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Abstract1

Zika is an emerging, mosquito-borne virus recently introduced to the Americas, whose rapid spread2

is unprecedented and of great public health concern. Knowledge about transmission – which3

depends on the presence of competent vectors – remains incomplete, especially concerning potential4

transmission in geographic areas in which it has not yet been introduced. To identify presently5

unknown vectors of Zika, we developed a data-driven model linking candidate vector species and6

the Zika virus via vector-virus trait combinations that confer a propensity toward associations7

in the larger ecological network connecting flaviviruses and their mosquito vectors. Our model8

predicts that thirty-five species may be able to transmit the virus, twenty-six of which are not9

currently known vectors of Zika virus. Seven of these species are found in the continental United10

States, including Culex quinquefasciatus and Cx. pipiens, both of which are common mosquito11

pests and vectors of West Nile Virus. Because the range of these predicted species is wider than12

that of known vectors Aedes aeygpti and Ae. albopictus, we reason that a larger geographic area is13

at risk for autochthonous transmission of Zika virus than reported by maps constructed from the14

ranges of only the two Aedes species. Consequently, the reach of existing vector control activities15

and public health campaigns may need to be expanded.16
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Introduction17

In 2014, Zika virus was introduced into Brazil and Haiti, from where it rapidly spread throughout18

the Americas. By June 2016, over 300,000 cases had been confirmed in 24 different states in19

Brazil (http://ais.paho.org/phip/viz/ed_zika_cases.asp), with large numbers of reports20

from many other counties in South and Central America (Faria et al. 2016). Originally isolated21

in Uganda in 1947, the virus remained poorly understood until it began to spread within the22

South Pacific, including an outbreak of 75% of the residents on the island of Yap in 2007 (4923

confirmed cases) and over 32,000 cases in the rest of Oceania in 2013-2014, the largest outbreak24

prior to the Americas (2016-present) (Cao-Lormeau et al. 2016, Duffy et al. 2009). Guillian-Barre’s25

syndrome, a neurological pathology associated with Zika virus infection, was first recognized at26

this time (Cao-Lormeau et al. 2016). Similarly, an increase in newborn microcephaly was found27

to be correlated with the increase in Zika cases in Brazil in 2015 and 2016 (Schuler-Faccini et al.28

2016). For this reason, in February 2016, the World Health Organization declared the American29

Zika virus epidemic to be a Public Health Emergency of International Concern.30

Despite its public health importance, the ecology of Zika virus transmission has been poorly31

understood until recently. It has been presumed that Aedes aegypti and Ae. albopictus are the32

primary vectors due to epidemiologic association with Zika virus (Messina et al. 2016), viral iso-33

lation from field populations (especially from Ae. aegypti (Haddow et al. 2012)), and association34

with related arboviruses (e.g. dengue fever virus, chikungunya virus). Predictions of the po-35

tential geographic range of Zika virus in the Americas, and associated estimates for the size of36

the vulnerable population, are therefore primarily based on the distributions of Ae. aegypti and37

Ae. albopictus, which jointly extend across the Southwest, Gulf coast, and mid-Atlantic regions38

of the United States (Centers for Disease Control and Prevention 2016). We reasoned, however,39

that if other, presently unidentified Zika-competent mosquitoes exist in the Americas, then these40

projections may be too restricted and therefore optimistically biased. Additionally, recent experi-41

mental studies show that the ability of Ae. aegypti and Ae. albopictus to transmit the virus varies42

significantly across mosquito populations and geographic regions (Chouin-Carneiro et al. 2016),43

with some populations exhibiting low dissemination rates even though the initial viral titer after44
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inoculation may be high (Diagne et al. 2015). This suggests that in some locations other species45

may be involved in transmission. The outbreak on Yap, for example, was driven by a different46

species, Ae. hensilli (Ledermann et al. 2014). Closely related viruses of the Flaviviridae family47

are vectored by over nine mosquito species, on average (see Supplementary Data). Thus, because48

Zika virus may be associated with multiple mosquito species, we considered it necessary to develop49

a more comprehensive list of potential Zika vectors.50

The gold standard for identifying competent disease vectors requires isolating virus from field-51

collected mosquitoes, followed by experimental inoculation and laboratory investigation of viral52

dissemination throughout the body and to the salivary glands (Hardy et al. 1983), and, when53

possible, successful transmission back to the vertebrate host (e.g. (Komar et al. 2003)). Un-54

fortunately, these methods are costly, often underestimate the risk of transmission (Bustamante55

and Lord 2010), and the amount of time required for analyses can delay decision making dur-56

ing an outbreak (Day 2001). To address the problem of identifying potential vector candidates57

in a suitable time frame, we therefore pursued a data-driven approach to identifying candidate58

vectors aided by machine learning algorithms for identifying patterns in high dimensional data.59

If the propensity of mosquito species to associate with Zika virus is statistically associated with60

common mosquito traits, it is possible to rank mosquito species by the degree of risk represented61

by their traits – a comparative approach similar to the analysis of risk factors in epidemiology.62

For instance, a model could be constructed to estimate the statistical discrepancy between the63

traits of known vectors (i.e., Ae. aegypti, Ae. albopictus, and Ae. hensilli) and the traits of all64

possible vectors. Unfortunately, this simplistic approach would inevitably fail due to the small65

amount of available data (i.e., sample size of 3). Thus, we developed an indirect approach that66

leverages information contained in the associations among many virus-mosquito pairs to inform67

us about specific associations. Specifically, our method identifies covariates associated with the68

propensity for mosquito species to vector any flavivirus. From this, we constructed a model of the69

mosquito-flavivirus network and then extracted from this model the life history profile and species70

list of mosquitoes predicted to associate with Zika virus. Finally, we constructed new maps of the71

potential Zika virus distribution in North America using this larger list of potentially competent72
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species.73

Methods74

Data Collection and Feature Construction75

Our dataset comprised a matrix of vector-virus pairs relating all known flaviviruses and their76

mosquito vectors. To construct this matrix, we first compiled a list of mosquito-borne flaviviruses77

to include in our study (Van Regenmortel et al. 2000, Kuno et al. 1998, Cook and Holmes 2005).78

Viruses that only infect mosquitoes and are not known to infect humans were not included. Using79

this list, we constructed a mosquito-virus pair matrix based on the Global Infectious Diseases80

and Epidemiology Network database (GIDEON 2016), the International Catalog of Arboviruses81

Including Certain Other Viruses of Vertebrates (ArboCat) (Karabatsos 1985), The Encyclopedia82

of Medical and Veterinary Entomology (Russell et al. 2013) and Mackenzie et al. (2012).83

We defined a known vector-virus pair as one for which the full transmission cycle (i.e, transmis-84

sion from infected host to vector to susceptible host) has been observed. Basing vector competence85

on isolation or intrathoracic injection bypasses several important barriers to transmission (Hardy86

et al. 1983), and may not be true evidence of a mosquito’s ability to transmit an arbovirus. We87

found our definition to be more conservative than that which is commonly used in disease databases88

(e.g. Global Infectious Diseases and Epidemiology Network database), which often assume iso-89

lation from wild-caught mosquitoes to be evidence of a mosquito’s role as vector. Therefore,90

a supplementary analysis investigates the robustness of our findings by comparing the analysis91

reported in the main text to a second analysis in which any kind of evidence for association, in-92

cluding merely isolating the virus in wild-caught mosquitoes, is taken as a basis for connection in93

the virus-vector network (see Supplement I for analysis and results).94

Fifteen mosquito traits (Supplement II, Table 1) and twelve virus traits (Supplement II, Table95

2) were collected from the literature. For the mosquito species, the geographic range was defined96

as the number of countries in which the species has been collected, based on Walter Reed Biosys-97

tematics Unit (2016). A species’ continental extent was recorded as a binary value of its presence98
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by continent. A species’ host breadth was defined as the number of taxonomic classes the species99

is known to feed on, with the Mammalia class further split into non-human primates and other100

mammals, because of the important role primates play in zoonotic spillovers of vector-borne dis-101

ease (e.g. dengue, chikungunya, Yellow Fever, and Zika viruses) (Weaver 2005, Diallo et al. 2005,102

Weaver et al. 2016). The total number of unique flaviviruses observed per mosquito species was103

calculated from our mosquito-flavivirus matrix. All other traits were based on consensus in the104

literature (see Supp. III for sources by species). For three traits – urban preference, endophily (a105

proclivity to bite indoors), and salinity tolerance – if evidence of that trait for a mosquito was not106

found in the literature, it was assumed to be negative.107

We collected data on the following virus traits: host range (Mahy 2009, Mackenzie et al. 2012,108

Chambers and Monath 2003, Cook and Zumla 2009), disease severity (Mackenzie et al. 2012),109

human illness (Chambers and Monath 2003, Cook and Zumla 2009), presence of a mutated enve-110

lope protein, which controls viral entry into cells (Grard et al. 2009), year of isolation (Karabatsos111

1985), and host breadth (Karabatsos 1985). Disease severity was based on Mackenzie et al. (2012),112

ranging from no known symptoms (e.g. Kunjin virus) to severe symptoms and significant human113

mortality (e.g. Yellow Fever virus). For each virus, vector breadth was calculated as the number114

of mosquito species for which the full transmission cycle has been observed. Genome length was115

calculated as the mean of all complete genome sequences listed for each flavivirus in the Virus116

Pathogen Database and Analysis Resource (http://www.viprbrc.org/). For more recently dis-117

covered flaviviruses not yet cataloged in the above databases (i.e., New Mapoon Virus, Iquape118

virus), viral traits were gathered from primary literature (sources listed in Supplement III).119

Predictive model120

Following Han et al. (2015), boosted regression trees (BRT) (Friedman 2001) were used to fit a121

logistic-like predictive model relating the status of all possible virus-vector pairs (0: not associated,122

1: associated) to a predictor matrix comprising the traits of the mosquito and virus traits in123

each pair. Boosted regression trees circumvent many issues associated with traditional regression124

analysis (Elith et al. 2008), allowing for complex variable interactions, collinearity, non-linear125
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relationships between covariates and response variables, and missing data. Additionally, this126

technique performs well in comparison with other logistic regression approaches (Friedman 2001).127

Trained boosted regression tree models are dependent on the split between training and testing128

data, such that each model might predict slightly different propensity values. To address this,129

we trained an ensemble of 25 internally cross-validated BRT models on independent partitions130

of training and testing data. The resulting model demonstrated low variance in relative variable131

importance and overall model accuracy, suggesting models all converged to a similar result.132

Prior to the analysis of each model, we randomly split the data into training (70%) and test133

(30%) sets while preserving the proportion of positive labels (known associations) in each of the134

training and test sets. Models were trained using the gbm package in R (Ridgeway 2015), with the135

maximum number of trees set to 25,000 and a learning rate of 0.001. To correct for optimistic bias136

(Smith et al. 2014), we performed 10-fold cross validation and chose a bag fraction of 50% of the137

training data for each iteration of the model. Variable importance was quantified by permutation138

(Breiman 2001) to assess the relative contribution of virus and vector traits to the propensity139

for a virus and vector to form a pair. Because we transformed many categorical variables into140

binary variables (e.g., continental range as binary presence or absence by continent), the sum of141

the relative importance for each binary feature was summed to obtain a single value for the entire142

variable.143

Each of our twenty-five trained models was then used to predict novel mosquito vectors of Zika144

by applying the trained model to a data set consisting of the virus traits of Zika paired with the145

traits of all mosquitoes for which flaviviruses have been isolated from wild caught individuals, and,146

depending on the species, may or may not have been tested in full transmission cycle experiments147

(a total of 180 mosquito species). This expanded dataset allowed us to predict over a large148

number of mosquito species, while reasonably limiting our dataset to those species suspected of149

transmitting flaviviruses. The output of this model was a propensity score ranging from 0 to 1.150

In our case, the final propensity score for each vector was the mean propensity score assigned by151

the twenty-five models. To label unobserved edges, we thresholded propensity scores at the value152

of lowest ranked known vector (Liu et al. 2013).153
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Results154

In total, we identified 132 vector-virus pairs, consisting of 77 mosquito species and 37 flaviviruses.155

The majority of these species were Aedes (32) or Culex (24) species. Our supplementary dataset156

consisted of an additional 103 mosquito species suspected to transmit flaviviruses, but for which157

evidence of a full transmission cycle does not exist. This resulted in 180 potential mosquito-Zika158

pairs on which to predict our trained model on. As expected, closely related viruses, such as159

the four strains of dengue, shared many of the same vectors and were clustered in our network160

diagram (Fig. 1). The distribution of vectors to viruses was uneven, with a few viruses vectored161

by many mosquito species, and rarer viruses vectored by only one or two species. The virus with162

the most known competent vectors was West Nile virus (31 mosquito vectors), followed by Yellow163

Fever virus (24 mosquito vectors). In general, encephalitic viruses such as West Nile virus were164

found to be more commonly vectored by Culex mosquitoes and hemorrhagic viruses were found165

to be more commonly vectored by Aedes mosquitoes (see Gould and Solomon (2008) for further166

designations between Flaviviridae) (Fig. 1).167

Our ensemble of BRT models trained on common virus and vector traits predicted mosquito168

vector-virus pairs in the test dataset with high accuracy (AUC = 0.92 ± 0.02). The most important169

variable in predicting a vector-virus pair was the subgenus of the mosquito species, followed by170

the continental range of the mosquito species, and the number of viruses vectored by a mosquito171

species (Table 2). Unsurprisingly, this suggests that mosquitoes and viruses with more known172

vector-virus pairs (i.e., more viruses vectored and more hosts infected, respectively), are more173

likely to be part of a predicted pair by the model. Mosquito ecological traits such as larval habitat174

and salinity tolerance were generally less important than a species’ phylogeny and geographic175

range.176

When applied to the 180 potential mosquito-Zika pairs, the model predicted thirty-five vectors177

to be ranked above the threshold, for a total of nine known vectors and twenty-six novel, predicted178

mosquito vectors of Zika (Table 1). Of these vectors, there were twenty-four Aedes species, nine179

Culex species, one Psorophora species, and one Runchomyia species. The GBM model’s top two180

ranked vectors for Zika are the most highly-suspected vectors of Zika virus, Ae. aegypti and Ae.181
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albopictus.182

Discussion183

Zika virus is unprecedented among emerging arboviruses in its combination of severe public health184

hazard, rapid spread, and poor scientific understanding. Particularly crucial to public health pre-185

paredness is knowledge about the geographic extent of potentially at risk populations and local186

environmental conditions for transmission, which are determined by the presence of competent187

vectors. Until now, identifying additional competent vector species has been a low priority be-188

cause historically, Zika virus infection has been geographically restricted to a narrow region of189

equatorial Africa and Asia (Petersen et al. 2016), and the mild symptoms of infection made its190

range expansion since the 1950’s relatively unremarkable. However, with its relatively recent and191

rapid expansion into the Americas and its association with severe neurological disorders, the pre-192

diction of potential disease vectors in non-endemic areas has become a matter of critical public193

health importance. We identify these potential vector species by developing a data-driven model194

that identifies candidate vector species of Zika virus by leveraging data on traits of mosquito195

vectors and their flaviviruses. Our findings suggest that many additional mosquito species may196

be competent vectors of Zika virus, translating to a larger geographic area and greater human197

population at risk of infection.198

Our model predicts that fewer than one third of the potential mosquito vectors of Zika virus199

have been identified, with over twenty-five additional mosquito species worldwide that may have200

the capacity to contribute to transmission. The continuing focus in the published literature on two201

species known to transmit Zika virus (Ae. aegypti and Ae. albopictus) ignores the potential role202

of other vectors, potentially misrepresenting the spatial extent of risk. In particular, four species203

predicted by our model to be competent vectors – Ae. vexans, Culex quinquefasciatus, Cx. pipiens,204

and Cx. tarsalis – are found throughout the continental United States. Further, the three Culex205

species are primary vectors of West Nile Virus (Farajollahi et al. 2011). Cx. quinquefasciatus and206

Cx. pipiens were ranked 3rd and 17th by our model, respectively, and together these species were207

the highest-ranking species endemic to the United States after the known vectors (Ae. aegypti208
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and Ae. albopictus). Cx. quinquefasciatus has previously been implicated as an important vector209

of encephalitic flaviviruses, specifically West Nile Virus and St. Louis Encephalitis (Turrell et al.210

2005, Hayes et al. 2005), and a hybridization of the species with Cx. pipiens readily bites humans211

(Fonseca et al. 2004). The empirical data available on the vector competence of Cx. pipiens and212

Cx. quinquefasciatus is currently mixed, with some studies finding evidence for virus transmission213

and others not (Guo et al. 2016, Aliota et al. 2016, Fernandes et al. 2016, Huang et al. 2016).214

These results suggest, in combination with evidence for significant genotype × genotype effects on215

the vector competence of Ae. aegypti and Ae. albopictus to transmit Zika (Chouin-Carneiro et al.216

2016), that the vector competence of Cx. pipiens and Cx. quinquefasciatus for Zika virus could217

be highly dependent upon the genetic background of the mosquito-virus pairing, as well as local218

environmental conditions. Thus, considering their anthropophilic natures and wide species ranges,219

Cx. quinquefasciatus and Cx. pipiens could potentially play a larger role in the transmission of220

Zika in the continental United States. Further experimental research into the competence of221

populations of Cx. pipiens to transmit Zika virus across a wider geographic range is therefore222

highly recommended.223

The vectors predicted by our model have a combined geographic range much larger than that of224

the currently suspected vectors of Zika (Fig. 3), suggesting that a larger population may be at risk225

of Zika infection than depicted by maps focusing solely on Ae. aegypti and Ae. albopictus. The226

range of Cx. pipiens includes the Pacific Northwest and the upper mid-West, areas that are not227

within the known range of Ae. aegypti or Ae. albopictus (Darsie and Ward 2005). Furthermore,228

Ae. vexans, another predicted vector of Zika virus, is found throughout the continental US and229

the range of Cx. tarsalis extends along the entire West coast (Darsie and Ward 2005). On a finer230

scale, these species use a more diverse set of habitats, with Ae. aegypti and Cx. quinquefasciatus231

mainly breeding in artificial containers, and Ae. vexans and Ae. albopictus being relatively232

indiscriminate in their breeding sites, including breeding in natural sites such as tree holes and233

swamps. Therefore, in addition to the wider geographic region supporting potential vectors, these234

findings suggest that human populations in both rural and urban areas may be at greater risk of235

Zika transmission than previously suspected due to the presence of alternative vector species.236
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Our model serves as a starting point to streamlining empirical efforts to identify areas and237

populations at risk for Zika transmission. While our model enables data-driven predictions about238

the geographic area at potential risk of Zika transmission, subsequent empirical work investigating239

Zika vector competence and transmission efficiency is required for model validation, and to inform240

future analyses of transmission dynamics. For example, in spite of its low transmission efficiency241

in certain geographic regions (Chouin-Carneiro et al. 2016), Ae. aegypti is anthropophilic (Powell242

et al. 2013), and may therefore pose a greater risk of human-to-human Zika virus transmission than243

mosquitoes that bite a wider variety of animals. On the other hand, mosquito species that prefer244

certain hosts in rural environments are known to alter their feeding behaviors to bite alternative245

hosts (e.g., humans and rodents) in urban settings, due to changes in host community composition246

(Chaves et al. 2010). Effective risk modeling and forecasting the range expansion of Zika virus in247

the United States will depend on validating the vector status of these species, as well as resolving248

behavioral and biological details that impact transmission dynamics.249

Although we developed this model with Zika virus in mind, our findings have implications for250

other emerging flaviviruses and contribute to recently developed methodology applying machine251

learning methods to the prediction of unknown agents of infectious diseases. This technique has252

been used to predict rodent reservoirs of disease Han et al. (2015) and bat carriers of filoviruses253

(Han et al. 2016) by training models with host-specific data. Our model, however, incorporates254

additional data by constructing a vector-virus network that is used to inform predictions of vector-255

virus associations. The combination of common virus traits with vector-specific traits enabled us256

to predict potential mosquito vectors of specific flaviviruses, and to train the model on additional257

information distributed throughout the the flavivirus-mosquito network.258

Interestingly, our constructed flavivirus-mosquito network generally concurs with the proposed259

dichotomy of Aedes species vectoring hemorrhagic or febrile arboviruses and Culex species vector-260

ing neurological or encephalitic viruses (Grard et al. 2009) (Fig. 1). However, there are several261

exceptions to this trend, notably West Nile Virus, which is vectored by several Aedes species.262

Additionally, our model predicts several Culex species to be possible vectors of Zika virus. While263

this may initially seem contrary to the common phylogenetic pairing of vectors and viruses noted264
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above, Zika’s symptoms, like West Nile Virus, are both febrile and neurological. Thus, its symp-265

toms do not follow the conventional divide of hemorrhagic vs. encephalitic. The ability of Zika266

virus to be vectored by a diversity of mosquito vectors could have important public health con-267

sequences, as it may expand both the geographic range and seasonal transmission risk of Zika268

virus.269

Considering our predictions of potential vector species and the wider geographic area at possible270

risk for transmission, the current response to Zika virus in the United States appears limited in271

scope. Vector control efforts that target Aedes species exclusively may ultimately be unsuccessful272

in controlling transmission of Zika because they do not control other, unknown vectors. Cx.273

quinquefasciatus, for example, is a crepuscular biter (Farajollahi et al. 2011), while Ae. aegypti274

prefers to bite during the day (Yasuno and Tonn 1970). Additionally, their habitat preferences275

differ, and control efforts based singularly on reducing Aedes larval habitat will not be as successful276

at controlling Cx. quinquefasciatus populations (Rey et al. 2006). If additional Zika virus vectors277

are confirmed, vector control efforts would need to respond by widening their focus to control the278

abundance of all predicted vectors of Zika virus. Similarly, if control efforts are to include all areas279

at potential risk of disease transmission, public health efforts would need to expand to address280

regions such as the northern mid-West that fall within the range of the additional vector species281

predicted by our model. An expansion of public health efforts to recognize the potential threat282

of these predicted vectors is vital to preventing a public health emergency following the potential283

establishment of Zika virus in the United States.284
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Tables426

Table 1: Predicted vectors of Zika, as reported by our model. Mosquito species endemic to the
continental United States are bolded.

Species GBM Prediction ± SD Known Vector?
Aedes aegypti 0.81 ± 0.12 Yes
Ae. albopictus 0.54 ± 0.14 Yes
Culex quinquefasciatus 0.38 ± 0.14 No
Ae. polynesiensis 0.36 ± 0.13 No
Ae. scutellaris 0.33 ± 0.13 No
Ae. africanus 0.32 ± 0.11 No
Ae. furcifer 0.31 ± 0.16 Yes
Ae. vittatus 0.30 ± 0.20 Yes
Ae. taylori 0.30 ± 0.16 Yes
Ae. luteocephalus 0.25 ± 0.12 Yes
Ae. tarsalis 0.18 ± 0.11 Yes
Ae. metallicus 0.16 ± 0.08 No
Ae. minutus 0.16 ± 0.09 No
Ae. opok 0.14 ± 0.06 No
Ae. bromeliae 0.11 ± 0.06 No
Ae. scapularis 0.10 ± 0.04 No
Cx. pipiens 0.10 ± 0.04 No
Ae. hensilli 0.10 ± 0.06 Yes
Ae. vigilax 0.10 ± 0.05 No
Cx. annulirostrix 0.08 ± 0.03 No
Psorophora ferox 0.08 ± 0.05 No
Cx. rubinotus 0.08 ± 0.07 No
Cx. tarsalis 0.08 ± 0.03 No
Ae. occidentalis 0.08 ± 0.05 No
Ae. flavicolis 0.07 ± 0.04 No
Ae. serratus 0.07 ± 0.04 No
Cx. p. molestus 0.07 ± 0.04 No
Ae. vexans 0.06 ± 0.04 No
Cx. neavei 0.06 ± 0.02 No
Runchomyia frontosa 0.06 ± 0.04 No
Ae. neoafricanus 0.06 ± 0.03 No
Ae. chemulpoensis 0.06 ± 0.03 No
Cx. vishnui 0.05 ± 0.01 No
Cx. tritaeniorhynchus 0.05 ± 0.01 No
Ae. fowleri 0.04 ± 0.03 Yes
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Figure 1: A network diagram of mosquito vectors (circles) and their flavivirus pairs

(rectangles). The Culex mosquitoes (light blue) and primarily encephalitic viruses (blue) are

more clustered than the Aedes (orange) and hemmorhagic viruses (red). Notably, West Nile Virus

is vectored by both Aedes and Culex species. Predicted vectors of Zika are shown by bolded links

in black. The inset pictures the predicted vectors of Zika and their species name, ordered by the

model’s propensity scores. Included flaviviruses are Banzi virus (BANV), Bouboui virus (BOUV),

dengue virus strains 1, 2, 3 & 4 (DENV-1,2,3,4), Edge Hill virus (EHV), Ilheus virus (ILHV),

Israel turkey meningoencephalomyelitis virus (ITV), Japanese encephalitis virus (JEV), Kedougou

virus (KEDV), Kokobera virus (KOKV), Kunjin virus (KUNV), Murray Valley encephalitis virus

(MVEV), Rocio virus (ROCV), St. Louis encephalitis virus (SLEV), Spondwendi virus (SPOV),

Stratford virus (STRV), Uganda S virus (UGSV), Wesselsbron virus (WESSV), West Nile Virus

(WNV), yellow fever virus (YFV), and Zika virus (ZIKV).
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Figure 2: Variable importance by permutation, averaged over 25 models. Because some

categorical variables were treated as binary by our model (i.e. continental range), the relative im-

portance of each binary variable was summed to result in the overall importance of the categorical

variable. Error bars represent the standard error from 25 models.

21

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2016. ; https://doi.org/10.1101/077966doi: bioRxiv preprint 

https://doi.org/10.1101/077966
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ae. aegypti Ae. albopictus Ps. ferox

Cx. pipiens Cx. quinquefasciatus Cx. tarsalis

Distribution maps of
predicted vectors of ZIKV in
the continental US. Aedes
species are shown in orange,
Culex in blue and other
genera in gray. Inset map
represents overlay of all
predicted vectors. The range
of Ae. vexans encompasses
the entire continental US and
is not shown for clarity.

Figure 3: Distribution maps of predicted vectors of Zika virus in the continental US.

Maps of Aedes species are based on Centers for Disease Control and Prevention (2016). All other

species’ distributions are adapted from Darsie and Ward (2005).
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