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Abstract

Online change-point detection is an important and much-studied problem in both
neuroscience and machine learning. While most theoretical analysis has focused on this
problem in the context of real-valued data, relatively little attention has been paid to
the specific case when the observations are categorical (e.g. binary), even though the
latter case is common in both neuroscience experiments and some engineering
applications. In this paper, we focus on the latter scenario and demonstrate that, due to
the information poverty of categorical data, near-Bayes-optimal data prediction can be
achieved using a simple linear-exponential filter for binary data, or, more generally,
m− 1 separate linear-exponential filters for m-nary data. The computations are
dramatically simpler than exact Bayesian inference, requiring only O(m) computation
per observation instead of O(ekm), where k depends on representation. We demonstrate
how parameters of this approximation depend on the parameters of the generative
model, and characterize the parameter regime in which the approximation can be
expected to perform well, as well as how its performance degrades away from that
regime. Interestingly, our results imply that, under appropriate parameter settings,
change-point detection can be done near-optimally without the explicit computation of
the probability of a change having taken place. Paradoxically, while detecting a
change-point promptly based on sequentially presented categorical data is difficult,
making near Bayes-optimal predictions about future data turns out to be quite simple.
This work demonstrates that greater attention needs to be paid, in the context of online
change-point detection, to a theoretical distinction between the problem of predicting
future data and that of deciding that a change has taken place. With respect to
neuroscience, our approximate algorithm is equivalent to the dynamics of an
appropriately-tuned leaky integrating neuron with constant gain, or a particular variant
of the delta learning rule with fixed learning rate, with obvious implications for the
neuroscientific investigation of human and animal change-point detection.

Introduction 1

In recent years, there has been much progress in understanding how humans and 2

animals learn about statistical regularities in the environment to make optimal 3

decisions, as well as how they track changes in environmental statistics based on noisy 4

data. Broadly speaking, this problem has been studied using two kinds of data, those 5

that are continuous or ordinal-valued, and those that are binary or categorical. The first 6

kind has often been modeled using variants of the Kalman filter, while the latter kind 7

has been found to be successfully captured by the Dynamic Belief Model (DBM) [1], a 8
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Bayesian hidden Markov model that assumes the observations to be iid distributed from 9

a hidden variable, which itself goes occasional and discrete changes. We previously 10

showed that DBM can explain a variety of behavioral phenomena: sequential 11

adjustment effects in 2AFC discrimination tasks [1], inhibitory control (e.g. stop-signal) 12

tasks [2], [3], and explicit prediction tasks, as well as providing a normative explanation 13

for matching-type behavior in a multi-choice visual search task [4] and exploration 14

stochasticity in multi-arm bandit tasks [5]. 15

The problem of sequential estimation and prediction, while abrupt, un-signaled 16

changes occur in the underlying generative parameters [6] is known as online 17

change-point detection and is an important problem with many applications in both 18

neuroscience and engineering. The DBM has been hypothesized to provide a normative 19

explanation for the brain readily seeking temporal patterns and suggests an inadvertent 20

engaging of online change-point detection mechanisms that would be of behavioural 21

benefit in extracting patterns in a truly volatile world while the cost of such a belief 22

being in error is small. However, the computational and representational complexity of 23

exact inference in DBM and other change-point detection algorithm poses a challenge 24

for explaining how the necessary computations can be implemented by the 25

corresponding neural substrate. For engineering applications, one may also ask how the 26

brain, with limited representational/computational power, manages to solve the online 27

change-point detection problem effectively. 28

In this work, we identify the categorical nature of the data that DBM deals with as 29

being crucial. Unlike change-point detection tasks in which the observations are 30

real-valued or ordinal, categorical-valued data (e.g. binary) will be shown to be both a 31

blessing and a curse. Based on relatively information-poor categorical data, it is quite 32

difficult to detect a true change in the environment promptly, but it also means that the 33

Bayesian update rule for predicting future outcomes may have a simple update form, 34

such that the ”learning rate” based on each new data point is nearly constant, since the 35

posterior probability of a change just having happened is largely driven by the prior and 36

is never very high. 37

We will show that for the regime of relatively frequent changes in the generative 38

parameters, near-Bayes optimal data prediction can be achieved using a simple, 39

linear-exponential filter for binary data, rigorously justifying a previous specific case [1] 40

and extending it to a more general case using m− 1 separate linear-exponential filters 41

for m-nary data. The multi-alternative EXP extension demonstrates that near 42

Bayes-optimal statistical inference can be achieved with no recurrent or otherwise 43

complex interactions among the alternatives unlike previous proposals such as leaky 44

competing integrators or MSPRT. The complexity of this approximation scales linearly 45

with the number of categories of observed data, instead of exponential as in the case of 46

the exact algorithm. We will also characterize the parameter regime in which the 47

approximation can be expected to perform well, as well as how its performance degrades 48

away from that regime. 49

One important theoretical implication of this work is that, as Bayesian prediction 50

can be done nearly perfectly (when changes are relatively frequent) with a fixed learning 51

rate pre-multiplying the prediction error in the update equation, there is no need to 52

modulate the update rule with the estimated probability of a change having taken place, 53

or indeed any need to compute this probability at all. For computational neuroscience, 54

our work shows that Bayesian prediction in changeable contexts can be approximated 55

by appropriately tuned leaky integrator dynamics. Our work also has important 56

implications for experiment design in neuroscience and suggests that it is not ideal to 57

use categorical observations if the goal is to discern behavioral and neural changes (e.g. 58

LC or ACC) in response to detecting a true change in the environment, since the 59

learning rate will not be modulated trial-by-trial based on the observations, as can be 60
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expected for real-valued data. In contrast, exact inference for the Kalman Filter (KF), a 61

popular model in machine learning, is a delta rule. However, a constant (no dependence 62

on data) learning rate delta rule is inadequate as soon as change points are introduced. 63

In [7] a neurally plausible solution for a switching KF that involved detecting changes 64

and modulating the learning rate was proposed, but was for real-valued data and is not 65

applicable to categorical data. 66

We will also relate the parameters of our approximation to the parameters of the 67

generative model, thus allowing machine learning practitioners to analytically define the 68

appropriate linear exponential filter approximation given the generative parameters; 69

conversely, given human or animal behavioral data, one can fit a linear exponential filter 70

to a subject’s behavioral data and then infer the equivalent generative parameters 71

assumed by the subject greatly simplifying data fitting in such tasks. Previously, [1] 72

used both a Bayesian model and a delta-rule to fit the data, but did not analyze the 73

relationship between the two. Finally, and more broadly our work makes an important 74

point for anyone engaged in online data analysis: if the primary interest is in making 75

predictions, then, under certain conditions (delineated here), it’s not necessary to track 76

change-points or have a probabilistic representation to make near-Bayes optimal 77

predictions. 78

The rest of the paper is organized as follows: in section 1, we briefly describe the two 79

learning models, DBM and the linear-exponential filter (EXP), motivate a parametric 80

approximation to exact prediction in the DBM, discuss the implicit calculation of 81

posterior over run length in calculating the predictive probabilities, and discuss why 82

categorical data make both detecting a change hard while predicting the future easy. In 83

section 2, we justify the approximation for the binary case, rigorously extending the 84

specific case suggested in [1], and then extend the approximation to m-nary categorical 85

observations. We also characterize the relationship between DBM and EXP. We 86

conclude (in section 3) with a discussion of broader implications of the work and future 87

directions of research. 88

1 Learning models for categorical data 89

1.1 The Dynamic Belief Model (DBM) 90

1.1.1 Generative Model 91

The Dynamic Belief Model (DBM) is a Bayesian hidden Markov model that assumes 92

categorical observations to be drawn from parametric distributions whose parameters 93

themselves occasionally change was introduced in [1] and was used to provide a 94

normative explanation for sequential effects in 2AFC discrimination tasks. DBM has 95

found much success in reproducing human data in a variety of behavioral tasks, e.g. 96

inhibitory control (e.g. stop-signal) tasks [2], [3], explicit prediction tasks, multi-choice 97

visual search task [4] and in multi-arm bandit tasks [5]. The framework of switching 98

experts for online learning of non stationary sequences [8] is a closely related model for 99

prediction using expert advice when the the best expert may change at some 100

un-signaled time step, which finds many applications in engineering. 101

In this section, we assume that observations are binary and the probability of 102

observing unity is equal to the hidden variable γ. Here, the prior belief p0(.) on γ will 103

be assumed to be a Beta distribution: p0(γ) = Beta(γ; a, b). In later sections, we offer a 104

generalization to categorical data with priors of Dirichlet form. The hidden variable γt 105

has a Markovian dependence on γt−1: 106

p(γt = γ|γt−1) = αδ(γ − γt−1) + (1− α)p0(γ), (1)
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i.e., the hidden variable remains the same (γt = γt−1) with a fixed probability α or is 107

redrawn from the prior p0(γ). Binary observations xt are generated as Bern(γt), so that 108

the likelihood is given by p(xt|γt) = γxtt (1− γt)x̄t , where x̄t = 1− xt. 109

1.1.2 Recognition 110

Given the observations, the prior probability for trial t and the posterior upon observing
xt may be recursively computed as

p(γt = γ|x1:t−1) = αp(γt−1 = γ|x1:t−1) + (1− α)p0(γt = γ), (2)

p(γt|x1:t) ∝ p(xt|γt)p(γt|x1:t−1). (3)

1.1.3 Exact prediction 111

The predictive probability for trial t+ 1, given the past observations x1:t is computed as 112

Pt+1 , P (xt+1 = 1|x1:t) =

∫
γp(γt+1 = γ|x1:t)dγ = 〈γ〉p(γt+1|x1:t). (4)

As previously discussed, computing the exact predictive probabilities typically 113

involves calculating the posteriors on change points either directly (as in [6]) or 114

indirectly, followed by marginalization to make predictions. This will be evident in 115

calculations that follow, which will allow us to recursively calculate exact predictive 116

probabilities. 117

Direct Calculation The calculation is similar to one in [6] and maybe consulted for 118

more detail. The run length at time t is denoted by rt and is defined as the time since 119

last change in the hidden bias and can range from 0 to t− 1. A run length zero, i.e 120

rt = 0, means that a change occurred at time t and xt is a sample from a new bias γt 121

redrawn from p0(γ). We decompose the prior distribution p(γt+1|x1:t) as follows: 122

p(γt+1|x1:t) =
t∑

rt+1=0

p(γt+1|rt+1, x1:t)P (rt+1|x1:t) (5)

= (1− α)p0(γt+1) +
t∑

rt+1=1

p(γt+1|rt+1, xt−rt:t)
t−1∑
rt=0

P (rt+1|rt)P (rt|x1:t)

(6)

= (1− α)p0(γt+1) + α
t−1∑
rt=0

p(γt+1|rt+1, xt−rt:t)P (rt|x1:t). (7)

where p(γt+1|rt+1, xt−rt:t) = Beta(γt+1; a+
∑t
i=t−rt xi, b+

∑t
i=t−rt x̄i). The prior 123

probability distribution is a mixture of beta distributions with the posterior probability 124

on run length, P (rt|x1:t), determining the mixture weights, which makes intuitive sense. 125

An unchanging hidden bias corresponds to α = 1 and it’s easily seen that the prior 126

probability distribution is Beta(γt+1; a+
∑t
i=1 xi, b+

∑t
i=1 x̄i) and the predictive 127

probability Pt+1 =
∑t
τ=1 xτ+a

t+a+b . On the other extreme, α = 0 corresponds to change on 128

every trial and the prediction can be no better than the forecast by the prior p0(γ) 129

giving Pt+1 = a
a+b on every trial. 130

The posterior on run length can be calculated as p(rt|x1:t) = p(rt,x1:t)∑
rt
p(rt,x1:t)

and the 131

joint recursively as: 132
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P (rt, x1:t) =
∑
rt−1

P (rt−1, x1:t−1)P (rt|rt−1)P (xt|rt, rt−1, x1:t−1).

Simplifying, the recursion maybe be written as 133

P (rt, x1:t) =

{
αP (rt−1 = rt − 1, x1:t−1)〈γ〉xtq(γt)〈γ̄〉

x̄t
q(γt)

, rt 6= 0

(1− α)
∑
rt−1

P0(xt)P (rt−1, x1:t−1), rt = 0
(8)

where q(γt) = Beta(γ; a+
∑t
τ=t−rt xτ , b+

∑t
τ=t−rt x̄τ ) and P0(xt) = P xt0 (P̄0)x̄t . 134

Indirect Calculation The exact, non-linear Bayesian update rule for the predictive
probability Pt+1 may also be written as:

Pt+1 = (1− α)〈γ〉p0(γ) + αxt
Qt − P 2

t

Pt(1− Pt)
+ αPt

Pt −Qt
Pt(1− Pt)

(9)

= (1− α)P0 + αxtGt + αPt(1−Gt), (10)

where Qt = 〈γ2〉p(γt|x1:t−1) and Gt = var(γt|x1:t−1)
var(Bern(Pt))

=
Qt−P 2

t

Pt(1−Pt) . The marginalization over 135

change points, which was explicit in the previous calculation, occurs implicitly in this 136

calculation. 137

We pay particular attention to the term Gt which governs the trade-off between new 138

data xt and (a statistic of) past data, Pt. Intuitively, the trade-off Gt, is modulated by 139

how “surprising” recent observations are found to be. Noting that 0 ≤ Gt ≤ 1 for any 140

x1:t−1 (for all t) and rewriting the update rule as 141

Pt+1 = (1− α)P0 + α(Pt +Gt(xt − Pt)), (11)

we may interpret the update rule as a delta rule with learning rate Gt. We expect to see 142

an increase in the learning rate Gt if recent observations are found to be “surprising”, 143

i.e have high prediction error, which could signal a switch in environment statistics, 144

promting an increase in the learning rate. Since categorical data are information-poor, 145

it is quite difficult to detect a true change in the environment promptly, but it also 146

means that the Bayesian update rule for predicting future outcomes may have a simple 147

update form, since the posterior probability of a change which drives the learning rate is 148

largely driven by the prior and is never very high. The key idea is that even though the 149

distribution p(γt+1|x1:t) is a messy, mixture distribution with the mixture weights 150

P (rt|x1:t) being difficult to compute, Gt is well behaved and can be approximated by a 151

constant in the regime of frequent changes. In Figure 2C, we see an increase in Gt 152

following true and “perceived” (spikes in the posterior probability of change at certain 153

time) changes in underlying generative parameters in a sample run. The inset shows an 154

increase in average Gt following a true change. 155

We will now briefly motivate an approximation for small α that will be rigorously 156

justified in a later section. As discussed, the exact DBM model employs an adaptive 157

learning rate Gt that is a function of the model parameters α, a, b and modulated by the 158

data x1:t. If we wished to approximate the adaptive learning rate by a fixed constant for 159

the regime of frequent changes that is dependent on the model parameters alone, one 160

natural path is to approximate Gt by the constant term in its series expansion around 161

α = 0. Setting α = 0 and inserting moments of the prior into the expression for Gt, we 162

see that Gt = 1
a+b+1 +O(α). 163
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1.2 Linear Exponential Filtering (EXP) 164

EXP is a simple, non-Bayesian algorithm that linearly sums past observations, while 165

exponentially discounting into the past, to predict the probability of encountering 166

different trial types on the next trial. This model was introduced in relation with the 167

DBM in [1], inspired by related work showing that monkeys choices, when tracking 168

reward biases that change at un-signaled times, depend linearly on previous 169

observations and are discounted in an approximately exponential fashion. 170

This model may be written as

Pt+1 = P (xt+1 = 1|x1:t) = C + η
t−1∑
τ=0

βτxt−τ = C(1− β) + ηβxt + βPt,

where the three parameters of the model (C, η, β) are constrained as 0 ≤ C, η ≤ 1, 171

0 ≤ β < 1, C + ηβ
1−β < 1. In the next section, we will relate the three parameters of the 172

DBM (α, a, b) to those of EXP. 173

2 Approximation and Implications 174

2.1 Relationship of EXP to DBM 175

We will show that the approximate update rule is in the form of the linear exponential 176

filter, which can be thought of as approximately implementing DBM with a constant 177

learning rate. We will show that the equivalent parameters are β = α a+b
a+b+1 , η = 1

a+b 178

and C = (1−α)P0

(1−β) . In particular, for a = 1, b = 1 which is the the uniform prior, we have 179

β ≈ 2
3α, which matches the previous known empirical result in [1]. 180

The parameter C is the lower bound on Pt determined by the α and the prior p0(γ), 181

which would be attained asymptotically in the limit of observing infinite 0’s. Similarly, 182

the upper bound in the limit of observing infinite 1’s is C + ηβ
1−β . This sort of bounded 183

behavior is not specific to the linear exponential filter and and is carried over from the 184

DBM. 185

2.2 2-alternative approximation 186

We rewrite the exact, non linear, Bayesian update rule for the predictive probability
Pt+1 as:

Pt+1 = (1− α)P0 + αxtGt + αPt(1−Gt) = (1− α)P0 + αLt.

Similar to the derivation of the exact update rule for Pt+1, we obtain 187

Qt+1 = (1− α)Q0 + αxt
Rt −QtPt
Pt(1− Pt)

+ αQt
Qt −Rt
Qt(1− Pt)

,

where Rt = 〈γ3〉p(γt|x1:t−1). 188

We focus on the term 1−Gt and expand it around α = 0. First, note that 189

Pt(1− Pt) = P0P̄0 + α[P̄0Lt−1 + P0L̄t−1 − 2P0P̄0] + α2[Lt−1L̄t−1 − Lt−1P̄0 − P̄0Lt−1],

where P̄0 = 1− P0 and L̄t−1 = 1− Lt−1. We set 190

Pt−1 = P0 +O(α), Qt−1 = Q0 +O(α), Rt−1 = R0 +O(α) and obtain 191
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Fig 1. a. Visualization of the approximation and exact predictive probability for
M = 2, α = 0.7 and p0(γ) = Beta(γ; 1, 1), data was generated by DBM with the same
parameters b. Visualization of the prior and posterior probability of change at each time.
(Black circles mark actual changes). We also plot exact Gt and Ĝt the approximation by

1
a+b+1 . c. Scatter plot of the approximate predictive probability P̂t vs exact Pt. We
note that the quality of the approximation by the best fitted exponential and the linear
exponential filter determined by the relationships we derived are similar. d. The
weights were determined by regression and an exponential was fitted to the regression
weights. For small α, the best fitted exponential filter is close to the one determined by
the derived relationship between DBM and EXP. e. We demonstrate the validity of the
generalization of our approximation by visualizing the exact and approximate predictive
probabilities for M = 4, α = 0.75 and p0(γ̄) = Dir(γ; 1, 1, 1, 1) where data was generated
from DBM using the same parameters. f. We note once again that the best fitted
exponential closely matches the parameters determined by our approximation. We wish
to point out that although the data for these examples was drawn from DBM with the
same parameters being used to approximate the exact calculations of predictive
probability, our approximation remains valid for all observation sequences.

Pt(1− Pt) = P0P̄0 + α[(
xt−1 + a

a+ b+ 1
)

b

a+ b
+ (

x̄t−1 + b

a+ b+ 1
)

a

a+ b
] +O(α2).

Once again, setting Pt−1 = P0 +O(α), Qt−1 = Q0 +O(α), Rt−1 = R0 +O(α), we 192

obtain 193

Pt −Qt = (P0 −Q0) + α
(a− b)

(a+ b)(a+ b+ 1)(a+ b+ 2)
(ax̄t−1 − bxt−1) +O(α2).

We conclude that 194

1−Gt =
Pt −Qt
Pt(1− Pt)

=
a+ b

a+ b+ 1
+α

a2 − b2

ab(a+ b+ 1)2(a+ b+ 2)
(−ax̄t−1 +bxt−1)+O(α2).

(12)

Linear approximation Observe that absolute value of the coefficient of α in Gt may 195

be upper bounded by a small value of 0.062 allowing us to approximate Gt by a 196

constant for small α. We also note that the O(α) coefficient in Gt only depends on the 197
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sample xt−1 which makes intuitive sense. Approximating Gt by the constant 1
a+b+1 198

gives us the approximate, linear update rule 199

Pt+1 = (1− α)P0 +
αxt

a+ b+ 1
+ αPt

a+ b

a+ b+ 1
, (13)

which is exact to O(α2). We observe that for a = b, in particular, for the uniform prior 200

a = b = 1, the order α term in 1−Gt is exactly zero, so that the approximate linear 201

update rule in the predictive probability is exact to O(α3). Obviously, this small α 202

approximation gets progressively worse as α approaches 1. In fact, at α = 1 observe 203

that Gt = 1
a+b+t . 204

Normalization We can come up with a similar, linear, approximate update rule for 205

the other categorical variable. We shall use a superscript i ∈ {0, 1} to denote the update 206

rules for the respective categories. At t = 1, P
(1)
1 = P0 and P

(0)
1 = P̄0, so 207

P
(0)
1 + P

(1)
1 = 1. Suppose that at some time step t = τ that P

(0)
τ + P

(1)
τ = 1 then, 208

P
(0)
τ+1 + P

(1)
τ+1 = (1− α)(P0 + P̄0) + α

x
(0)
τ+1+x

(1)
τ+1

a+b+1 + α a+b
a+b+1 (P

(0)
τ + P

(1)
τ ) = 1. 209

Interestingly, even though we though we maintain estimates for each category 210

separately, normalization is preserved. 211

“Frequent” Changes: Non-triviality A few comments are in order on the 212

non-triviality of the regime of frequent changes. “Frequent” change regime does not 213

mean draws from the prior on (nearly) every iteration. As shown in Figure 2c;d, while 214

the EXP is exact for alpha=0, it works well for alpha as large as 0.8-0.95 (Fig. 2d), 215

meaning on average a change every 5-20 trials. Secondly, the approx. model (as well as 216

DBM) can be seen to depend systematically on recent history (Figure 1a;e: alpha=0.7; 217

Figure 2a: alpha=0.9), and is very different from solely relying on the prior. This is a 218

key result of the paper: not needing (or being able) to detect change-points promptly 219

does not mean ignoring recent data when making future predictions; it means the way 220

that data is used should (or can) be kept constant over time. 221

Equivalence to Leaky Integration The EXP model is exactly equivalent to a 222

correctly tuned leaky integrating neuron, with ηβxt as the input, βPt as the recurrent 223

term and C(1− β) as the bias term. The computational and representational 224

complexity of the DBM posed a challenge in terms of neural implementability which is 225

solved by the approximation. The EXP approximation to the DBM shows that a leaky 226

integrating neuron can implement near Bayes optimal inference cheaply and effectively 227

in a regime of frequent changes. 228

Humans have been shown to internalize the volatility of the environment and 229

modulate their learning rate accordingly [9] which prompts the question of how subjects 230

learn the volatility of the environment and adopt an appropriate learning rate. The 231

exact Bayes optimal computation to update α 232

p(α, γt|x1:t−1) ∝ p(α|x1:t−1)p(xt|γt)p(γt|α, x1:t−1), (14)

is plagued by the same problems as the DBM in terms of neural implementation. 233

However, the EXP approximation to the DBM permits an approximate update rule for 234

α via stochastic gradient descent: 235

α̂← α̂+ ε(xt − P̂t)
dP̂t
dα̂

(15)

dP̂t
dα̂

= P̂t−1 + Ĝt−1(xt − P̂t−1)− P0. (16)
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Implications to Experiment Design and Data Fitting As near optimal 236

Bayesian prediction in changeable contexts can be approximated by appropriately tuned 237

leaky integrator dynamics with constant gain, our work has important implications for 238

experiment design in neuroscience and suggests that it is not ideal to use categorical 239

observations if the goal is to discern behavioral and neural changes (e.g. LC or ACC) in 240

response to detecting a true change in the environment, since the learning rate will not 241

be modulated trial-by-trial based on the observations, as can be expected for real-valued 242

data. 243

Our work also simplifies model fitting in behavioural data: it’s not necessary to fit 244

the complicated DBM and the easy-to-fit EXP model can be fitted instead. The 245

parametric relationship between the DBM and EXP approximation allows us to infer 246

the parameters of the appropriate DBM model. 247

  

a.

b.

c.

d.

Fig 2. a. We visualize the slight degradation of performance of the approximation for
larger α, here α = 0.9, true change point at t = 224 is marked by the vertical dashed
line. b. We visualize the prior and posterior probabilities of change at each time step
and see that the posterior probability of change frequently spikes, even when there is no
true change. The learning rate Gt rises in response to these true or perceived changes.
Inset shows an increase in the average value of Gt following a true change. c. We
charecterize how the best exponential fit deviates from our approximation for larger α.
Inset show the same plot in the scale of 1

(1−α) which corresponds to the average run

length before a change occurs. d. We characterize the degradation of our approximation
in terms of prediction accuracy and see that even for larger values of α, the prediction
accuracy of the approximation remains competitive with DBM, the exact generative
model. BL is a baseline comparison and just predicts the previous observation.
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2.3 M-Alternative approximation 248

First, we note that the DBM is easily and naturally extended to m-categorical case as 249

follows: p0(γ) = Dir(a), where a = (a0, . . . , am−1). The likelihood function is the 250

categorical distribution, p(xt|γt) =
∏m
i=0 γ

[xt=i]
i,t . 251

For each category i, the variable of interest is x
(i)
t , which is the binary random 252

variable such that x
(i)
t = 1 only if xt = i and zero otherwise. We see that 253

1−G(i)
t =

∑
ak∑

ak + 1
+α

a2
i − (

∑
k 6=i ak)2

ai(
∑
k 6=i ak)(

∑
ak + 1)2(

∑
ak + 2)

(−aix̄t−1+(
∑
k 6=i

ak)xt−1)+O(α2)

(17)
and the predictive probability update rule is given by 254

P
(i)
t+1 = (1− α)P

(i)
0 +

αx
(i)
t∑

ak + 1
+ αP

(i)
t

∑
ak∑

ak + 1
, (18)

is exact to O(α2) and P
(i)
0 = ai/

∑
ak. 255

Novelty of M-alternative EXP We note once again that even though we maintain 256

estimates for each P
(i)
t separately, normalization is preserved,

∑
i P

(i)
t = 1. Since nearly 257

identical bounds on coefficient of O(α) in Gt hold for m > 2, the performance of the 258

approximation with be similar to M = 2. In the regime of relatively frequent changes, 259

near-Bayes optimal data prediction can be achieved simply using m− 1 separate 260

linear-exponential filters with no recurrent or otherwise complex interactions among the 261

alternatives unlike previous proposals such as leaky competing integrators or MSPRT 262

[cite]. The complexity of this approximation scales linearly with the number of 263

categories of observed data, instead of exponential as in the case of the exact algorithm. 264

3 Discussion 265

The change-point detection problem has been extensively studied in many neuroscience 266

and machine learning contexts. However, not much attention has been paid to the 267

distinction between categorical (e.g. binary) observations and real-valued data, or other 268

kinds of data (e.g. ordinal) that reveal with a single data point how surprising an 269

observation is given the prior expectations. With the case of categorical data, the only 270

information when an unusual observation occurs is that it differs from the most probable 271

outcome and there is no differentiation in the degree of unusualness. In this paper, we 272

focus on the categorical data and present a very simple linear exponential filter that 273

requires only O(m) computations for sequential predictions, instead of O(ekm) in the 274

exact model. The approximation is inspired by the insight that since the online estimate 275

of probability of change can’t fluctuate very much due to the lack of information in the 276

data, then the update rule might as well be a simple linear form that uses a constant 277

learning rate to weigh the prediction error. We demonstrated the relationship between 278

parameters of the approximation to the parameters of the generative model, and 279

characterized the parameter regime in which the approximation can be expected to 280

perform well, as well as how its performance degrades away from that regime. 281

Interestingly, the approximation is exactly equivalent to the dynamics of an 282

appropriately tuned leaky integration model. Since Bayesian learning is achieved to a 283

very good approximation, or equivalently a fixed gain in the leaky integrating equation, 284

with no need to explicitly compute the probability of a change having taken place, this 285

implies that not much can be gained by tracking the posterior probability of change, nor 286
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is it ideal to use categorical data in a change-point detection task if the goal is to 287

discern behavioral and neural changes in response to detecting a true change in the 288

environment since the learning rate will not be modulated trial-by-trial based on the 289

observations, like we would expect when the data is real-valued (e.g. [10]). 290

This work has obvious implications for both neuroscience and machine learning 291

applications. 292
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