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Abstract:  
Theta oscillations play a critical role in learning and memory by coordinating the spiking activity 
of neuronal ensembles via mechanisms such as spike timing dependent plasticity1–7. This 
rhythm is present in rodents where it is continuously evident during movement at frequencies 
within 6-12Hz8,9. In humans, however, the presence of continuous theta rhythm has been 
elusive; indeed, a functionally similar theta is thought to occur at lower frequency ranges (3-
7Hz) and in shorter bouts10–12. This lower frequency theta rhythm is observed during a variety of 
behaviors, including virtual navigation, but has never been tested during real world ambulatory 
movement. Here we examined the oscillatory properties of theta within the human medial 
temporal lobe (MTL) in freely moving human subjects chronically implanted with the clinical 
NeuroPace RNS® responsive neurostimulator device, capable of wireless recordings of 
continuous intracranial deep brain electroencephalographic (iEEG) activity. MTL iEEG 
recordings, together with sub-millimeter position tracking, revealed the presence of high 
frequency theta oscillations (6-12Hz) during ambulation. The prevalence of these oscillations 
was increased during fast movement compared to slow movement. These theta bouts, although 
occurring more frequently, were not significantly different in durations during fast versus slow 
movements. In a rare opportunity to study one subject with congenital blindness, we found that 
both the prevalence and duration of theta bouts were much greater than those in sighted 
subjects. Our results suggest that higher frequency theta indeed exists in humans during 
movement providing critical support for conserved neurobiological mechanisms for spatial 
navigation. The precise link between this pattern and its behavioral correlates will be an exciting 
area for future studies given this novel methodology for simultaneous motion capture and long 
term chronic recordings from deep brain targets during ambulatory human behavior.  
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Main: 
The crucial role of the medial temporal lobe (MTL) in declarative memory and encoding new 

experiences is unequivocal based on an abundant body of literature in humans and many 

mammalian species13–15. It is posited that the temporal organization of neural assemblies in this 

region occurs due to the ongoing rhythmic oscillatory activity in the local field potential (LFP) 

through modification of synaptic connections. Additionally, various frequency bands are thought 

to be involved in different brain functions16,17. In particular, the theta rhythm—a slow oscillatory 

activity in the 6-12Hz frequency range—has been associated with exploratory behavior2, as well 

as REM sleep18,19, and different features of this rhythm have been linked to memory 

performance on various tasks4,20–22.   

In the rodent hippocampus, higher frequency theta oscillations (6-12Hz) are most prominent 

during locomotion, whereas lower frequency theta oscillations (3-7Hz) are present during 

immobility periods7. Theta has also been reported in other species such as cats23, and in shorter 

oscillatory bouts in bats24,25, non-human primates26,27, and humans10,28. This issue is confounded 

by the fact that iEEG studies in primates, contrary to those performed in rodents, have been 

typically done using virtual navigation in stationary subjects due to restrictions imposed by 

recording techniques. In light of recent rodent hippocampal recordings during virtual 

navigation—demonstrating significant differences in theta dynamics between virtual and real 

world navigation, including lower frequencies and a lack of frequency-speed dependence in 

virtual navigation29,30—it is essential to directly probe the LFP during natural voluntary human 

movement. In this study, we therefore conducted an experiment to elucidate the properties of 

theta oscillations in the MTL of freely moving humans.  

Subjects were four neurosurgical patients (one congenitally blind) chronically implanted with the 
FDA approved NeuroPace RNS® (Fig. 1a) system for treatment of epilepsy. For subject 
demographics see Extended Data Table 1, 2. The RNS system continuously recorded MTL 
iEEG activity while subjects performed a task in which they were instructed to walk along linear 
and circular paths at slow and fast speeds. A trial consisted of the following four movements: 
slow movement in straight lines; slow movement in circles; fast movement in straight lines; and 
fast movements in circles and the order of these instructions were randomized (Fig. 1b, see 
Methods). This strategy was used to ensure a wide range of movement speeds. Motion 
tracking, using the OptiTrack system capable of recording subjects’ positional and rotational 
information (Fig. 1c, d, Supplementary Video 1), was recorded simultaneously with iEEG data 
directly from the MTL (Fig. 2a, Supplementary Video 2, 3; see Methods). The locations of 
electrodes were determined by co-registration of high-resolution post-operative CT images with 
pre-operative high-resolution magnetic resonance images (MRI) along with automated software 
for MTL subregion segmentation to facilitate visualization (Fig. 2b, Extended Data Table 3, see 
Methods). To eliminate epochs with putative epileptic activity we used a thresholding algorithm 
similar to methods previously described31 (see Methods, Extended Data Fig. 1a), which resulted 
in discarding 3% of the data (median, [25th, 75th]=3.04, [1.32, 4.62]%; Extended Data Fig. 1b) 
 
Examination of raw LFP traces revealed striking theta oscillations, which were readily visible 
(Fig. 2a, Supplementary Video 2, 3). To further investigate this, for each subject and within each 
trial, data was separated into low and high speed movements using a median split on speed in 
that trial to obtain equal amount of data within each condition (see Methods). By utilizing the 
BOSC method32, episodes with significant oscillations (P-episodes) between 3-30 Hz (occurring 
for at least 3 cycles and above 95% chance level, Fig. 3a) were calculated (see Methods, 
Extended Data Fig. 2). Data from all trials and channels were collapsed across the frequency 
domain.  We found that in all 4 subjects, there was a significant increase in theta oscillations, 
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typically associated with rodent movement, during fast movements compared to slow 
movements (Fig. 3b). This increase in the prevalence of theta, as quantified by p-episodes, was 
observed between 7-9Hz (Ntrials×channels=84, p<0.05, Wilcoxon rank-sum test) for the sighted 
subjects and 6.5-9Hz in the congenitally blind subject (Ntrials×channels=28, p<0.05, Wilcoxon rank-
sum test). Interestingly, these theta episodes were transient and present ~10% of the time for 
the sighted group, while this percentage was ~30% in the congenitally blind subject (Fig. 3b). 
Hence, we analyzed the data from the congenitally blind subject separately from the data from 
sighted subjects within which our results were consistent and qualitatively similar (Extended 
Data Fig. 3). 
 
We then asked whether the increase in the prevalence of theta during fast versus slow 
movements is due to longer theta bouts or higher rates of occurrence. To address this, we 
computed the duration of theta bouts by allowing the number of cycles to vary in our detection 
analysis (Fig. 4a). Comparisons of the durations of theta bouts, as measured by the average 
number of theta cycles (weighted by P-episode in each frequency bin), in fast and slow 
movements showed no significant difference in bout durations between the two conditions 
(p>0.05 at any frequency; Wilcoxon rank-sum test) (Fig. 4b). This result suggests that more 
prevalent theta during fast movement potentially arises as a result of short theta bouts of similar 
lengths occurring more frequently during fast movements. We also observed that the average 
number of detected theta cycles was higher in the congenitally blind subject (~4) compared to 
sighted subjects (~3) at the peak frequency (Fig. 4b). 
 
Classification of behavior into fast and slow movement speeds was further tested using a neural 
networks machine-learning model (Extended Data Fig. 4a, see Methods). Here, power 
spectra—computed using BOSC method—were used as the input to our model in order to 
predict movement speed. Receiver operating characteristic (ROC) plots and the area under 
these curves (AUC) showed that the performance of our model was significantly better than 
chance in classifying fast from slow movement speeds (Extended Data Fig. 4b). 
 
We present a novel innovative methodology for combining simultaneous motion capture 
technology and continuous iEEG recordings performed in the same subjects in a unique setting 
enabling access to the MTL in awake conscious freely moving humans. To our knowledge, this 
study demonstrates the first quantification of theta oscillations during human ambulatory 
movement. Our results show high frequency (~8Hz) theta oscillations occur in short bouts and 
significantly differentiate fast from slow movement speeds in that they are present more 
frequently during the former.  
 
Previous investigations of theta oscillations in primates have resulted in conflicting evidence 
regarding the presence and functionality of the theta rhythm compared to those in 
rodents11,12,27,33. These dissimilarities are thought to be in part attributed to the differences in the 
primary source of sensory information in these species—visual inputs in primates versus 
olfactory and somatosensory inputs in rodents. Nonetheless, the lack of feasibility in recording 
iEEG in ambulatory primates (in contrast to rodents), has not previously allowed for unequivocal 
evaluation of theta oscillatory properties under similar conditions in these species. Our findings 
demonstrate that in humans short, intermittent, theta bouts happen at a higher rate during fast 
movements which could potentially be explained by a higher rate of saccadic eye movements, 
as the dominant source of sensory inputs, at faster speeds27. Whether these theta bouts are 
elicited and phase-reset by eye saccades warrants further investigation. 
 
Curiously, in our present results, significant theta oscillations occur more often and more 
continuously in a single subject who is congenitally blind. This subject used a Hoover cane to 
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traverse the environment, thereby possibly using somatosensory inputs to a greater extent 
compared to other normally sighted subjects, supporting the idea that the modality of sensory 
processing may be a critical factor relating theta oscillations to movement. 
 
It is possible that there are subtle oscillatory related differences across MTL regions and along 
the anterior-posterior axis, which are not captured within our study. For example, in rodents, 
theta oscillations are diminished in power and spatial selectivity is reduced in the ventral 
compared to dorsal hippocampus34. In humans, the dorsoventral distinction is thought to map 
onto the posterior-anterior hippocampal axis35. Therefore, future larger sample studies will be 
necessary to characterize movement-related theta changes across MTL regions and along the 
anterior-posterior axis in humans.   
 
Recently, it has been argued that the human analogue of rodent theta oscillations exists in the 
lower (<4Hz) frequency range10. However, to our knowledge, theta oscillations within the human 
MTL have never been investigated during real world ambulatory movement due to limitations of 
wired intracranial recording electrode technology. Using wireless, chronically implanted 
electrodes, our results suggest there does in fact exist a higher frequency (~8Hz) theta 
oscillation in the human MTL associated with physical movement. While the high frequency 
theta presented in the current study varies significantly between different speeds of movement, 
its exact behavioral correlates—and how it relates to memory performance—remains to be 
examined and tested in future experiments with memory demands. Furthermore, although lower 
frequency theta in humans has been observed in stationary virtual navigation and memory 
tasks36–39, future studies are needed to determine low and high frequency theta dynamics during 
ambulatory movement compared to those in stationary behavioral tasks. Moreover, these two 
patterns of theta oscillations in rodents, namely type-1 (high frequency) and -2 (low frequency), 
are thought to be functionally distinct with the former connected with locomotion and the latter 
involved in memory and learning8,40,41.  
 
Overall, the current study provides important insight into human MTL theta band oscillatory 

dynamics during ambulatory behavior while bridging findings across species. We present a 

novel paradigm for the leveraging of FDA technology combined with state-of-the-art motion 

tracking that allows for future investigation of neural oscillatory dynamics during real world 

behaviors in humans.  
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Figures: 
 
Figure 1: Simultaneous motion tracking and iEEG recording within the human MTL. 

 
a, Example post-operative CT of a subject with an implanted electrode in the right hippocampus 
(top left) along with a coronal view of a high-resolution MRI overlaid with co-registered 
electrodes (shown in yellow). b,  Sample trajectory of a subject during one trial consisting of 
linear and circular movements. c, Schematic of the setup of cameras used for motion capture 
(see Methods). Inset: Real time motion tracking of an example participant. d, Movement speed 
distribution of all sighted subjects (green; median, [25th, 75th] = 0.87, [0.20, 1.14] m/s and 
congenitally blind subject (black; median, [25th, 75th] = 0.44, [0.05, 0.68] m/s); dashed vertical 
lines indicate median value; shaded areas correspond to kernel smoothing function estimates of 
the distributions).  
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Figure 2: Local field potential and theta oscillations in the human MTL. 

 
a, Example one-second-long raw LFP traces (gray) from the MTL of all study subjects overlaid 
with filtered (3-12Hz) theta oscillations (hippocampal and entorhinal theta shown in red and blue 
respectively). b, Left) Sample electrode locations from a subject (R003) overlaid onto coronal 
pre-operative high-resolution MRI. Right) Automated MTL subregion segmentation (note that 
different colors correspond to different areas) demonstrating electrode locations in an example 
subject. White areas correspond to white matter. 
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Figure 3: Significant increase in the prevalence of high-frequency theta oscillations 
during fast compared to slow movement. 

 
a, Colormap shows percentage of time with significant oscillations (P-episode) in the frequency 
range indicated on the x axis averaged across trials for each clinically labeled channel in the left 
and right entorhinal cortex (LEC, REC) and left and right hippocampus (LHIP and RHIP) from all 
subjects (electrode 1: most distal, electrode 4: most proximal). Data are normalized by the 
maximum value for each channel, within each condition, for visibility purposes (range: 0-1). 
Brighter colors indicate larger values. Throughout this figure, red shades and blue shades 
correspond to fast and slow movements respectively. Also, note that for each subject, channels 
are sorted based on the frequency with maximum prevalence in the theta band during fast 
movements. Left) Shown are normalized P-episodes during fast movement. Lighter shades 
indicate higher values here and throughout figures (Ntrials for subjects R002, R003, R006 and 
R004 (congenitally blind) were 7, 5, 9 and 7 respectively). Right) Same as (left) but during 
movement at slow speeds.) b, Percentage of time with significant oscillations (across all trials 
and channels; shown are mean ± s.e.m) for low frequencies during fast movements (red) versus 
slow movements (blue) in 3 sighted subjects (top, Ntrials×channels=84) and 1 congenitally blind 
subject (bottom, Ntrials×channels=28). Black horizontal lines indicate regions with significant 
difference in P-episodes (p < 0.05, Wilcoxon rank-sum test.) 
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Figure 4: Duration of theta bouts is similar during fast and slow movements. 

 
 
a, Colormaps indicate percentage of time with significant oscillations (P-episodes) in each 
frequency (averaged across trials, channels and subjects) assuming varying number of 
minimum cycles for detection (y-axis). Red and blue color schemes correspond to fast and slow 
movements respectively, here and throughout the figure. Number at the top right corner 
indicates range. b, In each frequency bin, the number of detected theta cycles was weighted by 
the corresponding P-episode normalized by the overall P-episode for individual trials and 
channels to obtain weighted mean number of cycles with significant oscillations at each 
frequency. Shown are the mean ± s.e.m of the weighted number of theta cycles across all trials 
and channels. There was no significant difference between the duration of the theta bouts 
between fast (red) and slow (blue) movements. However, note that in the congenitally blind 
subject (right), the duration of theta bouts (~4 cycles at peak frequency) were longer than those 
in the sighted subjects (left, ~3 cycles). 
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Methods 
 
Data acquisition:  
The FDA approved Neuropace RNS® System (Fig. 1a) is designed to detect abnormal electrical 
activity in the brain and respond in a closed loop manner by delivering imperceptible levels of 
electrical stimulation to normalize brain activity before an individual experiences seizures. For 
the present study, a neurologist was present to configure stimulation to OFF and ON before and 
after the study and monitor for seizure activity. Each of the 4 subjects in the study had two 
implanted depth electrode leads 1.27 mm in diameter each with 4 platinum-iridium electrode 
contacts, each with a surface area of 7.9 mm2, 1.5 mm long with an electrode spacing of either 
3.5 or 10 mm (Extended Data Table 3). During the study, the RNS® Neurostimulator 
continuously monitored iEEG activity on four bipolar channels at 250 Hz with an analogue filter 
equivalent to a 1st order Butterworth with 3db attenuation at the cutoff frequencies (4-90Hz). The 
neurostimulator communicates wirelessly with a Programmer and Remote Monitor using secure 
protocols. The Programmer is used to (1) retrieve data, including stored iEEG data, from the 
neurostimulator, (2) configure detection and stimulation, and (3) monitor iEEG activity and test 
stimulation settings in real-time. A programmable electromagnet was used to trigger iEEG 
storage in the RNS Neurostimulator.  
 
Electromagnet: 
A programmable electromagnet was designed to be placed on the subject’s head over the RNS 
Neurostimulator and trigger iEEG recordings by generating magnetic pulses. The magnetic 
pulses could be triggered either manually or automatically with programmable intervals of 30, 
60, 90, 150, 180 and 240 seconds. Power was provided by rechargeable NICAD batteries. The 
electromagnet had a visible LED as well as an infrared LED, which were used both as visible 
indicators and event markers for synchronization of iEEG recordings with recorded video. The 
device accepts three commands: a hard reset command which allows for either alteration of the 
timing or entering into the test mode; a clear command which is a soft reset in that any 
command other than reset is halted and all timing counters are cleared; and a start or stop 
command which starts the timing for the marker function. 
 
Motion Tracking: 
Motion tracking was done using the Optitrack system (Natural Point, Inc.) with 8 ceiling mounted 
infrared high-resolution cameras that allow for sub-millimeter motion tracking. Removable 
reflective markers were used in conjunction with specialized software, Motive and Camera SDK, 
which allows for kinematic labeling. For the head, a rigid body object was constructed, from the 
reflective markers, for which center of mass (i.e. position) was tracked in addition to a 
quaternion describing rotational information that is translated to Euler angles to obtain yaw, 
pitch and roll with respect to the experimental room. This information was then used to obtain 
subjects’ movement trajectory and speed (Fig. 1b, c, d). Further, another set of 4 ceiling 
mounted high-resolution Optitrack cameras were dedicated to record videos in the visible 
spectrum, which were then used for synchronization purposes (see below). 
 
Synchronization of iEEG data and motion capture data: 
When the electromagnet was activated it triggered the storage of iEEG data by the RNS 
Neurostimulator in preconfigured short durations (60 s), generated a “magnet marker” event in 
the iEEG data, as well as turned on a visible LED light, which was captured by the video 
cameras. The “magnet marker” events in the iEEG data were then aligned with the onset of the 
visible LED light events in our motion tracking system. This allowed us to synchronize the two 
data streams and combine the stored pieces of iEEG data into a long continuous recording. 
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Subjects:  
Subjects (Extended Data Table 1) were 4 patients (three sighted and one congenitally blind) 
with pharmacoresistant epilepsy who are implanted with the FDA approved NeuroPace RNS 
device for treatment of epilepsy.  The congenitally blind subject exhibited lifelong visual 
impairment with marginal light perception due to retinopathy of prematurity. Electrode 
placements were determined solely based on clinical criteria. All subjects volunteered for the 
study by providing informed consent according to a protocol approved by the UCLA Medical 
Institutional Review Board (IRB). Neuropsychological scores for each individual were 
determined using methods previously described42(Extended Data Table 2).  
 
Electrode Localization:  
Electrode localization was done using methods similar to those reported by Suthana et al.42. A 
high-resolution post-operative CT image was co-registered to a pre-operative whole brain and 
high-resolution MRIs for each subject (Fig. 2b). We used the FSL FLIRT (FMRIB’s Linear 
Registration Tool43) together with BrainLab stereotactic and localization software44. MTL regions 
(entorhinal, perirhinal, parahippocampal, hippocampal subfields CA23DG [CA2, 3, dentate 
gyrus], CA1, and subiculum) are anatomically determined by boundaries that are demarcated 
based on atlases correlating MRI visible landmarks with underlying cellular histology. To avoid 
human bias and perform hippocampal segmentation programmatically we used ASHS 
software45. 
 
Behavioral task: 
Participants performed a task in which they were directed to walk slow or fast following linear 
and circular paths in a 400 square foot room based on an auditory command. Each trial 
consisted of four different conditions: walking in a straight line or circle at slow or fast speeds 
and the order in which these conditions were presented was randomized. This strategy yielded 
a relatively large range of movement speeds (Fig. 1d). Furthermore, for each subject, the speed 
profile was similar across different trials (data not shown). 
 
Data Analysis: All analyses were done offline using custom codes in MATLAB.  
A) Elimination of epileptic activity from LFP: Data from putative epileptic epochs were discarded 

according to a method similar to procedures described recently31 using functions found in 
MATLAB Signal Processing Toolbox. In brief, epileptic discharges were identified when 
either of the following conditions were satisfied: a) the envelope of the unfiltered signal was 
5 s.d. above the baseline; b) the envelope of the filtered signal (band-pass filtered in the 25-
80Hz range followed by signal rectification) was 6 s.d. above the baseline (Extended Data 
Fig. 1). We excluded ~3% of the data from further analysis because of the presence of 
epileptic activity and this percentage was not significantly different between slow and fast 
movements (p = 0.6, Wilcoxon rank-sum test; Extended Data Fig. 1b). 

B) Detection of significant oscillations within different frequency ranges: BOSC algorithm was 
used32 and episodes with significant oscillations between 3-12Hz (using 6th order wavelets 
and for bouts occurring for at least 3 cycles and above 95% chance level) were detected. 
Additionally, to examine the duration of theta bouts, the lower bound on the number of 
cycles for detection was allowed to vary. 

C) Control analysis for computing power spectra and oscillation detection: To evaluate the 
effect of the analog bandpass filter (1st order Butterworth 4-90Hz, 3db attenuation at cutoff 
frequencies) on the RNS System on our results, we mathematically implemented this filter 
on data collected from a previous study42 in patients with implanted depth electrodes. We 
first computed the power spectrum, using BOSC method, for randomly selected (N=100) 5-
seconds-long LFPs during trials (P1). Power spectra were then computed for these LFPs 
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filtered using the abovementioned filter settings (P2). A similarity index was computed 
between the two matrices (P1 and P2) using cosine distance defined as follows: 

𝒅𝒊𝒋 =  
𝒑𝟏𝒊𝒑′𝟐𝒋

√(𝒑𝟏𝒊𝒑′
𝟏𝒊)(𝒑𝟐𝒋𝒑𝟐𝒋

′ )

 

A similarity index was then calculated while allowing for the frequency lower bound to vary 
(Extended Data Fig. 2a). The same procedure was done on the similarity index calculated 
between the matrices consisting of data points with significant oscillations (Extended Data 
Fig. 2b). 

D) Extraction of theta from LFP: Raw signal was bandpass filtered (between 3-12Hz) using an 
acausal 4th order Butterworth filter (Fig. 2a). The phase and amplitude of theta was then 
computed from the filtered signal using Hilbert transform.  

E) Statistics: Two-sided nonparametric Wilcoxon rank-sum test was utilized to assess the 
significant differences between linear variables. For each histogram, a kernel smoothing 
function was also computed for the probability density estimates. Values are expressed as 
median, [25th, 75th] or mean ± s.e.m when applicable.  

F) Classification of movement speed using machine learning: To classify behavior into fast and 
slow movement speeds (here referring to the top and bottom 30% of the running speeds 
respectively), we used a feed forward neural network with an input layer, a hidden layer 
consisting of 100 neurons and an output layer with a binary classifier (the corresponding 
speed categories). A tan-sigmoid function and a scaled conjugate gradient algorithm were 
used as a transfer function and back propagation algorithm respectively (Extended Data Fig. 
4a). For each subject, the BOSC method was utilized to compute a power spectrum of the 
LFP for each time point. Data from all channels were concatenated (leaving a 

contiguous 15% of the total data out for the testing set to ensure independence). For the 

remaining data, 85% was used for training while the other 15% was used for cross 
validation. Receiver operating characteristic (ROC) plot and the area under that curve (AUC) 
were used to evaluate the performance of our model (Extended Data Fig. 4b). 
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Extended Data Figures and Tables: 
 
 
 
Extended Data Figure 1: Elimination of epileptic discharges. 

 
a) Shown are example one-second-long LFP traces from 4 different subjects (in black) and 
epileptic discharges detected (in grey) using thresholding methods (see Methods). b) Putative 
epileptic epochs were detected on LFPs from all channels and within all trials, and data from 
these periods were discarded from analysis (percentage of epileptic epochs = 3.04, [1.32, 
4.62]%, Ntrials×channels = 112). The percentage of putative epileptic data was similar during slow 
movements (3.08, [1.37, 4.41]%) and fast movements (3.01, [1.46, 5.01]%) and not significantly 
different from one another (p = 0.6, Wilcoxon rank-sum test). Numbers are reported as median, 
[25th, 75th]. Shaded area corresponds to kernel smoothing function estimate of the distribution. 
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Extended Data Figure 2: Control analysis for comparisons of raw wide-band signal and 
filtered signal in oscillation detection methods.

 
We used data collected from a previous study42 in patients implanted with intracranial depth 
electrode for seizure monitoring. We mathematically implemented a filter, analogous to that 
existing on the RNS system, on this wide-band data to investigate the effect of filtering in our 
oscillation detection algorithms. a, Similarity index between power spectra computed using 
BOSC methods from the raw wide-band signal and bandpass filtered signal after the 
frequencies shown on x-axis (mean ± s.e.m, N = 100). Dashed red line indicates the frequency 
above which the similarity index is higher than 0.9 (F = 3Hz). b, Similarity index between the 
matrices consisting of significant oscillations detected in the raw and filtered signal. After 
F=3Hz, this index is above 0.84 and consequently we used this value (3 Hz) as the minimum 
value for interpreting our results.    
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Extended Data Figure 3: Increased prevalence of theta oscillations during fast versus 

slow movements within individual sighted subjects 

 

Analysis of p-episodes within each sighted subject (individual rows) exhibited qualitatively 

similar results to the overall results from all subjects shown in Fig. 3b. Namely, theta was more 

prevalent during fast (red) compared to slow (blue) movements. Shown are the mean ± s.e.m). 
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Extended Data Figure 4: Neural networks as a tool to decode movement speed. 

 
a) The structure of the network utilized for speed classification consisting of 100 neurons in the 
hidden layer and two output classes corresponding to the slow and fast movement speeds. 
Input data was the power spectra in 3-30Hz frequency band computed using BOSC method 
(see Methods) and concatenated across all 4 channels. Classification was done separately for 
each subject. b) ROC plots from all subjects showed that our model could successfully predict 
the two classes (slow speeds in red, fast speeds in blue) as indicated by the distance between 
the lines from the two classes and chance level (grey diagonal line). The area under the ROC 
curve (AUC), a measure commonly used to describe the performance of a classification model, 
for each subject is reported at the bottom right. Note that in all case, AUC values are above 0.5 
(the area under diagonal line or the chance level). 
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Extended Data Table 1: Subject demographics. 

 

 

 

 

 

 

 
Demographics of the study subjects including age, gender and handedness. Data from Subject 
R005 was excluded from analysis due to epileptic activity. 
* Subject R004 is congenitally blind.  

Subject Age Gender Handedness 

R002 34 F R 

R003 40 F L 

 R004* 63 M R 

R005 40 F R 

R006 45 M L 
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Extended Data Table 2: Clinical Characteristics of the Study Subjects 

 
 
 
 
 
 
 
 
 

 
Each subject performed neuropsychological tests for clinical characteristics evaluation using 

methods described earlier42. In brief, Wechsler Adult Intelligence Scale was used to calculate 

verbal and digit span. Verbal memory was assessed by the logical memory portion of the 
Wechsler Memory Scale (WMS) and the long-delay free-recall part of the California Verbal 
Learning Test (CVLT). Visual memory and executive function were tested using Rey-Osterrieth 
Complex Figure test and the Trail Making Test respectively. All measures are reported as 
percentiles with the exception of Verbal IQ reported as standardized scores. 
  

Subject 
No. 

Verbal IQ Digit Span Verbal 
Memory 

Visual 
Memory 

Executive 
Function 

   WMS CVLT 
Percentile 

  

R002 113 10 66 79 34.5 91 

R003 70 37 <1 <1 2 25 

R004 108 14 73 84 - 84 

R006 NA 16 <1 <1 <1 66 
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Extended Data Table 3: Electrode Localizations. 
 

Subject Electrode Labels  Electrode Spacing Localization  

R002 

REC1 

10 mm 

Entorhinal Cortex 

REC2 Perirhinal Cortex 

REC3 Fusiform Gyrus 

REC4 Inferior Temporal 

RHIP1 

3.5 mm 

CA1 

RHIP2 CA1 

RHIP3 CA1 

RHIP4 CA1 

R003 

REC1 

3.5 mm 

Entorhinal Cortex 

REC2 Perirhinal Cortex 

REC3 Perirhinal Cortex 

REC4 Fusiform Gyrus 

LHIP1 

3.5 mm 

CA1 

LHIP2 CA23DG 

LHIP3 CA23DG 

LHIP4 CA23DG 

R004 

LEC1 

10 mm 

Entorhinal Cortex 

LEC2 Perirhinal Cortex 

LEC3 Inferior Temporal 

LEC4 Inferior Temporal 

LHIP1 

3.5 mm 

CA1 

LHIP2 CA1 

LHIP3 CA1 

LHIP4 CA1 

R006 

LEC1 

3.5 mm 

Entorhinal Cortex 

LEC2 Perirhinal Cortex 

LEC3 Perirhinal Cortex 

LEC4 Fusiform Gyrus 

REC1 

3.5 mm 

Subiculum 

REC2 Subiculum 

REC3 CA1 

REC4 Fusiform Gyrus 

 
Electrode labels were determined based on clinical criteria and include R(L)EC, corresponding 
to right (left) entorhinal cortex, and R(L)HIP corresponding to right (left) hippocampus. The 
precise location of clinical electrode labels is shown in column 4, and were determined using 
automated segmentation software coupled with visual inspection of images resulted from co-
registration of high resolution CT and MRI images42 (Fig. 2b, see Methods). Smaller digits in the 
electrode labels indicate more distal contacts. Further, the recordings were bipolar using 
adjacent electrodes 1-2 and 3-4 (e.g., REC1-REC2 and REC3-REC4 would be two example 
LFP channels). 
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Supplementary Information: 

Supplementary video 1: Real time motion tracking of an example subject 
 
Supplementary video 2: Simultaneous movement and MTL LFP recordings (example 
sighted subject) 
 
Top) Movement trajectory of a subject during motion along a linear path (shown in black) and 
the subject’s head direction indicated by red arrow. Bottom) Continuous LFP recording 
simultaneously during the motion shown above. 
 
Supplementary video 3: Simultaneous movement and MTL LFP recordings (congenitally 
blind subject) 
 
Top) Movement trajectory of a subject during motion along a linear path (shown in black) and 
the subject’s head direction indicated by red arrow. Bottom) Continuous LFP recording 
simultaneously during the motion shown above. 
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