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Abstract 

 

Modern genomics projects are generating millions of variant calls that must be annotated for 

predicted functional consequences at the level of gene expression and protein function.  Many 

of these variants are of interest owing to their potential clinical significance.  Unfortunately, 

state-of-the-art methods do not always agree on downstream effects for any given variant.  Here 

we present a readily extensible python framework (PyVar) for comparing the output of variant 

annotator methods in order to aid the research community in quickly assessing differences 

between methods and benchmarking new methods as they are developed.  We also apply our 

framework to assess the annotation performance of ANNOVAR, VEP, and SnpEff when 

annotating 81 million variants from the ‘1000 Genomes Project’ against both RefSeq and 

Ensembl human transcript sets.   
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Introduction 

 

High-throughput sequencing pipelines for genomic research and clinical use generally 

incorporate a downstream step to integrate predictions about the functional consequences of 

variation against a reference sequence at coding and non-coding sites in an individual’s 

genome.  This procedure relies first on accurate calling of the single-nucleotide polymorphisms 

(SNPs) by specialized methods [1] and second, on downstream assignment of consequences to 

those SNPs, so-called ‘variant annotation.’   

 

A major challenge in accurate variant annotation is the apparent lack of concordance when 

annotating against different transcript sets or between different annotation algorithms.  Others  

have shown that the use of different transcript sets as a basis for annotation can dramatically 

affect the outcome of the annotation calls [2].  Additionally, even if the same transcript set is 

used between methods, the method must select one or several of the potentially many 

transcripts to annotate against.  This leads to differing outcomes in annotations which may arise 

from different logic structures in the algorithms or different user criteria for annotation.  

Unfortunately, incorrect annotations or disagreement in annotation outcomes can lead 

investigators to waste resources tracking down variants of little interest or to miss severe 

variants of potential clinical significance.   

 

There is a need for comparison of the many competing methods for variant annotation and for 

easy, automated benchmarking of constantly changing existing methods as well as newly 

developed methods.  Here, we present an easily extensible python framework, PyVar, for 

automated analysis of variant annotator methods on a common dataset. PyVar allows users to 

quickly integrate the output of new or updated variant annotation methods into its benchmarking 

workflow by providing simple class constructors to standardize the output of different methods.  

The framework automatically produces rich HTML graphics for exploratory analysis.  A unique 

feature of PyVar is that we have attempted to standardize the annotation consequences from 

each annotator into a common ontology, simplifying downstream analysis.  Heatmaps of log-

normalized, most severe standardized and non-standardized consequences are created 

automatically. We used our PyVar framework to analyze 81 million SNPs from a publically 

available repository at the 1000 Genomes Project [3] with three popular variant annotator 

methods: ANNOVAR [4], SnpEff [5], and VEP [6].  We will discuss a comparison of the results 
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for these three methods and novel insights into the cause of discrepancies between methods.   

 

Results 

 

The PyVar framework 

 

PyVar uses a set of custom python classes to translate from the disparate output formats and 

ontologies of the various annotator methods into a common format and ontology.  Included in 

the code are classes for analysis of various ANNOVAR, VEP, and SnpEff output formats.  Each 

class inherits from a general ‘AnnotationFile’ superclass, making the code easily extensible to 

other formats and annotators for quick validation and testing of new methods. 

 

The translation tables to convert from the output ontologies of ANNOVAR, SnpEff, and VEP can 

be found in Table 1.  Some compromises were necessary to reclassify each type of 

consequence under a common ontology in order to simplify the comparisons.  For example, 

VEP’s classifications of ‘splice_donor_variant’, ‘splice_acceptor_variant’, and 

‘splice_region_variant’ were all reclassified to ‘splicing’ because ANNOVAR doesn’t have an 

equivalent consequence assignment.  Similarly, for ANNOVAR, the ‘stoploss’ and ‘stoploss 

SNV’ terms were simplified to ‘stoploss.’  In a few cases, the reclassification was arbitrary (e.g., 

ANNOVAR’s ‘upstream;downstream’ classification was reclassified to ‘upstream’).    

 

Because all three methods can report multiple consequences for each variant (n.b., ANNOVAR 

does not by default, you must ask with the ‘—separate’ flag), a ranking of consequence severity 

had to be established to order the consequences in the heatmap plots (below) and to put only 

the most severe consequence for each annotator in the plot data.  For the purposes of this 

work, we took the Ensembl/VEP severity ranking scale 

(http://www.ensembl.org/info/genome/variation/predicted_data.html#consequences) as our 

basis for most to least severe consequence: 

 

 ‘frameshift’ > ‘stopgain' > ‘stoploss' > ‘splicing' > ‘inframe_insertion’ > ‘inframe_deletion' > 

‘nonsynonymous' > ‘synonymous' > ‘UTR5' > ‘UTR3’ > ‘nc_exon' > ‘nc_intron' > ‘intron' > 

‘upstream' > ‘downstream' > ‘intergenic’ > ‘None’    
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Note that ‘None’ is assigned by PyVar in certain circumstances and is not assigned by default 

by the three annotator methods.  It is impossible to objectively rank consequences in severity for 

all potential situations. For example, it is possible to imagine situations where a ‘stop-gain’ near 

the end of a sequence may be less deleterious than a nonsynonymous missense variant at an 

important enzymatic region or binding site.   

 

Comparison of variant annotation methods on the 1000 Genomes callset 

 

We compared the annotation outcomes between ANNOVAR, VEP, and SnpEff on the Ensembl 

and RefSeq transcript sets using PyVar.  Comparison statistics are summarized in Table 2.   

 

ANNOVAR versus VEP 

 

ANNOVAR and VEP agreed on variant position in 99.7% of cases (84,587,501 variants).  In 

0.3% of cases, the methods didn’t agree on genomic position owing to discrepancies in the way 

that indels are reported in the output format of either method.  These positions were excluded 

from downstream analysis. 

 

However, when running ANNOVAR and VEP with Ensembl transcripts, there were significant 

differences in the specific transcript that each method chose to annotate across all of the 

variants (Figure 1).  These differences led to differences in the assessment of the consequence 

of the SNP even though there was agreement on the position.  For example, 38.5% of variants 

were annotated with completely different transcripts, whereas 61.5% shared at least one 

transcript selected for annotation between methods.  For the RefSeq transcript set, 44.7% of 

variants were annotated with a common transcript.   

 

Excluding the variants for which the methods selected non-overlapping transcripts to report, we 

looked at the overlap of normalized consequences among the remaining 61.5% (Ensembl) and 

44.7% (RefSeq) of variants where a common transcript was reported.  For both Ensembl and 

RefSeq, greater than 99% of variants had at least one consequence in common that was 

identified by both annotators.  Of the variants sharing a common Ensembl transcript, ‘intronic’ 

(61.8%), ‘non-coding intron’ (18.9%), ‘downstream’ (8.9%), and ‘upstream’ (6.5%) were the 

most common annotations.  Similarly, for RefSeq transcripts, ‘intronic’ (78.8%), ‘downstream’ 
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(5.9%), ‘non-coding intron’ (5.5%), and ‘upstream’ (5.0%) were the top categories.    

 

For the Ensembl transcript set, 1836 variants were annotated uniquely by ANNOVAR as 

‘intergenic’ (61.3%) and ‘non-coding exon’ (32.3%).  VEP annotations of the 3480 variants not 

shared with ANNOVAR included ‘non-coding intron’ (25.8%), ‘nonsynonymous’ (22.2%), 

‘downstream’ (18.9%), ‘upstream’ (17%), and ‘synonymous’ (10.9%). With the RefSeq 

transcripts, a total of 27,306 variants were given discordant annotations by ANNOVAR, with 

‘UTR3’ (39.6%), ‘intron’ (20.3%), ‘intergenic’ (10.1%), and ‘UTR5’ (8.8%) being the most 

common.  For VEP, 33,756 variants were discordant, with ‘downstream’ (41.0%), ‘upstream’ 

(21.8%), ‘nonsynonymous’ (13.5%), and ‘non-coding intron’ (7.6%) being the most common. 

 

The row-normalized (i.e., normalized to total VEP annotations in each category), log-

transformed consequence heatmap for VEP versus ANNOVAR on the Ensembl transcripts 

(Figure 2A) shows agreement for ‘inframe insertions’ and ‘inframe deletions’, ‘5’’ and ‘3’ 

untranslated region’, ‘intronic’, ‘upstream’, ‘downstream’, and ‘intergenic’ assignments.  

However, where PyVar reports ‘None’ (a null or missing value) from VEP, ANNOVAR often 

assigned ‘non-coding exonic.’  Annotations such as ‘stoploss’, ‘stopgain’, ‘frameshift’, ‘non-

synonymous’, and ‘synonymous’ showed some disagreement between the methods.  For the 

RefSeq transcript set heatmap (Figure 3A), only ‘inframe insertion’ and ‘inframe deletion’ show 

strong concordance.  Looking at the same data when column-normalized (normalized to total 

ANNOVAR annotations for each category; Figure 2B) shows concordance for ‘stoploss’, 

‘stopgain’, ‘inframe insertion‘, ‘inframe deletion’ and ‘frameshift.’  ‘Stoploss’ calls by ANNOVAR 

are sometimes called as ‘frameshift’ by VEP.  Similarly, both methods appear to disagree on 

‘synonymous’ versus ‘nonsynonymous‘ calls.   

 

SnpEff versus VEP  

 

When comparing the results of annotation by SnpEff and VEP, we found no position 

mismatches.  With Ensembl transcripts, both methods used at least one common transcript for 

annotation > 99.9% of the time.  However, for RefSeq transcripts, the concordance was lower 

with only 85.8% of variants sharing a common transcript for annotation.  As before, ‘intronic’, 

‘downstream’ and ‘upstream’ were among the most common annotations sharing a RefSeq 

transcript.  Among the ~21,000 variants with a unique RefSeq transcript from VEP, the majority 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 30, 2016. ; https://doi.org/10.1101/078386doi: bioRxiv preprint 

https://doi.org/10.1101/078386
http://creativecommons.org/licenses/by-nc/4.0/


 7 

were annotated as ‘downstream’ (50.6%), ‘upstream’ (23.0%), ‘non-coding intronic’ (6.1%), and 

‘non-synonymous’ (5.8%).  Among the ~21,000 variants annotated with unique RefSeq 

transcripts by SnpEff, the majority were ‘UTR3’ (38.4%), followed by ‘intronic’ (27.9%), 

‘intergenic’ (8.1%), and ‘UTR5’ (6.8%).   

 

The row-normalized (VEP-normalized) consequence heatmap for VEP versus SnpEff using 

Ensembl (Figure 2C) shows concordance when VEP calls ‘frameshift’, ‘stopgain’, ‘stoploss’, 

‘inframe insertion’, ‘inframe deletion’, ‘synonymous’, ‘intron’, ‘upstream’ and ‘downstream’.  In 

some cases when SnpEff reported ‘splicing’, ‘downstream/upstream’, and ‘frameshift’, we noted 

that VEP had missing values (‘None’).  When looking at the RefSeq row-normalized (VEP 

consequence-normalized) heatmap (Figure 3C), the concordance is not as strong.  In particular, 

there is poorer agreement on ‘downstream’, ‘upstream’, ‘intron’, ‘non-coding intron/exon’, and 

‘UTR5/3’.  Even VEP calls of ‘synonymous’ and ‘non-synonymous’ show poor agreement with 

SnpEff calling ‘UTR3/UTR5’, ‘intron’, ‘upstream’ and other categories instead.   

 

The column-normalized (SnpEff-normalized) consequences heatmap for Ensembl transcripts 

(Fig 2D) shows good concordance for a majority of classifications, with the exception of 

‘splicing’ and ‘frameshift.’  For RefSeq transcripts (Figure 3D), the heatmap shows that SnpEff’s 

call of ‘inframe deletion’ is sometimes called as ‘splicing’ by VEP.  When SnpEff calls ‘splicing’ 

there is very little agreement with VEP.  This applies to both RefSeq and Ensembl transcript 

sets.  There is also poor agreement for ‘nonsynonymous’, ‘synonymous’, ‘UTR5’, ‘UTR3’, 

‘intron’, ‘upstream’, and ‘downstream’ using RefSeq transcripts.   

 

ANNOVAR versus SnpEff 

 

ANNOVAR and SnpEff agreed on variant position in 99.7% of cases for both RefSeq and 

Ensembl transcript sets.  For Ensembl transcripts, a common transcript was annotated for 

61.5% of variants (Figure 1).  For RefSeq, this was 50.2%.  Of the ~52,000,000 variants sharing 

an Ensembl transcript between methods, ~44,700,000 also shared a common annotation, with 

‘intron’ being the most abundant (76.7%).  Of the 7,600,000 variants that had discordant 

annotations from SnpEff, nearly all (99.9%) were called as ‘intron.’  Similarly, the 7,600,000 

variants with discordant calls from ANNOVAR were all called as ‘non-coding intron’.  Of the 

42,000,000 variants sharing at least one RefSeq transcript for annotation, 38,700,000 also 
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shared a common annotation.  3,700,000 variants for SnpEff and ANNOVAR were annotated 

with unique consequences.  As above, the shared annotations consisted mainly of ‘intron’ 

(82.6%).  Where discordant annotations were made, they were ‘intron’ (99.7%) for SnpEff, and 

‘non-coding intron’ (100%) for ANNOVAR.   

 

The row-normalized heatmap for Ensembl transcripts (Figure 2E) shows good agreement for 

‘frameshift’, ‘stoploss’, ‘inframe insertion’, ‘inframe deletion’, ‘UTR5’, and ‘UTR3’.  The ‘splicing’ 

annotation has poorer agreement, as well as ‘synonymous’ and ‘nonsynonymous.’   The pattern 

is similar for row-normalized RefSeq consequences (Figure 3E), with good agreement along the 

diagonal for most annotations, with the exception of ‘splicing’.  In the column-normalized 

(SnpEff-normalized) view (Figure 2F) of the heatmap data for Ensembl, we see that ANNOVAR 

gives ‘downstream’ and ‘intergenic’ annotations to SnpEff’s ‘upstream’ frequently.  Similarly, 

what SnpEff calls ‘downstream’ is called as ‘intergenic’ by ANNOVAR.  There is also poor 

agreement for ‘splicing’ and ‘frameshift’ calls.   

 

Concordance between methods for LoF variants for Ensembl transcripts 

 

Approximately 653,000 variants were given loss-of-function annotations by either ANNOVAR or 

VEP (defined here as one or more of ‘nonsynonymous’, ‘stopgain’, ‘stoploss’, and ‘frameshift’; 

‘splicing’ could also be LoF, however we chose not to include it in this analysis).  This 

represents 0.8% of all variants analyzed.  Of these 653,000 variants, just 934 (0.1%) were 

discordant between ANNOVAR and VEP, with annotators predicting different consequences.  

Figure 4 shows that the most common discordant annotation was ‘nonsynonymous’ (529), 

followed by multiple predicted consequences such as ‘nonsynonymous, downstream’ (85), and 

‘nonsynonymous, upstream, downstream’ (68).   

 

When comparing ANNOVAR and SnpEff (Figure 5), ~654,000 variants were annotated as LoF 

by one or both methods.  Of those, 1456 (0.2%) were discordant between the methods.  

‘Nonsynonymous’ alone or in combination with other annotations accounted for the six most 

common discordant annotations. Between SnpEff and VEP, there were 63 discordant 

annotations among only ~456,500 variants called as LoF (0.01%).  ‘Nonsynonymous, other, 

frameshift’ (23) and ‘nonsynonymous, frameshift’ (12) were the top two most common 

discordant annotations between methods (Figure 6).  
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Discussion 

 

The small amount (< 0.5%) of disagreement between methods on variant position, for example, 

between ANNOVAR and VEP using the RefSeq transcripts can be attributed to different 

approaches between methods for assigning numbering schemes to insertions and deletions.  

The majority of these variants are found in intronic and intergenic regions and are generally not 

high-priority LoF variants.  It is important to be aware, however, that the methods may not agree 

on variant start position in the case of certain indels.    

 

One unexpected discrepancy that emerges when comparing ANNOVAR, VEP, and SnpEff is 

the lack of concordance for a very high percentage of variants when the annotator methods are 

choosing transcripts.  In some comparisons, this was as high as 55%.  Thus, a large number of 

variants, the vast majority of which are intergenic, appear to be annotated on different 

transcripts.  Looking more closely at the output from each method shows that these discordant 

transcript choices arise from the classification of a variant in an intergenic region as belonging to 

an ‘unknown’ transcript (VEP) or belonging to the nearest transcript in the sequence 

(ANNOVAR).  Although this is mainly affecting variants that are typically not LoF and therefore 

not high-priority, it is important to be aware that methods disagree substantially on this basis.  In 

the case of what appears to be 100% agreement on transcript choice between SnpEff and VEP, 

this is owing to the use of the ‘unknown’ designation by both methods, rather than attempting, 

as ANNOVAR does, to assign a transcript based on proximity.   

 

The heatmaps of normalized consequences for the three methods show that overall, 

concordance is better with Ensembl rather than RefSeq transcript sets.  Disagreement on 

assigning a call of ‘splicing’ to a variant is a common thread between all methods, both with 

Ensembl and RefSeq.  This is not surprising given that prediction of splicing defects is a 

challenging problem that remains open to further research and validation  [7,8].  Calls of 

‘inframe insertions’ and ‘deletions’, ‘nonsynonmous’ and ‘synonymous’, ‘stopgain’, ‘stoploss’, 

and ‘frameshift’ all showed the best concordance between methods, particularly when using 

Ensembl transcripts. Assignments of ‘intergenic,’ ‘downstream,’ ‘upstream,’ and ‘intron’ were a 

source of disagreement between methods regardless of Ensembl or RefSeq transcripts.  These 

disagreements could possibly be alleviated by adjusting parameters within the methods to 
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redefine the boundary between up- and downstream and intergenic regions (although we did 

not test this).  In general, concordance between methods was poorer when using RefSeq 

transcripts for reasons that are not well understood.  RefSeq contains fewer transcripts by a 

significant percentage than Ensembl, and generally has less complex gene models [9].  Since 

concordance is defined as at least one consequence in common, the greater number of 

transcript choices in Ensembl could be responsible for the greater concordance seen for that 

transcript set.  

 

The heatmaps in Figures 1 and 2 are row- and column-normalized and log-transformed to 

visually emphasize the rare discordant annotations between methods.  However, our analysis of 

just LoF variants shows that discordance for this clinically-important category of variants is, in 

our hands, very low.  Others have found much higher rates of discordance, as high as 36% [2], 

(this figure includes splicing and indels which we are excluding).  Excluding splicing and indel 

variants, the authors in that study find ~14% discordance.  This is still substantially larger than 

the rate of 0.1% between ANNOVAR and VEP that we detect here and could be owing to 

differences in command-line parameters and filtering of variants.  Additionally, in that work the 

authors studied variants from 276 genomes from individuals with immune disease, Mendelian 

disease, and cancer.  Our dataset, in contrast, comes from the 1000 Genomes project and is 

not biased for individuals with genetic diseases.  It is possible that differences in the kinds of 

variants found in the underlying variant dataset are responsible for these discrepancies. 

 

Conclusions 

 

In conclusion, we have created a python framework, PyVar, for automatically comparing the 

results of variant annotation from different popular methods and for reconciling different output 

formats and consequence ontologies to allow easy exploratory analysis.  We tested our method 

on ~80 million variants from the 1000 Genomes Project and showed that there was significant 

disagreement on transcript choice between methods owing to each method’s procedures for 

handling intergenic and intronic variants.  However, for more interesting LoF variants (excluding 

splicing), we found that concordance was actually very good.  It is our hope that the community 

can find value in our PyVar framework for quick automated comparisons between novel and 

existing methods.   
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Methods 

 

Data acquisition 

 

The data used in this paper was obtained from the publically available FTP repository at the 

1000 Genomes Project: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ \ 

ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.vcf.gz.  The variant calls 

are from the phase3 release of May 2, 2013.  The variant set contains calls from 2504 

individuals from 26 populations.  There are 78,136,341 SNPs and 3,135,424 indels in the VCF 

file. 

 

Variant annotation 

Variant annotations were obtained using ANNOVAR 2016.2.1, VEP ver. 83, and SnpEff ver. 4.2.   

The programs were invoked with the following commands:  

 
SnpEff/Ensembl 

java -Xmx16g -jar /Users/wrtz/SnpEff/SnpEff.jar GRCh37.75 

ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.vcf > 

/Users/wrtz/annotation_paper/ALL.wgs.phase3_fixed.vcf.SnpEff_ens_out 

 

SnpEff/RefSeq 

java -Xmx16g -jar /Users/wrtz/SnpEff/SnpEff.jar hg19 

ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.vcf > 

/Users/wrtz/annotation_paper/ALL.wgs.phase3_fixed.vcf.SnpEff_refseq_out 

 

VEP/Ensembl 

perl /Users/wrtz/vep3/ensembl-tools-release-84/scripts/variant_effect_predictor/variant_effect_predictor.pl --port 3337 

--cache --assembly GRCh37 -i ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.vcf -o 

ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.ens.vep.vcf --fork 8 --vcf 

 

VEP/RefSeq 

perl /Users/wrtz/vep3/ensembl-tools-release-84/scripts/variant_effect_predictor/variant_effect_predictor.pl --port 3337 

--cache --assembly GRCh37 -i ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.vcf -o 

ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.refseq.vep.vcf --fork 8 --refseq --vcf 

 
ANNOVAR/Ensembl 
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perl convert2annovar.pl -includeinfo -allsample -withfreq -format vcf4 ALL.wgs.phase3_fixed.vcf > 

ALL.wgs.phase3.avinput; 

perl annotate_variation.pl -out ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.ens.annovar -

geneanno -buildver hg19 -separate -neargene 5000 -transcript_function -hgvs -splicing_threshold 5 -thread 8 

../ALL.wgs.phase3.avinput humandb/ -dbtype ensGene 

 

ANNOVAR/RefSeq 

perl convert2annovar.pl -includeinfo -allsample -withfreq -format vcf4 ALL.wgs.phase3_fixed.vcf > 

ALL.wgs.phase3.avinput; 

perl annotate_variation.pl -out ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.refseq.annovar -

geneanno -buildver hg19 -separate -neargene 5000 -transcript_function -hgvs -splicing_threshold 5 -thread 8 

../ALL.wgs.phase3.avinput humandb/ 

 

PyVar framework 

 

The PyVar framework was written in python 2.7 (http://www.python.org) and requires the 

following additional libraries: matplotlib, matplotlib_venn, and numpy.  It can be downloaded 

from the PyVar GitHub repository (https://github.com/jwertz01/annotator-comparison).   

 

Variant annotation comparison 

 

By default, PyVar converts the consequences from each annotator method into a standardized 

nomenclature for useful comparison.  Table 1 summarizes the conversions between the output 

nomenclature of each method and the standardized terms used by PyVar.  PyVar retained only 

variants sharing a common position for the next step (analysis of transcript commonality).  

Similarly, PyVar retained only those variants sharing at least one transcript between methods 

for heatmap analysis of normalized consequences.   

 

Examples of the command-line code used to invoke PyVar are shown below:   

ANNOVAR versus SnpEff (w/ RefSeq transcripts) 
python ../compare_annotators.py --anv_var_func_filenames 

../annovar/ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.refseq.annovar.variant_function --

anv_exonic_var_func_filenames 

../annovar/ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.refseq.annovar.exonic_variant_functio

n --SnpEff_vcf_filenames ../ALL.wgs.phase3_fixed.vcf.SnpEff_refseq_out --filegroup_1 

ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.refseq.annovar.variant_function 
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ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.refseq.annovar.exonic_variant_function 

 

SnpEff versus VEP (w/ Ensembl transcripts): 
python ../compare_annotators.py --vep_vcf_filenames 

../ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.ens.vep.vcf --SnpEff_vcf_filenames 

../ALL.wgs.phase3_fixed.vcf.SnpEff_ens_out 

 

ANNOVAR versus VEP (w/ Ensembl transcripts): 
python ../compare_annotators.py --vep_vcf_filenames 

../ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.ens.vep.vcf --anv_var_func_filenames 

../annovar/ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.ens.annovar.variant_function --

anv_exonic_var_func_filenames 

../annovar/ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.ens.annovar.exonic_variant_function -

-filegroup_1 ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.ens.annovar.variant_function 

ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.ens.annovar.exonic_variant_function 
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Figure 1.  Percentage of variants with common transcript (a transcript that both annotators used 

for annotation).  Variants with position mismatches are ignored.   
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Figure 2 (above).  Normalized consequence heatmaps for Ensembl transcript set.  Counts of 

the most severe normalized consequence identified by each annotator (color correspond to the 

log of the raw counts).  Heatmaps are row-normalized (left) and column-normalized (right).  2A 

and 2B represent the comparison of consequences between VEP and ANNOVAR.  2C and 2D 

between VEP and SnpEff.  2E and 2F between ANNOVAR and SnpEff.   
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Figure 3 (above).  Normalized consequence heatmaps for the RefSeq transcript set.  Counts of 

the most severe normalized consequence identified by each annotator (color correspond to the 

log of the raw counts).  Heatmaps are row-normalized (left) and column-normalized (right).  3A 

and 3B represent the comparison of consequences between VEP and ANNOVAR.  3C and 3D 

between VEP and SnpEff.  3E and 3F between ANNOVAR and SnpEff. 

 

Figure 4 (below).  ANNOVAR versus VEP discordant annotations (on LoF variants).   
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Figure 5.  ANNOVAR versus SnpEff discordant annotations on LoF variants.   
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Figure 6.  SnpEff versus VEP discordant annotations on LoF variants.  
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Table 1.  Standardized consequences translation table.   

PyVar ANNOVAR VEP/SnpEff 

   

frameshift frameshift deletion frameshift_variant 
frameshift frameshift insertion — 
frameshift frameshift_block_substitution  — 
stopgain stopgain stop_gained 
stopgain stopgain SNV — 
stoploss stoploss stop_lost 
stoploss stoploss SNV — 
splicing splicing splice_donor_variant 
splicing exonic;splicing splice_acceptor_variant 
splicing — splice_region_variant 
inframe_deletion nonframeshift deletion inframe_deletion 
inframe_insertion nonframeshift insertion inframe_insertion 
inframe_insertion — disruptive_inframe_insertion 
inframe_deletion — disruptive_inframe_deletion 
synonymous synonymous SNV synonymous_variant 
synonymous — stop_retained_variant 
nonsynonymous nonsynonymous SNV start_lost 
nonsynonymous nonframeshift_block_substitution initiator_codon_variant 
nonsynonymous — missense_variant 
nonsynonymous — incomplete_terminal_codon_variant 
UTR3 UTR3 3_prime_UTR_variant 
UTR5 UTR5 5_prime_UTR_variant 
UTR5 UTR5;UTR3 5_prime_UTR_premature_start_codon_gain_variant 

upstream upstream upstream_gene_variant 
upstream upstream;downstream — 
downstream downstream downstream_gene_variant 
intron intronic intron_variant 
intergenic intergenic intergenic_variant 
intergenic — intergenic_region 
nc_exon ncRNA_exonic non_coding_transcript_exon_variant 
nc_exon — non_coding_exon_variant 
nc_intron ncRNA_intronic non_coding_transcript_variant 
splicing ncRNA_splicing — 
splicing ncRNA_exonic;splicing — 
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Table 2.  Comparison of variant consequences for ANNOVAR, VEP, & SnpEff on 1000 

Genomes Variant Set 
 
 
 Method 1: ANNOVAR; 

Method 2: VEP 
Method 1: ANNOVAR; 
Method 2: SnpEff 

Method 1: SnpEff; Method 2: 
VEP 

Positional Match % 99.7 99.7 100 

Transcript Match 
%(Ensembl) 

61.5 61.5 99.9 

Transcript Match % (RefSeq) 44.7 50.2 85.8 

Most abundant 
consequences (with >= 1 
shared Ensembl transcript 
between methods) 

‘intronic’ (61.8%) ‘non-coding 
intron’ (18.9%) ‘downstream’ 
(8.9%) ‘upstream’ (6.5%) 

‘intron’ (76.7%) ‘downstream’ 
(10.3%) ‘upstream’ (7.7%) 

‘intron’ (76.6%) ‘downstream’ 
(13.9%) ‘upstream’ (6.4%)  

Most abundant 
consequences (with >= 1 
shared RefSeq transcript 
between methods) 

‘intronic’ (78.8%) ’downstream’ 
(5.9%) ’non-coding intron’ 
(5.5%) ‘upstream’ (5.0%) 

‘intron’ (82.6%) ‘downstream’ 
(6.6%) ‘upstream’ (5.6%) 

‘intron’ (84.0%) ‘downstream’ 
(6.3%) ‘upstream’ (5.1%) 

Most abundant 
consequences method 1 (no 
shared Ensembl transcripts) 

‘intergenic’ (61.3%), ‘non-
coding exon’ (32.3%) 

‘non-coding intron’ (100%) ‘intergenic’ (52.9%) ‘non-
coding exon’ (29.1%) 
‘downstream’ (10.6%) 

Most abundant 
consequences method 2 (no 
shared Ensembl transcripts) 

‘non-coding intron’ (25.8%) 
‘nonsynonymous’ (22.2%) 
‘downstream’ (18.9%) 
‘upstream’ (17%) ‘synonymous’ 
(10.9%) 

‘intron’ (99.9%)  ‘non-coding intron’ (66.0%) 
‘UTR5’ (21.4%) ‘intron’ (3.7%) 
‘downstream’ (3.3%) 

Most abundant 
consequences method 1 (no 
shared RefSeq transcripts) 

‘UTR3’ (39.6%) ‘intron’ (20.3%) 
‘intergenic’ (10.1%) ‘UTR5’ 
(8.8%) 

‘non-coding intron’ (100%) ‘UTR3’ (38.4%) ‘intronic’ 
(27.9%) ‘intergenic’ (8.1%) 
‘UTR5’ (6.8%) 

Most abundant 
consequences method 2 (no 
shared RefSeq transcripts) 

‘downstream’ (41.0%) 
‘upstream’ (21.8%) 
‘nonsynonymous’ (13.5%) 
‘non-coding intron’ (7.6%)  

‘intron’ (99.7%)  ‘downstream’ (50.6%) 
‘upstream’ (23.0%) ‘non-coding 
intronic’ (6.1%) 
‘nonsynonymous’ (5.8%) 
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