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Abstract 46	

 47	

Analyzing de novo mutations (DNMs) in protein-coding genes from whole-exome sequencing 48	

(WES) data has emerged as a powerful tool for mapping risk genes of autism spectrum disorder 49	

(ASD). The impact of non-coding mutations in ASD, however, has been largely unknown. This 50	

represents a large gap in our understanding of the genetics of ASD, as the majority of GWAS hits 51	

for a range of disorders fall into non-coding regions. To address this question, we performed a 52	

meta-analysis of DNMs using whole-genome sequencing (WGS) data from more than 300 53	

individuals with ASD. We found that DNMs are enriched within brain transcriptional regulatory 54	

elements near genes involved in neuropsychiatric disorders. In these genes and in evolutionarily 55	

constrained genes, we also found an excess of DNMs that are predicted to affect pre-mRNA 56	

splicing. Collectively, we estimate that non-coding mutations explain at least one third of the ASD 57	

genetic risk attributable to DNMs. By combining information of non-coding DNMs with published 58	

WES data, we identified three new ASD risk genes at a false discovery rate (FDR) < 0.1, and 11 59	

at a FDR < 0.3. A number of these genes are known to regulate critical processes in neural 60	

development and have been associated with other neuropsychiatric disorders. Taken together, our 61	

results demonstrate the pathogenic contribution of non-coding DNMs in ASD etiology and 62	

highlight some promising ASD risk genes. The analytic tools we provided in this study, for 63	

estimating contribution of non-coding mutations to disease risk and for mapping susceptibility 64	

genes using both coding and regulatory mutations, are applicable to any WGS studies on DNMs.  65	

 66	

 67	

 68	

 69	

 70	

 71	

 72	

 73	

 74	

 75	

 76	
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Introduction 77	

 78	

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with onset in early childhood1,2. 79	

Understanding the genetics of ASD would help understand the etiology of the disorder and may 80	

lead to the development of more effective diagnostics and therapies3. Nonetheless, ascribing ASD 81	

genetic risk to specific genomic loci has proved challenging. GWAS have only yielded a handful 82	

of small-effect variants that have not replicated between studies4,5. In contrast, screening for de 83	

novo mutations (DNMs) with potentially larger effect sizes has emerged as an effective approach 84	

for identifying ASD risk loci. Several large whole-exome sequencing (WES) studies have been 85	

performed on ASD parent-child trios or quartets6–9, based on the principle that genes harboring an 86	

excess of deleterious DNMs are likely risk genes. These studies have identified approximately 70 87	

ASD risk genes. 88	

 89	

Compared with coding mutations, the contribution of noncoding mutations to ASD etiology is 90	

largely unknown. For a wide range of diseases and traits, the majority of GWAS hits fall into 91	

noncoding regions10. Non-coding variants may alter the activity of cis-regulatory elements or 92	

affect the splicing of pre-mRNAs, which may in turn alter gene dosage and isoform usage11–15. 93	

Beyond implicating specific disease-associated loci, knowledge of non-coding variants can also 94	

offer clues as to which cell types are relevant to disease etiology and how trans-acting genes may 95	

contribute to disease risk12,16. In the case of autism, disruption of chromatin remodeling, histone 96	

modification, and pre-mRNA splicing have been implicated in the disease8,17–22. Taken together, 97	

these results support the role of transcriptional mis-regulation in ASD etiology. Nevertheless, with 98	

few exceptions23, most existing ASD studies focused on coding sequences, and little is known 99	

about cis-regulatory variants predisposing autism risk.  100	

 101	

In this study, we explore the contribution of non-coding mutations to ASD by combining data from 102	

multiple whole-genome sequencing (WGS) studies in autism trios. We developed a computational 103	

framework to analyze whole-genome DNM data (Fig. 1). To assess the extent non-coding 104	

mutations contribute to autism risk, we compared the rates of DNMs within putative regulatory 105	

sequences in ASD subjects vs. controls. We employed multiple annotations to identify variants 106	

with possible regulatory effects, such as epigenomic modification patterns in brain and predicted 107	
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deleteriousness from computational methods24–26. Based on these burden analyses, we estimated 108	

the effect sizes of different types of regulatory mutations, measured as relative risks. Combining 109	

these estimates with the frequencies of mutations, we estimated the contribution of different types 110	

of mutations to the variation of autism risk (liability) across individuals. Next, we aimed to identify 111	

specific genes and regulatory elements underlying autism. We hypothesize that an ASD risk gene 112	

may be disrupted in multiple ways: by coding mutations changing protein function, or by 113	

regulatory mutations affecting gene expression level, or by splicing mutations. This motivates a 114	

strategy of combining coding and non-coding mutations within/near a gene to assess its role in 115	

autism. To optimally combine information from multiple mutational categories, we used a method 116	

we developed previously, TADA (Transmission and de novo association)27. TADA assesses the 117	

enrichment of DNMs in a gene relative to random expectation, weighing each mutation based on 118	

its likely effect size (Fig. 1).  119	

 120	

Using this computational framework, we found modest enrichment of de novo single nucleotide 121	

variations (SNVs) in individuals with ASD in brain-active enhancers near genes with likely roles 122	

in psychiatric disorders, as well as in positions affecting RNA splicing. Our conservative estimates 123	

suggest that regulatory non-coding mutations contribute to about a third of de novo autism risk (i.e. 124	

autism risk attributable to all DNMs). Although the sample size of WGS is only a tenth of that of 125	

WES, we still identified three new ASD risk genes at a FDR < 0.1 and 11 at a FDR < 0.3. Multiple 126	

lines of evidence support the possible roles of these genes in ASD.  127	

 128	

 129	

Results 130	

 131	

WGS data of ASD and control families 132	

 133	

We combined DNM data from five WGS studies of ASD trios/quartets, including four published28–134	
31 and one unpublished (Wu et al. See Methods for details), with a total of 300 affected subjects 135	

(Supplementary Table 1). As controls, we used recently published whole-genome DNM data from 136	

a large cohort of 700 unaffected trios32. Mutation data is limited to de novo SNVs. The validation 137	

rate of de novo SNVs based on Sanger sequencing ranges from 85% to 94% in the six studies. 138	
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Largely in line with published mutation rates29,33,34, the number of DNMs per subject in ASD 139	

studies ranges from 57 to 63. The rate of DNMs in controls is lower (39), which could be due to 140	

differences in sequencing depth, SNV calling procedures, or other factors. In subsequent analysis 141	

of a particular mutation type (e.g. mutations within enhancers), we accounted for the differences 142	

in the total mutation rates between cases and controls by comparing the relative mutation rates 143	

with neutral mutations (e.g. synonymous mutations) serving as background (see Methods). Despite 144	

the differences in absolute mutation rates, the mutational patterns are similar between cases and 145	

controls (see Section 2.1-2.3 of Supplementary Methods, also Supplementary Figs. 1, 2, and 3).  146	

 147	

We were able to replicate the findings of earlier WES studies using the coding mutations. We 148	

found that nonsynonymous mutations from WGS data are about 1.2 fold enriched in individuals 149	

with ASD versus controls (Fig. 2a), similar to previous numbers6,35,36. The burden (i.e. fold of 150	

enrichment) is higher for nonsynonymous mutations within known ASD genes, genes likely 151	

involved in neuropsychiatric disorders (dubbed “neuropsychiatric genes”), and genes intolerant to 152	

mutations (Fig. 2a, See Methods for gene-set definitions). The burden of highly expressed brain 153	

genes (from Brainspan: http://www.brainspan.org) is also higher than genes with lower expression 154	

(Fig. 2a).  155	

 156	

Enrichment of functional de novo non-coding mutations in children with ASD 157	

 158	

To establish the importance of non-coding sequences in autism, we analyzed DNMs in putative 159	

regulatory sequences of the brain.  Enriched DNMs in these regions comparing with random 160	

expectation would suggest that at least some of these DNMs are causative mutations. We used 161	

fetal and adult brain H3K27ac regions as markers of regulatory activity37,38. We limited our 162	

analysis to H3K27ac regions within 10 kb of transcription start sites (TSSs) of protein-coding 163	

genes, including promoters and 5’UTR (promoters are defined as sequences within 1 kb upstream 164	

of TSSs). We found 1.1 fold enrichment of de novo SNVs in promoters with H3K27ac marks 165	

(active promoters), compared to de novo synonymous mutations though the results are not 166	

statistically significant (Fig. 2b). In contrast, we found no enrichment of de novo SNVs in 167	

promoter/5’UTR regions without H3K27ac marks (Fig. 2b). We also saw no enrichment of de 168	

novo SNVs across all H3K27ac regions within 10 kb of TSSs (referred to as regulatory SNVs 169	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2016. ; https://doi.org/10.1101/077578doi: bioRxiv preprint 

https://doi.org/10.1101/077578
http://creativecommons.org/licenses/by-nc-nd/4.0/


hereafter) (Fig. 2b). Noncoding variants that disrupt or create transcription factor binding motifs 170	

have been frequently associated with regulatory effects and complex phenotypes39,40. Indeed, we 171	

found a significant ASD burden for motif-changing SNVs (see Methods for definition) in 172	

H3K27ac enhancers (P = 0.00019, one-sided Fisher’s exact tests were used in all burden analyses). 173	

Notably, the commonly used annotations for non-coding variants, including GERP++25, PhyloP41 174	

and CADD24 and Eigen42, were not significantly associated with mutational burden (Fig. 2b and 175	

Supplementary Table 2).  176	

 177	

We hypothesized that regulatory sequences near ASD risk genes harbor excess noncoding 178	

mutations, as suggested by an earlier study23. We found a 1.8-fold enrichment of regulatory SNVs 179	

near ASD genes (P = 0.069) and a 1.2-fold enrichment near neuropsychiatric genes (P = 0.032) 180	

(Fig. 2c). In contrast, we observed no enrichment of regulatory SNVs near genes that are unlikely 181	

to be ASD risk genes (nonASD genes).  Additionally, we found that SNVs falling into more distal 182	

H3K27ac regions (10 kb - 50 kb to TSSs) are not enriched in known ASD or neuropsychiatric 183	

genes (Fig. 2c).  184	

 185	

Because of the concern of potential batch effects between ASD cases and controls, we performed 186	

simulation-based alternative burden analyses, without using control data. The procedure is based 187	

on reshuffling of DNMs in cases across enhancers according to estimated mutation rates. We found 188	

that the burdens of motif-changing SNVs and of regulatory SNVs near neuropsychiatric genes are 189	

similar to what we found in Figs. 2b and 2c (P = 0.025 and 0.0017, respectively, Supplementary 190	

Table 3).  191	

 192	

To show that the enrichment of regulatory SNVs is due to regulatory functions of H3K27ac 193	

sequences, rather than to some generic properties of enhancers (such as higher GC content43), we 194	

compared the burdens of SNVs in enhancers with strong activities in the developing cortex 195	

(denoted as “brain-specific enhancers”) vs. enhancers with strong activities in other tissues (“non-196	

brain specific enhancers”). The numbers of such enhancers are small, so we extended the distance 197	

cutoff to 1 Mb around TSSs. Within brain-specific enhancers, the burdens of regulatory SNVs near 198	

known ASD genes, neuropsychiatric genes, and intolerant genes are all higher than baseline 199	
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(though not significant because of the small mutational counts, Fig. 2d). In contrast, the 200	

corresponding burdens are all below 1 for enhancers specifically active in other tissues (Fig. 2d).  201	

 202	

Non-coding mutations may also become pathogenic by affecting pre-mRNA splicing. Using the 203	

predictions from a recent paper26, we found significant burdens of SNVs likely affecting RNA 204	

splicing (splicing SNVs) in neuropsychiatric genes (Fig. 2e, P = 0.011) and in genes intolerant to 205	

mutations (Fig. 2e, P = 0.018). In contrast, the SNVs that are not predicted to affect splicing show 206	

no such patterns (“non-splicing” mutations in Fig. 2e).  207	

 208	

In summary, we found multiple lines of evidence supporting the roles of regulatory and splicing 209	

mutations in autism (see Supplementary Table 4 for detailed results of all burden analyses). The 210	

specificity of our findings (e.g. we found burden in brain-specific enhancers but not enhancers 211	

specific to other tissues) and the robustness of our results to different ways of performing burden 212	

analysis argue that the results are due to true biological signals, rather than batch effects from 213	

heterogeneous samples. We summarized the evidence supporting this claim in Section 2 of 214	

Supplementary Methods.  215	

 216	

Partition of ASD risk into coding and non-coding DNMs 217	

 218	

We next assessed the relative contribution of non-coding versus coding DNMs to ASD liability. 219	

We considered four classes of mutations: loss-of-function (nonsense and frameshift indels in 220	

coding sequences), probably damaging missense (predicted by PolyPhen-2, denoted as Mis3), 221	

regulatory SNVs, and splicing SNVs. The contribution of any type of mutation is measured as 222	

Liability Variance Explained (LVE), taking into account both the mutational target sizes and the 223	

average relative risks of mutations (see Methods). Note that our relative risks are defined on 224	

mutations of causative genes. We used a strategy previously developed to translate results of 225	

previous burden analysis into average relative risks of causal genes.27. For coding mutations (LoF 226	

and mis3), we used values estimated previously8. For regulatory and splicing SNVs, we used the 227	

burden results from ASD genes with TADA q-value < 0.535 (see Methods and Section 3 of 228	

Supplementary Methods for details and possible caveats).  229	

 230	
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Our relative risk estimates of regulatory SNVs and splicing SNVs are significantly lower than 231	

those of coding SNVs, but regulatory SNVs are much more frequent (Table 1). Each class of 232	

mutation explains only a small fraction of estimated total ASD genetic risk (Table 1), which is 233	

broadly consistent with the conclusion of an earlier study44. Considering only the risk due to de 234	

novo mutations, we found that non-coding SNVs (including regulatory SNVs and splicing SNVs) 235	

explain 31% of the de novo risk (Fig. 2f). We argue that this estimate is very conservative . First, 236	

we considered only enhancers within 10 kb of TSSs, which constitute about 36% of all enhancers 237	

in our data. Second, our dataset contains only regulatory sequences active very early in 238	

development (5, 7, and 12 post-conception week) or in the adult brain. Many enhancers active in 239	

other related developmental periods are not covered in our data. Third, we only considered SNVs 240	

in this study. De novo indels and CNVs, which are likely to be much more deleterious, were 241	

ignored. 242	

 243	

Identification of ASD risk genes using both coding and noncoding mutations 244	

 245	

We performed integrative risk gene mapping using both coding and non-coding mutations. The 246	

challenge posed by combining different types of mutations is that these mutations could have very 247	

different damaging effects (e.g., nonsense mutations are generally more deleterious than other 248	

mutations). Summarizing a gene’s mutational burden in a manner agnostic to each mutation’s 249	

likely consequence would compromise the power to detect risk genes. We adopted TADA27, to 250	

address this issue. Briefly, TADA assesses the evidence of risk on each gene by comparing the 251	

observed number of mutations in each mutational class (e.g. LoF or missense) with the expected 252	

number. The evidence of each class is weighted by the average relative risk of that class, and the 253	

evidence of all classes is combined into a single Bayes factor for the gene, reflecting the strength 254	

of evidence (Fig. 1). In earlier studies, we have shown that TADA is much more powerful for 255	

mapping risk genes than simple counting of mutation numbers in genes8,35. In this study, we 256	

considered four classes of DNMs: LoF and mis3 coding mutations, regulatory SNVs within 10 kb 257	

of TSS and splicing SNVs. For each class of mutations, we derived its average relative risk from 258	

mutational burden analysis (Table 1), and estimated the mutation rate of each class for each gene 259	

using a genome-wide mutation rate model45. Once we computed the results of all genes from 260	

TADA, we corrected for multiple testing using Bayesian FDR46. 261	
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 262	

TADA analysis with only coding mutations from a previous WES study (~3,500 samples) 263	

identified 58 ASD risk genes at FDR < 0.135. Adding regulatory SNVs and splicing SNVs from 264	

our WGS data added three new ASD risk genes at FDR < 0.1, and 11 new genes at FDR < 0.3. 265	

These predictions are robust to TADA parameters within a reasonable range (Supplementary Table 266	

5). Each of the three genes at FDR < 0.1 (Table 2) has at least one LoF or Mis3 mutation, and the 267	

evidence for these genes is strengthened by the presence of regulatory SNVs. We found extensive 268	

evidence supporting the plausibility of these genes as ASD risk genes. APBB1 is the target of 269	

neuronal-RNA binding protein FMRP, whose loss of function causes Fragile X syndrome and 270	

autistic features. All of the three genes have been identified as haploinsufficient genes47,48 (Table 271	

2, hypergeometric test, P = 0.00079) and are highly expressed in the brain (top 25% of all genes, 272	

P = 0.015). The genes also tend to be evolutionarily constrained using either RIVS or another 273	

metric based on frequency of LoF variants in ExAC (Table 2). Evolutionary constraint in the 274	

human population has been shown to be a strong predictor of autism genes45.  275	

 276	

We performed multiple network analyses to further establish the link of new candidate genes to 277	

autism. DAWN49,50 is a recently developed method that predicts autism risk genes by virtue of the 278	

genes’ association with known ASD genes in co-expression networks of early developing brain. 279	

We found two out of three new genes (JUP and ARHGAP5) have DAWN q-value < 0.05  in at 280	

least one of the two critical developmental spatial-temporal windows for ASD51 (Table 2, 281	

enrichment P = 0.00041). Using GeneMania52, we found additional evidence supporting the 282	

connections between high-confidence ASD genes and our candidate genes. Between the two gene 283	

sets, there are 75 co-expression links in GeneMania (Fig. 3a), significantly higher than chance 284	

expectation (P = 0.014). To better understand the functions and biological processes that the 285	

candidate genes are involved in, we obtained the top 30 neighboring genes of each candidate using 286	

GeneMania (Supplementary Table 6). Gene Ontology (GO) enrichment analysis of the top 30 287	

neighbors of the whole set of new ASD genes identified multiple biological processes related to 288	

neuro-development, such as “negative regulation of neurogenesis” and “forebrain development” 289	

(Table 3).  290	

 291	
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We next expanded the analysis to the 11 new genes at FDR < 0.3. We observed significant 292	

enrichment of multiple gene annotations (Supplementary Table 7), including haploinsufficient 293	

genes (P = 0.014), FMRP targets (P = 0.010), Gene Ontology “Brain” (P = 0.024), constrained 294	

genes (P = 0.0038 using RVIS and P = 0.025 using variant frequency in ExAC), high expression 295	

level in the early developing brain from BrainSpan (P =0.011) and genes significantly co-296	

expressed with known ASD genes from DAWN analysis (P = 0.00013). The pathogenic roles of 297	

these genes in ASD are further supported by previous studies (Supplementary Table 8).  298	

 299	

We next explore the mechanisms by which non-coding mutations may contribute to ASD. We 300	

found an interesting example in PLXNB1 (a new risk gene with q = 0.22). This gene has important 301	

functions in neurodevelopment (see Discussions). In the promoter region of PLXNB1, an SNV 302	

disrupts the binding motif of the transcription factor RFX2 (Fig. 3b). Notably, in the motif-303	

matching region, multiple bases including the one hit by the DNM, are highly conserved based on 304	

GERP scores (Fig. 3b). RFX2 is a transcription factor highly expressed in the tegmental region of 305	

the the fetal mid-brain, a region linked to cognitive abilities53 and social reward processing54,55. 306	

An intronic variant in RFX2 has been associated with schizophrenia and bipolar disorder56. 307	

Additionally, the RFX2 binding motif is enriched in regulatory regions of several co-expression 308	

gene modules (Modules 1, 5, 7, and 15)37 that are active in the early developing brain. Taken 309	

together, our analyses offer a testable hypothesis: the mutation in PLXNB1 promoter changes the 310	

affinity of RFX2, and as a result, perturbs the expression of PLXNB1 and hence increases the risk 311	

of ASD.  312	

 313	

Enhancers with recurrent de novo mutations 314	

 315	

Our previous analyses were performed at the gene level, and only considered enhancers within 10 316	

kb of TSSs. We expanded these analyses to identify specific H3K27 enhancers with roles in autism 317	

across the genome, based on the notion that multiple DNMs in a single enhancer are unlikely to 318	

occur by chance. We found 25 enhancers with two or more SNVs in ASD cases, significantly 319	

higher than random expectation (Fig. 3c, P = 0.0025). Since the expected number of recurrent 320	

enhancers by chance is about 12, we estimated that half of these enhancers are likely to be causal 321	

enhancers (Supplementary Table 9). Many recurrent enhancers are distant from genes, so the 322	
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nearest genes may not represent their true targets. We used predicted enhancer-gene pairs based 323	

on cross-tissue correlation between enhancer activity and gene expression from Roadmap 324	

Epigenomics (http://khuranalab.med.cornell.edu/roadmap_stringent_enhancers.txt). We found a 325	

recurrent enhancer targeting ZMIZ1, a gene missed in previous analysis as it is more than 250 kb 326	

away from the enhancer (Fig. 3d). The region contains two other DNMs in two enhancers, one of 327	

which also has correlated activities with the ZIMZ1 promoter. A target of FMRP, ZMIZ1 is highly 328	

expressed in the brain and its protein product interacts with neuron-specific chromatin remodeling 329	

complex (nBAF) which is important in regulating synapatic functions57,58. Several nBAF members 330	

have been linked to autism, such as ARID1B and BCL11A59. The pathogenic potential of ZMIZ1 331	

is further implicated by the observation of a de novo gene-disrupting translocation in an individual 332	

with intellectual disability60. These evidence together strongly support the  role of ZMIZ1 in autism, 333	

and also highlight the mechanism that DNMs may increase ASD risk by disrupting distal 334	

regulatory elements.  335	

 336	

We next performed recurrent DNM analysis at the level of Topologically associated domains 337	

(TADs)61. These are megabase–sized chromatin interaction domains that are stable across cell 338	

types and have been proposed to demarcate transcriptional regulatory units61. We reason that if we 339	

identify TADs with excess regulatory SNVs, it may be straightforward to assign target genes of 340	

these regulatory SNVs. Based on estimated mutation rates, we found two TADs with a significant 341	

(at FDR < 0.125) number of regulatory SNVs (Supplementary Fig. 5 and Supplementary Table 342	

10). In both TADs, there are only two or three genes, and we conjecture that SRBD1 and MRSA 343	

are likely the underlying ASD genes in the two TADs, respectively (see Discussion).  344	

 345	

Power of mapping ASD risk genes with WGS and WES 346	

 347	

We used simulations to address how the power of a DNM-focused WES or WGS study depends 348	

on its sample size and sequencing budget, using our insights of the de novo genetic architecture of 349	

ASD (Table 1). We randomly chose 1000 genes as risk genes based on previous estimates of the 350	

total number of ASD risk genes8,62; randomly sampled mutations according to mutation rates and 351	

their likely relative risks (causal genes tend to have more deleterious mutations compared to 352	

expectations) and then applied TADA to identify risk genes at q < 0.1 (see Section 6 of 353	
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Supplementary Methods for simulation details). We found that the power of our simulated WES 354	

studies is roughly in line with empirical discoveries (Fig. 4a). For example, at N = 2,500 trios, we 355	

would expect to identify about 30-40 ASD genes, similar to the actual number (33) from a previous 356	

study8.The power of the simulated WGS design is about 20% higher than that of the WES (Fig. 357	

4a). We next investigated whether the additional power gained from WGS is justifiable on the 358	

basis of cost. At the current per-sample cost level (WES: $500 and WGS: $1000), we found that 359	

WES is still more cost-effective (Fig. 4b). 360	

 361	

 362	

Discussion 363	

 364	

Our analysis provides clear evidence that non-coding mutations play an important role in the 365	

etiology of autism. We found elevated rates of de novo SNVs in ASD subjects within brain 366	

enhancers that are likely to affect transcription factor binding. Near potential risk genes of ASD 367	

and other neuropsychiatric disorders, there is an excess of ASD-derived DNMs in enhancer regions. 368	

We also found enrichment of splicing-affecting SNVs in ASD and neuropsychiatric genes as well 369	

as in constrained genes. Compared with coding mutations, we found that these non-coding 370	

mutations account for a smaller but substantial proportion of de novo ASD risk. Using a statistical 371	

framework, TADA, we were able to leverage both coding and regulatory mutations for gene 372	

mapping and identified several new ASD genes. Our study on non-coding mutations also led to 373	

the characterization of ASD risk units with excess DNMs at the level of enhancers and TAD 374	

regions. Altogether, our findings highlight the importance of regulatory variants in ASD and their 375	

utility in mapping risk genes and functional elements. The analytic framework for de novo 376	

mutations we developed in this work is applicable to any trio-based sequencing studies.  377	

 378	

Our work is one of the first studies that directly assess the role of non-coding regulatory variants 379	

in complex diseases23. Previously, our knowledge of non-coding variants came mostly from 380	

GWAS. The challenge with GWAS is that regulatory elements are generally much shorter (~1kb) 381	

than regions of linkage disequilibrium (LD, hundreds of kb on average). It is thus far from 382	

straightforward to assess the quantitative contribution of non-coding variants, or identify specific 383	

regulatory elements underlying diseases from GWAS63. In contrast, using DNMs from WGS, we 384	
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eliminate the impact of LD and work directly on putative causal mutations. The results of our 385	

findings thus can be interpreted more straightforwardly. For instance, the enhancers with recurrent 386	

DNMs we identified are good candidates for further experimental analysis.  387	

 388	

Distinguishing likely pathogenic variants from benign ones is essential when analyzing non-coding 389	

variants. We only observed a modest enrichment of DNMs in H3K27ac enhancers near putative 390	

risk genes, but not across all genes. This suggests that most SNVs within H3K27ac sites are 391	

probably not causative mutations. We tested various methods for annotating variants, including 392	

GERP++25, PhyloP41, CADD24, and Eigen42, but none was found to enrich pathogenic mutations. 393	

Two possible explanations are: (1) Cross-species evolutionary constraint may be only modestly 394	

correlated with pathogenicity in humans64. (2) Two of these methods, CADD and Eigen, were 395	

trained on epigenomic data from mostly non-brain tissues. To better analyze the non-coding 396	

genome, we need a more comprehensive repertoire of regulatory information in brain, within 397	

specific spatial-temporal contexts65.  398	

 399	

A recent study estimated the contributions of common variants, rare inherited variants and DNMs 400	

to the risk of autism, and concluded that most of the autism risk is explained by common variants44. 401	

Our goal here is not to explain ASD risk per se, but use DNMs to explore the relative contributions 402	

of coding and non-coding variants. While risk partition among different types of variants has been 403	

pursued in GWAS63, linkage disequilibrium limits our ability to do this, as discussed previously. 404	

Our work thus provides independent evidence that non-coding variants make a substantial 405	

contribution to the risk of complex diseases63. Comparing with the previous study of autism, our 406	

estimate of ASD risk attributable to coding mutations is somewhat higher (1.9% vs. 1.1%) and in 407	

particular we found a significant contribution from missense DNMs (0.83% vs. 0.04%). We 408	

believe that this higher estimate is largely due to our different modeling assumptions: we treated 409	

all mutations in a category (e.g., missense) as a mixture of causal and non-causal mutations, 410	

whereas the previous study treated all mutations in a category equally (see Methods)44. We 411	

estimated that de novo coding (1.9%), non-coding (0.9%) and copy number variants (1.46%, 412	

estimated by a previous study44) together contribute at least 4.2% of ASD risk. We think that we 413	

significantly under-estimated the contribution of non-coding mutations to ASD risk as we did not 414	
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take into account mutations in more distal regulatory regions or in ASD-relevant enhancers not 415	

covered by our datasets, and indels or CNVs disrupting regulatory sequences.  416	

 417	

We have identified three new ASD risk genes whose expression patterns and biological functions 418	

are consistent with their putative roles in ASD risk. JUP is a member of the catenin/cadherin 419	

superfamily which has important roles in neuron connections and interactions66. It is strongly 420	

expressed in the primate prefrontal cortex and hippocampus67. APBB1 is an adaptor protein 421	

localized in the nucleus and has a role in Alzheimer’s disease. It is down-regulated in ASD 422	

cerebellum than control68, and its microexons are mis-regulated in the brains of ASD individuals20. 423	

ARHGAP5 negatively regulates RHO GTPase activity. It is required for normal neural 424	

development, and is implicated in axonal branching and synapse formation69,70.  425	

 426	

The pathogenicity of most of the new ASD genes at FDR < 0.3 is supported by functional and 427	

association studies (summarized in Supplementary Table 8). For example, PLXNB1 is a receptor 428	

in the GTPase signaling pathway that regulates the development of hippocampal neurons71,72, 429	

remodeling of dendrites73, and the plasticity of axons74,75. PLXNB1 expression has been found to 430	

be altered in the prefrontal cortex of schizophrenia patients76. Another  example is DPYSL2, a 431	

multifunctional adaptor protein within the central nervous system77. DPYSL2 interacts with 432	

various binding partners to regulate multiple biological processes critical in neuron development, 433	

including axon initiation and elongation77,78, neurite outgrowth79, neuronal differentiation 80, and 434	

neurotransmitter release81. Functional variants in DPYSL2 have been found to increase the risk of 435	

schizophrenia82,83. Only two of our new ASD genes (MSL2 and PPM1D) have not been 436	

functionally implicated in neuro-development. However, PPM1D has recently been identified as 437	

a novel risk gene for intellectual disability84.  438	

 439	

We also found that the two TAD regions with excess regulatory SNVs in ASD are supported by 440	

copy number variant (CNV) studies. In one TAD, recurrent, rare CNVs (Chr2: 45455651-441	

45984915) spanning the entire SRBD1 gene (the only protein coding gene disrupted by the CNVs 442	

within this TAD) were reported in ASD subjects85. In a later independent study, CNVs in this TAD 443	

region were found to be enriched in ASD cases versus controls85. These results suggest that SRBD1 444	

is likely the risk gene in this TAD. In the other TAD region, ASD-associated duplication of 8p23.1-445	
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8p23.2 introduces a breakpoint between MSRA and RP1L186. MSRA is a member of the 446	

methionine-sulfoxide reductase system whose function is to alleviate oxidative stress. Increased 447	

exposure to oxidative stress plays an important role in the pathogenesis of ASD87. In addition, 448	

GWAS studies have established associations of MSRA with schizophrenia88 and bipolar disorder89. 449	

All these evidence together suggests that MSRA is a strong candidate gene for autism.  450	

 451	

We investigated the power of WES and WGS studies using simulation. We note that the power of 452	

WGS is significantly underestimated for the same reasons, described previously, that the 453	

contribution of non-coding mutations to ASD risk is under-estimated. Additionally, WGS would 454	

enable much better identification of structural variants, which collectively make a significant 455	

contribution to the autism risk. Finally, we did not account for the cost of recruiting patients, which 456	

would further favor choosing WGS over WES, as WGS requires a smaller cohort to achieve the 457	

same level of power.  458	

 459	

In summary, our work established genome-wide DNM analysis as a powerful strategy for mapping 460	

genes and regulatory elements underlying autism. By leveraging multiple types of mutations 461	

perturbing the activity and expression of genes, we gain considerable power over using protein-462	

coding variants alone. Furthermore, comparing with protein-coding genes, regulatory elements are 463	

typically active in specific cell types and brain regions, thus the knowledge of autism-related 464	

regulatory elements may help us identify important neuronal subtypes and circuits relevant to 465	

autism, a crucial step for understanding its mechanisms3. With lowering cost of genome 466	

sequencing and better annotations of regulatory genomes in the brain65, we anticipate that whole-467	

genome DNM studies will transform our understanding of neuropsychiatric disorders.  468	

 469	

 470	

Methods 471	

 472	

DNMs from whole genome sequencing data 473	

 474	

The detailed information for each WGS dataset is summarized in Table S1. To remove erroneously 475	

called de novo SNVs, we excluded 8 individuals with more than 140 (2 times more than the median 476	
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of ASD DNMs per individual) DNMs and removed all recurrent DNMs (i.e. exactly the same 477	

mutation in multiple individuals). Our unpublished (Wu et al.) DNM data are from WGS of 32 478	

ASD trios of Han Chinese ancestry (see Section 1 of Supplementary Methods for details, data are 479	

available at http://wwwdev.ebi.ac.uk/eva/?eva-study=PRJEB14713).	480	

	481	

Collection of brain cis-regulatory regions 482	

 483	

We used H3K27ac sites in fetal and adult brains to define cis-regulatory regions in our main 484	

analyses. Fetal brain sites from human cortex at embryonic stages 5 p.c.w., 7 p.c.w., and 12 p.c.w. 485	

were obtained from a recent study37. For each stage, only peak regions consistent between two 486	

biological replicates were selected. Adult brain sites were obtained from Roadmap Epigenomics 487	

Project38. They include H3K27ac sites from human angular gyrus, anterior caudate, cingulate 488	

gyrus, middle hippocampus, inferior temporal lobe, mid-frontal lobe and substantia nigra. We used 489	

MACS2 to call peaks from raw data, and only kept peak regions consistent between two biological 490	

replicates for each brain region. We used BEDtools90 to merge H3K27ac sites from fetal and adult 491	

brain. 492	

 493	

To define brain-specific enhancers in Fig. 2d, we compared H3K27ac data from human embryonic 494	

cortex with publicly available H3K27ac datasets for the colon, the esophagus and limbs37,91. For 495	

each H3K27ac dataset, only replicated peaks were included and any peak with 1-bp overlap to a 496	

Gencode(v19) annotation feature was excluded. A single composite multi-sample enhancer 497	

annotation was generated by merging replicated peaks across all tissue samples. The level of 498	

H3K27ac signal in each region for each sample was quantified by averaging read counts per 499	

kilobase per million mapped reads (RPKM) in each region from each replicate. Each region was 500	

represented by a vector of a length equal to the total number of tissues considered, with each 501	

element representing the RPKM value of marking in that region for a single tissue. Each vector 502	

was standardized to have zero-mean and unit-variance. The matrix of these normalized tissue 503	

quantification values was then subjected to k-means clustering to identify sets of sites exhibiting 504	

the strongest marking in each tissue relative to all other samples in the comparison. 	505	

 506	

Annotation of regulatory mutations 507	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2016. ; https://doi.org/10.1101/077578doi: bioRxiv preprint 

https://doi.org/10.1101/077578
http://creativecommons.org/licenses/by-nc-nd/4.0/


 508	

We annotated DNMs within regulatory regions using various bioinformatics tools. To limit our 509	

analysis to motifs that are most likely to be ASD-relevant, we used JASPAR core vertebrate TF 510	

motifs92 that meet two criteria: (1) they are enriched in regulatory sequences of gene modules that 511	

are adjacent to regulatory sequences active in developing cortex of human, but not other primates37; 512	

and (2) their cognate transcription factors are in the top 50% brain-expressed genes (Expression 513	

levels based on mean expression levels across Brainspan samples). To identify motif-changing 514	

SNVs, for each SNV, we generated a 41-bp wild-type sequence centering on the reference allele, 515	

along with a 41-bp mutant sequence centering on the mutated allele. We then used FIMO93 to 516	

obtain its maximal motif score difference  (log(ratio of p-values)) in absolute value between its 517	

wild-type and mutant sequences. A SNV whose maximal absolute motif score difference is in the 518	

top 10% among the difference of all SNVs was defined as a motif SNV. We used ANNOVAR to 519	

annotate coding mutation types and obtain GERP++ scores for all mutations94. CADD scores were 520	

downloaded from http://cadd.gs.washington.edu/score, (default parameters, v1.3). Other 521	

annotations that we used include PhyloP scores from the 100-way PhyloP wiggle file from UCSC 522	

(/goldenpath/hg19/phyloP100way/) and Eigen-PC scores42. 	523	

 524	

Lists of genes used in burden analyses 525	

 526	

Known ASD genes include genes with q-value < 0.3 from a combined analysis of CNVs, indels, 527	

and WES data using TADA35, SFARI category I (high confidence) and II (strong candidate) genes 528	

(https://sfari.org), AutismKB genes95 and ASD genes summarized in a previous study96. 529	

Neuropsychiatric genes are a larger set of genes likely involved in neuropsychiatric disorders, 530	

including genes with TADA q-value < 0.535 , SFARI genes (https://sfari.org), AutismKB genes95, 531	

ASD risk  genes summarized in a previous study96, intellectual disability genes97, the union of gene 532	

sets enriched with SCZ de novo coding mutations98 and high confidence postsynaptic density 533	

genes99. The set of nonASD genes are the 1000 genes with the highest TADA q-values35. The size 534	

of this gene set is comparable to that of neuropsychiatric genes. Intolerant genes include genes 535	

with top 5% RVIS64 and haploinsuffcient genes obtained from two sources, one using copy number 536	

variations (genes with predicted haploinsufficient probability greater than 0.95)47, and the other 537	

using estimated mutation rate48. To define tolerant gene, we started with genes with RVIS scores 538	
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in the bottom 10%64, genes with haploinsufficient probability smaller than 0.147, and genes that 539	

were used as control genes for LoF deficient genes48. We then removed any genes that were in the 540	

intolerant gene set. To define gene groups based on their expression levels, we used the average 541	

expression level for each gene across all developing brain tissues from BrainSpan data. 	542	

 543	

Burden analysis of different types of de novo mutations  544	

 545	

In burden analysis, we accounted for the difference in mutation rate between ASD subjects 546	

(~60/individual) and controls (~39/individual) as follows. Instead of comparing absolute mutation 547	

rates, we normalized the mutation counts in the regions of interest by the mutation counts of some 548	

background sequences that should not be enriched with risk mutations. This relative mutational 549	

frequency is thus comparable between ASD and controls.   	550	

 551	

Specifically, for the burden analysis of coding sequences, we first calculated the ratio of 552	

nonsynonymous mutations and synonymous mutations for both ASD and control samples. This 553	

ratio can be thought of as the relative frequency of nonsynonymous mutations in cases or controls. 554	

The burden of nonsynonymous mutations is then the ratio between the relative frequency of 555	

nonsynonymous mutation of ASD subjects and that of control subjects: 	556	

 557	

Coding burden = !"#		%&%'(%&%()&*'	"+,' !"#	'(%&%()&*'	"+,'
-&%./&0	%&%'(%&%()&*'	"+,' -&%./&0	'(%&%()&*'	"+,'

 558	

 559	

The p-value of the burden was calculated from Fisher’s exact test. 560	

 561	

We defined splicing SNVs as SNVs whose delta-splicing scores predicted by SPIDEX26 are in the 562	

lower 10% of all the SNVs in our studies. At this cutoff, enriched splicing SNVs near known ASD 563	

genes have been observed previously26. We defined non-spicing mutations as SNVs whose delta-564	

splicing scores are in the middle 10%. The burden of splicing SNVs was calculated in a manner 565	

similar to coding mutation, using synonymous SNVs as background mutations.  566	

  567	
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For the burden of regulatory SNVs, we followed the same strategy but used all regulatory SNVs 568	

as background instead of synonymous mutations. The burden of regulatory SNVs with a certain  569	

annotation (or in a certain group of genes) is expressed as:  	570	

 571	

Regulatory SNV burden = !"#	/12*03.&/(	"+,'	45.6	3	-1/.35%	3%%&.3.5&% 300	!"#	/12*03.&/(	"+,'
-&%./&0	/12*03&./("+,'	45.6	3	-1/.35%	3%%&.3.5&% 300	-&%./&0	/12*03.&/(	"+,'

 572	

 573	

Burden analysis by simulation 574	

 575	

To estimate the burden of ASD regulatory SNVs in a gene set, we sampled the number of 576	

regulatory ASD SNVs of a gene using a multinomial distribution, with the total number given by 577	

the observed number of ASD regulatory SNVs. The multinomial probability of a gene is 578	

proportional to the total mutation rate of H3k27ac regulatory regions within 10 kb of the TSS of 579	

that gene. We performed simulations 10,000 times and generated the null distribution of the total 580	

number of mutations that land in the gene set of interest. We then used this distribution to derive 581	

the empirical enrichment p-value and fold of enrichment (observed mutation number in the gene 582	

set divided by the mean of simulation distribution). To estimate the burden of motif-changing 583	

SNVs, we first shuffled the positions of ASD regulatory SNVs within all H3K27ac regulatory 584	

regions (under the same mutation-rate-based multinomial distribution used above), and then, for 585	

each new position, generated a mutant allele based on the mutational spectrum of all ASD SNVs. 586	

We counted the number of motif-changing SNVs from each of 10000 simulations, and generated 587	

a null distribution of this number, which is used to obtain enrichment p-values of the observed 588	

number of motif-changing SNVs.  589	

 590	

Mutation rates of regulatory sequences 591	

 592	

We applied the tri-nucleotide mutation model developed by a previous study45 to the whole-593	

genome to derive the base-level mutation rate. The mutation rate for each functional unit (e.g., one 594	

enhancer) is defined as the sum of the per-base mutation rates27 in the unit. To approximate the 595	

mutation rate of splicing SNVs for each gene, we counted the number of splicing SNVs across 596	

genes in controls, and used the ratio between this number and the total number of synonymous 597	
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mutations in controls as a scaling factor. We then multiplied this scaling factor to the synonymous 598	

mutation rate of each gene to estimate its splicing SNV mutation rate.	599	

 600	

Estimating the relative risks of de novo mutations 601	

 602	

We used a strategy developed previously to estimate the average relative risk of a given type of 603	

mutation (section 6 in the Supporting Text of TADA). It is also described in the user guide of the 604	

software implementation of TADA27. Note that the relative risk of a type of mutation (e.g. missense) 605	

is interpreted as the average relative risk of a missense mutation in a causal gene. Let 𝜆 be the 606	

burden estimated for the mutational types of interest across all genes. Because causal genes 607	

represent only a small proportion of all genes, the relative risks in causal genes should be higher 608	

than 𝜆. Let 𝜋 be the fraction of genes that are risk genes, the relative risk of causal genes can be 609	

calculated as 9:;
<
+ 1. We used	𝜋 = 0.06 in our analysis of coding mutations, which corresponds 610	

to there being 1000 ASD risk genes9,27.  For regulatory SNVs and splicing SNVs, the genome-611	

wide burdens of these two types of mutations are not significant, so we instead limited our analysis 612	

to previously indicated ASD genes with TADA q-value <0.535. We then converted the burden in 613	

these genes to relative risks with 𝜋 = 0.5 using the same equation.	When estimating the relative 614	

risk of splicing SNVs, we removed SNVs that were predicted to be nonsynonymous mutations or 615	

that fell into the brain H3K27ac regions within 10kb of TSSs. 	616	

 617	

Partitions of de novo ASD risk into coding and non-coding mutations 618	

 619	

We treated ASD liability (risk) as a continuous trait, and estimated the percentage of variance in 620	

ASD liability explained by four types of mutations (Fig. 2f). The variation of ASD liability 621	

explained by the j-th type of mutations could be expressed as the equation below (see 622	

Supplementary Methods):  	623	

 624	

𝑉E = 𝛽EG ∗ 𝑝E ∗ 1 − 𝑝E  625	

 626	
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where βj  is the effect size of the j-th type of mutations at the liability scale and 𝑝E is the probability 627	

that an individual carries a mutation of type j. Note that only causal mutations contribute to ASD 628	

liability, so both βj  and 𝑝E are defined for mutations affecting causal genes. We calculated βj from 629	

the relative risk of j-th type of mutation using standard quantitative genetic calculations. To obtain 630	

𝑝E, we calculate the total mutation rate of type j mutations (note that an individual has two copies 631	

of genomes), and then multiply this by 0.06 (fraction of ASD risk genes) to obtain the rate of causal 632	

mutations of type j (see Section 4 of Supplementary Methods for details). 	633	

 634	

TADA analysis to map ASD risk genes 635	

 636	

A detailed description of TADA can be found in Section 5 of Supplementary Methods and in 637	

previous publications8,27. To combine evidence of the coding and non-coding mutations for a 638	

particular gene, we multiplied the pre-computed coding-mutation Bayes factors from published 639	

work35 by the non-coding Bayes factors derived  from our study. If a gene does not have brain 640	

H3K27ac regions within 10 kb of its TSS, we assigned its non-coding Bayes factor to be 1. We 641	

translated the combined Bayes factor of each gene into a q-value using Bayesian FDR control. 	642	

 643	

To define new ASD genes at a particular q-value cutoff, we chose the genes with a combined q-644	

value below the cutoff and a coding q-value above the cutoff. We then filtered out new ASD genes 645	

that do not have H3K27ac regions within 10kb of TSSs. Note that even if a gene has no evidence 646	

from non-coding mutations, its q-value could change, because the q-value depends on the 647	

distribution of Bayes factors of all genes. We also lost a few genes at each q-value cutoff: These 648	

genes have no regulatory SNVs and thus receive a small penalty to their Bayes factors. 	649	

 650	

DAWN analysis 651	

 652	

DAWN (Detecting Association With Networks) algorithm49,50 is a guilt-by-association-based gene 653	

prediction algorithm. The fundamental assumption underlying the algorithm is that risk genes are 654	

part of a functional cluster and thus, tightly connected. A gene has a high posterior risk probability 655	

if it is interacts in a network with other risk genes or has a high prior risk probability or both.  We 656	

used TADA to assign each gene a p-value for the prior evidence of being an ASD risk gene. For 657	
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the underlying network, we constructed partial co-expression networks for two spatio-temporal 658	

windows, namely the mid-fetal prefrontal cortex (PFC) and the infancy mediodorsal cerebellar 659	

cortex (MD-CBC), which are indicated as high risk windows for ASD51. BrainSpan microarray 660	

dataset is used as the source for spatio-temporal gene expression data 661	

(http://developinghumanbrain.org).  662	

 663	

DAWN was run separately for each above-mentioned network. We used regularization parameter 664	

(lambda) = 0.12, p-value cutoff = 0.1 and correlation thresholds 0.7 for PFC and 0.85 for MD-665	

CBC, respectively. In Table 2, posterior risk scores (q-values) are shown for the candidate genes. 666	

A Dash means that the corresponding gene is not co-expressed with other risk genes in any of the 667	

spatio-temporal windows.  668	

 669	

GeneMania analysis 670	

 671	

GeneMania52 is a tool for studying interactions among genes in a network using various types of 672	

information, such as gene co-expression and protein-protein interactions (PPIs). We first studied 673	

the connection between our candidate genes with high-confidence ASD genes (genes with coding 674	

TADA FDR < 0.1 and genes in SFARI categories I and II, https://sfari.org) using co-expression 675	

data. We then chose 30 top neighboring genes for each of our new candidate genes using multiple 676	

networks, including co-localization, genetic interactions, shared pathway, physical interactions, 677	

predicted interactions and shared protein domains. 	678	

 679	

Enhancers with recurrent de novo mutations 680	

 681	

For this analysis, we used brain H3K27ac regions not overlapping with exons. We observed 25 682	

enhancers with at least two de novo SNVs in ASD samples. We performed simulations to assess 683	

its signfiicance. In each simulation, we randomly re-distributed de novo SNVs of all brain 684	

enhancers, following a multinomial distribution. The multinomial probability of an enhancer is the 685	

ratio between the mutation rate of that enhancer and the sum of mutation rates across all enhancers. 686	

We performed simulations 10,000 times and obtained the distribution of the number of enhancers 687	

with recurrent SNVs. 	688	
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 689	

TADs with recurrent de novo SNVs 690	

 691	

For each TAD region, we calculated its regulatory mutation rate as the sum of per-base mutation 692	

rates of brain H3K27ac sites within the TAD. Under the null hypothesis, the count of regulatory 693	

SNVs follows a Poisson distribution, whose rate is the regulatory mutation rate times twice of the 694	

sample size27,45. We then calculated the Poisson p-value of each TAD region and used the 695	

Benjamini-Hochberg procedure to control FDR.  696	

 697	
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Figure 1

Relative Risk

Mutation Count / Expected Count

LoF Mis3 SplSNV RegSNV
Gene A 1/6.4x10-3 0/2.8x10-2 0/2.6x10-2 4/0.24
Gene B 1/5.0x10-3 0/2.2x10-2 0/2.0x10-2 3/0.40
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Figure 1. Overview of study design.  We consider four mutational types, including LoF: 
Loss-of-Function coding mutations; Mis3: probably damaging nonsynonymous coding 
mutations predicted by Polyphen-2; SplSNV: SNVs predicted to affect pre-mRNA splicing by 
SPIDEX; RegSNV: non-coding SNVs that fall into brain H3K27ac regions within 10 kb of 
TSSs. RR denotes average relative risks of different types of mutations in risk genes. In the 
Mutation Count/ Expected Count Box, each cell contains the observed mutation count (col-
ored in red) and the expected count (colored in black) (the numbers are for illustration only). 
TADA combines information from all mutation types related to a gene to test how likely it is 
to be a risk gene. The average relative risk of a mutation type is used in TADA to weigh the 
contribution of that type. 
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Figure 2. Burdens analyses of different types of de novo mutations. The error bars in (a), (b), and (c) 
represents the 95% confidence intervals of burdens, based on the lower bounds and upper bounds of 
the odds ratios from Fisher’s exact tests. We did not show error bars in (d) and (e) as they are too large 
to show. (a) De novo nonsynonymous mutations from WGS studies in multiple gene sets. See Methods 
for the definitions of these gene sets. (b) De novo SNVs in H3K27ac regions within 10 kb of TSSs. In 
the barplot, we show burdens of promoter/5’UTR SNVs and regulatory SNVs (including all SNVs in 
brain H3K27ac regions within 10 kb of TSSs). (c) Regulatory SNVs and distal regulatory SNVs (10 
kb ~ 50 kb to TSSs) in different gene sets. (d) Comparison between burdens of SNVs in brain-specific 
H3K27ac regions and of those in other-tissue-specific H3K27ac regions. (e) Burdens of SNVs that are 
predicted to affect splicing vs. SNVs not predicted to have such effects (non-splicing SNVs). (f) 
Partition of de novo ASD risk into coding and non-coding mutations. 
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Figure 3. Predicted risk genes and enhancers of ASD. (a) GeneMania network analysis of the three 
new ASD genes. Red circles represent new ASD genes while grey circles represent known ones. The 
figure shows only the co-expression networks: two genes are connected if their co-expression across 
multiple tissues reaches a threshold. Only connections between the two gene sets are shown. (b) A de 
novo SNV in the TSS-proximal regulatory region of PLXNB1 disrupts a RFX2 binding motif. (c) 
Distribution of the number of enhancers with recurrent (more than two) de novo SNVs from 10,000 
simulations. The vertical red arrow marks the observed number of enhancers with recurrent de novo 
SNVs from ASD data. (d) A plausible distal enhancer (marked by a star) with recurrent ASD SNVs has 
correlated activities with ZMIZ1 promoter. Grey curves represent correlated activities between 
enhancers and ZMIZ1 promoter.  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2016. ; https://doi.org/10.1101/077578doi: bioRxiv preprint 

https://doi.org/10.1101/077578
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

100

200

300

    0 1     2     3     4     5
Budget (Million dollars)

Ex
pe

te
d 

no
. d

is
co

ve
re

d 
ge

ne
s 

(F
D

R
<0

.1
) WES WGS

0

50

100

150

0 1000 2000 3000 4000 5000
Sample size

Ex
pe

te
d 

no
. d

is
co

ve
re

d 
ge

ne
s 

(F
D

R
<0

.1
) WES WGS

Figure 4
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Figure 4. Comparison of power between WES and WGS from simulations. Power is measured as the 
expected number of discovered ASD risk genes at q < 0.1, and is obtained at each level of sample size 
(a) or sequencing cost (b).   
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Table 1. Mutational exposure (number of mutations from ASD risk genes per subject) and 
relative risk of different types of de novo mutations.  
 

Mutation Class Mutational 
Exposure 

Relative 
Mutational 

Exposure(%) 
Relative risk 

Variance of ASD 
liability 

explained (100%) 

Mis3 0.0175 11.6 4.7 0.83 

Loss-of-function 0.00405 2.68 20 1.08 

Regulatory SNV 0.115 76.1 1.9 0.72 

Splicing SNV 0.0145 9.60 2.1 0.14 
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Table 2. Mutational counts and evidence of three new ASD genes. In the evidence rows, Y 
means overlap with a gene set and N otherwise.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Lower RVIS and ExAC zscores percentiles correspond to higher constraint.  
Lower BrainSpan percentiles correspond to higher brain expression. 
Enrichment p-values were calculated by hypergeometric tests. In RVIS, ExAC zscore, Brainspan, 
we tested the enrichment of new ASD genes in genes in the lower quartiles. In DAWN analysis, 
we tested the enrichment of new ASD genes in genes with DAWN q-value < 0.05. The DAWN 
q-value for each gene in the table is the minimum of the q-values of that gene in two brain 
regions, mid-fetal prefrontal cortex (PFC) and infancy mediodorsal cerebellar cortex (MD-CBC). 
 
 
 
 
 
 
 
 
 
 

Gene name JUP APBB1 ARHGAP5 Enrichment 
p-value 

LoF 1 1 1  

Mis3 0 0 1  

Regulatory SNV 4 3 1   

HI Y Y Y 7.90e-4 

RVIS (%) 2.74 19.93 20.02 1.11e-2 

ExAC zscore (%) 30.62 14.25 9.69 1.38e-1 

FMRP targets N Y N 1.25e-1 

BrainSpan 
expression (%) 19.29 3.41 22.03 1.49e-2 

DAWN 5.00e-4 - 2.00e-4 4.06e-4 
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Table 3. Biological processes enriched among neighborhood genes of the three new ASD genes. 
 

Term P-value Adjusted 
P-value 

Overlap Neighbor Genes 

Adherens junction organization 1.17e-05 1.06e-02 4/69 DSP, CTNND1, CTNNA1(APBB1); 
THY1(ARHGAP5) 

Negative regulation of neurogenesis 3.59e-05 1.27e-02 5/192 APP, NOTCH1, LRP4(JUP); 
CTNNA1(APBB1); THY1(ARHGAP5) 
 

Neuromuscular junction development 5.00e-05 1.27e-02 3/34 APP, ERBB2, LRP4(JUP) 

Negative regulation of nervous system development 5.57e-05 1.27e-02 5/211 APP, NOTCH1, CTNNA1(APBB1); 
LRP4(JUP); THY1(ARHGAP5) 
 

Negative regulation of cell development 9.92e-05 1.51e-02 5/239 APP, NOTCH1, LRP4 (JUP); 
CTNNA1(APBB1); THY1(ARHGAP5) 
 

Kidney development 1.00e-04 1.52e-02 4/122 MME, TSHZ3, LRP4 (JUP); 
ZBTB16(APBB1) 

Neuron remodeling 1.64e-04 1.98e-02 2/8 APP(JUP); RND1(ARHGAP5) 

Forebrain development 1.74e-04 1.98e-02 3/53 APP, NOTCH1, APLP2(JUP) 

Negative regulation of neuron differentiation 2.01e-04 2.04e-02 4/147 APP, NOTCH, LRP4(JUP); 
THY1(ARHGAP5) 

Mating behavior 2.41e-04 2.20e-02 2/10 APP, APLP2(JUP) 

 
Neighborhood genes are the top 30 connected genes from GeneMania analysis for the three new 
ASD genes. In the last column, after each set of neighbor genes (separated by semicolon) in 
parenthesis is their common connected new ASD gene. In the “Overlap” column, the number of 
neighborhood genes in each GO category is followed by the total number of genes in this GO 
category.  
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