of the environment (Martin and 227 

Lenormand 2006a; Lalić et al. 2011; Stiffler et al. 2015). In the study by Stiffler et al. 2015, the level of 228 

environmental stress is controlled by ampicillin concentration. Because TEM-1’s function is to degrade 229 

ampicillin, deleterious mutations that impair the enzyme function (“loss-of-function”) would become more 230 

deleterious at higher dose of ampicillin. In our system, we do not expect the dose of Daclatasvir to alter the 231 

strength of purifying selection on maintaining HCV NS5A protein’s function in viral replication. Indeed, we do 232 

not find much difference on the deleterious side of DFE across different environments. Instead, we have 233 

observed significant changes on the beneficial side of DFE as a function of the drug dose. Because HCV 234 

NS5A protein is not well adapted in the novel environment of Daclatasvir selection, the effect of drug 235 

resistance mutations (“gain-of-function”) becomes more beneficial at higher drug dose. Moreover, due 236 

to the pleiotropic effect of mutations on drug resistance and replication fitness (Figure 3), there is an 237 

increasing supply of beneficial mutations at higher drug dose. 238 

Although different systems have distinct protein-drug interactions that lead to different resistance 239 

profiles (Robinson et al. 2011), the results in our study provide a general framework to study DFE of 240 

drug-targeted proteins. Future studies along this line will further our understanding of how proteins evolve 241 

new functions under the constraint of maintaining their original function (Soskine and Tawfik 2010), as 242 

exemplified in the evolution of resistance to directly-acting antiviral drugs (Rosenbloom et al. 2012). 243 

Quantifying the characteristics of DFE of drug-targeted proteins under different environments (e.g. varying 244 

levels of environmental stress, or conflicting selection pressures), would allow us to assess repeatability in 245 

the outcomes of viral evolution (de Visser and Krug 2014) and guide the design of therapies to minimize 246 

drug resistance (Ogbunugafor et al. 2016). 247 
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 248 

Conclusions 249 

Many viruses adapt rapidly to novel selection pressures, such as antiviral drugs. Understanding how 250 

pathogens evolve under drug selection is critical for the success of antiviral therapy against human 251 

pathogens. By combining deep sequencing with selection experiments in cell culture, we have quantified the 252 

distribution of fitness effects of mutations in the drug-targeted domain of Hepatitis C Virus NS5A protein. Our 253 

results indicate that the majority of single amino acid substitutions in NS5A protein incur large fitness costs. 254 

By subjecting the mutant viruses to selection under an antiviral drug, we find that the adaptive potential of 255 

viral proteins in a novel environment is modulated by the level of environmental stress. We test theoretical 256 

predictions regarding the distribution of fitness effects of mutations. Finally, we show that viral evolution is 257 

constrained by the need to maintain protein stability. 258 

 259 

Materials and Methods 260 

Mutagenesis 261 

The mutant library of HCV NS5A protein domain IA (86 amino acids) was constructed using saturation 262 

mutagenesis as previously described (Qi et al. 2014). In brief, the entire region was divided into five 263 

sub-libraries each containing 17-18 amino acids (~500 mutants in each sub-library). NNK (N: A/T/C/G, K: 264 

T/G) was used to replace each amino acid. The oligos, each of which contains one random codon, were 265 

synthesized by IDT. The mutated region was ligated to the flanking constant regions, subcloned into the 266 

pFNX-HCV plasmid and then transformed into bacteria. The pFNX-HCV plasmid carrying the viral genome 267 

was synthesized in Dr. Ren Sun’s lab based on the chimeric sequence of genotype 2a HCV strains J6/JFH1.  268 

Cell culture 269 

The human hepatoma cell line (Huh-7.5.1) was provided by Dr. Francis Chisari from the Scripps Research 270 

Institute, La Jolla. The cells were cultured in T-75 tissue culture flasks (Genesee Scientific) at 37 oC with 5% 271 

CO2. The complete growth medium contained Dulbecco's Modified Eagle's Medium (Corning Cellgro), 10% 272 

heat-inactivated Fetal Bovine Serum (Omega Scientific), 10 mM HEPES (Life Technologies), 1x MEM 273 

Non-Essential Amino Acids Solution (Life Technologies) and 1x Penicillin-Streptomycin-Glutamine (Life 274 

Technologies).  275 

Selection of mutant viruses 276 

Plasmid mutant library was transcribed in vitro using T7 RiboMAX Express Large Scale RNA Production 277 

System (Promega) and purified by PureLink RNA Mini Kit (Life Technologies). 10 µg of in vitro transcribed 278 
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RNA was used to transfect 4 million Huh-7.5.1 cells via electroporation by Bio-Rad Gene Pulser (246 V, 950 279 

µF). The supernatant was collected 6 days post transfection and virus titer was determined by 280 

immunofluorescence assay. The viruses collected after transfection were used to infect ~2 million Huh-7.5.1 281 

cells with an MOI at around 0.1-0.2. The five sub-libraries were passaged for selection separately. For the 282 

three different levels of selection pressure, the growth media was supplemented with 10 pM, 40 pM and 100 283 

pM HCV NS5A inhibitor Daclatasvir (BMS-790052), respectively. The supernatant was collected at 6 days 284 

post infection. 285 

Preparation of Illumina sequencing samples 286 

For each sample, viral RNA was extracted from 700 µl supernatant collected after transfection and after 287 

selection using QIAamp Viral RNA Mini Kit (Qiagen). Extracted RNA was reverse transcribed into cDNA by 288 

SuperScript III Reverse Transcriptase Kit (Life Technologies). The targeted region in NS5A (51-54 nt) was 289 

PCR amplified using KOD Hot Start DNA polymerase (Novagen). The Eppendorf thermocycler was set as 290 

following: 2 min at 95 °C; 25 to 35 three-step cycles of 20 s at 95 °C,15 s at 52-56 °C (sub-library #1, 52 °C; 291 

#2, 52 °C; #3, 52 °C; #4, 56 °C; #5, 54 °C) and 25s at 68 °C; 1 min at 68 °C. The number of PCR cycles are 292 

chosen based on the copy number of cDNA templates as determined by qPCR (Bio-Rad). The PCR primers 293 

are listed in Supplementary Table 6. The PCR products were purified using PureLink PCR Purification Kit 294 

(Life Technologies) and prepared for Illumina HiSeq 2000 sequencing (paired-end 100 bp) following 295 

5'-phosphorylation using T4 Polynucleotide Kinase (New England BioLabs), 3’ dA-tailing using dA-tailing 296 

module (New England BioLabs), and TA ligation of the adapter using T4 DNA ligase (Life Technologies). 297 

Each sample was tagged with a unique 3-bp customized barcodes, which were part of the adapter sequence 298 

and were sequenced as the first three nucleotides in both the forward and reverse reads (Wu et al. 2015) 299 

(Supplementary Table 7).  300 

Analysis of Illumina sequencing data  301 

The sequencing data were parsed by SeqIO function of BioPython. The reads from different samples were 302 

de-multiplexed by the barcodes and mapped to the entire mutated region in NS5A by allowing at maximum 5 303 

mismatches with the reference genome (Supplementary Data 3) (Qi et al. 2014). Since both forward and 304 

reverse reads cover the whole amplicon, we used paired reads to correct for sequencing errors. A mutation 305 

was called only if it was observed in both reads and the quality score at the corresponding position was at 306 

least 30. Sequencing reads containing mutations not supposed to appear in our single-codon mutant library 307 

were excluded from downstream analysis. The sequencing depth for each sub-library is at least ~105 and 308 

two orders of magnitude higher than the library complexity. 309 
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Calculation of relative fitness  310 

For each condition of selection experiments (i.e. different concentration of Daclatasvir [DCV]), the relative 311 

fitness (RF) of a mutant virus to the wild-type virus is calculated by the relative changes in frequency after 312 

selection, 313 

2 2

1 1([ ])
T T

mut WT
mut T T

mut WT

f fRF DCV
f f

= =

= =

   
=    
   

 314 

where 
T round

mutf =
and 

T round
WTf =

is the frequency of the mutant virus and the wild-type virus at round 1 (after 315 

transfection) or round 2 (after infection). The fitness of wild-type virus is normalized to 1. The fitness values 316 

estimated from one round (round 1 to round 2) have been shown to be highly consistent to estimated based 317 

round 0 to round 1 (Supplementary Figure 2), and estimates from multiple rounds of selection (Qi et al. 318 

2014). A mutant was labeled as “missing” if the mutant’s frequency in the plasmid library was less than 319 

0.0005 (RF=NaN, see Supplementary Data 1 and 2). A mutant was labeled as “lethal” if the mutant’s 320 

frequency after transfection was less than 0.0005, or its frequency after infection was 0 (RF=0) (Qi et al. 321 

2014). 322 

The selection coefficient is defined in the context of discrete generations (Chevin 2010) 323 

log( )mut muts RF=  324 

The threshold for beneficial mutations is chosen as 2 silentσ , where silentσ  is the standard deviation of the 325 

selection coefficients of synonymous mutations (Figure 1). The fitness effects of non-synonymous mutations 326 

leading to the same amino acid substitution were averaged to estimate the fitness effect of the given single 327 

amino acid substitution. 328 

Fitting the distribution of fitness effects of beneficial mutations 329 

The distribution of selection coefficients of beneficial mutations were fitted to a Generalized Pareto 330 

Distribution following a maximum likelihood approach (Beisel et al. 2007),  331 

1

1

( , )

1 (1 ) , 0,   0             (Frechet)

1 (1 ) ,0 ,  i 0   (Weibull)

1 , 0,  if 0                         (Gumbel)
x

F x

x x if

x x f

e x

κ

κ

τ

κ τ

κ κ
τ
κ τ κ
τ κ

κ

−

−

−

=

 − + ≥ >

 − + ≤ < − <

 − ≥ =

 332 
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Only mutations with selection coefficients higher than the beneficial threshold 2 silentσ were included in the 333 

distribution of beneficial mutations. The selection coefficients were normalized to the beneficial threshold. 334 

The shape parameter κ determines the tail behavior of the distribution, which can be divided into three 335 

domains of attraction: Gumbel domain (exponential tail, κ = 0), Weibull domain (truncated tail, κ < 0) and 336 

Fréchet domain (heavy tail, κ > 0). For each selection condition, a likelihood ratio test is performed to 337 

evaluate whether the null hypothesis κ = 0 (exponential distribution) can be rejected.  338 

Fitting the distribution of fitness effects to Fisher’s Geometrical model 339 

Fisher’s Geometrical Model predicts that the distribution of fitness effects of mutations is distributed 340 

according to a negative displaced gamma distribution (Martin and Lenormand 2006a, Bank et al. 2014). This 341 

distribution has a shape parameter (α), a scale parameter (β), and a displacement parameter (s0). We 342 

assume that selection coefficients are measured with a normally distributed measurement error with 343 

standard deviation σsilent. Thus, the observed distribution of selection coefficients is modeled as the sum of a 344 

gamma and normally distributed random variable. We use the NormalGamma package in R to numerically 345 

compute the normal-gamma density function (Plancade et al. 2012). Maximum likelihood estimates of the 346 

parameters of the negative displaced gamma distribution are obtained with L-BFGS-B optimization 347 

implemented in the R function optim. 348 

Inferring drug resistance from fitness data 349 

We can quantify the drug resistance of each mutant in the library by computing its fold change in relative 350 

fitness, 351 

([ ])([ ]) mut

mut

RF DCVW DCV
RF

=  352 

Here mutRF  is the relative fitness of a mutant under the natural condition (i.e. no drug). W is the fold change 353 

in relative fitness and represents the level of drug resistance relative to the wild type. W > 1 indicates drug 354 

resistance, and W < 1 indicates drug sensitivity.  355 

This empirical measure of drug resistance can be directly linked to a simple pharmacodynamics model 356 

(Rosenbloom et al. 2012), where the viral replicative fitness is modeled as a function of drug dose, 357 

([ ])
[ ] [ ]

mut wt
predict

mut wt

IC ICW DCV
DCV IC DCV IC

   
=    + +   

 358 

Here IC denotes the half-inhibitory concentration. The Hill coefficient describing the sigmoidal shape of the 359 

dose response curve is fixed to 1, as used in fitting the dose response curves of wild-type virus and validated 360 
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mutant viruses (Supplementary Figure 5). The drug resistance score W inferred from fitness data is 361 

consistent with the drug resistance score predictW  predicted from dose response curves of validated mutants 362 

(Supplementary Figure 6).  363 

Calculation of relative solvent accessibility 364 

DSSP (http://www.cmbi.ru.nl/dssp.html) was used to compute the Solvent Accessible Surface Area (SASA) 365 

(Kabsch and Sander 1983) from the HCV NS5A protein structure (PDB: 3FQM) (Love et al. 2009). SASA 366 

was then normalized to Relative Solvent Accessibility (RSA) using the empirical scale reported in (Tien et al. 367 

2013).  368 

Predictions of protein stability 369 

ΔΔG (in Rosetta Energy Unit) of HCV NS5A mutants was predicted by PyRosetta (version: 370 

“monolith.ubuntu.release-104”) as the difference in scores between the monomer structure of mutants 371 

(single amino acid mutations from site 32 to 103) and the reference (PDB: 3FQM). The score is designed to 372 

capture the change in thermodynamic stability caused by the mutation (ΔΔG) (Das and Baker 2008). The 373 

reference sequence of NS5A in the PDB file (PDB: 3FQM) is different from the WT sequence in our 374 

experiment by 20 amino acid substitutions. Thus instead of directly comparing ΔΔG to fitness effects of 375 

individual mutations, we used the median ΔΔG caused by amino acid substitutions at each site. 376 

The PDB file of NS5A dimer was cleaned and trimmed to a monomer (chain A). Next, all side chains were 377 

repacked (sampling from the 2010 Dunbrack rotamer library (Shapovalov and Dunbrack 2011)) and 378 

minimized for the reference structure using the talaris2014 scoring function. After an amino acid mutation 379 

was introduced, the mutated residue was repacked, followed by quasi-Newton minimization of the backbone 380 

and all side chains (algorithm: “lbfgs_armijo_nonmonotone”). This procedure was performed 50 times, and 381 

the predicted ΔG of a mutant structure is the average of the three lowest scoring structures. 382 

We note that predictions based on NS5A monomer structure were only meant to provide a crude profile of 383 

how mutations at each site may impact protein stability. Potential structural constraints at the dimer interface 384 

have been ignored, which is further complicated by the observations of two different NS5A dimer structures 385 

(Tellinghuisen et al. 2005; Love et al. 2009).  386 

Diversity of HCV sequences identified in patients  387 

Aligned nucleotide sequences of HCV NS5A protein were downloaded from Los Alamos National Lab 388 

database (Kuiken et al. 2005) (all HCV genotypes, ~2600 sequences total) and clipped to the region of 389 
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interest (amino acid 18-103 of NS5A). Sequences that caused gaps in the alignment of H77 reference 390 

genome were manually removed. After translation to amino acid sequences, sequences with ambiguous 391 

amino acids were removed (~2300 amino acid sequences after filtering). The sequence diversity at each 392 

amino acid site was quantified by Shannon entropy.  393 

Data and reagent availability 394 

All research materials are available upon request. Raw sequencing data have been submitted to the NIH 395 

Short Read Archive (SRA) under accession number: BioProject PRJNA395730. All scripts have been 396 

deposited to https://github.com/leidai-evolution/DFE-HCV. 397 
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 571 
Figure 1. Distribution of fitness effects (DFE) of single amino acid substitutions in domain IA of HCV 572 

NS5A protein without drug selection. DFE of single amino acid substitutions (A) and synonymous 573 

substitutions (B). Lethal mutations are not shown in the histogram.  574 
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 575 

Figure 2. The spectrum of beneficial mutations changes under increasing environmental stress 576 

imposed by the antiviral drug Daclatasvir. (A) DFE of single amino acid substitutions in domain IA of HCV 577 

NS5A protein under increasing environmental stress by Daclatasvir. The black line indicates the threshold 578 

used for classifying beneficial mutations (Methods). (B) The cumulative distribution function of the fitness 579 

effect of beneficial mutations. (C) The number of beneficial mutations as a function of environmental stress 580 

imposed by Daclatasvir.  581 
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 582 

Figure 3. The adaptive potential under drug selection is determined by the effects of mutations on 583 

replication fitness and drug resistance. (A) Hypothetical dose response curves of the wild-type virus and 584 

a drug-resistant mutant virus. The absolute fitness f  decreases with drug concentration [ ]drug585 

50
0

50 [ ]
ICf f

IC drug
=

+
, where 0f  is the fitness without drug selection and 50IC  is the half inhibitory 586 

concentration. Compared to the wild-type virus, the hypothetical drug-resistant mutant carries a fitness cost 587 

(smaller 0f ) but is less sensitive to drug inhibition (larger 50IC ). Relative fitness of the drug-resistant mutant 588 

is expected to increase with drug concentration. (B) Relative fitness of validated drug-resistant and 589 

drug-sensitive mutants (Supplementary Figure 5) as a function of [DCV]. (C) The effects of mutations on 590 

replication fitness (i.e. fitness without drug) and drug resistance score W at [DCV]=40 pM (Methods).  591 
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 592 

Figure 4. Mutations with deleterious fitness effects reveal constraints of protein evolution. (A) The 593 

pattern of sequence conservation observed in patient sequences is highly correlated to the replication 594 

fitness measured in cell culture. (B) Mutations at amino acid sites with lower solvent accessibility tend to 595 

incur larger fitness costs. (C) Mutations at amino acid sites with larger effects on destabilizing protein 596 

stability (ΔΔG>0) tend to reduce the viral replication fitness. Changes in folding free energy ΔΔG (Rosetta 597 

Energy Unit) of NS5A monomer were predicted by PyRosetta. The median ΔΔG at each amino acid site is 598 

shown. In (A-C), the median fitness of observed mutants at each amino acid site is shown. In (B) and (C), 599 

red lines represent the fits by linear regression and are only used to guide the eye. 600 
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