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Abstract 
To enable more effective guide design we have developed the first machine learning-based 
approach to assess CRISPR/Cas9 off-target effects. Our approach consistently and 
substantially outperformed the state-of the-art over multiple, independent data sets, yielding up 
to a 6-fold improvement in accuracy. Because of the large computational demands of the task, 
we also developed a cloud-based service for end-to-end guide design which incorporates our 
previously reported on-target model, Azimuth, as well as our new off-target model, Elevation 
(https://www.microsoft.com/en-us/research/project/crispr). 
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Although the CRISPR/Cas9 system is routinely used for a variety of tasks, there is concern that 
off-target effects reduce its effectiveness. The best way to mitigate off-target effects is to know 
when and where they occur and then design guides to avoid them while balancing for on-target 
efficiency.1,2 Such a balance may differ for different tasks. For example, the generation of 
cellular and animal models, or therapeutic uses of CRISPR/Cas9, will in general be far less 
tolerant of off-target effects than genome-wide screens wherein redundancy of targeting can 
be used to average out off-target effects. Nevertheless, reduction of off-target effects is key in 
all applications. 

While GUIDE-seq3, IDLV4, Digenome-seq5,6 and other laboratory-based assays1 can 
be used to quantify off-target effects, scaling these assays to all guides genome-wide, against 
all genome-wide potential off-targets, is not practically feasible owing to cost, labor and 
availably of general-purpose assays.1 In contrast, as we show herein, data-based predictive 
modelling can leverage a small number of such data to learn statistical regularities of guide-
target sequence pairs that cause off-target effects, as well as their aggregate affect. Such 
modelling thus enables cheap and rapid in silico screening of off-target effects at a genome-
wide level for guides never before assayed.1,2,7  

The off-target predictive modelling problem can be broken down into three main tasks. 
Given a guide to evaluate for off-target activity one needs to (i) search and filter genome-wide 
for potential targets, for example, those regions of the genome matching the guide up to n 
number of mismatches; (ii) score each potential target for activity from step i; (iii) aggregate 
the scores from step ii into a single off-target potential with which to assess the guide. 
A number of solutions have been presented for the first task of search and filter, including Cas-
OFFinder8, CRISPOR9, CHOP-CHOP10, and e-CRISPR11, which differ in the algorithms used 
to search as well as the completeness of the search. Completeness is dictated by options such 
as maximum number of mismatches, allowed protospacer adjacent motifs (PAMs) and the 
search algorithm used; the MIT webserver, for instance, uses a search algorithm that misses 
potential sites.1,3,9 For infrastructural efficiencies and ease of integration with our cloud service, 
we created our own system to perform search and filtering. Our system, Elevation-search, can 
be set to accommodate several different levels of search completeness and can already be used 
for most organisms and endonucleases, though we have so far focused on human and 
Streptococcus pyogenes Cas9, respectively. The second and third steps, of scoring and 
aggregation, have been explored considerably less than the search and filter step. For these two 
steps we developed machine learning approaches which substantially improve upon the state-
of-the-art for the respective task, as demonstrated through our experiments. Together, we call 
our end-to-end modelling of off-targets Elevation, to complement our on-target model, 
Azimuth.  

For the guide-target scoring task we developed a two-layer stacked regression model 
wherein the first layer (based on gradient-boosted regression trees) learns to predict the off-
target activity of a single-mismatch (including both RNA:DNA mismatches as well as non-
NGG PAM) guide-target pair while the second-layer model (based on an L1-penalized 
regression) learns how to combine predictions from the first-layer single-mismatch model for 
guide-target pairs with multiple mismatches into a single guide-target score. To apply the two-
layer model to a multiple mismatch guide-target pair, one first decomposes each mismatch into 
a set of pseudo single-mismatch guide-target pairs, applies the first-layer model to each of 
these, then combines their outputs into a single score using the second-layer model. This 
procedure can be applied to a guide-target pair for any number of mismatches, although we 
have trained and evaluated on only up to six mismatches. Because of the combinatorial 
explosion of possible mismatch combinations, the relative amount of training data for the 
combiner task is extremely small. Consequently, we used a parsimonious model here—L1-
penalized linear regression. Details and intuitions for development of the two-layer Elevation-
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score model are given in the Online Methods. Note that indels contribute to the off-target 
problem to a much lesser extent3, hence we have focused our modeling efforts on mismatches. 

We evaluated Elevation-score using two independent data sets generated from 
genome-wide unbiased assays—one based on GUIDE-Seq3, and the other an aggregated data 
set from Haeussler et al.9 Elevation-score outperformed all other models (CFD1, the current 
state-of-the-art, Hsu-Zhang2, and CCTop7) in predicting off-target activity (Figure 1). Note 
that for off-target prediction it is generally more damaging to mistake a truly active off-target 
site for an inactive one, rather than the other way around, because only the first error can 
disrupt the cell or confound experimental interpretation, while the second may only require 
designing another guide. Consequently, we chose an evaluation measure which accounts for 
this asymmetry—the weighted Spearman correlation, where each guide-target pair is 
weighted by an amount which is a (monotonic) function of its measured activity. Because the 
precise asymmetry is not a priori known and may vary for different applications, we varied 
the weight continuously between two extremes: from being directly proportional to the 
measured activity (such that false negatives effectively do not count relative to false 
positives), to a uniform weighting (i.e., yielding standard Spearman correlation). 

 
a       b 

 Figure 1. Guide-target pair scoring. Comparison of Elevation-score to other methods, evaluated using a weighted Spearman correlation between predictions and assay measurements. The horizontal axis shows different weights in the weighted Spearman—at the far left the weight is effectively proportional to the rank-normalized GUIDE-Seq counts/cutting frequency, while at the far right the weight is effectively uniform, yielding a traditional Spearman correlation. For ease of visualization, the vertical axis denotes the percent improvement of each model over CCTOP, which by design thus lies constant at zero. (a) CD33 and GUIDE-Seq data were used to train, while Hauessler et al data (after removing the GUIDE-Seq) were used to test. (b) the roles of the GUIDE-Seq and Haeussler data are reversed from a. The final Elevation-score model deployed in our cloud service uses the model trained on GUIDE-Seq data. Note that respectively only 0.12% and 0.51% of count values in GUIDE-Seq and Hauessler are non-zero, making the actual Spearman correlation difficult to interpret. For completeness, however, the right-most points correspond to a correlation of respectively 0.125, 0.111, 0.010 and 0.070 for Elevation, CFD, Hsu-Zhang and CCTOP (left plot) and 0.059, 0.057, 0.053 and 0.043 (right plot). The p-values for each correlation surpassed the floating point error and were reported as p=0.0 in all cases, demonstrating that despite the somewhat low correlations, a tremendous amount of signal is present. 
 

For first-layer (single-mismatch) model features we used the position of the mismatch, 
the nucleotide identities of the mismatch, the joint position and identities of the mismatch in a 
single feature, and whether the mutation was a transition or transversion. The importance of 
these features is shown in Supplementary Figure 1. It is interesting to note that using both the 
joint “position and mismatch nucleotide identity” features—those effectively used by CFD—
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are aided by additionally de-coupling into additional features of position and nucleotide 
identity, even though regression trees can in principle (with enough data) recover the joint 
features from the decoupled ones. Using only the CFD features in our model, or using 
classification instead of regression, or omitting the second-layer machine learning each caused 
the model to perform worse (Supplementary Figure 2). Feature importances for the second-
layer (multiple-mismatch combiner) model show that the product and sum of the first layer 
single-mismatch predictions are driving the model, but that individual components of these 
need to be modulated by machine-learning for optimal performance.  

 
a        b 

  Figure 2. Joint scoring and aggregation on viability screens. Spearman correlation of Elevation to the crispr.mit.edu server. (a) Avana data was used to train and Gecko to test, (b) the reverse of a. Note that the MIT website yields correlation in the wrong direction for most settings in both data sets.  
 

The final task, of aggregation, requires obtaining a single off-target potential for a guide 
given all its individual guide-target scores. This task is likely of most interest for guide design. 
To evaluate our approach on this task we made use of two data sets with guides targeting non-
essential genes in viability screens, the Avana1 and Gecko12 libraries. Because each guide is 
designed to target one non-essential gene in these screens, the cell should be viable if no off-
targets effects are present. However, to the extent that off-target effects are present, the cell is 
more likely to die, which is captured by the assay. Hence this kind of experiment serves as 
bronze standard for the combined task of scoring and aggregation, and also enables us to 
develop a machine learning approach to aggregation. To build an aggregation predictive model 
we first compute a set of features for each guide based on the distribution of off-target scores 
for that guide (e.g., the mean, median, percentiles, variance, sum of genic scores, fraction of 
genic scores over all potential target site scores)—see Methods for full description. We then 
use these features with gradient-boosted regression trees, which allows them to interact in the 
predictive model. Aggregation of Elevation-score in this manner was the best-performing 
model; however, we found that adding these same features from the CFD model further boosted 
performance and so also included these in the final Elevation model. Elevation yielded up to a 
6-fold improvement (and was never worse) in Spearman correlation over the best approach for 
this end-point task—the CFD website—and an even larger improvement over crispr.mit.edu2, 
the most widely-used guide design tool (Figure 2). The importance of each aggregation feature 
is shown in Supplementary Figure 4. Note that in general models with richer predictive 
modelling capacity are more difficult to interpret, so there is a tradeoff between model 
interpretability and predictive accuracy. We focused solely on accuracy as the intent was to 
provide the best tool possible for the guide design community.  

Elevation-search, Elevation-score and Elevation-aggregate, together referred to as 
Elevation, complement our on-target predictive model, Azimuth.1 Together, Elevation, and 
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Azimuth, along with our cloud service and web front end, provide an integrated end-to-end 
guide design tool that should enable CRISPR/Cas9 users to more effectively find their desired 
targets.  
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Online Methods 
Data  
To train our first-layer, single-mismatch model, we used CD33 data from Doench et al.1 where 
all single-mismatch mutations and alternate PAMs were introduced into the target DNA for 65 
perfect-match guides that were effective at knockout. CD33-negative cells were isolated by 
flow cytometry so that their log-fold-change prior to CRISPR/Cas9 introduction could be 
measured by sequencing. After filtering as in Doench et al., we retained 3,826 single-mismatch 
observations and 1,027 alternate PAM observations for a total of 4,853 guide-target training 
examples of which 2,273 were considered active by Doench et al. These data measure protein 
knockout efficiency rather than DNA cleavage. We refer to these data as the CD33 data. 
 
To train our second-layer, multiple mismatch model, we used two unbiased/genome-wide 
multiple mismatch data sets. The first were GUIDE-Seq data3 comprising nine guides assessed 
for off-target cleavage activity. These guides yielded 354 active off-target sites (i.e., non-zero 
counts) with up to six mismatches. Non-active sites were obtained from Doench et al. where 
Cas-OFFinder8 was used to identify all 294,310 sites with six or fewer mismatches. The second 
data comprised off-target data aggregated by Haeussler et al.9, after removing GUIDE-Seq data 
to make it independent from the previously mentioned data set. These data consisted of 122 
active targets among 23,357 non-active potential targets. We applied a per-guide normalization 
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(dividing by the total number of counts for a guide) to the GUIDE-Seq data to adjust for 
possible artifacts between guides, as done by Haeussler et al. We also set the minimum 
resulting value to 0.001, the estimated sensitivity of the assay9. Finally, we Box-Cox 
transformed13 both the GUIDE-Seq and Haeussler et al. activity layers. 
 
Our goal was to build a tool for predicting knockout activity, rather than cleavage. However, 
given the paucity of either type of data and the fact that cleavage is required for knockdown, 
we chose to use both knockdown and cleavage data, as has been previously done1. Moreover, 
because our model generalizes well to independent off-target cleavage data, and does so better 
than other models, our model is likely to also prove useful for cleavage prediction. 
 
To evaluate the aggregation of off-target effects we used to data sets arising from guides 
targeting non-essential genes in a viability screen. The first, from the Avana library1, used 4, 
950 guides targeting 880 non-essential genes. The second, from the Gecko library12, used 4,697 
guides targeting 837 non-essential genes). 
Predictive Modelling for Scoring Individual Guide-Target Pairs 
Here we describe the CFD model1, what assumptions it makes, and then describe our model, 
Elevation-score, and how it relates conceptually to CFD. The predictive off-target model, CFD, 
first computes the observed frequency of guide-target pair activity for each single-mismatch 
type and alternative PAM in the CD33 data. CFD then combines these single-mismatch 
frequencies by multiplying them together for guide-target pairs with multiple mismatches. For 
example, if a guide-target pair had a A:G mismatch in position 3, a T:C mismatch in position 
5 and a PAM of “CG” in the target region, then CFD would take the off-target score of this 
guide to be ݁ݎ݋ܿݏ ܦܨܥ = :ܣ|݁ݒ݅ݐܿܽ)ܲ ,ܩ 3) × :ܶ|݁ݒ݅ݐܿܽ)ܲ ,ܥ 5) × (ܩܥ|݁ݒ݅ݐܿܽ)ܲ , where 
each of the these terms is computed from observed frequencies in the CD33 training data 
(which contained only single-mismatch, or alternate PAMs, but never both).  
 
CFD as Naïve Bayes 
 
One can interpret the CFD algorithm in terms of a known classification model called Naïve 
Bayes16, as follows. First, denote ܻ = 1 to mean a guide-target pair was active, and ܻ = 0 
to denote that the pair was not. Next, denote features such as T:C,5 as ܺ௜, where ݅ simply 
indexes some enumeration of these features (i.e., a one-hot encoding). If that feature 
(mismatch) occurred, then ௜ܺ = 1, and if it didn’t occur then ௜ܺ = 0. Therefore, in the CD33 
data (with only single mismatches/alternate PAM), a particular guide-target pair has only one 

௜ܺ = 1 and all others have ௜ܺ = 0. In this notation one can re-write CFD as follows for one 
guide-target pair: 
 

ܦܨܥ ≡ ෑ ܲ(ܻ = 1|ܺ௜ = 1)
௜∈{௜|௑೔ୀଵ}

. 
 
In contrast, a Naïve Bayes model would compute the probability that a guide-target pair is 
active given the feature values as 
 

ݏ݁ݕܽܤ ݁ݒ݅ܽܰ ≡ ܲ൫ܻ = 1ห൛ ௝ܺൟ൯ = ܲ(ܻ = 1)
ܲ൫൛ ௝ܺൟ൯ ෑ ܲ( ௜ܺ|ܻ = 1)

௜
, 

which makes only one assumption, namely, that conditioned on a guide being active, the 
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features ௜ܺ are independent so that ܲ൫൛ ௝ܺൟหܻ = 1൯ = ∏ ܲ(ܺ௜|ܻ = 1)௜ . Using Bayes rule one 
can re-write the Naïve Bayes classifier as, 
 

ݏ݁ݕܽܤ ݁ݒ݅ܽܰ ≡ ܲ൫ܻ = 1ห൛ ௝ܺൟ൯ = ܲ(ܻ = 1)
ܲ൫൛ ௝ܺൟ൯ ෑ ܲ(ܻ = 1| ௜ܺ)

௜
ܲ( ௜ܺ)

ܲ(ܻ = 1) 

= 1
ܲ൫൛ ௝ܺൟ൯ ෑ ܲ(ܻ = 1|ܺ௜)

௜
ܲ( ௜ܺ) 

 
If we make two further assumptions, we find that Naïve Bayes classifier exactly matches CFD. 
The first assumption is that the features are marginally independent, namely that 
∑ (௜ܺ)݌ = ൫൛݌ ௝ܺൟ൯௜ , in which case Naïve Bayes simplifies to 

.௙௘௔௧.௜௡ௗݏ݁ݕܽܤ ݁ݒ݅ܽܰ  = ෑ ܲ(ܻ = 1| ௜ܺ)
௜

. 
If we additionally assume that ܲ(ܻ = 1|ܺ௜ = 0) = 1, then CFD and Naïve Bayes become 
identical. The CFD assumption of marginal feature independence seems reasonable and yielded 
good results. Consequently, we make the same assumption in our Elevation-score model. The 
second CFD assumption (ܲ(ܻ = 1|ܺ௜ = 0) = 1) seems a more difficult one to accept, but with 
some careful thought (and the fact that CFD performs so well), also seems reasonable as we 
explain next; hence also make this assumption. The key insight is to ask which properties of 
the training data one expects to generalize to unseen data sets where the model might be 
applied. In particular, it seems reasonable to assume that ܲ(ܻ = 1| ௜ܺ = 1) is a quantity that 
will generalize to other data sets; intuitively the quantity reflects how likely a guide is to be 
active given that we observed a particular kind of mismatch (or alternate PAM)—as such, it is 
independent of the distribution of the types of mismatch (or alternate PAM) in the training 
versus test data sets. In contrast, ܲ(ܻ = 1| ௜ܺ = 0) defines how likely a guide is to be active 
given that we did not observe a feature. When computing this quantity, one marginalizes over 
all examples in the CD33 data set where ௜ܺ = 0, which includes all guide-target pairs for 
which ௝ܺஷ௜ = 1 ; as such, this probability specifically depends on the distribution of 
mismatch/PAM types in the off-target data set, and their corresponding activity layers. 
Therefore, we don’t necessarily expect the quantity ܲ(ܻ = 1|ܺ௜ = 0) to generalize from our 
training data (CD33-specific) to general test sets. Now the question remains, how can we 
therefore make a reasonable approximation? One could try to posit a canonical theoretical or 
actual data set which will best generalize; however, it is extremely difficult to come up with 
such a set. Furthermore, in light of how we are going to use our Naïve Bayes probabilities 
(described next), getting it exactly right is not critical. Hence we make the CFD assumption 
that ܲ(ܻ = 1| ௜ܺ = 0) = 1.  

We have now shown that with two assumptions, the CFD model can be interpreted as 
a Naïve Bayes classifier. The reason for making this connection is not only to put the CFD in 
a proper probabilistic framework, including its assumptions, but more importantly, to then 
generalize this model in order to improve its performance, which we now do in describing our 
Elevation-score model. 
 
Elevation-score as two-layer stacked regression 
 
We generalized away from CFD in three main ways: (i) we moved from classification to 
regression, (ii) we augmented the feature space, and (iii) we replace the a priori manner of 
combining by multiplication to combining using machine learning. We call the model 
implementing only the first two, Elevation-naïve, while we refer to the model resulting from 
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all three as Elevation-score. We now explain these in more details.  
The first observation in generalizing away from CFD is that it is a classification 

algorithm, which means it discards the real-valued assay measurements, converting them to be 
binary active/in-active. Thus, by design CFD is unable to capture the more nuanced 
information available in the data. In moving from classification to regression, the model has 
access to more fine-grained information. Although not widely used, there exist generalizations 
of Naïve Bayes classification to regression17; however, due to the specifics of our problem, 
they are not convenient to apply. Thus we developed our own approach in which we first 
convert the CD33 log-fold-change (LFC) values to lie in the range [0,1] so that they can, 
loosely-speaking, be interpreted as probabilities. To do so, we used a kernel density estimator 
to transform each LFC to the cumulative density of that LFC in the kernel density estimate. 
We used a Gaussian kernel and choose the bandwidth by 10-fold cross-validation (yielding 
0.23).  

Recall that Elevation-score is a two-layer stacked regression model where the first layer 
makes predictions for guide-target pairs with only a single mismatch (or alternate PAM), while 
the second-layer combines these for guide-target pairs with multiple mismatches (and alternate 
PAMs).  

To learn each first-layer (single-mismatch) regression model, ݌൫ݕห{ܺ௝}൯ , we used 
Boosted regression trees (using default settings in scikit-learn) on the CD33 data.18 Since each 
guide-target pair has only a single ௜ܺ = 1 in these data, we could just have well used a linear 
regression model. However, we wanted to include a richer featurization of the guide-target pair 
than just features of the form A:G, 5, such that even for single mismatch data, more than one 

௜ܺ = 1 (and some features were numeric rather than 0/1). Further, we wanted these features to 
be able to interact in a non-linear manner. Thus in addition to the CFD features, we also used 
“decoupled” versions of them—one of the form “A:G”, which was one-hot encoded (described 
at the end of this section) and the other an integer feature for the position (e.g., 5). We also 
included whether the mutation was a transversion or a transition. We call the model which uses 
these improvements Elevation-naïve (it combines each mismatch/alternate PAM) just as CFD 
does, by multiplying the values together. As can be seen in Supplementary Figure 2, moving 
from classification to regression improved the performance of the off-target model, as did 
changing the features. Next we describe how we improve Elevation-naïve to obtain Elevation-
score. 

Although Elevation-naive improved upon CFD, there were several aspects of the 
modelling approach which suggested areas for further improvement. The first was that the 
Naïve Bayes assumption of class-conditional independence may not be fully justified. The 
second is that our regression model predicted values are not truly calibrated probabilities of 
guide-target activity; hence when we combine them under that assumption (as does Naïve 
Bayes and CFD), we may suffer in performance. Thus it stands to reason that if we could 
somehow loosen these assumptions, we might achieve better performance still. One way to do 
this is to augment the model, here with a second-layer, and then to use the limited amount of 
multiple-mismatch/PAM guide-target pair data to learn the newly added parameters. We refer 
to this second-layer of Elevation-score as the combiner because it learns how to combine the 
predictions from the single-mismatch model in a more nuanced way than simply multiplying 
them together like Elevation-naïve and CFD, thereby, allowing some of the stated assumptions 
to be mitigated. Thus where a CFD/Naïve Bayes approach would simply multiply single-
mismatch probabilities together, we instead use a data-driven machine learning approach to 
fine-tune how they should be combined.  
In particular, we first use our first-layer Boosted Regression trees model J times to make 
predictions for each of the ܬ single mismatches/ alternative PAM (i.e., ܬ features for which 

௝ܺ = 1), yielding J predictions ݕఫෝ ∈ ሾ0,1ሿ (one for each feature with ௝ܺ = 1, and setting 
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ො௞ݕ = 1 for the remaining ܭ features that have ܺ௞ = 0). Therefore, each guide-target pair has ܶ = ܬ + ܭ = 21 Boosted regression tree predictions {ݕො௧} (20 for each possible mismatch 
position, and one for an alternate PAM). The log of 21 features ({log (ݕො௧)}), along with their 
sum, their product, and ܬ—the number of mismatches/alternate PAM are then the input to an 
L1-regularized linear regression combiner model—the second-layer model. We used each of 
the GUIDE-Seq data and the Hauessler et al. data to train a model, each time testing on the 
other data set. The final, deployed model used the one trained on the GUIDE-Seq data with 10-
fold cross-validation to choose the regularization parameter. (When training on Hauessler et 
al. for Figure 1, the same settings were used). Note that Elevation-score’s two-layer model is 
inherently different from both a two-layer neural network14 and from stacked generalization15 
because the data used to train each Elevation-score layer are different (single- vs. multi-
mismatch). 

Finally, because what we ultimately want are predictions of the probability that a guide-
target pair is active, we also apply one final transformation to the output from the L1-regression 
model; namely, we then compute ݌(active|GUIDE-seq) using a logistic-regression model 
trained on the GUIDE-seq predictions (for the CD33 data using Elevation-naive) as inputs and 
using the binarized observed activities1 (LFC>1) as the target variable. Note that this 
transformation is monotonic and as such only affects performance of aggregation, not guide-
target scoring, given that we use a Spearman rank correlation. Because for the aggregation task, 
the Spearman correlation is computed only after aggregation of scores for a guide, any change 
in scale of the pre-aggregated scores can dramatically influence the quality of the final 
aggregation, including a simple linear transformation. 
 
One-hot encoding of categorical variables 
 
A “one-hot” encoding refers to taking a single categorical variable and converting it to more 
variables each of which can take on the value 0, or 1, with at most, one of them being “hot”, or 
on. For example, with a categorical nucleotide feature which can take on values A/C/T/G, each 
letter would get converted into a vector of length four, with only one entry equal to on, 
corresponding to one of the four letters.  
Elevation-aggregate 
In a sense, Elevation-score provides only the starting ingredients for choosing a guide with 
least expected off-target activity. To actually rank guides one needs to coalesce the scores from 
all guide-target pairs for a given guide into a single number so that guides can be ranked by 
this number for off-target activity. Thus we developed Elevation-aggregate to perform this task. 
Elevation-aggregate is based on gradient-boosted regression trees (using default settings in 
scikit-learn). The input features for the model were computed from the distribution of guide-
target Elevation-score predictions and comprised: the mean, median, variance, standard 
deviation, 99th, 95th, 90th percentiles, and sum of off-target scores. We compute these for each 
of: all off-targets, only genic off-targets, and only non-genic targets. Additionally, we compute 
these further features: sum of genic [non-genic] off-targets divided by total number of off-
targets; fraction of targets that are genic; fraction that are non-genic; ratio of number of genic 
to non-genic targets; ratio of average genic to non-genic score. We found that adding these 
same features from the CFD model further boosted performance and so also included these. 
The final deployed model was trained only on the Avana data (combining with Gecko did not 
increase cross-validation performance).  
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Comparison to other approaches 
We compared models using the Spearman correlation between predicted and measured off-
target activity. Furthermore, as discussed in the main text, we additionally evaluated the 
weighted-Spearman correlation for various weight settings in order to account for an 
asymmetrical loss with respect to false-positive-active errors as compared to false-negative-
active errors. Specifically, we set the weights as follows. Let {݃௜}  be the values of the 
normalized GUIDE-Seq or Hauessler data (all lying in [0, 1]). Then we set the weight for each 
data point to be ݃௜ + ݓ  where ݓ  is varied through 10ିହ  to 100 and is denoted on the 
horizontal axis of the relevant figures. When ݓ = 10ିହ, the weight is effectively equal to the 
GUIDE-Seq/Hauessler measured values. When ݓ = 100 , the weights become effectively 
identical for all guides, yielding a standard Spearman correlation.   
 For CFD we used the table provided by Doench et al. For CCTOP we re-implemented 
based on the description in their paper. For Hsu-Zhang guide-target pair scoring we re-
implemented the approach based on the equation in their paper. 
 To compare Elevation to the aggregation scores of the MIT web server, each guide 
sequence was submitted to the MIT CRISPR Design Tool using their RESTful API provided 
for single sequences (http://crispr.mit.edu/). Every sequence was queried using sequence type 
“other region (23-500nt)” and target genome “human (hg19)” to obtain an off-target score. 
The server failed to produce scores for the following three sequences which we therefore 
removed from consideration in our comparison: sequence 
TGACCTGTGACCATGATCACCACAGGGTTG from Avana and sequences 
CAAGCCTGTGTGCTGCAAGCCTGTCTGCTCTGTGCC and 
TCTCTGGCCATCATTTCCTGGGAGAGATGGATGGTG from Gecko. All queries were 
submitted and their results processed between the dates of August 15th-29th 2016, inclusive. 
No software version number was found in the output or web page. 
 To compare Elevation to the CFD server 
(http://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design), each gene 
corresponding to an Avana or Gecko guide was submitted to between September 21st-23rd 
2016, inclusive, and the relevant guide rows retrieved. A score for a guide was obtained by 
adding the values in the two fields “Tier I Match Bin I Matches” and Tier I Match Bin II 
Matches” as done by Doench et al.1 Although the server returns a field off-target rank, this 
field cannot be readily compared across guides. 
Elevation-search 
To perform efficient genomic searches for potential off-targets we developed the program 
dsNickFury which uses seed and extension19 (using two tandem seeds) to find near-match 
CRISPR/Cas9 targets. In brief, dsNickFury can leverage distributed computing to efficiently 
catalog every potential CRISPR/Cas9 target in a genome for any CRISPR/Cas9 system with 
targets that can be abstracted into some maximum length of RNA guide followed by a set of 
potential PAM sequences of fixed length. These potential targets are then organized into a tree 
data structure based upon two tandem seed sequences (lengths of 5 nucleotides used here, but 
this is a user-specified parameter) taken from the guide sequences immediately proximal to the 
PAM site. The first branch layer of the tree structure is comprised of all observed first tandem 
seeds (most proximal to the PAM) while the second layer contains branches for each second 
tandem seed.  Each first and second seed combination links to a file containing all of the 
potential CRISPR/Cas9 targets in the genome that have that specific combination of tandem 
seeds proximal to the PAM site. 

Potential off-target matches are defined by a maximum number of mismatches relative 
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to the intended target (set by the user) with a certain number of bases distal to the PAM being 
ignored if desired. Here, mismatch tolerance was set to 3, with the 3 most distal bases from the 
PAM being ignored. This strategy was based upon previous observations that much 
CRISPR/Cas9 off-target activity risk is determined by the number of mismatches between on- 
and off-target sequences with bases more distal to the PAM sequence being more mismatch 
tolerant and contributing less to specificity.3 Potential sites are searched initially based upon 
their tandem seeds, using a depth-first search of the cached tree structure. Any leaves with 
fewer mismatches than the maximum allowed have the same check then applied to their 
extended sequences, ignoring bases distal to the PAM as determined by user-specified 
parameter. Those sequences that pass the filters are considered as potential off-targets and are 
scored by Elevation. These sites can be sorted based on their mismatch counts and/or Elevation 
score and in general can be reported directly to the user by way of a file or by deposition in to 
a NoSQL database as we have done here. We additionally use the Ensembl database to 
determine if each off-target is in an annotated gene or not, such that users can obtain an 
aggregated off-target score across one, the other, or both.  

Because most sites can be disqualified based upon their seeds without loading the 
extended sequence and have already been annotated by both sequence and locus, searches can 
be conducted using significantly fewer resources than an alignment-based search. This allows 
for many searches to be conducted in parallel on a distributed computing environment. For 
results reported herein we pre-computed and stored all human genome-wide results for both 
on- and off-target predicted activities in a cloud-based database which we make available to 
the community. 

Our system is designed to function on several different CRISPR/Cas9 systems with 
PAM sites at the 3’ end of the target. Parameters may be set for different lengths of guide 
sequence, PAM sequences with higher activity, and species of origin for the reference genome. 
Potential targets can be ranked for on-target efficiency and off-target risk. The system is 
currently using Azimuth for on-target activity prediction, and Elevation for off-target activity 
prediction for the S. pyogenes CRISPR/Cas9 system.  

A summary of the search parameters used for all experiments in this paper as well as 
the on-line cloud service are as follows: we included all off-targets in the genome with no more 
than 3 mismatches in the 4-20 of the guide, with any number of mismatches in the first three 
guide nucleotides, and considering any PAM deemed to have non-zero probability according 
to the CFD model (namely, NAG, NCG, NGA, NGC, NGG, NGT, NTG).1 We stopped any 
searches that yielded more than 40,000 potential off-targets according to these criteria. For 
those yielding more than 40,000, we set our Elevation guide potential (i.e., the final guide 
aggregate value) to be equal to 1,000. 
Code Availability 
All source code and a front-end website for the cloud service will be made available from 
http://research.microsoft.com/en-us/projects/crispr upon publication. 
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Supplemental Information 
 
Supplemental Figures 
 
 
 
 
 

 Supplemental Figure 1. First-layer guide-target scoring feature importances Average Gini importances for type of features in the first-layer single-mismatch boosted regression trees model (mutation nucleotide identities and position jointly; mutation identity; mutation position; mutation transversion vs transition). The Gini importance refers to the decrease in mean-squared error (the criterion used to train each regression tree) when that feature is introduced as a node in the tree. This measure has a close, empirical correspondence with the importance of the feature that would be obtained with a permutation test, and can also be viewed as a relative decrease in entropy provided by splitting on that feature. This measure of importance does not convey whether having that feature makes a guide better or worse in the model because such a notion is impossible for regression trees in which the effect of one feature is dependent on the presence/absence of other features (i.e. there are non-linear interactions between the features). This model was trained with CD33 single-mismatch and alternative PAM data. 
 
 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2016. ; https://doi.org/10.1101/078253doi: bioRxiv preprint 

https://doi.org/10.1101/078253
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 14 of 16 
 

 Supplemental Figure 2. Impact of modelling decisions on guide-target scoring Decrease in performance owing to skipping the second layer model, instead using the product of all outputs from the first-layer model (Elevation-naïve); using only features corresponding to those in CFD (the joint position and mismatched nucleotide identities) in Elevation-naive (Elevation-CFDfeat); using classification instead of regression in Elevation-naïve (Elevation-classifier). Note that the actual CFD model itself if plotted would exactly overlay Elevation-classifier. The percent improvement over a baseline of CCTOP is used for consistency with plots in the main paper. Results shown are for training on GUIDE-Seq and testing on Haeussler et al. 
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 Supplemental Figure 3. Second-layer guide-target scoring feature importances Weights from second-layer predictive model in Elevation—an L1-regularized regression. This model uses (the log of) the single-mismatch predictions from the first layer as inputs (one for each position in the 20-mer guide and the N position of the PAM, using a 1.0 if no mismatch occurred at that position), shown in blue. The remaining inputs are the product of these non-logged values of these features, as well as their sum, and number of mismatches (and alternate PAM) in the guide, shown in red. The use of the product feature by itself, without the other 23 features would yield the model Elevation-naïve which performs worse. As a consequence, the other features in Elevation can be viewed as a correction of the assumptions in the development of Elevation-naïve, such as independence of mismatches and the regression yielding a true probability. 
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 Supplemental Figure 4. Aggregator feature importances Weights from aggregator model in Elevation which uses Gradient Boosted regression trees. The features were: the mean; median, variance, standard deviation, 99th, 95th, 90th percentiles, and sum of off-target scores. We compute these for each of: all off-targets, only genic off-targets, and only non-genic targets. Additionally, we compute these further features: sum of genic [non-genic] off-targets divided by total number of off-targets; fraction of targets that are genic; fraction that are non-genic; ratio of number of genic to non-genic targets; ratio of average genic to non-genic score. Those with a postfix of “CFD” are from that model, while all others are from Elevation-score. The Gini importance is described in Supplementary Figure 1. 
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