
1

Predicting Protein Thermostability Upon Mutation
Using Molecular Dynamics Timeseries Data

Noah Fleming⇤, Benjamin Kinsella†, Christopher Ing‡§
⇤Department of Computer Science, University of Toronto, Toronto, ON, Canada M5S 1A8, †Institute of

Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada M5S 1A8, ‡Department of
Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8. §Molecular Structure and Function, Research

Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.

Abstract—A large number of human diseases result from

disruptions to protein structure and function caused by missense

mutations. Computational methods are frequently employed to

assist in the prediction of protein stability upon mutation. These

methods utilize a combination of protein sequence data, protein

structure data, empirical energy functions, and physicochemical

properties of amino acids. In this work, we present the first

use of dynamic protein structural features in order to improve

stability predictions upon mutation. This is achieved through

the use of a set of timeseries extracted from microsecond

timescale atomistic molecular dynamics simulations of proteins.

Standard machine learning algorithms using mean, variance,

and histograms of these timeseries were found to be 60-70%

accurate in stability classification based on experimental ��G or

protein-chaperone interaction measurements. A recurrent neural

network with full treatment of timeseries data was found to

be 80% accurate according the F1 score. The performance of

our models was found to be equal or better than two recently

developed machine learning methods for binary classification as

well as two industry-standard stability prediction algorithms. In

addition to classification, understanding the molecular basis of

protein stability disruption due to disease-causing mutations is

a significant challenge that impedes the development of drugs

and therapies that may be used treat genetic diseases. The use

of dynamic structural features allows for novel insight into the

molecular basis of protein disruption by mutation in a diverse

set of soluble proteins. To assist in the interpretation of machine

learning results, we present a technique for determining the im-

portance of features to a recurrent neural network using Garson’s

method. We propose a novel extension of neural interpretation

diagrams by implementing Garson’s method to scale each node

in the neural interpretation diagram according to its relative

importance to the network.

Keywords—Molecular Dynamics, Machine Learning, Recurrent

Neural Networks, Protein Structure, Protein Mutations, Garson’s

Method, Neural Interpretation Diagram.

I. INTRODUCTION

Advances in genetic sequencing technologies and algorithms
are enabling the use of genetic information as a diagnostic
tool for clinicians treat patients. However, it still remains
a significant challenge to identify disease-causing mutations
among the much more commonly occurring neutral mutations

Manuscript submitted September 28th, 2016. Corresponding author: C. Ing
(email: ing.chris@gmail.com).

found in human populations with high accuracy. This is largely
due to the existence of an estimated 10,000 nonsynonymous
variations in each human genome, which has prevented experi-
mental characterization using existing methods [1]. It is for this
reason that a wide-range of computational tools have emerged
to assist in the annotation of mutations. In many cases, such
tools have a related application for the optimization of protein
thermostability in the field of protein engineering.

In this report, we begin by discussing several ways of
characterizing the effect of mutations in protein-coding genes,
as well as existing experimental and computational approaches
designed to predict these effects. To this end, we discuss the
value of protein crystal structure and homology models along
with how they have been utilized in the literature. Next we
describe the importance dynamic structural features and how
they may provide new insight into the effect of mutation on
structure.

A. Clinical Significance of Understanding Genetic Alterations
Humans are roughly 99.5% identical in genetic make-

up, but this critical 0.5% largely determines how humans
develop diseases and respond to pathogens, chemicals, drugs,
vaccines, and other agents [2]. This genetic difference between
individuals results from alterations including single nucleotide
variants (SNVs), small insertions or deletions (indels), gene
fusions, copy number variations, and large chromosomal rear-
rangements. In this report, we examine the effect of SNVs in
protein coding results that result in changes to an amino acid
in a resultant protein, referred to as a missense mutation. In a
number of well-studied diseases, missense mutations result in
a loss of function of protein coding genes. Structural modifica-
tions through mutation may impair normal protein function or
prevent protein folding entirely. Numerous mendelian diseases,
such as cystic fibrosis [3] and muscular dystrophy [4], have
been linked to deleterious mutations in human proteins (in
the cystic fibrosis transmembrane receptor and dystrophin
proteins, respectively). This relationship was established based
on targeted biochemical, structural, and genetic experiments.
However, given that over 64 million genetic mutations have
been identified in humans [5], the experimental study of each
mutation is not possible due to high costs and technical
difficulty. To overcome these barriers, scientists have devel-
oped proteome-wide computational and statistical tools for

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 28, 2016. ; https://doi.org/10.1101/078246doi: bioRxiv preprint

https://doi.org/10.1101/078246
http://creativecommons.org/licenses/by-nd/4.0/

2

the identification of mutations that negatively affect protein
function. A high-accuracy approach of this nature may greatly
impact the diagnosis, prevention, and treatment of diseases
resulting from missense mutations.

B. Measuring the Effect of Missense Mutations
There are numerous ways to measure the effect of mis-

sense mutations. Most commonly, the effect of mutation is
characterized by its deleteriousness or pathogenicity, where the
former refers to the disruption of protein structure (resulting
in lowered stability or misfolding) and the latter refers to an
experimental correlation with disease. One way to quantify
mutation deleteriousness is to measure its ��G of folding.
This refers to the change in energy involved with folding
the protein from an extended state to its native state, with
or without a single-point mutation, and is a common metric
for stability. One of the largest databases of experimentally
measured ��G values is known as ProTherm, and is used ex-
tensively in this work [6]. Similarly, computational techniques
such as alchemical free energy calculations may be used to
compute a related ��G quantity to allow for the inference
of protein stability [7], [8]. ��G of folding is expected to
change based solely on the physicochemical properties of
the exchanged amino acids (charge, size, and other chemical
properties of their respective side chains), but even more com-
plicated effects could occur. As the process of protein folding
may involve non-native interactions not readily apparent in
existing protein models, it is difficult to predict how a mutation
may influence stability. In an extreme case, a mutation may
result in large-scale conformational change that may disrupt
the fold of the protein, potentially resulting in disease due
to the aggregation of misfolded protein (thought to occur
in prion disease). Interestingly, even subtle conformational
changes that may not significantly alter stability could still
result a loss-of-function of the protein and disease. A study of
protein-chaperone interactions involving proteins with disease
causing mutations found that the majority of mutations did
not impair protein folding or stability [9]. Chaperones are
proteins that assist in the repair of misfolded proteins and
specific biochemical assays can be used to measure protein-
chaperone interactions which could also be used to measure
protein stability upon mutation [10]. This underscores the
importance of selecting a metric for the effect of mutation, not
only for the interpretation of results with respect to disease,
but for comparisons to other methods in the literature. In this
work, we performed classification in order to predict neutral
or deleterious changes to protein stability using either the
sign of a ��G value or the presence of protein-chaperone
interactions. We expect that a significant proportion of ��G

values close to zero may be mislabelled in our dataset and
that the sensitivity of protein-chaperone interaction assays may
present a source of error in our study.

C. Structural Characterization of the Human Genome
The Protein Data Bank contains over 100,000 protein struc-

tures across a wide range of organisms. From surveys of all

proteins in this ensemble, researchers have identified that much
of the proteome consists of evolutionarily conserved domains
with relatively few unique three-dimensional folds. A recent
analysis by Perdigao et al. suggests that for a major annotated
database of 546,000 protein sequences (Swiss-Prot), 56% of
the proteome in eukaryotes could be matched to a homologous
protein with known structure [11]. The determination of struc-
ture based on homologous proteins is facilitated by homology
modelling using software like Rosetta or MODELLER after
performing sequence alignment [12], [13]. Although a large
percentage of eukaryotic proteins are still unknown, and may
correspond to completely unknown folds, advances in structure
determination methods are rapidly accelerating the discovery
of protein structures. This suggests that proteome-wide struc-
tural analysis of proteins may become increasingly useful for
the characterization of protein stability and genetic diseases,
especially when studying a specific subset of proteins with
diverse folds.

D. Approaches to Predict Protein Stability
A number of approaches have been utilized to predict

protein stability upon mutation. Some of most widely utilized
computational techniques employ protein sequence data [14].
Both conserved and non-conserved regions exist in protein
sequences across multiple organisms. By examining protein
sequence throughout evolution, it can be inferred that muta-
tions in conserved regions may result in a loss of stability or
function of the protein, whereas mutations in non-conserved
regions may have little effect. However, conservation driven
models like this have been known to yield true positive rates
less than 50% in less conserved regions, encounter difficulty
in diagnosing benign variations in conserved positions, and
have poor accuracy for single nucleotide variants associated
with complex diseases [15]. With the increasing availability
of structural data for protein-coding genes, new approaches
are combining sequence and structure based data in order to
improve protein stability predictions.

All of the following approaches employ machine learning
to predict protein stability upon mutation. These approaches
include neural networks [16], [17], random forests [18]–[20],
decision trees, [21], [22] and support vector machines [23]–
[26]. In a study by Jia et al. [27], five supervised machine
learning methods (support vector machines, random forests,
neural networks, the naive Bayes classifier, and K-nearest
neighbours) along with partial least squares regression were
benchmarked for performance in predictive modelling of pro-
tein stability. Some of these studies report a high degree of
success in predicting mutational effects with either binary
or ternary classification (binary classification as stabilizing
or destabilizing, or ternary classification as stabilizing, no
effect, or destabilizing). Several studies train regression-based
models in order to obtain quantitative values for ��G to be
compared to ��G

exp

using Pearson correlation. A compar-
ison of these studies is often made difficult by differences
in training/validation/testing datasets, training methodology,
dataset sizes, and hyperparameter optimization. Nonetheless,
Jia et al. [27], perform many methodological variations and

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 28, 2016. ; https://doi.org/10.1101/078246doi: bioRxiv preprint

https://doi.org/10.1101/078246
http://creativecommons.org/licenses/by-nd/4.0/

3

report the highest binary classification accuracy (0.90) with
Rosetta energy features [12]. Similarly, Berliner et al. [21]
report the highest regression correlation between predicted
and experimental values (0.77) combined with FoldX energy
features [28]. Both studies utilize data from the ProTherm
database as targets for machine learning.

Several studies have employed homology modelling to con-
struct a large dataset of protein structures which could be
used to derive structural features [21], [23], [27]. Previous
attempts at using protein structure were limited by the low
number of human proteins available in the Protein Data
Bank. Upon constructing a large ensemble of human protein
homology models, structural features were extracted, which
include secondary structure type, solvent accessible surface
area, charge environment, and other metrics. These features
were then combined with energy-function derived features
using the FoldX or Rosetta algorithms [12], [28], in addition
to sequence-based features. These approaches were found to
be effective at protein stability prediction, but still suffer
from some limitations. In Berliner et al. [21], several of the
most predictive features in this approach were derived from
the FoldX algorithm, of which these features were likely
constructed using empirical data from the ProTherm database.
As such, it is expected that the agreement with experimental
values in that study may be overestimated due to overfitting.
All of these studies utilizing protein structure rely heavily on
homology models of wildtype and mutant proteins, using little
to no structural validation [21], [23], [27]. The assumption
of these approaches is that single-point mutations do not
largely alter the folding of the protein, even though this has
been observed within a subset of disease-causing mutations in
humans [9]. Lastly, while Baugh et al. generated as many as 50
structures for wildtype and mutant proteins using Rosetta [23],
there is no explicitly dynamic information in these models. It
is possible that crystal structures and homology models created
may not correspond to the most probable physiological state of
the protein. These issues have motivated us to include dynamic
structural data from protein simulations in order to improve
protein stability predictions.

E. Protein Dynamics
Proteins are known to adopt multiple distinct conforma-

tional states to perform specific biological functions. These
conformational changes facilitate interactions with water, ions,
other proteins, and other biomolecules, all of which can not
be directly inferred from protein sequence alone. Although
static structural snapshots of proteins provide the basis for
establishing a structure and function relationship, additional
site-specific experimental studies are required to verify our
understanding of protein dynamics. One of such techniques
involves constructing a computational model of a protein and
utilizing physics-based algorithms to sample conformations
available to the protein (Figure 1). State-of-the-art protein
simulations have some known limitations arising from a com-
bination of systematic (accuracy in force fields) and statis-
tical errors (insufficient statistical sampling), but are widely
considered accurate enough to reproduce many experimental
measurements.

Fig. 1. Rendering of multiple time frames in simulations of the protein
rubredoxin (PDB: 1BFY). Protein is colored based on secondary structure.

The effect of protein mutations can be studied using molec-
ular simulations in a number of ways. In a small number of
cases, protein structures have been solved with and without
mutations, and thus molecular models could be constructed
and simulations performed on both proteins, respectively. In
the remaining cases where only wildtype protein structures are
available, homology models can be constructed that introduce
a single-point mutation. However, the latter approach may
require extensive validation as some mutations have been
known to cause unfolding, side-chain repacking, or even the
emergence of new structures. In this case, molecular simula-
tions are frequently employed in order to sample a protein
conformation more representative of the physiological state,
under the assumption that the mutation does not severely
effect protein folding. In order to reduce the dependence
of our approach on the existence of high quality homology
models of mutants, we propose that machine learning may
be used to study the effect of mutations without explicitly
modelling and simulating them. In this study, we assume the
effect of a missense mutation may be broadly inferred from
the dynamic fluctuations of the protein in its wildtype form.
The use of protein dynamics to study mutational effects has
been performed on a small scale, but without machine learn-
ing approaches [29], [30]. By examining the conformational
fluctuations of a protein over time, we propose that machine
learning approaches may be utilized to predict the effect of
mutation. This may be achieved by extracting information
on both the dynamic environment of a prospective mutation,
physicochemical properties of the newly introduced amino
acid. For example, a region within the overall topology of
a protein that may be considered a flexible hinge or linker to
facilitate conformational change, would be disrupted by certain
mutations depending on its hydrophobicity, size, or charge,
ultimately causing loss of protein stability. The efficacy of
this approach is dependant on the correct featurization of the
protein and site of mutation.

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 28, 2016. ; https://doi.org/10.1101/078246doi: bioRxiv preprint

https://doi.org/10.1101/078246
http://creativecommons.org/licenses/by-nd/4.0/

4

F. Machine Learning using Timeseries Data

The primary goal of our approach is to better predict how
a specific mutation impacts a protein’s stability, which is
represented by atomic trajectories over time. In this report we
investigate three approaches for learning to classify timeseries
data. As a naive approach, the mean and variance is extracted
for each timeseries feature, and used as features to multiple
machine learning methods. Following this, we utilized a mod-
ified ”bag-of-words” model, where the frequency of discretized
timeseries values are used as features to train machine learning
classifiers. For example, we may featurize the site of mutation
by the number of water molecules found in it’s vicinity.
Using a modified ”bag-of-words” model, the bins represent
a discrete number of water molecules near the mutation site,
and the bars represent the frequency of this solvation state. For
these features lacking explicit timeseries information, we aim
to explore several machine learning approaches implemented
in the scikit-learn package [31]. We did not calculate the
classification performance of simple machine learning methods
by sampling multiple static snapshots along our trajectory.

We consider recurrent neural networks (RNNs) as the
primary model of interest to our study for several reasons.
Unlike many of the other methods for handling temporal data,
recurrent neural networks are not restricted to a fixed size
dependency, and in theory are able to cover arbitrary length
dependencies throughout the input sequence [32], [33] which
are likely to occur during protein simulations.

Recurrent neural networks have been employed to achieve
state of the art performance on a variety of problems through-
out many domains. These include problems in text clas-
sification [34], speech recognition [35], modelling genetic
regulations inside cells [36], language modelling [37], and
machine translation [38]. Although neural networks are typ-
ically employed only for data-abundant tasks, several results
have shown that carefully regularized neural networks can
perform quite well on small datasets [39] [40]. Menkovski
et al. [40] study whether deep neural networks can be trained
to perform well in data-limited scenarios, focusing on the task
of identifying anatomy within x-ray images. While we intend
to use traditional machine learning approaches as well, to our
knowledge the use of RNNs is a novel approach to predicting
the stability of mutations in protein data.

II. RECURRENT NEURAL NETWORKS

Recurrent neural networks (RNNs) were introduced as a
means to overcome the inability of feed-forward neural net-
works to handle temporal data, in which inputs may be
sequences of variable length and points within the temporal se-
quence may depend on each other. RNNs extend regular neural
networks by allowing them to extract temporal dependencies
between examples within a sequence. Given a timeseries
x = {x1, . . . , xT

}, each element x
t

is fed sequentially into the
neural network. Intuitively, each hidden unit within an RNN
has a memory which allows it to remember important features
of the portion of the timeseries which it has seen, and discover
temporal correlations between events in the data.

More specifically, each hidden unit of a Recurrent Neural
Network is a recurrent unit, it contains a recurrent state whose
activation depends on the input to that hidden unit, as well as
the activation of the recurrent state from the previous step;
an illustration of this is given in figure II [41]. Precisely the
recurrent state of the hidden unit h at time t is given by

h

t

(x
t

) = g(Wx

t

+ Uh

t�1(xt�1)), (1)

where W and U are weights on the edges, and g is some
smooth bounded function. Several choices arise for the output
of an RNN.

Fig. 2. (a) The structure of a recurrent unit in an RNN. (b) The recurrent
unit unrolled over time.

The recurrent unit can either produce an output y1 =
h1(x1), . . . , yt = h

t

(x
t

) for each entry x1, . . . , xT

in the time
series as is done in the many-to-many model, produce only a
single output y

T

= h

t

(x
T

) after every entry of the time series
has been seen as is done in the many-to-one model, or some
intermediate between the two. The recurrent neural networks
which we designed are of the first two types.

Although the distance of temporal dependencies captured
by RNNs do not have an explicit limitation, equation 1 shows
that the dependency on an example x

i

decreases exponentially
as we move away from i in the sequence. Therefore, in reality
RNNs only have short-term memory.

A. Long Short-Term Memory
To address the issue of handling long-term dependencies,

Hochreiter et al. [42] introduce a more involved recurrent unit
known as the Long Short-Term Memory (LSTM) unit. The
idea behind the LSTM is a recurrent unit which is able to
decide what to remember and what to forget, allowing it to
handle long-term dependencies that the regular recurrent units
could not. The LSTM is composed of a memory cell state, c

t

which contains the information remembered by the LSTM unit
at time t in the form of a self-recurrent connection. Information
is added and removed from the memory cell state by a series
of gates.

Let W
f

,W

i

,W

c

,W

o

, U

f

, U

i

, U

c

, U

o

be weight matrices and
b

f

, b

i

, b

c

, b

o

be bias vectors. Given the the next input x

t

in
a timeseries x1, . . . , xT

and the output of the LSTM unit
at the previous input in the sequence, h

t�1, the forget gate
f

t

determines what information should be remove from the
memory cell state,

f

t

= �(W
f

x

t

+ U

f

h

t�1 + b

f

). (2)

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 28, 2016. ; https://doi.org/10.1101/078246doi: bioRxiv preprint

https://doi.org/10.1101/078246
http://creativecommons.org/licenses/by-nd/4.0/

5

The input gate i

t

then decides which values should be updated
in the memory cell state,

i

t

= �(W
i

x

t

+ U

i

h

t�1 + b

i

), (3)

and a candidate update c̃

t

is created

c̃

t

= tanh(W
c

x

t

+ U

c

h

t�1bc). (4)

The partially forgotten previous memory cell state f

t

c

t�1 is
combined with the to-be-updated values of the candidate state
i

t

c̃

t

to form the new memory cell state

c

t

= f

t

c

t�1 + i

t

c̃

t

. (5)

Finally the values of the memory cell state which the LSTM
unit will output is decided by the output gate based on the
previous output of the LSTM h

t�1 and the input

o

t

= �(W
o

x

t

+ U0ht�1 + b0). (6)

The output of the LSTM unit is calculated as

h

t

= o

t

tanh(c
t

). (7)

B. Bidirectional Recurrent Networks

Siwei et al. [34] gave state of the art performance for prob-
lems of text classification by creating a neural network with the
intuition of representing each word in a text with its context
within that text. To do this they use a bidirectional recurrent
neural network to capture information about the words which
appear before and after it. Introduced by Schuster et al. [41],
a bidirectional recurrent neural network is a generalization of
a recurrent network in which each recurrent node has both a
forwards-in-time and backwards-in-time recurrent loop. This
can be seen in figure 3. In particular, the hidden units in a
bidirectional recurrent network are given by the equations

h

r

t

(x
t

) = g(W r

x

t

+ U

r

h

r

t�1(xt�1)) (8)
h

l

t

(x
t

) = g(W l

x

t

+ U

l

h

l

t�1(xt+1)). (9)

Fig. 3. (a) The structure of a bidirectional recurrent hidden unit. (b) A
bidirectional recurrent unit unrolled over the time.

We extend the intuition of Siwei et al. [34]. Using a
bidirectional recurrent LSTM network we hope to capture the
context of the state of a protein within it’s time series. This
will allow the machine to have access to information about the
past and future of the protein.

C. Optimization, Parameter Initialization and Regularization
The many non-linear layers in a neural network allow it to

become extremely expressive. Unfortunately this large capacity
often causes neural networks to overfit before they can learn
meaningful relationships. Therefore it is paramount that the
model be parameterized to avoid this, especially when trained
on a small dataset. Dropout [43] is a simple, yet extremely
effective method to prevent feed-forward neural networks from
overfitting.

Following the work in [44] which claims that RNNs with
dropout do not perform well due to the recurrence ampli-
fying noise, Zaremba et al. [45] propose an implementation
of dropout specifically designed for LSTMs. Their proposed
method of dropout acts inside the recurrent unit, affecting only
non-recurrent connections. This is done by applying dropout
only to the values of x

t

by replacing x

t

by D(x
t

, p) in
equations (2) - (7), where D(x

t

, p) discards node x

t

with
probability 1� p during each round of training.

Multiple learning optimization methods have been proposed
which are applicable to recurrent neural networks. In this word
we will use the Adam [46] optimization method computes an
adaptive learning rate at each step based on the first and second
moments of the gradient. The quality of the local solution is
determined not only by the optimization method employed but
by the weight initialization as well. The quality of the local
solution is determined not only by the optimization method
employed but by the weight initialization as well. Glorot [47]
introduced Xavier weight initialization as a method to prevent
the signals passing through the nodes in a neural network from
becoming negligible or unwieldy.

III. METHODOLOGY

A. Protein Dynamics Datasets
We utilized two largely non-overlapping datasets of proteins

from large-scale studies of mutational effects on protein sta-
bility. The training dataset of Berliner et al. [21] contains 136
protein structures which were annotated with ��G

exp

of mu-
tation data. The wildtype structures or homologous structural
templates used in this dataset were high-resolution. Of these
136 proteins, we excluded all proteins with large chemical
cofactors (heme and iron-sulfur clusters) and removed all
other chemical cofactors from remaining proteins. A total of
116 proteins were utilized from this dataset. We utilized an
additional dataset created by Sahni et al. [9] which contains
950 proteins with both either disease-causing single-point
mutations or stable controls. Of this dataset, 884 proteins were
utilized after excluding proteins with large chemical cofactors.

Homology modelled was performed for a subset of struc-
tures in both datasets where a suitable template was found, as
described by Berliner et al. [21]. Molecular models suitable
for simulation were constructed automatically using PDB-
Fixer [48]. Variable size rectangular simulation cells were
constructed for each protein such that there was 8.5 Å of
padding with 150 mM of NaCl. All titratable side chains were
set to the standard protonatation state at pH 7. Proteins were
modelled with the AMBER99SB-ILDN [49] forcefield and
water was modelled with TIP3P [50]. All energy minimzation,

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 28, 2016. ; https://doi.org/10.1101/078246doi: bioRxiv preprint

https://doi.org/10.1101/078246
http://creativecommons.org/licenses/by-nd/4.0/

6

equilibration, and production simulations were performed with
OpenMM 6.31 [51]. All hydrogen bonds were kept rigid and a
2 fs timestep was utilized during equilibration. For production
simulations, all bonds were kept rigid and a 5 fs timestep was
used. Hydrogen mass was set to 4 amu to facilitate production
simulations. For all simulations we utilized a reaction-field
electrostatics with a 1 nm cutoff in a periodic simulation cell.
Simulations were performed in the NPT ensemble (300 K, 1
atm), with temperature held constant by a Langevin integrator
with 1 ps

�1 friction. A Monte Carlo barostat was utilized with
a frequency of 25 steps. Data was saved at a frequency of 50
ps but all time series were extracted at an interval of 1 ns. The
aggregate total simulation data collected for the Berliner and
Sahni datasets is 156 µs and 199 µs respectively.

Both datasets had imbalanced proportions of class labels
weighted towards destabilizing mutations. Table 1 shows the
distribution of stable/unstable class labels for each mutation
in the two datasets, and Figure 5 visually represents the
distribution of ��G

exp

for the Berliner dataset. As discussed
below, we corrected for the imbalanced class labels during
machine learning but we did not correct for some proteins
being overrepresented in the Berliner dataset.

TABLE I. DATASET STATISTICS

Dataset Stable Mutations Unstable Mutations Total Mutations

Berliner et al. 710 2,208 2,918
Sahni et al. 191 1,103 1,294

Fig. 4. Distribution of ��G
exp

for Berliner et al. dataset

B. Feature Design
Features derived from molecular dynamics simulations were

designed to describe the local environment as well as the

overall topology of the protein, both of which are poorly
described by sequence-based features alone. Berliner et al.
computed structural features that quantified the amino acid side
chain occupied volume, electrical charge, water accessibility,
crowdedness, and amino acid secondary structure. [21] We aim
to extract similar features, broadly classified into four types;
global timeseries features, mutation timeseries features, static
mutation features, and mutation sequence features summarized
in Table I, for which each are identified as timeseries features
or not. All structural features were extracted using MDTraj
[52]

Global features are designed to describe structural properties
of the protein as a whole, and include standard stability metrics
such as root mean square deviation of all alpha carbons from
the initial model and the radius of gyration. The distribution
of reciprocal interatomic distances (drid) deviation feature is
a similar measure of structural similarity to the initial model,
but it provides a better measure of kinetic similarity between
structures. [53] These features are complimented by more
advanced dimensionality reduction algorithms such as ”princi-
pal component analysis” (pca) and ”time-lagged independent
component analysis” (tica) that describe collective motions
in the protein. [54] For principal component analysis, C↵-
C↵ distances of all residue pairs were utilized, and for time-
lagged independent component analysis, all dihedral angles
were utilized. Although these global features do not describe
the site of mutation alone, they provide supporting information
that may help to qualify the degree to which a mutation alters
stability as well as flagging important conformational changes
that may be occurring in our timeseries.

All mutation timeseries features were extracted at the site
of mutation and as such, describe the local environment of a
mutation as it would exist in the wildtype form. Traditional
residue-specific analysis such as root mean square fluctuations
allow for the quantification of site flexibility, something largely
absent in static molecular models. Although simulations were
conducted with explicit water molecules, they were removed
for analysis. As such, we computed a timeries of solvent acces-
sibility using the Shrake and Rupley algorithm as implemented
in MDTraj. [52], [55] A timeseries of secondary structure type
at the site of the mutation was computed using the DSSP algo-
rithm. [56] Two geometric features were computed to quantify
the position of the mutation site alpha carbon with respect to
internally defined metrics, the principal inertial axis and the
dipole axis. For the computation of hydrogen bonds at the site
of the mutation, the Wernet-Nilsson algorithm was utilized.
[57] The electrostatic environment was studied by determining
the atomic charges within 6 Å of the mutation with respect
to the charge of the new side chain being introduced at the
mutation site. The backbone phi and psi torsional angles were
extracted at the site of the mutation and transformed using sine
and cosine to treat the discontinuity at the periodic boundary.
The first, second, and third moments of the distribution of
reciprocal interatomic distances (drid) was again computed,
but this time at the site of the mutation and left in units of
reciprocal Å to quantify the crowdedness of the mutation site.
[53]

Since simulations were not performed after mutations were

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 28, 2016. ; https://doi.org/10.1101/078246doi: bioRxiv preprint

https://doi.org/10.1101/078246
http://creativecommons.org/licenses/by-nd/4.0/

7

introduced, we can not directly estimate how the environment
would change upon mutation. However, we can utilize physic-
ochemical data on the change of amino acids at a particular site
(”residue change in charge, hydrophobicity, volume, molecular
weight”) as a means to approximate this. To compliment
these differences in physicochemical empirical data, we utilize
a qualitative residue swap similarity metric that is 0 when
both the unmutated and mutated amino acids belong to the
same class (small nonpolar, small polar, negative charge, large
nonpolar, bad behaved, positive charge, side chain amide) and
1 otherwise, as defined by Poultney et al. [58]. Additionally, a
static structural feature of potentially high descriptive value is
”residue mean mutual information” which is the average value
in bits at a particular residue in a mutual information matrix
computed using MDEntropy. [59] Finally, two sequence based
algorithms are used; the score assigned to the mutation based
on the BLOSUM substitution matrix and the score returned
by the Provean algorithm for this mutation. [60], [61] In the
absence of significant changes of global and site-specific time
series, our machine learning algorithms may rely more strongly
on physicochemical features to predict stability.

TABLE II. MACHINE LEARNING FEATURES

Feature Name Type TS?

1 root mean square deviation global Y
2 radius of gyration global Y

3-7 principal component proj. global Y
8-12 time-lagged independent component proj. global Y
13 drid deviation global Y
14 fraction of native contacts global Y
15 residue root mean square fluctuations mutation Y
16 residue solvent accessibility mutation Y
17 residue secondary structure mutation Y
18 residue projection on dipole axis mutation Y
19 residue projection on principal axis mutation Y
20 residue backbone hydrogen bonds mutation Y
21 residue sidechain hydrogen bonds mutation Y
22 residue like charges in 6 Å mutation Y
23 residue unlike charges in 6 Å mutation Y
24 residue carbon atoms in 6 Å mutation Y

25-26 residue backbone phi (sin, cos) mutation Y
27-28 residue backbone psi (sin, cos) mutation Y
29-31 residue drid moments mutation Y

32 residue swap similarity static N
33 residue change in charge static N
34 residue change in volume static N
35 residue change in hydrophobicity static N
36 residue change in molecular weight static N
37 residue mean mutual information static N
38 provean score sequence N
39 substitution matrix score sequence N

To assist in the interpretation of features, we computed
the pairwise correlation between all timeseries in Figure 5.
Several groups of features are found to be highly correlated
that are intuitively related (residue drid moments, residue back-
bone and sidechain hydrogen bonds, residue like and unlike
charges). Unexpected correlations between residue pairs is also
revealed, such as the ”first principal component projection”
and ”root mean square deviation”, as well as the ”number of
native contacts” and the ”distribution of reciprocal interatomic
distances”. This analysis suggests that a reduced subset of
features might be utilized with minimal loss in accuracy in
future studies.

flu
ct
ua
tio
ns ss

di
po
le
po
s

pa
xi
sp
os

sa
sa

ph
i_
s

ph
i_
c

ps
i_
s

ps
i_
c

ba
ck
bo
ne
_h
bo
nd
s

si
de
ch
ai
n_
hb
on
ds

ne
ar
by
_c
ar
bo
ns

lik
e_
ch
ar
ge
s

un
lik
e_
ch
ar
ge
s

dr
id
_s
ite
1

dr
id
_s
ite
2

dr
id
_s
ite
3

rm
sd
rg
yr

pc
a1

pc
a2

pc
a3

pc
a4

pc
a5

tic
a1

tic
a2

tic
a3

tic
a4

tic
a5

na
tiv
e_
co
nt
ac
ts

dr
id
_t
ot
al

fluctuations
ss

dipolepos
paxispos

sasa
phi_s
phi_c
psi_s
psi_c

backbone_hbonds
sidechain_hbonds

nearby_carbons
like_charges

unlike_charges
drid_site1
drid_site2
drid_site3

rmsd

rgyr
pca1
pca2
pca3
pca4
pca5
tica1
tica2
tica3
tica4
tica5

native_contacts
drid_total

−0.8

-1.0

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5. Pairwise Pearson correlation between timeseries features in the
Berliner dataset.

C. Experimental Setting
The curated protein-sequence datasets are imbalanced,

favouring the unstable class. To minimize any bias which this
introduces, unstable examples are removed at random from
the set of unstable examples until a 45/55 split remains. To
mitigate remaining bias, stratified k-fold cross validation is
used [62]. Specifically we use nested 10-fold cross validation.
First the data is split into 10 folds and one is selected for the
test set. The remaining data is then split into 10 folds and
one is selected for the validation set; the rest are used for the
training set. Within the inner cross-validation loop, the optimal
hyperparameter vector is chosen from candidate set, whose
selection is described below. In the outer cross-validation
loop the performance of the best-performing models from
the inner-folds are assessed on their corresponding test set.
The 10 resulting models from this procedure are an estimate
of this model’s performance on the entire dataset under the
assumption that the 10 models are equivalent to each other
allowing us to average their final classification results.

On each of the inner folds the model is evaluated on a
candidate set of hyperparameters for validation. Bergstra et al.
[63] gave empirical and theoretical evidence that evaluating on
randomly chosen hyperparameter vectors is both more efficient
and produce better results than most widely used methods of
manual search and grid search for initializing parameters. Fol-
lowing this, we empirically choose a set of intervals in which
to sample our hyperparameters. The candidate hyperparameters
are chosen at random from these intervals during validation.

In the case of an imbalanced dataset the accuracy metric
tends to undervalue how well a classifier is performing on
the smaller classes. In this case the F1 score may be a more
appropriate metric by which to judge our model. Forman et al.
[62] show that several methods of combining F1-score across

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 28, 2016. ; https://doi.org/10.1101/078246doi: bioRxiv preprint

https://doi.org/10.1101/078246
http://creativecommons.org/licenses/by-nd/4.0/

8

folds, including averaging the F1 score, introduce a significant
amount of bias. In the unbalanced class case, missing a single
true positive might reduce the F1 score of a fold significantly,
while correctly predicting another true positive has a much less
significant impact. Of the methods they test, they found that

F1k�fold

=
2
P

k

i=1 TP
(i)

2
P

k

i=1 TP
(i) +

P
k

i=1 FP

(i) +
P

k

i=1 FN

(i)

is almost perfectly unbiased. Here TP

(i)
, FP

(i)
, FN

(i) are the
true positive, false positive and false negative rates for fold i.
Therefore, this will be the method we use for aggregating F1-
score across folds.

IV. CLASSIFIERS

In this section we outline the methods which we will employ
for protein stability prediction.

A. Bidirectional Recurrent LSTMs
For this problem we have designed a bidirectional recurrent

LSTM network. This network can be seen in figure IV-A and
unwound across time in figure IV-A. The model consists of
two layers of LSTM units followed by a sigmoid activation
as output. The first layer of LSTM units is bidirectional, and
produces an output at each time step in the many-to-many
fashion. The second LSTM layer is only forward-directional
and produces a single output at time T once all of the
timeseries has been read. Dropout and LSTM dropout are
applied at various layers throughout the model, indicated by
the dotted lines in figure IV-A.

Fig. 6. Structure of tuned bidirectional LSTM neural network.

The intuition of the model is that the first layer of bidirec-
tional LSTM units encodes each input within it’s context in the
timeseries, while the second LSTM layer reads through these
contextualized inputs in chronological order. This can be seen
explicitly in figure IV-A.

The methodology presented in section II-C is used to fine-
tune the model. The weights of each layer are initialized with

Fig. 7. Tuned Bidirectional LSTM Network unwound over time.

Xavier initialization, and the bias of the forget gate of each
LSTM unit is initialized to 1.0 as suggested in [64]. For
training, the Adam [46] method is used along with binary
cross-entropy as the loss function. We observed empirically
that the model performed optimally when the first bidirectional
LSTM connection contained 11 nodes each for the forwards
and backwards connections, the second LSTM layer contained
5 nodes, and the sigmoid layer contained only a single node.

During cross-validation our model tended to perform better
when dropout to the layer of bidirectional LSTM nodes was
fairly high, p ⇡ 0.6, dropout to the regular LSTM layer
was lower, around p ⇡ 0.45, and dropout before the sigmoid
output was quite small at p ⇡ 2. Better results were seen with
smaller step size ↵ ⇡ 0.001, and large values of Adam decay
parameters �1,�2 2 [0.9, 1).

For comparison we also evaluate two simpler recurrent
neural networks: A standard recurrent neural network with
a single layer of 15 recurrent nodes followed by a sigmoid
output, which we will call the RNN model. And a simpler form
of bidirectional LSTM with only a single layer of bidirectional
LSTM nodes in the many-to-one fashion, with 15 LSTM units
per direction. This is followed by a single sigmoid output.
We call this model the simple Bidirectional LSTM model.
Both of these networks employ dropout between layers, have
weights initialized with Xavier initialization, and are optimized
with Adam with a binary cross-entropy loss function, in the
same fashion as was done for our tuned bidirectional LSTM
model above. The neural networks were implemented using
the Theano [65] and Keras [66] packages.

B. Simple Machine Learning Models
Seven simple machine learning models were used to bench-

mark the relative success of our neural networks. Models
were tuned using an iterative grid search to find the optimal
hyperparameters. We utilized the Gaussian Naive Bayes model,
k-nearest neighbours, support vector machines, stochastic gra-
dient boosting of decision trees, random forests, and AdaBoost.
Note that the objective of this work was not to compare the
strengths and weaknesses of each of these approaches on our
dataset.

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 28, 2016. ; https://doi.org/10.1101/078246doi: bioRxiv preprint

https://doi.org/10.1101/078246
http://creativecommons.org/licenses/by-nd/4.0/

9

0.00

0.05

0.10

0.15

0.20

0.25

flu
ct

u
a

tio
n

s

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

sa
sa

40

45

50

55

60

65

70

n
e

a
rb

y_
ca

rb
o

n
s

8

9

10

11

12

13

14

15

16

17

lik
e

_
ch

a
rg

e
s

−20

−18

−16

−14

−12

−10

−8

u
n

lik
e

_
ch

a
rg

e
s

0.0

0.1

0.2

0.3

0.4

0.5

rm
sd

1.44

1.46

1.48

1.50

1.52

1.54

1.56

rg
yr

−15

−10

−5

0

5

10

15

p
ca

1

−15

−10

−5

0

5

10

p
ca

2

−10

−5

0

5

10

p
ca

3

−10

−5

0

5

10

p
ca

4
0 200 400 600 800 1000 1200 1400 1600 1800

Time (nanoseconds)

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

tic
a

1

0 200 400 600 800 1000 1200 1400 1600 1800
Time (nanoseconds)

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

tic
a

2

0 200 400 600 800 1000 1200 1400 1600 1800
Time (nanoseconds)

−3

−2

−1

0

1

2

tic
a

3

0 200 400 600 800 1000 1200 1400 1600 1800
Time (nanoseconds)

−3

−2

−1

0

1

2

3

tic
a

4

0.80

0.85

0.90

0.95

1.00

n
a

tiv
e

_
co

n
ta

ct
s

t=0ns t=500ns t=1500ns

Fig. 8. Micrococcal nuclease protein molecular dynamics example. (top)
Molecular renderings of this protein throughout the timeseries colored by sec-
ondary structure. (bottom) Selected feature timeseries related to the mutation
G83W where the alpha carbon of residue 83 is shown with a cyan sphere. From
top left to bottom right; fluctuations, native contacts, rmsd, radius of gyration,
solvent accessible surface area, nearby carbons, nearby like charges, nearby
unlike charges, principal component 1-5, time-lagged independent components
1-5

V. RESULTS

A. Protein Dynamics Example

There are 553 single-point mutations to the micrococcal
nuclease protein (PDB: 4WOR) in the Berliner dataset. This
is a bacterial protein is an enzyme that breaks apart single-
stranded nucleic acids. A structure of this protein has been
available since 1969, making it an extremely well-studied pro-
tein with a great deal of experimental data available regarding
its thermostability upon mutation. We performed 1.6 µs of
simulation for this protein (in the absence of any nucleic
acids) and examined any structural fluctuations of the entire
protein, as well as site-specific information related to regions
with ��G of mutation information. Here we present several
timeseries related to a specific mutation G83W in Figure 8.
Since Gly is an unusual amino acid without a side chain and
Trp is a large nonpolar residue, one might expect that this
is a destabilizing mutation, and indeed this is found to be
destabilizing in the ProTherm database. However, the Provean
algorithm predicts this mutation to be be neutral. We expect
that the timeseries extracted in at residue 83, such as the
the root-mean square fluctuations and change in number of
like charges will assist in correctly classifying this mutation
as destabilizing. Interestingly, one may notice that transitions
are not made between multiple basins in the space deposition
timeseries of time-lagged independent component 1 and even
principal component 1, suggesting that it is likely that we have
not obtained sufficient sampling of this protein along both its
slowest and highest-variance degrees of freedom. Nonetheless,
we obtain additional info

GaussianNB
KNeighbors

GradientBoosting
AdaBoost

DecisionTree SVC

RandomForest
0

20

40

60

80

100

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

Mean/Var Features
Mean/Var Features (F1-Weighted)

Binned Features
Binned Features (F1-Weighted)

0

20

40

60

80

100

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

Mean/Var Features
Mean/Var Features (F1-Weighted)

Binned Features
Binned Features (F1-Weighted)

GaussianNB
KNeighbors

GradientBoosting
AdaBoost

DecisionTree SVC

RandomForest

Fig. 9. Accuracy of supervised machine learning algorithms using mean/var
and histogram binned timeseries features (top). Classification accuracy and
F1-scores for the Berliner dataset (bottom). Classification accuracy and F1-
scores for the Sahni dataset. Error bars are computed using the standard error
of mean over 10 folds.

B. Machine Learning Benchmarks

We report the accuracy and F1-score of the six basic
machine learning models studied using mean and variance fea-
tures of our timeseries data in Figure 9. We achieved the worst
performance using the gaussian naive Bayes classifier for both
scoring metrics on both the Berliner and Sahni datasets. The
most successful of models were ensemble methods, gradient
boosting, random forest, and AdaBoost classifiers, all of which
were nearly within error bars and ranged between 64% and
75% accuracy for the Berliner dataset and between 70% and
76% accuracy for the Sahni dataset. In general, F1-scores were
consistently lower than our accuracy scores, and we expect
they represent a fairer representation of the performance of
our models. We observed marginally lower performance using
histogram binned features in the Berliner dataset, ranging from
0% to 10% across all models. This suggests that both dimen-
sionality reduction techniques we applied to our timeseries
features resulted in effectively the same results. Our highest
performing models across both datasets were the ”gradient
boosting” and ”random forest” ensemble methods using the
mean/variance features. Using mean/variance features, these
two models achieved an accuracy of 71% ± 4% and 75% ± 4%
respectively on the Berliner dataset. The same models achieved
an accuracy of 76% ± 3% and 76% ± 2% respectively on the
Sahni dataset.

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 28, 2016. ; https://doi.org/10.1101/078246doi: bioRxiv preprint

https://doi.org/10.1101/078246
http://creativecommons.org/licenses/by-nd/4.0/

10

Bidirectional LSTM
Simple

Bidirectional LSTM Recurrent

Neural Network

0

20

40

60

80

100
C

la
ss

ifi
ca

tio
n

A
cc

ur
ac

y
(%

)
TS Features
TS Features (F1-Weighted)

TS Features (F1-weighted,
 without sequence)

TS Features (without sequence) TS Features (Ternary)

0

20

40

60

80

100

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

Bidirectional LSTM
Simple

Bidirectional LSTM Recurrent

Neural Network

TS Features
TS Features (F1-Weighted)

Fig. 10. Accuracy of several recurrent neural network types utilizing complete
timeseries features (top). Classification accuracy and F1-scores, with and
without sequence features for the Berliner dataset (bottom). Classification
accuracy and F1-scores for the Sahni dataset.

C. Recurrent Neural Network
We report the accuracy and F1-score of the three recurrent

neural network models studied using timeseries data in Figure
10. It was found that both a bidirectional LSTM offered the
highest accuracy and F1-score for the Berliner dataset, 76%
and 80% respectively. The same bidirectional RNN obtained
an accuracy and F1-score of 73% and 75% when trained on
the Sahni dataset. The simple bidirectional LSTM and recur-
rent neural network obtained only marginally lower scoring
metrics. Here we experimented with the removal of sequence
based features during the training of the neural network. Our
results suggest that sequence features resulted in a gain of
classification accuracy of 2% to 3% but do not appear to be
required for classification. Similarly, we examined the accuracy
of ternary classification (destabilizing, neutral, and stabilizing
groups), although due to a limited number of class members,
the performance of this method dropped by approximately 25%
for all recurrent neural networks.

D. Comparison to Existing Methods
In order to assess the quality of our models, we compared

to several high-performing stability prediction algorithms in
the literature as summarized in in Table II (ELASPIC [21],
VIPUR [23], FoldX [28], Provean [61]). All of these methods
were run using standard weightings and default parameters
distributed with each algorithm and were not retrained on

our dataset. The three former methods were designed to not
only to classify mutations based on structure, but to predict
��G. As such, we imposed ��G cutoffs consistent with
our methodology to draw comparisons between our class
predictions and these regression and energy-function based
methods (< 0 for neutral, � 0 for deleterious). Berliner
et al. authored the ELASPIC methodology and subsequently
used the Berliner dataset for training, we note that it had the
highest performance on this dataset using accuracy and F1-
score as metrics (73% and 80%). The VIPUR methodology
was found to be high performing on the same dataset. The
��G predictions of the FoldX algorithm, which was also
utilized within ELASPIC and found to be among the highest
performing features, had only slightly worse accuracy the
ELASPIC algorithm. Similarly, the Provean score (which was
classified as neutral or deleterious based on a cutoff of -
2.5) was also used in the ELASPIC algorithm as a feature,
but it is frequently used by itself to assist in the prediction
of mutation stability by itself and thought to have higher
accuracy than popular PolyPhen2 algorithm. [61] It is not
unexpected that all algorithms perform poorly on the Sahni
dataset since they were trained using ��G values and the
stability metric used by Sahni et al. is considerably different.
Note that we did not attempt to train our models on the Berliner
dataset and classify stability of the Sahni dataset. As such, we
would expect a comparable drop in performance. The VIPUR
algorithm was not run on the Sahni dataset and will be better
assessed in future studies. To summarize, our best classification
algorithm appears to be equal or superior to the majority of
these approaches.

TABLE III. ACCURACY COMPARISON TO EXISTING METHODS

Methodology Berliner Acc. Sahni Acc. Berliner F1 Sahni F1

ELASPIC 73% 42% 80% 37%
VIPUR 45% - 63% -
FoldX 71% 40% 80% 38%

Provean 64% 35% 75% 39%

VI. VISUALIZATION AND FEATURE IMPORTANCE

A. Garson’s Method For Recurrent Neural Networks
Several methods have been proposed to determine the im-

portance of the input nodes to the neural network [67], [68].
Unfortunately none of the presented methods are immediately
suitable for handling recurrent connections, and few of them
have been generalized beyond a single-layer neural networks.
A simple method for evaluating the importance of the inputs
was proposed by Garson [69], extended by Goh [70], and
Gevrey et al. [68]. Garson’s algorithm phrases the importance
of an input as the sum of the weight of the (directed) paths
through the neural network from that input to that target. Let
N be a neural network with n input nodes, a single layer of
m hidden nodes, and k target nodes. Garson’s algorithm states
that the importance of input node x

↵

is
P

m

j=1

P
k

o=1 |Wx

↵

,h

j

W

h

j

,o

|
P

n

i=1

P
m

j=1

P
k

o=1 |Wx

i

,y

j

W

y

j

,o

|
, (10)

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 28, 2016. ; https://doi.org/10.1101/078246doi: bioRxiv preprint

https://doi.org/10.1101/078246
http://creativecommons.org/licenses/by-nd/4.0/

11

where W

ij

is the weight between node i and node j in the
neural network. If there is no edge between nodes i and j

then W

ij

= 0.
We show how this can be generalized for recurrent units. To

extend this to arbitrary-depth neural networks, we can rewrite
equation 10 by defining the relative importance of a node x

↵

in the neural network to be

RI

x

↵

=

(
1 if x

↵

is an output nodeP
m

j=1 |W
x

↵

,y

j

|RI

y

jP
n

i=1

P
m

j=1 |W
x

i

,y

j

| otherwise,
(11)

where n is the number of nodes on the same layer as x

↵

and
m is the number of nodes on the layer which x

↵

has outgoing
edges to. The relative importance of a node is equivalent to
summing over the product of the weights along each path
between x

↵

and any of the output nodes.
It is straightforward to extend this recursive definition to

the simple recurrent units in equation 1, figure II. This is done
by unwinding the recurrence. Consider the simple structure in
figure II with a single layer of recurrent units h0,1, . . . , h0,n,
a layer of inputs x1, . . . , xm

, a layer of outputs y1, . . . , yk,
and weights W1,1, . . . ,Wm,n

between x

t

and h

t

, V1,1, . . . , n, k

between the hidden units h and the output ys, and recurrent
weights U1, . . . Un

. The relative importance of the recurrent
unit h0,j can then be found by expanding equation 1,

RI

h0,j =

kP
l=1

|V
j,l

|RI

y

l

+
nP

i=1
|U

j,i

|RI

h1,i

nP
d=1

kP
l=1

|V
d,l

|+
nP

d=1

nP
l=1

|U
d,l

|
. (12)

Note that here we are taking the relative importance of each
input node at time t = 0, as by the equation 11, this allows us
to capture the full time dependencies across t = 0, . . . , T .

This method can in theory be extended to LSTM units, but
calculating the recurrent relation becomes far more involved.
Therefore we evaluate the the importance for each of the
features for our RNN model, and leave the calculation of the
relative importance of LSTM units for further work.

It is important to note that unlike equation 11 for standard
feed-forward neural networks, summing over each RI

h0,j for
j = 1, . . . , n does not sum perfectly to 1 for finite T , although
for T ! 1, summing over each RI

h0,j for j = 1, . . . , n does
converge to 1. The impact of each hidden unit h

t,j

on RI

h0,j as
t grows decreases exponentially in the weights U

ij

. Therefore
this relation can be accurately approximated by taking large
enough T .

We calculate the relative importance of the input features
to the RNN of the for T = 20. This value of T was
chosen because it becomes computationally intractable for
much higher values of T , and the changes in the relative
importance are negligible. The results can be seen in Figure
VI-C, and are discussed in section VI-C.

B. Neural Interpretation Diagrams
We provide a modification of the model of neural inter-

pretation diagram as presented in [71]. Neural interpretation

diagrams (NIDs) provide a way for us to visualize the effect
one node has on another in a neural network. In a NID each
row of circles correspond to a node in a layer in the neural
network. The nodes are connected by edges, representing the
weight between those two nodes. An edge is grey if the
associated weight is negative, and black if positive. The width
of the edge reflects the magnitude of that weight.

To remedy this, we propose a modification of neural in-
terpretation diagrams. Two contrasting colours are chosen to
represent the edges. Edges which have positive weight are
coloured cyan, while negative weight edges are magenta.
Highly weighted edges will appear thicker and more opaque
than those with low weight. To handle the issue of NIDs
causing nodes to appear more important than they truly are, we
combine our extension of Garson’s method to NIDs. The size
of each node in the NID is now dependent on the relative
importance (equation 11) of that node within the network.
As well, we colour each node is the normalized sum of the
incoming weights to that node. The colour of the input nodes
is the normalized sum of the outgoing weights from that input.
As biases do not receive a relative importance, their size is the
sum of the magnitude the weights which are connected to it.

Furthermore, we extend NIDs to recurrent neural networks.
A separate NID is used to plot the recurrent connections for
the network. This can be seen for our recurrent neural network
in figure VI-B. Rather than using the the relative importance
scores for the size of the nodes in the recurrence NID (figure
VI-B (b)), we believed that the sum of sum of the incoming
or outgoing weights would be more informative.

Finally, we outline how to use the above multi-NID method
to extend NIDs to LSTM recurrent neural networks. The
feed-forward portion of the network is graphed as above.
Due to the clutter of LSTM units, we use two plots to
display the connections in the LSTM unit. In the first, the
feed-forward weights are displayed, while in the second the
recurrent weights are displayed. The colour and represent the
same features as described above for the RNN. The size
of each node now represents the magnitude of the sum of
the incoming weights to that node, rather than it’s relative
importance because the recurrence for the LSTM unit became
unwieldy to calculate. The size of the input nodes represent
the magnitude of the sum of the weights leaving that node.

The NID for our tuned bidirectional LSTM model can
be seen in figures VIII, VIII VIII,VIII,VIII,VIII,VIII in the
supplementary information. Unfortunately we found that our
extended NID without the extra information provided by
Garson’s method did not simplify the representation of the
regular NID in order for us to analyze analyze coherently.
Therefore we focus on the RNN for which we can implement
Garson’s method for our feature analysis, relying on the fact
that they differ only slightly in performance. This exemplifies
why including Garson’s method (equation 11) is extremely
useful for NIDs.

C. Feature Discussion
We analyze the NID for the RNN presented in figure VI-B,

and the results from Garson’s method which are shown in the

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 28, 2016. ; https://doi.org/10.1101/078246doi: bioRxiv preprint

https://doi.org/10.1101/078246
http://creativecommons.org/licenses/by-nd/4.0/

12

a) b)

Fig. 11. A modified NID for our RNN model. a) The feed-forward
connections of the neural network. b) The weights of the recurrent connections
of the neural network at time t and t+ 1.

first histogram in figure VI-C. If a feature has predominantly
positive (cyan) paths leading from it, then a large value for that
feature contributes to the neural network predicting the positive
class (unstable). On the other hand, if the feature has many
negative (magenta) paths leading from it, then a high value of
that feature contributes towards it predicting the negative class
(stable). We say that such nodes have high negative or high
positively weight respectively.

Nodes with high positive weight include ”number of
sidechain and backbone hydrogen bonds”, as well as ”mutation
similarity score”. Both of these features are expected to be
essential for characterization of the effect of mutation, although
interestingly the latter is a static value. Nodes with high

negative weights include ”principal component 1 projection”,
”root mean square fluctuations”, and ”radius of gyration”. In-
terestingly, all of these were global features thought to strongly
characterize the stability of the protein. The determination of
highly weighted nodes in our RNN provide motivation for
the development of even more robust features to assist in
classification accuracy. An example of this would be a more
advanced measure of hydrogen bonding involving the residue
at the site of mutation, further breaking down the electrostatic
properties in this environment in a similar way to the energy
terms returned by software like Rosetta and MODELLER.
This may also draw attention to the limitations of NIDs for
visualizing neural networks.

Figure VI-C shows the relative importance (multiplied by
1,000) of features to the neural network as calculated by
our extension of Garson’s method. The differences in feature
importance was not nearly as significant as was seen for the
other ensemble machine learning methods plotted in the lower
figures, although similar trends were observed. In particular the
change in hydrophobicity appeared as a significantly important
feature for many methods. While the mean fluctuations at
the site of the mutation is understandably a high importance
feature due to the potentially stable or unstable environment
of the mutation, but the recurrent neural network also found
the ”time independent component analysis project 1” and
”principal component analysis 1” to be of high importance.
The mean and variance of these features have negligible
information so it is reassuring that the neural network was able
to utilize this dynamic structural information. As these specific
features cannot be determined from any existing structural,
sequence, and energy function based method, it is reassuring
that the neural network was able to utilize them effectively for
classification.

Relative feature importance is also presented for several
ensemble machine learning algorithms in Figure VI-C. Unlike
the uniform neural network feature importance values, several
algorithms were found to rely heavily on individual features.
The consensus across ensemble machine learning algorithms
is to put high importance on static features described physic-
ochemical properties of amino acids involved in the mutation.
Since we do not explicitly model the presence of mutated
amino acids, we rely strongly on these features to characterize
the mutation. Amongst our top performing ensemble methods,
random forests and gradient boosting, several mutation site
specific features were found to have high importance, including
the mean solvent accessible area and the mean and variance of
the number of like charges and root mean square fluctuations.
The relatively low important of global properties suggest
that we may have poorly described the overall topology and
stability of the protein with our global features. This analysis
of feature importance draws attention to limitations of our
featurization and reveals areas of improvement for feature
engineering for the prediction of stability.

VII. DISCUSSION

Both the simple machine learning models used in this
manuscript as well as our top performing model (the bidi-
rectional LSTM) were highly effective at the classification

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 28, 2016. ; https://doi.org/10.1101/078246doi: bioRxiv preprint

https://doi.org/10.1101/078246
http://creativecommons.org/licenses/by-nd/4.0/

13

static features had no variance

Recurrent Neural Network

Fig. 12. Feature importance histograms for the recurrent neural network and ensemble machine learning models. (top) The relative importance (multiplied
by 1,000) of timeseries features in the recurrent neural network model. (middle) The relative importance of mean features used with several ensemble-based
machine learning algorithms. (bottom) The relative importance of variance features used with several ensemble-based machine learning algorithms.

of arbitrary protein mutations as neutral or deleterious. Our
results support that an optimized bidirectional LSTM network
with dynamic timeseries features is capable of surpassing
simple machine learning algorithms, but not by a large degree.
The complexity of the recurrent neural network, both in
implementation and interpretation of the output suggests that
its use may require additional work for applications such as
this one. Improvements to this approach may include further
optimizations of neural network architecture and hyperparam-
eters.

Even though this study utilizes one of the largest atomistic
multi-protein molecular dynamics datasets, with comparable
size of Dynameomics database in terms of aggregate simu-
lation for our two datasets [72], we expect that many more
proteins must be simulated to achieve higher performance
using a recurrent neural network. We expect that potentially
an order of magnitude more proteins (and a similar number of

labelled examples), may be required. Using todays computing
resources, this may be achieved by accelerated simulation
sampling algorithms like simulated tempering at the expense
of losing actual dynamics. [73]. Although long simulations
(up to 2 microseconds) were computed, it cannot be ignored
that long timescale domain reorganization of proteins may still
occur, as seen in long time-scale simulations of BPTI [74].
Even so, it is difficult to assess if longer protein simulations
would be required in order to improve classification accuracy
of our neural network. Additional testing, potentially involving
repeated truncation of timeseries data and retraining, would
need to be performed in order to assess if our simulations are
sufficient in length. Nonetheless, the dynamic dataset generated
for this study will likely be a highly valuable resource in
the development of hybrid methods that utilize structure,
dynamics, sequence, and energy functions.

In future studies we hope to test the methodology presented

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 28, 2016. ; https://doi.org/10.1101/078246doi: bioRxiv preprint

https://doi.org/10.1101/078246
http://creativecommons.org/licenses/by-nd/4.0/

14

in this manuscript using other databases of known disease-
causing mutations such as OMIM [75], HAPMAP [76], and
COSMIC [77]. Testing on these databases of mutations will
inherently require simulations of even more proteins to ex-
tract timeseries features. As our dataset of simulated proteins
increases, it becomes increasingly important to study if it is ac-
ceptable to train our model using more than one datasets even
though they may not share a common stability metric (��G,
pathogenicity, ternery labelled points). It is also not known
if our recurrent neural network approach can be modified to
perform regression, and potentially make quantitative ��G

predictions. This would greatly increase the significance of our
approach and make it easier to compare to other regression-
based algorithms.

From a broader perspective, three major factors restrict
the applicability of our method to rapid clinical diagnostics.
Firstly, the generalization of our approach to a proteome-wide
scale cannot be assessed because homologous structures are
not known for a large percentage of human proteins. However,
as new structures and structure determination methods are dis-
covered this may change. Secondly, a fundamental limitation of
our methodology is that it lacks proper treatment of interfaces
(sites of protein-protein, protein-DNA, protein-RNA, protein-
ligand, and protein-cofactor interactions). As it was determined
from Sahni et al. [9], many disease-causing mutations do
not significantly alter protein folding and stability, but rather
protein-protein interactions. As databases of protein interaction
sites and site prediction algorithms become more robust,
these factors may be included as timeseries features for this
approach, but for now, this represents a significant limitation
to the connection of mutation deleteriousness and disease.
Finally, our method requires long-timescale simulations to
be performed on all wildtype proteins in training and test
datasets, potentially requiring months or years of simulation.
It is possible that simulations may eventually be precalculated
on a large subset of all human proteins in the protein databank,
but this likely represents years of continuous computation and
will require collaboration of multiple simulation labs.

This work presets novel research regarding the use of
dynamic structural features for mutation stability prediction.
However, additional experiments and validation are required
before a tool such as this this could be used for applications
like protein engineering through thermostability optimization
or clinical diagnostics.

ACKNOWLEDGMENT

The authors would like to acknowledge the support of
Alexey Strokach and Dr. Philip Kim from whom we ob-
tained both the Berliner and Sahni datasets, along with help-
ful discussions related to this report. We are grateful for
useful discussions and support from Dr. Régis Pomès. We
acknowledge the support of CPU computing resources on the
Parallel supercomputer provided by WestGrid, GPU computing
resources on the Helios supercomputer provided by Calcul
Quebec and Compute Canada.

REFERENCES

[1] R. M. Durbin, D. L. Altshuler, R. M. Durbin, G. R. Abecasis, D. R.
Bentley, A. Chakravarti, A. G. Clark, F. S. Collins, F. M. De La Vega,
P. Donnelly, M. Egholm, P. Flicek, S. B. Gabriel, R. A. Gibbs, B. M.
Knoppers, E. S. Lander, H. Lehrach, E. R. Mardis, G. A. McVean,
D. A. Nickerson, L. Peltonen, A. J. Schafer, S. T. Sherry, J. Wang,
R. K. Wilson, R. A. Gibbs, D. Deiros, M. Metzker, and D. Muzny, “A
map of human genome variation from population-scale sequencing,”
Nature, vol. 467, no. 7319, pp. 1061–1073, Oct. 2010.

[2] A. J. Iafrate, L. Feuk, M. N. Rivera, M. L. Listewnik, P. K. Donahoe,
Y. Qi, S. W. Scherer, and C. Lee, “Detection of large-scale variation
in the human genome,” Nat Genet, vol. 36, no. 9, pp. 949–951, Aug.
2004.

[3] G. R. Cutting, “Cystic fibrosis genetics: from molecular understanding
to clinical application,” Nat Rev Genet, vol. 16, no. 1, pp. 45–56, Nov.
2014.

[4] K. E. Davies and K. J. Nowak, “Molecular mechanisms of muscular
dystrophies: old and new players,” Nature Reviews Molecular Cell
Biology, vol. 7, no. 10, pp. 762–773, Sep. 2006.

[5] T. . G. P. Consortium, “A global reference for human genetic variation,”
Nature, vol. 526, no. 7571, pp. 68–74, Oct. 2015.

[6] K. A. Bava, M. M. Gromiha, H. Uedaira, K. Kitajima, and A. Sarai,
“ProTherm, version 4.0: thermodynamic database for proteins and
mutants,” Nucleic Acids Res., vol. 32, no. suppl 1, pp. D120–D121,
Jan. 2004.

[7] D. Seeliger and B. L. de Groot, “Protein Thermostability Calculations
Using Alchemical Free Energy Simulations,” Biophys. J., vol. 98,
no. 10, pp. 2309–2316, May 2010.

[8] V. Gapsys, S. Michielssens, D. Seeliger, and B. L. deGroot, “Accurate
and rigorous prediction of the changes in protein free energies
in a large-scale mutation scan,” Angewandte Chemie International
Edition, vol. 55, no. 26, pp. 7364–7368, 2016. [Online]. Available:
http://dx.doi.org/10.1002/anie.201510054

[9] N. Sahni, S. Yi, M. Taipale, J. I. F. Bass, J. Coulombe-Huntington,
F. Yang, J. Peng, J. Weile, G. I. Karras, Y. Wang, I. A. Kovács,
A. Kamburov, I. Krykbaeva, M. H. Lam, G. Tucker, V. Khurana,
A. Sharma, Y.-Y. Liu, N. Yachie, Q. Zhong, Y. Shen, A. Palagi,
A. San-Miguel, C. Fan, D. Balcha, A. Dricot, D. M. Jordan, J. M.
Walsh, A. A. Shah, X. Yang, A. K. Stoyanova, A. Leighton, M. A.
Calderwood, Y. Jacob, M. E. Cusick, K. Salehi-Ashtiani, L. J. Whitesell,
S. Sunyaev, B. Berger, A.-L. Barabási, B. Charloteaux, D. E. Hill,
T. Hao, F. P. Roth, Y. Xia, A. J. M. Walhout, S. Lindquist, and
M. Vidal, “Widespread Macromolecular Interaction Perturbations in
Human Genetic Disorders,” Cell, vol. 161, no. 3, pp. 647–660, Apr.
2015.

[10] M. Barrios-Rodiles, K. R. Brown, B. Ozdamar, R. Bose, Z. Liu, R. S.
Donovan, F. Shinjo, Y. Liu, J. Dembowy, I. W. Taylor, V. Luga,
N. Przulj, M. Robinson, H. Suzuki, Y. Hayashizaki, I. Jurisica, and J. L.
Wrana, “High-Throughput Mapping of a Dynamic Signaling Network
in Mammalian Cells,” Science, vol. 307, no. 5715, pp. 1621–1625, Mar.
2005.

[11] N. Perdigão, J. Heinrich, S. Christian, K. S. Sabir, M. J. Buckley, B. Ta-
bor, B. Signal, B. S. Gloss, C. J. Hammang, B. Rost, A. Schafferhans,
and S. I. O’Donoghue, “Unexpected features of the dark proteome,”
Proc. Natl. Acad. Sci. U. S. A., vol. 112, no. 52, pp. 15 898–15 903,
Dec. 2015.

[12] E. H. Kellogg, A. Leaver Fay, and D. Baker, “Role of conformational
sampling in computing mutationinduced changes in protein structure
and stability,” Proteins, vol. 79, no. 3, pp. 830–838, 2011.

[13] A. Fiser and A. Šali, “Modeller: Generation and Refinement of
Homology-Based Protein Structure Models,” Methods in enzymology,
vol. 374, pp. 461–491, 2003.

[14] F. Gnad, A. Baucom, K. Mukhyala, G. Manning, and Z. Zhang,
“Assessment of computational methods for predicting the effects of
missense mutations in human cancers,” BMC Genomics 2013 14:3,
vol. 14, no. 3, p. 1, May 2013.

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 28, 2016. ; https://doi.org/10.1101/078246doi: bioRxiv preprint

https://doi.org/10.1101/078246
http://creativecommons.org/licenses/by-nd/4.0/

15

[15] A. Kumar, B. M. Butler, S. Kumar, and S. B. Ozkan, “Integration
of structural dynamics and molecular evolution via protein interaction
networks: a new era in genomic medicine,” Curr. Opin. Struc. Biol.,
vol. 35 IS -, pp. 135–142, Dec. 2015.

[16] Y. Dehouck, A. Grosfils, and B. Folch, “Fast and accurate predictions of
protein stability changes upon mutations using statistical potentials and
neural networks: PoPMuSiC-2.0 ,” Bioinformatics, vol. 25, pp. 2537–
2543, Aug. 2009.

[17] L.-C. Wu, J.-X. Lee, H.-D. Huang, B.-J. Liu, and J.-T. Horng, “An
expert system to predict protein thermostability using decision tree,”
Expert Systems with Applications, vol. 36, no. 5, pp. 9007–9014, Jul.
2009.

[18] Y. Li and J. Fang, “PROTS-RF: A Robust Model for Predicting
Mutation-Induced Protein Stability Changes,” PLos One, vol. 7, no. 10,
p. e47247, Oct. 2012.

[19] J. Tian, N. Wu, X. Chu, and Y. Fan, “Predicting changes in protein
thermostability brought about by single- or multi-site mutations,” BMC
Bioinformatics, vol. 11, no. 1, p. 370, 2010.

[20] G. Wainreb, L. Wolf, H. Ashkenazy, Y. Dehouck, and N. Ben-Tal,
“Protein stability: a single recorded mutation aids in predicting the
effects of other mutations in the same amino acid site,” Bioinformatics,
vol. 27, no. 23, pp. 3286–3292, Nov. 2011.

[21] N. Berliner, J. Teyra, R. Çolak, S. Garcia Lopez, and P. M. Kim,
“Combining Structural Modeling with Ensemble Machine Learning to
Accurately Predict Protein Fold Stability and Binding Affinity Effects
upon Mutation,” PLos One, vol. 9, no. 9, p. e107353, Sep. 2014.

[22] L.-T. Huang, K. Saraboji, S.-Y. Ho, S.-F. Hwang, M. N. Ponnuswamy,
and M. M. Gromiha, “Prediction of protein mutant stability using
classification and regression tool,” Biophysical Chemistry, vol. 125, no.
2–3, pp. 462–470, Feb. 2007.

[23] E. H. Baugh, R. Simmons-Edler, C. L. Müller, R. F. Alford, N. Vol-
fovsky, A. E. Lash, and R. Bonneau, “Robust classification of protein
variation using structural modelling and large-scale data integration,”
Nucleic Acids Res., vol. 44, no. 6, pp. 2501–2513, Apr. 2016.

[24] E. Capriotti, P. Fariselli, and R. Casadio, “I-Mutant2.0: predicting
stability changes upon mutation from the protein sequence or structure,”
Nucleic Acids Res., vol. 33, no. Web Server, pp. W306–W310, Jul. 2005.

[25] M. Masso and I. I. Vaisman, “Accurate prediction of stability changes
in protein mutants by combining machine learning with structure based
computational mutagenesis,” Bioinformatics, vol. 24, no. 18, pp. 2002–
2009, Sep. 2008.

[26] L. Montanucci, P. Fariselli, P. L. Martelli, and R. Casadio, “Predicting
protein thermostability changes from sequence upon multiple muta-
tions,” Bioinformatics, vol. 24, no. 13, pp. i190–i195, Jun. 2008.

[27] L. Jia, R. Yarlagadda, and C. C. Reed, “Structure Based Thermostability
Prediction Models for Protein Single Point Mutations with Machine
Learning Tools,” PLos One, vol. 9, no. 10, pp. 1–19, Sep. 2015.

[28] J. Schymkowitz, J. Borg, F. Stricher, R. Nys, F. Rousseau, and L. Ser-
rano, “The FoldX web server: an online force field,” Nucleic Acids Res.,
vol. 33, no. suppl 2, pp. W382–W388, Jul. 2005.

[29] M. Petukh, M. Li, and E. Alexov, “Predicting Binding Free En-
ergy ChangeCaused by Point Mutations with Knowledge-Modified
MM/PBSA Method,” Plos Comput Biol, vol. 11, pp. 1–23, Jun. 2015.

[30] A. Kumar and R. Purohit, “Use of Long Term Molecular Dynamics
Simulation in Predicting Cancer Associated SNPs,” PLoS Comput Biol,
vol. 10, no. 4, p. e1003318, Apr. 2014.

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duch-
esnay, “Scikit-learn: Machine Learning in Python,” The Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, Feb. 2011.

[32] Z. C. Lipton, “A critical review of recurrent neural networks
for sequence learning,” CoRR, vol. abs/1506.00019, 2015. [Online].
Available: http://arxiv.org/abs/1506.00019

[33] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online]. Available:
http://dx.doi.org/10.1162/neco.1997.9.8.1735

[34] K. L. J. Z. Siwei Lai, Liheng Xu, “Recurrent convolutional neural
networks for text classification,” AAAI, 2015.

[35] A. Graves, A. Mohamed, and G. E. Hinton, “Speech recognition with
deep recurrent neural networks,” CoRR, vol. abs/1303.5778, 2013.
[Online]. Available: http://arxiv.org/abs/1303.5778

[36] S. Mandal, G. Saha, and R. K. Pal, “Recurrent neural
network based modeling of gene regulatory network using bat
algorithm,” CoRR, vol. abs/1509.03221, 2015. [Online]. Available:
http://arxiv.org/abs/1509.03221

[37] T. Mikolov and G. Zweig, “Context dependent re-
current neural network language model,” in Spoken
Language Technologies. IEEE, 2012. [Online]. Available:
http://research.microsoft.com/apps/pubs/default.aspx?id=176926

[38] N. Kalchbrenner and P. Blunsom, “Recurrent continuous translation
models.” Seattle: Association for Computational Linguistics, October
2013.

[39] J. Z. Aric Bartle, “Gender classification with deep learning,” 2015.
[40] V. Menkovski, Z. Aleksovski, A. Saalbach, and H. Nickisch, “Can pre-

trained neural networks detect anatomy?” CoRR, vol. abs/1512.05986,
2015. [Online]. Available: http://arxiv.org/abs/1512.05986

[41] M. Schuster and K. Paliwal, “Bidirectional recurrent neural networks,”
Trans. Sig. Proc., vol. 45, no. 11, pp. 2673–2681, Nov. 1997. [Online].
Available: http://dx.doi.org/10.1109/78.650093

[42] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online]. Available:
http://dx.doi.org/10.1162/neco.1997.9.8.1735

[43] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” J. Mach. Learn. Res., vol. 15,
no. 1, pp. 1929–1958, Jan. 2014. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2627435.2670313

[44] D. K. N. C. S. U. P. v. d. S. Justin Bayer, Christian Osendorfer, “On
fast dropout and its applicability to recurrent networks,” arXiv, 2014.

[45] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network
regularization,” CoRR, vol. abs/1409.2329, 2014. [Online]. Available:
http://arxiv.org/abs/1409.2329

[46] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[47] X. Glorot and Y. Bengio, “Understanding the difficulty of
training deep feedforward neural networks,” in Proceedings of
the Thirteenth International Conference on Artificial Intelligence
and Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia,
Italy, May 13-15, 2010, 2010, pp. 249–256. [Online]. Available:
http://www.jmlr.org/proceedings/papers/v9/glorot10a.html

[48] P. Eastman, “Pdbfixer,” https://github.com/pandegroup/pdbfixer, 2015.
[49] K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J. L. Klepeis,

R. O. Dror, and D. E. Shaw, “Improved side-chain torsion potentials
for the amber ff99sb protein force field,” Proteins: Structure, Function,
and Bioinformatics, vol. 78, no. 8, pp. 1950–1958, 2010. [Online].
Available: http://dx.doi.org/10.1002/prot.22711

[50] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W.
Impey, and M. L. Klein, “Comparison of simple potential
functions for simulating liquid water,” The Journal of Chemical
Physics, vol. 79, no. 2, pp. 926–935, 1983. [Online]. Available:
http://scitation.aip.org/content/aip/journal/jcp/79/2/10.1063/1.445869

[51] P. Eastman, M. S. Friedrichs, J. D. Chodera, R. J. Radmer, C. M.
Bruns, J. P. Ku, K. A. Beauchamp, T. J. Lane, L.-P. Wang, D. Shukla,
T. Tye, M. Houston, T. Stich, C. Klein, M. R. Shirts, and V. S.
Pande, “OpenMM 4: A Reusable, Extensible, Hardware Independent
Library for High Performance Molecular Simulation,” J. Chem. Theory
Comput., vol. 9, no. 1, pp. 461–469, Jan. 2013.

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 28, 2016. ; https://doi.org/10.1101/078246doi: bioRxiv preprint

https://doi.org/10.1101/078246
http://creativecommons.org/licenses/by-nd/4.0/

16

[52] R. T. McGibbon, K. A. Beauchamp, M. P. Harrigan, C. Klein, J. M.
Swails, C. X. Hernández, C. R. Schwantes, L.-P. Wang, T. J. Lane,
and V. S. Pande, “MDTraj: A Modern Open Library for the Analysis
of Molecular Dynamics Trajectories,” Biophys. J., vol. 109, no. 8, pp.
1528–1532, Oct. 2015.

[53] T. Zhou and A. Caflisch, “Distribution of Reciprocal of Interatomic
Distances: A Fast Structural Metric,” J. Chem. Theory Comput., vol. 8,
no. 8, pp. 2930–2937, Aug. 2012.

[54] Y. Naritomi and S. Fuchigami, “Slow dynamics in protein fluctuations
revealed by time-structure based independent component analysis: The
case of domain motions,” J. Chem. Phys., vol. 134, no. 6, p. 065101,
2011.

[55] A. Shrake and J. A. Rupley, “Environment and exposure to solvent of
protein atoms. Lysozyme and insulin,” J. Mol. Bio., vol. 79, no. 2, pp.
351–371, Sep. 1973.

[56] W. Kabsch and C. Sander, “Dictionary of protein secondary struc-
ture: pattern recognition of hydrogenbonded and geometrical features,”
Biopolymers, vol. 22, no. 12, pp. 2577–2637, 1983.

[57] P. Wernet, “The Structure of the First Coordination Shell in Liquid
Water,” Science, vol. 304, no. 5673, pp. 995–999, May 2004.

[58] C. S. Poultney, G. L. Butterfoss, M. R. Gutwein, K. Drew, D. Gresham,
K. C. Gunsalus, D. E. Shasha, and R. Bonneau, “Rational Design of
Temperature-Sensitive Alleles Using Computational Structure Predic-
tion,” PLos One, vol. 6, no. 9, p. e23947, Sep. 2011.

[59] C. Hernndez, “mdentropy: v0.2,” Jun. 2015. [Online]. Available:
https://doi.org/10.5281/zenodo.18859

[60] S. Henikoff and J. G. Henikoff, “Amino acid substitution matrices from
protein blocks,” Proc. Natl. Acad. Sci. U. S. A., vol. 89, no. 22, pp.
10 915–10 919, Nov. 1992.

[61] Y. Choi, G. E. Sims, S. Murphy, J. R. Miller, and A. P. Chan, “Predicting
the Functional Effect of Amino Acid Substitutions and Indels,” PLos
One, vol. 7, no. 10, p. e46688, Oct. 2012.

[62] G. Forman and M. Scholz, “Apples-to-apples in cross-validation
studies: Pitfalls in classifier performance measurement,” SIGKDD
Explor. Newsl., vol. 12, no. 1, pp. 49–57, Nov. 2010. [Online].
Available: http://doi.acm.org/10.1145/1882471.1882479

[63] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” J. Mach. Learn. Res., vol. 13, pp. 281–305, Feb. 2012.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2188385.2188395

[64] R. Jzefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration
of recurrent network architectures,” in ICML, ser. JMLR Proceedings,
F. R. Bach and D. M. Blei, Eds., vol. 37. JMLR.org, 2015, pp. 2342–
2350.

[65] Theano Development Team, “Theano: A Python framework
for fast computation of mathematical expressions,” arXiv e-
prints, vol. abs/1605.02688, May 2016. [Online]. Available:
http://arxiv.org/abs/1605.02688

[66] F. Chollet, “Keras,” https://github.com/fchollet/keras, 2015.
[67] O. Ibrahim, “Comparison of methods for assessing the relative impor-

tance of input variables in artificial neural networks,” Journal of Applied
Sciences Research, vol. 9, p. 5692, Nov. 2013.

[68] M. Gevrey, I. Dimopoulos, and S. Lek, “Review and comparison
of methods to study the contribution of variables in artificial
neural network models,” Ecological Modelling, vol. 160, no. 3,
pp. 249 – 264, 2003, modelling the structure of acquatic
communities: concepts, methods and problems. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0304380002002570

[69] G. D. Garson, “Interpreting neural-network connection weights,” AI
Expert, vol. 6, no. 4, pp. 46–51, Apr. 1991. [Online]. Available:
http://dl.acm.org/citation.cfm?id=129449.129452

[70] A. T. C. Goh, “Back-propagation neural networks for modeling complex
systems.” AI in Engineering, vol. 9, no. 3, pp. 143–151, 1995.

[71] “An artificial neural network approach to spatial habitat modelling with
interspecific interaction,” Ecological Modelling, p. 1531, 1999.

[72] M. W. van der Kamp, R. D. Schaeffer, A. L. Jonsson, A. D. Scouras,
A. M. Simms, R. D. Toofanny, N. C. Benson, P. C. Anderson, E. D.
Merkley, S. Rysavy, D. Bromley, D. A. C. Beck, and V. Daggett,
“Dynameomics: A Comprehensive Database of Protein Dynamics,”
Structure, vol. 18, no. 4, pp. 423–435, 2010.

[73] A. C. Pan, T. M. Weinreich, S. Piana, and D. E. Shaw, “Demonstrating
an Order-of-Magnitude Sampling Enhancement in Molecular Dynamics
Simulations of Complex Protein Systems,” J. Chem. Theory Comput.,
p. acs.jctc.5b00913, Feb. 2016.

[74] D. E. Shaw, P. Maragakis, K. Lindorff-Larsen, S. Piana, R. O. Dror,
M. P. Eastwood, J. A. Bank, J. M. Jumper, J. K. Salmon, Y. Shan, and
W. Wriggers, “Atomic-level characterization of the structural dynamics
of proteins,” Science, vol. 330, no. 6002, pp. 341–346, 2010. [Online].
Available: http://science.sciencemag.org/content/330/6002/341

[75] A. Hamosh, A. F. Scott, J. S. Amberger, C. A. Bocchini, and V. A.
McKusick, “Online Mendelian Inheritance in Man (OMIM), a knowl-
edgebase of human genes and genetic disorders,” Nucleic Acids Res.,
vol. 33, no. suppl 1, pp. D514–D517, Jan. 2005.

[76] R. A. Gibbs, J. W. Belmont, P. Hardenbol, T. D. Willis, F. Yu, H. Yang,
L.-Y. Ch’ang, W. Huang, B. Liu, Y. Shen, P. K.-H. Tam, L.-C. Tsui,
M. M. Y. Waye, J. T.-F. Wong, C. Zeng, Q. Zhang, M. S. Chee, L. M.
Galver, S. Kruglyak, S. S. Murray, A. R. Oliphant, A. Montpetit, T. J.
Hudson, F. Chagnon, V. Ferretti, M. Leboeuf, M. S. Phillips, A. Verner,
P.-Y. Kwok, S. Duan, D. L. Lind, R. D. Miller, J. P. Rice, N. L. Saccone,
and Taillon-Miller, “The International HapMap Project,” Nature, vol.
426, no. 6968, pp. 789–796, Dec. 2003.

[77] S. A. Forbes, G. Bhamra, S. Bamford, E. Dawson, C. Kok, J. Clements,
A. Menzies, J. W. Teague, P. A. Futreal, and M. R. Stratton, “The
Catalogue of Somatic Mutations in Cancer (COSMIC),” in Current
Protocols in Human Genetics. Hoboken, NJ, USA: John Wiley &
Sons, Inc., 2001.

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 28, 2016. ; https://doi.org/10.1101/078246doi: bioRxiv preprint

https://doi.org/10.1101/078246
http://creativecommons.org/licenses/by-nd/4.0/

