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Abstract

Estimating admixture histories is crucial for understanding the genetic diversity we see in present-day
populations. Existing allele frequency or phylogeny-based methods are excellent for inferring the existence
of admixture or its proportions, but have less power for estimating admixture times. Recently introduced
approaches for estimating these times use spatial information from admixed chromosomes, such as the
local ancestry or the decay of admixture linkage disequilibrium (ALD). One popular method, implemented
in the programs ALDER and ROLLOFF, uses two-locus ALD to infer the time of a single admixture
event, but is only able to estimate the time of the most recent admixture event based on this summary
statistic. We derive analytical expressions for the expected ALD in a three-locus system and provide a
new statistical method based on these results that is able to resolve more complicated admixture histories.
Using simulations, we show how this new statistic behaves on a range of admixture histories. As an
example, we also apply our method to the Colombian and Mexican samples from the 1000 Genomes
project.

Introduction

There are many methods for inferring the presence of admixture, e.g. methods using simple summary
statistics detecting deviations from phylogenetic symmetry [1H3] and methods estimating admixture
proportions using programs such as Structure [4], Admixture [5] or RFmix [6]. However, there has been
less research on estimating admixture times, possibly because such methods require data which were
unavailable until the advent of high-throughput next generation sequencing. Some recently developed
methods use the inferred local ancestry of sequences to construct admixture tract length distributions,
such as [7H9]. Over time, recombination is expected to decrease the average lengths of admixture tracts.
The length distribution of admixture tracts is therefore informative about the time since admixture. Much
of the theory relating to tracts lengths is based on Fisher’s famous theory of junctions [10] and subsequent
work, such as [11H20]. For example, |21] first discussed the length distribution of tracts descended from
a single ancestor. These results informed later analyses of admixture tract length distribution, such as
references [7H9]. Gravel [8] also implemented the software program TRACTS, which estimates admixture
histories by fitting the tract length distribution, obtained by local ancestry inference, to a exponential
approximation.

Another approach, which we will follow in this paper, is based on the decay of admixture linkage
disequilibrium (ALD). In a well-mixed, genetically isolated human populations, linkage disequilibrium
decays to zero on a scale of tenths of centiMorgans. However, when an admixed population is founded, it
begins with large of amount of linkage disequilibrium, which is a result of the allele frequency differences
between the source populations. This occurs even if the LD in the source populations themselves is
negligible. The linkage disequilibrium in the admixed population then fluctuates in the generations after
its founding, decreasing as a result of drift and recombination, or increasing because of additional waves
of migration. From the LD present in a modern day admixed population, it is possible to make inferences
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about the population’s admixture history. This insight was first used in the program ROLLOFF [22] and
was later extended by ALDER [23].

These two methods use the fact that if an admixed population takes in no additional migrants after the
founding generation, the LD present in the population is expected to decay exponentially as a function of
distance. The rate constant of this exponential decay is proportional to the age of the founding admixture
pulse and so can be used as an estimator. ROLLOFF and ALDER are well suited for inferring the time
of the admixture event when the population’s admixture history can be approximated as a single pulse.
However, it can be important to estimate parameters for admixture histories involving multiple pulses,
such as estimating the date of Native American admixture in Rapa Nui [24] or determining migration
patterns in the Americas [25]. In these instances the expected decay of LD will become a mixture of
exponentials. ROLLOFF and ALDER have limited resolution, as they can usually only infer the date of
the most recent migration wave [22], or reject the hypothesis of a single pulse admixture |23].

ROLLOFF and ALDER use the information contained in pairs of sites by examining the two-locus
linkage disequilibrium between them. Here we extend the theory underlying the methods in ROLLOFF
and ADLER to three loci by considering three-locus LD. There are two ways of measuring the linkage
between n loci. Bennett [26] defines n-locus linkage in a way that maintains a geometric decrease of
LD each generation as a result of recombination, which is an important property of two-locus linkage
disequilibrium. Slatkin [27] defines n-locus LD to be the n-way covariance, analogously to the property of
two locus LD as the covariance in allele frequency between pairs of loci. For two and three loci, these two
definitions coincide, but for four or more loci, they do not.

In this paper, we will use Bennett and Slatkin’s definition of three-locus LD to examine the decay
of ALD for three sites as a function of the genetic distance between them. We derive an equation that
describes the decay of three-locus LD under an admixture history with multiple waves of migration. We
then compare the results of coalescent simulations to this equation, and develop some guidelines for when
admixture histories more complex than a single pulse can be resolved. Finally, we apply our method
to the Colombian and Mexican samples in the 1000 Genomes data set, using the Yoruba samples as a
reference. Fitting a two-pulse model to data, we estimate admixture histories for the two populations
which are qualitatively consistent with the results reported in [25].

Model

We use a random union of gametes admixture model as described in [28], which is an extension of the
mechanistic admixture model formulated by [29]. In this model, two or more source populations contribute
migrants to form an admixed population consisting of 2N haploid individuals. Each generation in the
admixed population is formed through the recombination of randomly selected individuals from the
previous generation, with some individuals potentially replaced by migrants from the source populations.
For simplicity, we consider a model with only two source populations. Furthermore, the first source
population only contributes migrants in the founding generation, 7. The second source population
contributes migrants in the founding generation and possibly in one or more generations thereafter. In
generation 4, for i =T —1,...,0 (before the present), a fraction m; of the admixed population is replaced
by individuals from the second source population.

Linkage Disequilibrium and Local Ancestry

ROLLOFF and ALDER use the standard two-locus measure of LD between a SNP at positions x and
another SNP at position y, which is a genetic distance d to the right,

Dy(d) = cov(H,, Hy), (1)
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where H, and H, represent the haplotype or genotypes of an admixed chromosome at positions x
and y. In the case of haplotype data, H; , = 1 if the i*® sample is carrying the derived allele at the SNP
at position z, and is otherwise 0. Alternatively, for genotype data, H; , take on values from {0,1/2,1}
depending on the number of copies of the derived allele the i*" sample is carrying at SNP position z. We
consider an additional site at position z, which is located a further genetic distance d’ to the right of y.
The three-loci LD, as defined by as defined by [26] and [27], is given by

D3(d7 d/) = COV(H:M Hy’ Hz) = E[(HI - EH:E)(HU - EHU)(HZ - EHz)] (2)

The LD in an admixed population depends on the genetic differentiation between the source populations
and and its admixture history. Let A, represent the local ancestry at position z, with A, = 1 if = is
inherited from an ancestor in the first source population, and A, = 0 if z is inherited from the second
source population. We can compute D3 in terms of the three-point covariance function of A, and so
separate out the effects of allele frequencies and local ancestry. Let H, = f, + 0 A;, where f, is the allele
frequency of locus x in the first source population and d,, is the difference of the allele frequencies of locus
x in the two source populations. We now make the assumption that the allele frequencies in the source
populations are known and fixed. Equation [2| then becomes

DS(d7 d/) = cov (fz + 0, Az, fy + ayAyv fz + 6zAz)
= 0;0y0,cov(Az, Ay, As). (3)

A similar argument shows that Ds(d) is proportional to the two-point covariance function of the local
ancestry.

Local Ancestry Covariance Functions

From the above section we see that we can describe the three-point admixture LD in terms of covariances
of local ancestry in the three points. We now expand the covariance in equation [2| into its component
expectations to get

Each one of these expectations on the right-hand side is the probability that one or more sites is inherited
from an ancestor from first source population. We organize these products of probabilities in a column
vector:

P{A, = A, = A, =1}
P{A, = A, = 0}P{A, = 0}

vi=| P{A, = A. =0}P{4, = 0} :
P{A, = A, = 0}P{A. = 0}
P{A, = 0}P{A, = 0}P{A. = 0}

so that cov(A,, Ay, A;) = (1,—1,—1,—1,2)vs. There is one entry in vs for each of the five ways in which
the three markers at positions z,y, and z can arranged on one or more chromosomes. In the founding
generation T, this column vector is given by vy = (1 —my, (1 —mg)?, (1—m7g)?, (1 —=mz)?, (1 —m7z)?)".
The probabilities for subsequent generations can be found by left-multiplying drift, recombination, and
migration matrices:

v3) = DiLUvg(_q),
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The matrices D;, L, and U account for the effects of migration, drift, and recombination, respectively.
The migration matrix is a diagonal matrix given by

D; = diag(1 — my, (1 —my)?, (1 —my)?, (1 —my)?, (1 —my)?).

Its entries are the probabilities that one, two, or three chromosomes in the admixed population will not
be replaced by chromosomes from the second source population in generation ¢. The lower triangular drift

matrix
4N? 0 0 0 0
1 2N 2N(2N -1) 0 0 0
L= N2 2N 0 2N(2N —1) 0 0
2N 0 0 2N(2N —1) 0
1 2N -1 2N —1 2N —1 (2N —1)(2N - 2)

gives the standard Wright-Fisher drift transition probabilities between the states as a function of the
population size 2N. Finally, the upper triangular recombination matrix is determined by the recombination
rates between the three sites:

e—d=d (1- e_d)e_d/ (1—e 91— e‘d/) e~ (1 — e‘d/) 0
0 e 0 0 1—e?
U= 0 0 l—ed—e @ + 2¢—d—d' 0 e 44 e~ — 2e—d—d'
0 0 0 e ¢ 1—e 4
0 0 0 0 1

The covariance function is then given by

T-1
cov(Ag, Ay, A) = (1,-1,-1,-1,2) (H DiLU> V3(0)- (4)

i=0
We can obtain an analogous equation for cov(A4,, Ay), involving the migration, drift, and recombination
matrices for two loci:

T—1
cov(Ag, 4,) = (1,-1) (H DiLU> Va(0)-
i=0
In some cases, equation [4] simplifies further. In a one-pulse migration model, in which my = M and is
there after 0, the D;’s become identity matrices, and we get the closed from expression

T T
1 2 _ '
cov(Ay, Ay, A) = M(1— M)(1—-2M) (1_2N> (1_2N> o~ T(d+d)

This is because (1,—1,—1,—1,2) is a left eigenvector of both L and U, with corresponding eigenvalues
(1-1/2N)(1—2/2N) and exp(—d —d’). Note that when M = 0, the covariance function will be identically
0. Another case is a two pulse model in which we ignore the effects of genetic drift. In this model,
admixture only occurs T" and T5 generations before the present, so that mpy = My, mp = My, and all
other m;’s are 0. Making the substitution T3 = T — T5, the right hand side of equation 4] becomes
(1= My)(1 — My)e~ T2(d+d) [M2(1 — My)? = 2M3(1 — My)? + My (1 — 2M; e~ Tr(d+d)
T

My Ms(1 — M) <eM1d e Md | (1 ey 2e*d*d’) )] . (5)

The corresponding expression for the two-point covariance function is given by
(1— M1)(1 — Ma)e 2% (My — My My + Mye 2% (6)

which is a mixture of two exponentials.
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Weighted Linkage Disequilibrium

As |23] noted, we cannot use the LD in the admixed population directly, because the allele frequency
differences in the source populations can be of either sign. As in [23] , we solve this problem by computing
the product of the values of the three-point linkage disequilibrium coefficient with the product of the
allele frequency differences. Using equation [3] we obtain
620,40.D3(d,d') = 620,67 E[cov(Ag, Ay, Az)],

because the local ancestry in the admixed sample is independent of the allele frequencies in the admixed
population. For inference purposes, we estimate this function by averaging over triples of SNPs which
are separated by distances of approximately d and d’. The LD term is estimated from the admixed
population, while the ¢’s are estimated from reference populations which are closely related to the two
source populations. We notice that both this approach, as well as the previous approaches (e.g., [23] ), do
not take genetic drift in the source populations after the time of admixture into account, i.e. there is an
assumption of both this method and previous methods that the allele frequencies in the ancestral source
populations can be approximated well using the allele frequencies in the extant populations.

We arrange the data from the admixed samples in an n X S,, matrix H, where n is the number of
admixed haplotypes/genotypes, and S,, is the number of markers in the sample. Similarly, we arrange the
data from the two source populations into two matrices, F and G, which are of size ny x S,, and ny X S,
where n, and ng are the numbers of samples from each of the source populations. For ease of notation, we
assume that the positions are given in units which make the unit interval equal to the desired bin width.

For a given d and d' the SNP triples we use in the estimator for the weighted LD are

Sld,d] ={x,y,2:d<z—y<d+landd <y—z<d +1}.

Let f, be empirical allele frequency in the admixed population. An estimator of the weighted three-point
linkage disequilibrium coefficient is then

didl = Ly T S8 (e~ L)y~ ) (e~ 1)

! _ — ’
[Sld.dll, | 22, (n—1)(n—2)
where
R ni ng
69(: = ZFZ,CE - ZGi,Ia
i=1 i=1

and similarly for (5;, and 4.

Algorithm

Directly computing a[d, d’] over the set d,d’ € {0,1,..., P}? would be cubic in the number of segregating
sites. However, by using the fast Fourier Transform (FFT) technique introduced in ALDER |[23], we can
approximate G with an algorithm whose time complexity is instead linear in the number of segregating
sites.

First, rearrange a to get

n Z?:l Zz,y,zes[d,d/] 5;57;5;(}‘[1,1 - fz)(Hz,y - fy)(Hz,z - fz)
(n—1)(n—2) Zz,y,zeS[d,d’] 1 7

ald, d) =
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and define sequences b;[d] and c[d] by binning the data and then doubling the length by padding with P
Z€ros,

bi[d] = { g:r:dﬁlﬂ<d+1 0r(Hig — fz) :0<d<P

P <d<2P
[d] = Hz:d<|z]<d+1} :0<d<P
o :P<d<2P
We can approximate |S[d, d’]| and the n sums in the numerator of a[d, d'] in terms of convolutions of these
sequences:
P
|S[d7 d/“ ~ Z C[w]c[w + d]c[w +d+ d’}
w=0
foon P
Z 5z§y52(Hi,z - fr)(Hz,y - fy)(HZ’Z — fz) =~ Z bi[’w]bi[w + d]bi[w +d+ d/].
z,y,2€5[d,d’] —

These convolutions can be efficiently computed with an FFT, since under a two-dimensional discrete
Fourier transform from (d, d’)-space to (j, k)-space,

w=0

where B; is the one-dimensional discrete Fourier transform of b and for j > 0, B;[—j] is the 5" to last most
element of B;. Summing over ¢ and taking the inverse discrete Fourier transform, we can approximate the
discrete Fourier transform of the numerator of a. We apply the same method to ¢ to approximate the
denominator of a.

The time complexities for the binning and the FFT’s are O(S,,) and O(P?log(P)). Of these two, the
first term will dominate, because P, the number of bins, much less than S,,, the number of segregating
sites.

When samples only one source population is available, it is still possible to estimate the weighted
admixture linkage disequalibrium by using difference in allele frequencies between the one source population
and the admixed population as a proxy for the difference in allele frequencies between the sampled source
population and the missing one, [23}[30].

When using only the admixed population itself as a reference population, the method described above
will be biased if the same samples are used to estimate both the linkage disequilibrium coefficients and
the weights (d,, d,, and J,). We cannot efficiently compute a polyache statistics like [23]. At the cost
of some power, we instead adopt the approach of |30] and separate the admixed population into two
equal-sized groups. We then use one group to estimate the weights, and the other group to estimate linkage
disequilibrium coefficients, and vice versa. This gives gives two unbiased estimates for the numerator of a,
which we then average.

Fitting the Two-Pulse Model

We fit equation[f]to the estimates of the weighted LD using non-linear least squares, with two modifications.
We added a proportionality constant to account for the expected square allele frequency difference between
the source populations. We also subtracted out an affine term in the weighted LD which is due to
population substructure [23]. We estimated this by computing the three-way covariance between triples of
chromosomes. We use the jackknife to obtain confidence intervals for the resulting estimates by leaving
out each chromosome in turn and refitting on the data for the remaining chromosomes.
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Simulations and Data

We used the program macs [31] to generate two source populations which diverged 4000 generations ago
and a coalescent simulation to generate an admixed population from the two source populations according
to two-pulse and constant admixture models. We sampled 50 diploid individuals from the admixed and
two source populations, each consisting of 20 chromosomes of length 1 Morgan. The effective population
size was 2N = 1000 for the admixed population and two source populations. Using a two pulse model, we
varied the migration probabilities and timings for each pulse to examine the accuracy of equation [6} We
also simulated data for a model with a constant rate of admixture each generation, and compared this to
the predictions made by equation

We computed the weighted LD for the Mexican and Columbia populations in the first phase of the
1000 Genomes data set. These consisted of 66 individuals from Los Angeles and 60 individuals from
Medellin, respectively. We used the 88 Yoruba samples as a reference population. We computed the
weighted LD on the genotypes to avoid effects of phasing errors.

Patterns of 3-locus LD

We first evaluate the accuracy of the equations developed in this paper by comparing the analytical results
to simulated data (Figures 1-3). We find there is a generally a close match between our equations and the
simulated data under both the two-pulse admixture scenarios (Figures [lf and [2) and constant-admixture
scenarios (Figure [3]). The exception is when the total admixture proportion Ms 4+ M;(1 — My) is close to
0.5. As the total admixture proportion increases above 0.5, the contours for equation 2] flip from being
concave down to concave up. This transition can be seen by comparing the upper left side of figure
to its lower right. At this threshold, the contours of the estimated weighted LD depend on the actual
admixture fractions of the samples, which may differ from the expectation as a result of genetic drift.
This mismatch between theory and simulations is most evident in figure [2| for m; = 0.1, ms = 0.4 and
my = 0.2,m2 =0.4.

When there is continuous admixture scenario, the shape of the weighted LD surface depends on both
the duration and total amount of admixture. When the duration is short, the weighted LD surfaces are
indistinguishable from the weighted LD surfaces produced by one pulse of migration. As the duration
increases, the contours of the weighted LD surface become more curved. The contours are concave up when
the total proportion is greater than 50% and concave down when it is less. When the total proportion is
exactly 50%, the amplitude of the weighted LD surface is much smaller than the sampling error.

For two pulse models, the effects of the second pulse of migration only become evident when temporal
spacing between the pulses is large enough (71 > T2). Otherwise, the resulting weighted LD surface
cannot be distinguished from the weighted LD surface produced by one pulse of admixture. As in the
case of continuous admixture the concavity of the surface contours is determined by the total admixture
proportion.

Comparison to two-locus LD measures

We compared the simulation results to the two-locus weighted LD calculated by ALDER (Figure . The
information used in estimating Admixture times in ALDER is the slope of the log-scaled LD curves.
Notice (Figure [4]) that the slopes are somewhat similar for admixture models with identical values of
the most recent admixture events (7'2). Hence, when two admixture events have occurred, estimation of
admixture times tend to get weighted towards the most recent event. Generally, it would be very difficult,
based on the shape of the admixture LD decay curve to estimate parameters of a model with more than
one admixture event. In contrast, there is a quite clear change in the pattern of three-locus LD as long as
the time between the two admixture events is sufficiently large (Figure [1)).
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Accuracy of parameter estimates

We next evaluate the utility of the method for estimating admixture times. The qualitative similarities
between one pulse and two pulse admixture scenarios seen in the previous simulations under some
parameter settings will naturally affect the estimates. As shown in Figure |b| when the spacing between
the two pulses is small relative to their age, the median of the estimates of the timing of the second
pulse is close to the true value, but the interquartile range is large. Moreover, the best fit often lies on a
boundary of the parameter space which is equivalent to a one pulse admixture model. When the spacing
between the pulses is larger, the estimates for the timing of the older pulse become more precise.

1000 Genomes

To illustrate the utility of the method we computed weighted LD surfaces for Mexican and Columbian
samples from the 1000 Genomes consortium previously analyzed for similar purposes by [25]. For the
Mexican samples, [25] found a small but consistent amount of African ancestry, which appeared in
the population 15 generations ago, with continuing contributions from European and Native American
populations since that date, but no African migration. In fitting a two-pulse model to the Mexican
weighted LD surface (Figure @, we estimated that the two pulses occurred 12.3 + 3.3 and 9.9 + 2.7
generations ago. These confidence intervals overlap, and so we cannot reject a one-pulse admixture history.
This is not quite consistent with the constant migration model that |25] found, but as we have seen
from simulations, it is hard to distinguish a constant migration model from a one-pulse model when the
duration of the migration is short.

The weighted LD surface for the Columbia samples is shown in Figure [7] From this, we estimated
two pulses of non-Yoruba migration at 11.8 £ 1.2 and 2.64 £ 0.08 generations before the present. [25] also
inferred two pulses of admixture, corresponding to 3 and 9 generations ago. The weighted LD surface of
the Colombian samples has contours which are strongly concave up, in contrast to those of the Mexican
samples.

Discussion

The method presented here is an extension of previously published methods for using weighted two-locus
LD to estimate admixture times. The new method uses more information in the data because it compares
triples of SNPs instead of pairs. This gives the method the ability to infer admixture histories more
complex than a one-pulse model. However, this comes at the price of greater estimation variances. ALDER
and ROLLOFF make estimates from just tens of samples, while our method requires hundreds of samples.
Part of this difference can be attributed to the fact that ALDER and ROLLOFF make inferences over a
smaller class of models, but the main reason arises from the fact that the two-locus methods are estimating
second moments of the data, while we are estimating third moments. The variance of these estimates are
both inversely proportional to the sample size, but the constants for estimating third moments are larger.
As data becomes more readily available, this disadvantage should disappear.

We also notice that the theory developed in this paper might be useful for other purposes than
estimating admixture times. In particular, it can be used to test hypotheses regarding the spatial
distribution of introgressed fragments in the genome, without relying on particular inferences of admixture
tracts. It can also naturally be extended to include selection, opening up the possibility for model-based
tests of selection acting on the distribution of admixture tracts.
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Figure 1. Predicted weighted LD surfaces from simulations and theory for varying
admixture times. The heat maps are from simulations and the contours are plotted from equation
The two admixture probabilities were fixed at mq = my = .2 and the the times of the two admixture
pulses, T1 and Ts, were varied. Each square covers the range 0.5 ¢cM < d,d’ < 20 ¢cM. When time of the
more recent pulse is greater than half of that of the more ancient pulse, i.e. 277 > Ty + T5, the contours
of the resulting weighted LD surface are straight, making it difficult to distinguish from the weighted LD
surface produced by a one-pulse admixture scenario.
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Figure 2. Predicted weighted LD surfaces from simulations and theory for varying
admixture proportions. The heat maps are from simulations and the contours are plotted from
equation The two admixture times were fixed at 2 and 12 generations ago (77 = 10 and T, = 2) while
the admixture probabilities were varied. Each square covers the range 0.5 cM < d,d’ < 20 cM. As the
total admixture proportion msy + mq(1 — mg) increases above 0.5, the contours change to reflecting that
the majority contribution of the genetic material now originates from the other population. Weighted LD
surfaces for m; > 0.5 or mg > 0.5 are not shown, but are qualitatively similar to the surfaces on the lower
and rightmost sides.
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Figure 3. Weighted LD surfaces produced by constant admixture. The heat maps are from
simulations and the contours from analytical results for a model in which continuous admixture started
10, 20, or 40 generations ago and stopped 5 generations before the present. Each square covers the range
0.5 cM < d,d <20 cM. We varied the time of the beginning of the admixture and the total admixture
probability. The admixture probability for each generation was constant, and chosen so that the total
admixture proportion was either 0.3 or 0.7. When the admixture is spread over 5 generations (the
leftmost column), the resulting weighted LD surface is similar to a one-pulse weighted LD surface. For
longer durations, the weighted LD surfaces are similar to those produced by two pulses of admixture.
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Figure 4. Two-locus weighted LD with two admixture events and varying pulse times
Corresponding ALDER, curves for two-pulse admixture with varying pulse times. Morgans on z-axis and
log ALDER scores on y-axis. Red lines are T, = 2, Green lines T = 5, and blue lines are T5 = 10.
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Figure 5. Accuracy of estimates of 7} as a function of other parameters. Nine admixture
scenarios, T7 € {5,10,20} and T € {2,5,10}, were simulated 100 times each. The admixture
probabilities were fixed at M; = 0.3 and My = 0.2. The colored bars give the medians of estimates for
each of these nine cases, the boxes delimit the interquartile range, and the whiskers extend out to 1.5
times the interquartile range. As the time between the two pulses of admixture increases, the error in the
estimates decreases. Consistent with the simulations shown in figure [} there is limited power to estimate
the time of the more ancient admixture pulse when To > T7.
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Figure 6. Weighted LD surface for Mexican samples with Yoruba as reference. The model
with the best fit is two pulses from the non-Yoruba source population at T3 + 75 = 12.3 + 3.3 and

Ty = 9.9 4+ 2.7 generations ago. The jackknife confidence intervals for the times of these two pulses
overlap.
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Figure 7. Weighted LD surface for Colombian samples with Yoruba as reference The
two-pulse model that fits best is two pulses of non-Yoruba admixture at 77 + 75 = 11.8 + 1.2 and

Ty = 2.64 + 0.08 generations ago. The jackknife confidence intervals for the times of these two pulses do
not overlap. The amplitude of this weighted LD surface is approximately ten times larger than that of the
Mexican samples. This a result of larger proportion of Yoruba ancestry in the Colombian samples.
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