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Synopsis We emphasise and demonstrate the importance of modelling the superpositions of ligand-7 

bound and unbound states that commonly occur in crystallographic datasets. Generation of an ensemble 8 

that describes not only the dominant state in the crystal is important for the high-quality refinement of 9 

low-occupancy ligands, as well as to present a model that explains all of the observed density.  10 

Abstract Small molecules bind to only a fraction of the proteins in the crystal lattice, but occupancy 11 

refinement of ligands is often avoided by convention; occupancies are set to unity, assuming that the 12 

error will be adequately modelled by the B-factors, and weak ligand density is generally ignored or 13 

attributed to disorder. Where occupancy refinement is performed, the superposed atomic state is rarely 14 

modelled. We show here that these modelling approaches lead to a degradation of the quality of the 15 

ligand model, and potentially affect the interpretation of the interactions between the bound ligand and 16 

the protein. Instead, superior accuracy is achieved by modelling the ligand as partially occupied and 17 

superposed on a ligand-free “ground-state” solvent model. Explicit modelling of the superposed 18 

unbound fraction of the crystal using a reference dataset allows constrained refinement of the occupancy 19 

of the ligand with minimal fear of over-fitting. Better representation of the crystal also leads to more 20 

meaningful refined atomic parameters such as the B-factor, allowing more insight into dynamics in the 21 

crystal. We present a simple approach and simple guidelines for generating the ensemble of bound and 22 

unbound states, assuming that datasets representing the unbound states (the ground state) are available. 23 

Judged by various electron density metrics, ensemble models are consistently better than corresponding 24 

single-state models. Furthermore, local modelling of the superposed ground state is found to be 25 

generally more important for the quality of the ligand model than convergence of the overall phases. 26 

1. Introduction 27 

Crystallographic diffraction experiments are used to reveal the atomic composition of protein crystals, 28 

but where the crystal is composed of objects in multiple states, the resulting diffraction pattern is a 29 

weighted average of these states. Ligands will often – and likely almost invariably – bind at sub-unitary 30 

occupancy; the subsequently derived electron density consists of an average over the bound state and 31 

the corresponding unbound state (which we term the ground state). However, it is standard practice not 32 

to model a superposition of multiple states, but instead to model only the ligand-bound conformation 33 

(and furthermore normally at unitary occupancy); this is commonly observed in the PDB1,2 (Figure 1). 34 
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Histogram of ligand occupancies in the PDB 

 

Figure 1 Most ligands in the PDB are modelled at unitary occupancy, and many partial 

occupancy ligands are not modelled with an alternate state. Histogram of all ligand occupancies 

in the PDB classified by the presence of an alternate conformer identifier (red: no conformer ID, 

blue: modelled with a conformer ID). Sub-unitary occupancy ligands are clarified in the inset graph. 

Only the first instance of each ligand type from each PDB structure was used; following this all 

ligands with fewer than 5 non-hydrogen atoms and more than 50 instances were removed to avoid 

bias towards common molecules. Where alternate conformations of ligands are present, the total 

occupancy is used. The large majority of ligands are modelled at unitary occupancy (32396, 92.1%). 

A smaller number have non-unitary occupancies but no alternate conformer identifier (1640, 4.7%). 

The remainder are modelled using alternate conformers (1122, 3.2%), of which 548 are ligands with 

alternate conformers that sum to unitary occupancy. Worryingly, there are also ten instances with 

more than 100% occupancy. These modelling statistics are unlikely to represent the true situation in 

crystal structures, where ligands will rarely bind at near-full occupancy; ligands will always have a 

superposed solvent model where present at partial occupancy.  

  35 
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Occupancy refinement of ligands is likely avoided due to well-known interdependencies, instabilities 36 

and ambiguities that can occur in the simultaneous refinement of both B-factors and occupancies: 37 

improvements in crystallographic model fit can equally well be achieved by reducing occupancy or 38 

increasing B-factors3. When ligands are modelled at full occupancy, any resulting error is absorbed by 39 

inflating the refined B-factors. One is led to conclude that occupancy refinement is only deemed 40 

necessary when difference density appears over the ligand model, an impression corroborated by 41 

multiple conversations in online discussion fora such as ccp4bb and ResearchGate. 42 

If occupancy refinement of the ligand-bound state is performed without a superposed solvent model, 43 

this implicitly implies that the rest of the crystal is either represented by vacuum – which is highly 44 

unlikely – or by bulk solvent, depending on the refinement program used. Close to the surface of the 45 

protein, it is unlikely that the solvent is truly represented by a bulk solvent model; this is especially true 46 

of binding sites, where solvent and buffer molecules will often bind in an ordered fashion at high 47 

occupancy, as in the examples presented in section 4. The absence of a superposed solvent model is a 48 

glaring modelling omission, and here we set out to show that inclusion of the superposed unbound state 49 

not only leads to a more complete model of crystal, but to a higher quality ligand model.  50 

2. More complete models through explicit inclusion of the ground-state 51 

We propose that ligands will – in the general case – always be better modelled with explicit 52 

representation of the superposed solvent state, determined from a ground-state crystal of the protein. 53 

Inclusion of the ground-state allows the occupancy of the superposed states to be constrained in 54 

refinement, reducing the ambiguity from simultaneous refinement of b-factors and occupancies. 55 

This approach requires a credible model of the ground-state to be available.  This is indeed the case in 56 

a large proportion of ligand-binding experiments, where ground-state (ligand-free) crystals are easily 57 

obtained, e.g. experiments where ligands are “soaked” into pre-formed crystals. Where ground-state 58 

crystals are difficult to generate, e.g. where the ligand stabilises a particular protein conformation and 59 

thus crystal form, the assumption of an ensemble is in any case unlikely to be relevant. 60 

Once the ground-state structure of the protein has been determined, the corresponding atoms can be 61 

directly transferred to the model of any subsequent dataset of the same crystal form. Specifically, the 62 

ground-state model is combined with the changed-state (ligand-bound) conformation, and refined as an 63 

ensemble. Generating this ensemble is algorithmically simple for datasets that are reasonably 64 

isomorphous; where this is not the case, the unbound structure would require local alignment of 65 

corresponding atoms, although methods to do this robustly do not currently exist, to our knowledge. 66 

In-between cycles of reciprocal-space refinement – if the crystal system is highly isomorphous – the 67 

ensemble model can be modelled or visually validated in programs such as Coot4 by alternating between 68 

real-space refinement of the ground-state model into a ground-state map (left-hand column, Figure 2), 69 
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and checking the validity of the complete model in the ligand-bound dataset. In the case of a PanDDA-70 

determined model5, additional maps are available for the modelling of the ligand-bound conformation 71 

(right-hand column, Figure 2). The PanDDA implementation further performs automatic merging of 72 

the changed-state model and the ground-state model, allowing ensembles to be utilised with little 73 

additional effort. 74 

During modelling and refinement, the ground-state model should be considered a Bayesian prior, such 75 

that the underlying ground-state structure is assumed not to change from crystal to crystal. This applies 76 

even if the ground-state is not clearly discernible in the electron density; minor states will be “masked” 77 

by superposed major states, but they will still remain except where the ligand is truly unitary occupancy. 78 

In cases where the ground-state structure is crystallographically ill-defined in the ligand-bound-dataset 79 

(such as at low-resolution) it may be necessary to restrain the ground-state model to the reference dataset 80 

during refinement6–8.  81 

This restraint addresses the main risk inherent in ensemble approaches, namely over-modelling the 82 

observed density by including additional, unwarranted atoms: including the ground-state model has a 83 

strong, first-principles rationale, and the information is derived from independent measurements.  While 84 

interpreting the remaining density may not be easy in general, methods such as PanDDA5 address this 85 

problem explicitly by deconvoluting the superposition. 86 

2.1. Systematic labelling of multiple crystal states to maximise interpretability 87 

Locally heterogeneous crystal states are modelled through the use of alternate conformers, which 88 

ascribe each atom to a particular state of the crystal. Only for completely independent ensembles of 89 

models are alternate model identifiers utilised9. When merging the ground-state of the crystal with the 90 

ligand-bound state, the same conformer ID – sometimes referred to as the altloc or altid – should be 91 

given to all atoms of the same state. Each state may then be extracted by selection of a particular 92 

conformer from the ensemble, enabling the use of the structure by non-crystallographers; the 93 

superposed ground-state is essentially an experimental artefact. The occupancies of the different states 94 

may further be grouped during refinement, and the occupancies of the states constrained to sum to unity.  95 

The clearest interpretation of the model is achieved when conformers are used for the bound and 96 

unbound states that are not used elsewhere in the structure; this prevents potential association of 97 

similarly-labelled alternate conformers that are causally unrelated. In the case of a single conformer for 98 

each bound/unbound state (where alternate conformers elsewhere in the structure, unrelated to binding, 99 

are A and B only), all ground-state-only atoms may be set to conformer C, and all bound-state-only 100 

atoms may be set to conformer D. This assignment of logical conformer IDs is automatically performed 101 

during the merging of the ground-state and the ligand-bound state within the PanDDA implementation; 102 

this automation greatly simplifies the modelling process, where the ground-state model is used as the 103 

starting model for analysis. 104 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 28, 2016. ; https://doi.org/10.1101/078147doi: bioRxiv preprint 

https://doi.org/10.1101/078147
http://creativecommons.org/licenses/by/4.0/


 

5 

 

However, the limitations of alternate conformers can quickly manifest themselves where multiple 105 

conformations are present in the bound/unbound states. Since alternate conformers do not support 106 

branching of conformations (where e.g. an alternate conformation of the backbone can have two 107 

sidechain conformers), it may be necessary to introduce redundant alternate conformations for single-108 

conformer residues to create contiguous models (Figure S1). 109 

2.2. Local model completeness versus overall phase quality 110 

Conventional crystallographic dogma states that high quality (near-convergence) phases are needed for 111 

the “optimal” crystallographic model to be obtained. However, we show in this work that the current 112 

convention of omitting the superposed unbound state is more detrimental to the quality of the ligand 113 

model than the degradation of the overall model phases. To compare the effects of global phase 114 

degradation, a “degraded-phase” model is produced in each of the examples in section 4. We begin with 115 

the final “optimal” model – where the ligand is modelled in superposition with a ground-state model – 116 

and distort the structure of the protein in regions distant from the ligand binding site, thereby introducing 117 

global phase error. Induced mean model phase difference relative to the full ensemble model is in the 118 

range of 20-30° (as calculated by cphasematch10). Further details may be found in section S1.  119 

3. Qualitative and quantitative comparison of different modelling approaches 120 

To demonstrate the improvement of ligand models through inclusion of the superposed ground state, 121 

we present four examples in section 4, covering a range of ligand occupancies. All ligands were 122 

identified with PanDDA Z-maps and ligand-bound states were modelled using the PanDDA event maps. 123 

Three models of the crystal containing ligands are refined and compared: a ligand-state-only model; a 124 

high-quality ensemble model; and a degraded-phase ensemble model. A solvent-state-only model is 125 

also refined for completeness (central column, Figure 2). 126 

The ligand-state-only model for refinement is obtained by removing the ground state from the ensemble 127 

and setting the ligand occupancy to 0.95. The solvent-state-only model is similarly generated by 128 

removing the ligand-bound state and setting the solvent occupancy to 1.0 (this simulates the normal 129 

modelling case, where the solvent occupancy would not typically be refined). Degraded-phase models 130 

are created from the ensemble models as described in section 2.2. All models are refined with 131 

phenix.refine11 (version 1.9-1682) using the default parameters against crystallographic data from 132 

before a ligand was placed, to prevent phase bias. Ligand occupancy is refined for all models; for the 133 

ensemble models, the occupancies of superposed states are constrained to sum to unity. 134 

3.1. Utilisation of validation metrics for quantitative model comparison 135 

The refined ligand models are compared using a variety of density- and model-based validation metrics; 136 

these metrics and their optimal values are described in Table 1. Density metrics – all calculated by 137 
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EDSTATS12 – include the conventional real-space correlation coefficient (RSCC), but also newer 138 

metrics such as RSZD and RSZO12. Tickle (2012) shows that these new metrics can be used to ask more 139 

detailed questions about the model: RSZD measures the accuracy of the model through the analysis of 140 

difference density, highlighting modelling errors, and RSZO measures the precision of the density for 141 

the model, highlighting weak features. RSZO is calculated by taking the average of the density over the 142 

model and dividing by the noise in the map; since the amount of density for a residue is directly related 143 

to the occupancy of the residue, we divide RSZO by the occupancy of the residue to give a normalised 144 

value (RSZO/OCC) that can be used to compare models at different occupancies in the same dataset. 145 

We also calculate the B-factor ratio of the ligand to the surrounding protein residues (within 4Å) to 146 

measure the consistency of the ligand model with its local environment; as well as the RMSD of the 147 

refined ligand and the fitted ligand, to measure the (in)stability of the model coordinates in refinement. 148 

These measures are displayed visually as radar plots, where the “better” the metric value, the closer it 149 

is to the centre of the plot. The axes of the radar plot are scaled such that the “best” value is plotted at 150 

the centre of the plot and the “worst” value is plotted at the extreme of the axis. 151 

 152 

Table 1 Electron density and model metrics used for the validation of crystallographic 

models. The combination of five metrics highlights a variety of features of models, and together 

allow for a comprehensive description of the atomic model of a residue. RSCC ensures good overall 

similarity of the model to the density. RSZD measures the difference density over the model, 

highlighting errors or the presence of currently un-modelled or over-modelled atoms. RSZO indicates 

density strength, and the normalisation by occupancy can indicate errors in the occupancy of a model 

or a misplaced or absent model. The B-factor ratio highlights errors in the B-factors of a residue, as 

these should be consistent with its surroundings: physically, there cannot be step changes in mobility 

of atoms in a crystal. The RMSD measures the movement of residues in refinement; a numerically 

unstable residue may be indicative of error in the model. All density metrics are calculated using 

EDSTATS12. 

Metric  Description Preferred values 

RSCC Correlation between model and observed electron density > 0.7 

RSZD Statistical measure of difference density in region of model < 3 

RSZO/OCC Strength of density over model, normalised for occupancy > 2 

B-factor Ratio B-factor ratio of residue atoms and sidechain atoms within 4Å ~ 1 

RMSD Root-mean-squared-deviation of the atomic coordinates < 1 
 

 153 
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3.1.1. Effects of phase quality on model validation metrics 154 

The RSZD metric is less informative when analysing models with poor phases, because it is dependent 155 

on the quality of the model phases. RSZD and RSZO are derived with the assumption of near-156 

convergence phases, and use an estimation of the noise in the maps to calculate quality criteria for 157 

residues.  Lower RSZD would normally indicate a better model, but this is not the case here: when the 158 

quality of the phases is reduced, the noise in the maps also increases, and therefore decreases both 159 

RSZD and RSZO, regardless of whether the model has changed.   160 

4. Results 161 

We now present several cases where the inclusion of a complementary solvent model leads to a better 162 

description of the crystal, and thereby a higher-quality ligand model. The models here were all identified 163 

and modelled using the PanDDA method5. The model of the ligand was in each case derived from 164 

PanDDA “event” maps, and we investigate here only the effect that the inclusion/absence of the 165 

superposed solvent model has on the interpretation of the data. Models are generated and refined as 166 

described in previous sections. Validation metrics are calculated for only the ligand residue in each of 167 

the models. Crystallographic model parameters, including ligand validation scores, may be found in 168 

section S1. Details for obtaining the crystallographic data can be found in the PanDDA publication5. 169 

4.1. Binding of the ligand across a bound substrate mimetic 170 

To demonstrate the process of modelling both states, we first present an example where a strongly 171 

bound substrate mimetic is superposed with a weakly-bound soaked ligand, and an ensemble is clearly 172 

necessary. N-oxalylglycine (NOG) is tightly bound at high occupancy (~90%) in the ground-state 173 

crystal form of human Lysine-specific demethylase 4D (KDM4D), as shown in the reference dataset 174 

(Figure 2a). A soaked ligand binds across this substrate mimetic in a small fraction of the crystal, as 175 

shown in the PanDDA event map (Figure 2c). Modelling of the two states can thus be performed 176 

separately, and merged for refinement; when refined as an ensemble, the superposition of the two states 177 

leads to a good model, with negligible amounts of difference density remaining (Figure 3b). 178 

Although not interpretable, residual difference density can still be seen for the bound ligand when the 179 

ground-state model is refined alone (Figure 2b). As expected, refinement of the ligand without the 180 

superposed NOG results in a poor quality model (Figure 3a), because a large fraction of the crystal is 181 

locally unrepresented; refinement of the ensemble results in a better model for the ligand (Figure 3b), 182 

scoring well across all 5 metrics. On the radar validation plot (Figure 4a) this is shown as the ensemble-183 

model line (green) being entirely contained within the ligand-only line (red) – the closer the line is to 184 

the centre of the plot, the better the model. Optimal modelling of the ligand requires the superposed 185 

ground-state conformation to be present in refinement.  186 
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Protein Ground-state only 
(reference dataset) 

Ground-state only 
(ligand-bound dataset) 

Ligand-bound state 
(PanDDA event map) 

KDM4D 

   
 (a) dataset x618; 1.14Å (b) dataset x401; 1.48Å (c) dataset x401 

BAZ2B 

   
 (d) dataset x645; 1.49Å (e) dataset x538; 1.77Å (f) dataset x538 

KDM4D 

   
 (g) dataset x618; 1.14Å (h) dataset x568; 1.97Å (i) dataset x568 

BRD1 

  

 

 (j) dataset x108; 1.38Å  (k) dataset x049; 1.46Å  
Figure 2 Determining the different crystal states requires different datasets. First two columns: 
2mFO-DFC maps contoured at 1.5σ (blue) and mFO-DFC maps contoured at ±3σ (green/red). Last 
column: PanDDA event maps (blue) contoured at (c,f) 2σ or (i) 1σ. Resolutions are as indicated. First 
column: A reference dataset provides the ground-state model of the crystal. Centre column: The ground-
state refined into a ligand-bound dataset leaves (generally uninterpretable) residual density for a 
superposed state. Last column: The PanDDA event map provides clear density for the ligand-bound 
model of the crystal (the superposed ground-state model is shown for reference). (a-c) Example from 
section 4.1. (d-f) Example from section 4.2. (g-i) Example from section 4.3. (j-k) Example from section 
4.4; the event map is not shown since it is not required. 
  187 
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Protein Ligand-bound state only Ensemble model Ensemble model  
(poor phases) 

KDM4D 
 

dataset 
x401 

   
 (a)  (b)  (c) 24.17° phase difference 

BAZ2B 
 

dataset 
x538 

   
 (d)  (e)  (f) 31.06° phase difference 

KDM4D 
 

dataset 
x568 

   
 (g) (h)  (i) 28.48° phase difference 

BRD1 
 

dataset 
x049 

   
 (j) (k) (l) 34.46° phase difference 

Figure 3 Ensemble models consistently leave less residual difference density than ligand-only 
models. All images: 2mFO-DFC maps contoured at 1.5σ (blue) and mFO-DFC maps contoured at ±3σ 
(green/red). First column: Refinement with the ligand model only. Centre column: Refinement of the 
crystal as an ensemble of states. Last column: Refinement of the crystal as an ensemble of states with 
a degraded protein model (phase difference as indicated, relative to the ensemble model). (a,d,g) 
Modelling the ligand but removing the ground-state  leads to difference density for the absent state, and 
in (d) the ligand moves into density for the ground-state. (j) Removing the ground-state for a high 
occupancy ligand (refined value 0.89) does not lead to discernible difference density. (b,e,h,k) 
Refinement of ensemble models explain all of the observed density, and ligands do not move from the 
fitted pose (confirmed by the validation plots in Figure 4). (c,f,i,l) Refining with degraded phases leads 
to only minor visual differences, except in (f) where the ligand moves relative to the fitted pose. 
  188 
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(a) Validation plot for section 4.1 & Fig 3a-c (b) Validation plot for section 4.2 & Fig 3d-f 

  
(c) Validation plot for section 4.3 & Fig 3g-i (d) Validation plot for section 4.4 & Fig 3j-l 

Figure 4 Validation plots for the different modelling approaches: axes are not absolute, but have 
been scaled relative to minima and maxima of the plotted values, and only the minimum and maximum 
values are marked on the axes; for all model scores refer to section S1. (a) Plots for Figure 3a-c. The 
plot confirms the visual inspection of the electron density; the ligand scores are improved across all 
metrics when refined as an ensemble, relative to the ligand modelled alone. The absence of the 
superposed substrate model has a greater effect on the ligand model than the degradation of the protein 
model phases. (b) Plots for Figure 3d-f. The ensemble model provides the best model for the ligand. 
The RSZD is decreased in the degraded-phase model for reasons explained in the main text, and is not 
related to an improved model. (c) Plots for Figure 3g-i. Once more, the model statistics are improved 
with the addition of a superposed solvent model, with the caveat that the lower RSZD for degraded 
phases is not indicative of an improved model. (d) Plots for Figure 3j-l. The inclusion of the solvent 
model still increases the quality of the model compared to when it is omitted, albeit marginally. The 
degraded phase model has lower B-factor ratios than either of the other two models due to a decrease 
in the B-factors of the ligand and a corresponding drop in occupancy. 
  189 
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The degraded protein model (Figure 3c) has a 31° average phase difference to the high-quality ensemble 190 

model, increasing the R-free from 17% to 29%. However, the model of the ligand is not significantly 191 

degraded, and still scores well on all five model validation metrics, although worse than the ensemble 192 

model with high-quality phases. In this case, the correctness of the local model is more important than 193 

the convergence of the global phases. 194 

4.2. Binding of a ligand in place of a solvent molecule 195 

In a soaked crystal of human Bromodomain Adjacent to Zinc finger domain 2B (BAZ2B), an ethylene 196 

glycol is bound in a semi-ordered fashion, with a superposed ligand, to the asparagine in the binding 197 

site. The solvent model derived from a reference dataset is not optimal, and some difference density 198 

remains even when a ligand is not present (Figure 2d). Refinement with the ground-state model in the 199 

ligand-bound dataset does not lead to significant additional difference density, as the refined solvent 200 

model masks the presence of the ligand’s bromine (Figure 2e).  201 

The PanDDA map, however, shows clear evidence for the ligand (Figure 2f); the positioning of the 202 

bromine can also be confirmed by an anomalous difference map (not shown). Refinement with only the 203 

bound state causes the ligand atoms to be pulled into the density for the ethylene glycol, and difference 204 

density remains (Figure 3d). Refinement of the ensemble leads to a good model (Figure 3e), with all 205 

density well-explained, and no movement of the ligand from the fitted pose.  206 

Refinement of the degraded-phase model (Figure 3f) also causes the ligand to move relative to the fitted 207 

position. In this case, the absence of the superposed model and the quality of the model phases are both 208 

important for the quality of the final ligand model, reflected by the validation metrics (Figure 4b). 209 

It is noteworthy that the RSCC of the ligand in all models is greater than 0.9, showing that whilst a large 210 

RSCC is necessary for a good model, it is not sufficient to determine the quality of the model: it does 211 

not account for the presence of difference density. As explained in Section 3.1.1, the RSZD of 0.1 for 212 

the degraded-phase ligand model, which would normally indicate a very good model, is affected by 213 

noise in the maps from the degraded phases; the RSZD is very sensitive to the overall correctness of 214 

the model. Multiple validation metrics, as well as a near-complete model, are needed to validate weak 215 

features.  216 

4.3. A binding ligand overlaps with alternate conformations of a sidechain 217 

Another ligand in a KDM4D dataset binds along with a sulphate to a putative allosteric site. Refinement 218 

with the ground-state conformation leaves residual unmodelled difference density (Figure 2g,h). The 219 

pose and identity of the ligand is clearly revealed in the PanDDA event map (Figure 2i), revealing the 220 

re-ordering of two sidechains and that the ligand is superposed on the ground-state conformation of the 221 

phenylalanine.  222 
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Upon inspection of the refined ensemble model (Figure 3h), it was suggested to the authors by another 223 

experienced crystallographer that the ground-state conformation should be deleted and the ligand-bound 224 

state refined as the sole conformation. This recommendation supports our observation that the pervading 225 

convention – to generate only a single conformation of the crystal wherever possible – dominates even 226 

in the face of clear evidence that multiple states are present.  The density in the area of overlap between 227 

the ligand and the phenylalanine is significantly stronger than over the rest of either residue, and 228 

difference density is present when either state is refined separately (Figure 2h, Figure 3g). The residual 229 

density from the ligand-state-only model (Figure 3g) might further tempt a crystallographer to move 230 

the model down and right by ~1Å (as indicated by the arrow in Figure 3g), although this causes clashes 231 

with the Cβ of the phenylalanine and adversely affect the interactions that the ligand makes with the 232 

aspartate and the sulphate (marked with ovals in Figure 3g). All evidence points towards the presence 233 

of multiple states in the data, and therefore these multiple states should be present in the model. 234 

The phase degradation in Figure 3i (mean phase difference to ensemble model 28.48°) degrades the 235 

ligand model RSZO and the B-factor ratio to a similar level as the omission of the ground state model, 236 

and significantly degrades the RSCC (Figure 4c). Again, we observe a decrease in RSZD with the 237 

decrease in phase quality. The ensemble model provides the best interpretation of the experimental data.  238 

4.4. Traces of the ground state remain, even for a high occupancy ligand 239 

One ligand screened against the bromodomain of BRD1 binds strongly in the principal binding site 240 

(Figure 2j,k), with a refined occupancy of 84-89% (multi-state and ligand-only refined occupancies 241 

respectively). In the reverse case of section 4.1, the ligand occupancy is much higher than the ground-242 

state occupancy, and this ligand would conventionally be modelled at unitary occupancy.  243 

Once more, inclusion of the ground-state solvent improves the model quality, although in this case only 244 

marginally (Figure 3j,k & Figure 4d). Even with this strong binder, visual traces of the ground-state 245 

model remain: contouring the 2mFo-DFc map to zero rmsd shows some evidence for ground-state 246 

solvent (Figure 5).  247 

Phase degradation degrades the RSCC, RMSD and the RSZO more than the absence of the solvent 248 

model, with a decrease in RSZD as previously. Here the B-factor ratio is seen to be lower for the phase-249 

degraded model than for the other models, due to a decrease in the B-factors of the ligand by two, and 250 

a corresponding decrease in the occupancy to 0.77; this behaviour demonstrates the ambiguity that can 251 

be observed in simultaneous refinement of B-factors and occupancies. 252 
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Figure 5 Weak density for the ground-state model is still visible in refined maps. No evidence 
is seen that would support the removal of the superposed solvent model. 2mFo-DFc map (blue) 
contoured at 0.0σ, mFo-DFc map (green/red) contoured at ±3σ. 

5. Discussion 253 

The examples presented here show that there is consistent evidence that ground-state molecules are 254 

superposed in the experimental data on top of binding ligands across a range of non-unitary 255 

occupancies. We have also shown that the inclusion of a superposed ground-state model, obtained from 256 

a reference dataset, improves the quality of obtained ligand models in all cases. In the case of some 257 

weak ligands, the ground state model is crucial for the refinement of the protein/ligand complex (section 258 

4.1); in other cases it acts simply to remove “extraneous” difference density that could be interpreted 259 

by an over-zealous modeller as being caused by a ligand in multiple conformations (section 4.2). The 260 

modelling approach can affect the interpretation of inter-molecular interactions (section 4.3), and in the 261 

case of high occupancy, a superposed ground state can still marginally improve the ligand model, 262 

alongside providing a complete model of the crystal (section 4.4).  263 

With the current increase in popularity of experiments such as fragment screening by crystallography 264 

amongst academic groups, the PDB is set to see a sharp increase in structures that contain binders with 265 

considerably less than unitary occupancy (e.g. [13]). We have shown that the models of such partial-266 

occupancy ligands benefit from the inclusion of a superposed ground-state; from these results, we 267 

propose that a new standard modelling convention is adopted, where bound ligands are modelled as a 268 

superposition of states wherever possible. Experimentally this is no extra burden, as an unbound 269 

reference dataset is normally already available when soaking experiments are performed. 270 

Computationally, however, this will require the implementation of tools for the trivial generation of 271 

ensembles from multiple single-state models; the PanDDA implementation goes some way towards 272 

achieving this new paradigm.  273 

Performed correctly, the addition of a solvent model allows no further degrees of freedom for the 274 

crystallographer, as the ground-state model is solely determined in an orthogonal reference dataset. 275 
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Utilisation of prior knowledge in the modelling process will lead to higher quality crystallographic 276 

phases, and should ultimately contribute to closing the R-factor gap14. 277 

We further propose that the ground-state should only be removed from the ensemble model if the 278 

occupancy of the refined ground-state conformer is ⪅10% – only in this case is the benefit of the 279 

ground-state model in refinement likely negligible. We should assume that the ground-state is present 280 

in the ligand-bound crystal until it is proven absent; this is contrary to the current convention, which 281 

appears to assume the opposite. 282 

Correct parameterisation of the ensemble model can lead to complicated models and refinement 283 

constraints that are currently not supported by some refinement programs (REFMAC15, 284 

phenix.refine11): in some cases not shown here, we have found that refinement of multiple conformer 285 

models permitted occupancies for amino acids that summed to greater than unity. Further work will be 286 

required to generate occupancy and structural restraints that allow complex ensemble refinement in the 287 

general modelling case, without permitting unphysical atomic models. Procedural generation of 288 

ensembles and the corresponding parameterisation files will be critical to the uptake of this approach. 289 

The examples shown here also highlight that RSCC alone is not enough to assess the quality of a ligand 290 

model: RSZD and RSZO should be used to ensure things have been modelled correctly, but require 291 

phases to be near convergence; a small B-factor ratio indicates consistency with the ligand’s 292 

environment; and a small RMSD measures stability in refinement. The combination of a normalised 293 

RSZO and B-factor ratio further allow the stability of B-factor and occupancy refinement to be 294 

analysed; imbalances between these two metrics are a good indication of imbalance in the occupancy 295 

and the B-factors. The radar plots present the validation metrics clearly, and may be a useful tool for 296 

the validation of ligands in general. In this manuscript, we have used the validation plots to compare 297 

multiple models, and to this end, the plot axes were re-scaled to cover the range of the data. However, 298 

we propose that a more general use of the radar plot is to show when the ligand scores depart from ideal 299 

values (the proposed ranges for the metrics are shown in section S2); examples are shown in Figure 6 300 

for the ligand in section 4.3. 301 

Lastly, we have investigated the impact of phase degradation on ligand model quality, compared to the 302 

effect of local modelling. We conclude that the modelling of local ground-state atoms is generally far 303 

more important than convergence of the global model, especially as global errors in typical modelling 304 

situations are likely to be much less than the ~30° phase error introduced here. “Tweaking” of sidechain 305 

conformations and water molecules in distant regions in the model to improve phases is likely not of 306 

importance if the binding of a ligand is the feature of interest. However, the modelling of the 307 

environment around and “under” the ligand is conversely of great importance. 308 

Recent reports have emphasised the importance of achieving maximally correct phases for more reliable 309 

interpretation of weak difference density13. Instead, this work indicates that the main rationale for doing 310 
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so is to ensure the validation metrics are reliable – as ligand identification can be performed without 311 

optimal phases5 – and that the refinement of occupancy and B-factors is stable (as demonstrated in 312 

section 4.4). 313 

 314 

  
(a) Ligand-only  (b) Ensemble model 

Figure 6 Radar plots clearly display the suspect features of a ligand, and indicate when 
validation scores deviate from ideal values. Validation plots for the ligand in section 4.3: (a) for 
the ligand-model only and (b) for the ligand when refined as an ensemble (scores are for the ligand 
residue only). Limits and thresholds for the validation plots are detailed in Table S5. The ligand-only 
model shows that un-modelled features are present, with a large RSZD. The ensemble model (with 
high-quality phases) scores well on all metrics, and remains close to the centre of the plot. 

 315 
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Supporting information  359 

S1. Crystallographic Information for Examples 360 

The crystallographic parameters for each of the models used in the examples are listed in Table S1-361 

Table S4. All models are refined with phenix.refine11 using the standard settings. All phase differences 362 

are calculated with cphasematch10 from the model phases as output by phenix.refine, relative to the 363 

ensemble-model phases. Occupancy refinement was performed on all models, except for the ground-364 

state-only model. When multiple conformations were modelled, the occupancies are constrained to sum 365 

to unity.  366 

S2. Validation Radar Plots 367 

Standard validation plots are generated by recording the density scores radially on the graph axes and 368 

connecting these points with lines. For the comparative plots (Figure 4), the axes are re-scaled such that 369 

the limits are the minimum and maximum of the metric scores. For normal validation plots (Figure 6), 370 

the limits of each of the scores are shown in Table S5. These plots can be generated using the 371 

giant.score_model script distributed as part of the giant package within the panddas package, available 372 

as part of CCP410.  373 
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Table S1 Crystallographic parameters and ligand model scores for the model in Section 4.1.  374 

Model  Mean Phase 
Diff. (°) 

R-work/  
R-free 

Occ RSCC RSZD RSZO/ 
OCC 

B-factor 
Ratio 

RMSD 
(Å) 

Solvent Only 2.92 0.129 / 0.171 - n/a n/a n/a n/a n/a 

Ligand Only  9.97 0.147 / 0.195 0.79 0.44 4.3 0.76 3.54 0.26 

Ensemble  - 0.127 / 0.171 0.26 0.87 0.5 5.38 1.47 0.01 

Degraded Ensemble 24.17 0.241 / 0.290 0.27 0.77 1.0 4.81 1.40 0.05 

 375 

Table S2 Crystallographic parameters and ligand model scores for the model in Section 4.2.  376 

Model  Mean Phase 
Diff. (°) 

R-work/ 
R-free 

Occ RSCC RSZD RSZO/ 
OCC 

B-factor 
Ratio 

RMSD 
(Å) 

Solvent Only 2.95 0.183 / 0.217 - n/a n/a n/a n/a n/a 

Ligand Only  4.15 0.184 / 0.215 0.68 0.92 3.6 1.62 1.41 0.20 

Ensemble  - 0.182 / 0.216 0.41 0.96 1.6 3.41 1.04 0.02 

Degraded Ensemble 31.06 0.311 / 0.363 0.29 0.90 0.1 1.72 1.18 0.70 

  377 
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Table S3 Crystallographic parameters and ligand model scores for the model in Section 4.3.  378 

Model  Mean Phase 
Diff. (°) 

R-work/ 
R-free 

Occ RSCC RSZD RSZO/ 
OCC 

B-factor 
Ratio 

RMSD 
(Å) 

Solvent Only 3.86 0.157 / 0.219 - n/a n/a n/a n/a n/a 

Ligand Only  4.38 0.164 / 0.222 0.80 0.78 3.40 2.75 1.23 0.16 

Ensemble  - 0.159 / 0.220 0.51 0.83 1.20 4.31 1.13 0.03 

Degraded Ensemble 28.48 0.274 / 0.332 0.59 0.71 0.50 2.54 1.19 0.17 

 379 

Table S4 Crystallographic parameters and ligand model scores for the model in Section 4.4.  380 

Model  Mean Phase 
Diff. (°) 

R-work/ 
R-free 

Occ RSCC RSZD RSZO/ 
OCC 

B-factor 
Ratio 

RMSD 
(Å) 

Solvent Only 4.22 0.186 / 0.216 - n/a n/a n/a n/a n/a 

Ligand Only  2.20 0.183 / 0.213 0.89 0.95 2.00 4.38 1.26 0.03 

Ensemble  - 0.182 / 0.212 0.84 0.96 1.60 5.95 1.20 0.01 

Degraded Ensemble 34.46 0.341 / 0.380 0.77 0.91 0.10 3.77 1.14 0.07 

  381 
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Table S5 Radar plot axes limits. The limits and length scales for the radial axes are defined here. 382 

The inner limit defines the value at which the plotted line will begin to move away from the centre of 383 

the plot. The outer limit defines the values at which the plotted line will reach the end of the radial axis, 384 

and be plotted outside the graph area. If a metric is inverted, large values will be plotted closer to the 385 

centre of the radar plot, and smaller values will be plotted further from the centre. 386 

Metric  Inner Limit Outer Limit Inverted 

RSCC 0.85 0.6 Yes 

RSZD 1.5 4 No 

RSZO/OCC 2 0 Yes 

B-factor Ratio 1 3 No 

RMSD 0 1.5 No 

  387 
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Figure S1 Limitations of alternate conformers require workarounds in modelling. 

Conformers in crystallographic models do not support branching of conformers – where alternate 

sub-conformations can be added to existing alternate conformations – so workarounds are required 

where complex alternate conformations are present. (a) The unbound structure contains a residue in 

alternate conformations. These are assigned to conformers A and B. (b) In the ideal case, a new 

conformer (D) could be introduced without editing the existing structure. However, it is not possible 

to create the [AB] conformer (conformers must be either A or B). If the [AB] conformation is labelled 

as A, then the B-conformation of residue 2 becomes disconnected in refinement. (c) The workaround 

is to enumerate all conformations of [AB] for each of the surrounding residues; this creates multiple 

conformations A and B of residue 1 and residue 3. 

 388 
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