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Abstract

Variational Bayes (VB), variational maximum likelihood (VML), re-
stricted maximum likelihood (ReML), and maximum likelihood (ML) are
cornerstone parametric statistical estimation techniques in the analysis of
functional neuroimaging data. However, the theoretical underpinnings of
these model parameter estimation techniques are rarely covered in intro-
ductory statistical texts. Because of the widespread practical use of VB,
VML, ReML, and ML in the neuroimaging community, we reasoned that
a theoretical treatment of their relationships and their application in a ba-
sic modelling scenario may be helpful for both neuroimaging novices and
practitioners alike. In this technical study, we thus revisit the conceptual
and formal underpinnings of VB, VML, ReML, and ML and provide a de-
tailed account of their mathematical relationships and implementational
details. We further apply VB, VML, ReML, and ML to the general linear
model (GLM) with non-spherical error covariance as commonly encoun-
tered in the �rst-level analysis of fMRI data. To this end, we explicitly
derive the corresponding free energy objective functions and ensuing it-
erative algorithms. Finally, in the applied part of our study, we evaluate
the parameter and model recovery properties of VB, VML, ReML, and
ML, �rst in an exemplary setting and then in the analysis of experimental
fMRI data acquired from a single participant under visual stimulation.
(9372 words)

1 Introduction

Variational Bayes (VB), variational maximum likelihood (VML) (also known as
expectation-maximization), restricted maximum likelihood (ReML), and max-
imum likelihood (ML) are cornerstone parametric statistical estimation tech-
niques in the analysis of functional neuroimaging data. In the SPM software
environment (http://www.fil.ion.ucl.ac.uk/spm/), one of the most com-
monly used software packages in the neuroimaging community, variants of these
estimation techniques have been implemented for a wide range of data models
(Ashburner, 2012; Penny et al., 2011). For fMRI data, these models vary from
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mass-univariate general linear and auto-regressive models (e.g., Friston et al.,
1994, 2002a,b; Penny et al., 2003), over multivariate decoding models (e.g., Fris-
ton et al., 2008a), to dynamic causal models (e.g., Friston et al., 2003; Stephan
et al., 2008; Marreiros et al., 2008). For M/EEG data, these models range from
channel-space general linear models (e.g., Kiebel and Friston, 2004a,b), over
dipole and distributed source reconstruction models (e.g., Kiebel et al., 2008;
Friston et al., 2008b; Litvak and Friston, 2008), to a large family of dynamic
causal models (e.g., David et al., 2006; Chen et al., 2008; Moran et al., 2009;
Pinotsis et al., 2012; Ostwald and Starke, 2016).

Because VB, VML, ReML, and ML determine the scienti�c inferences drawn
from empirical data in any of the above mentioned modelling frameworks, they
are of immense importance for the neuroimaging practitioner. However, the
theoretical underpinnings of these estimation techniques are rarely covered in
introductory statistical texts and the technical literature relating to these tech-
niques is rather evolved. Because of their widespread use within the neuroimag-
ing community, we reasoned that a theoretical treatment of these techniques in
a familiar model scenario may be helpful for both neuroimaging novices, who
would like to learn about some of the standard statistical estimation techniques
employed in the �eld, and for neuroimaging practitioners, who would like to
further explore the foundations of these and alternative model estimation ap-
proaches.

In this technical study, we thus revisit the conceptual underpinnings of the
aforementioned techniques and provide a detailed account of their mathemat-
ical relations and implementational details. Our exposition is guided by the
fundamental insight that VML, ReML, and ML can be understood as special
cases of VB (Friston et al., 2002a, 2007; Friston, 2008). In the current note,
we reiterate and consolidate this conceptualization by paying particular atten-
tion to the respective technique's formal treatment of a model's parameter set.
Speci�cally, across the estimation techniques of interest, model parameters are
either treated as random variables, in which case they are endowed with prior
and posterior uncertainty modelled by parametric probability density functions,
or as non-random quantities. In the latter case, prior and posterior uncertain-
ties about the respective parameters' values are left unspeci�ed. Because the
focus of the current account is on statistical estimation techniques, we restrict
the model of application to a very basic scenario that every neuroimaging prac-
titioner is familiar with: the analysis of a single-participant, single-session EPI
time-series in the framework of the general linear model (GLM) (Monti, 2011;
Poline and Brett, 2012). Importantly, in line with the standard practice in fMRI
data analysis, we do not assume spherical covariance matrices (e.g., Mumford
and Nichols, 2008; Zarahn et al., 1997; Purdon and Weissko�, 1998; Woolrich
et al., 2001; Friston et al., 2002b).

We proceed as follows. After some preliminary notational remarks, we begin
the theoretical exposition by �rst introducing the model of application in Section
2.1. We next brie�y discuss two standard estimation techniques (conjugate
Bayes and ML for spherical covariance matrices) that e�ectively span the space
of VB, VML, ReML, and ML and serve as useful reference points in Section
2.2. After this prelude, we are then concerned with the central estimation
techniques of interest herein. In a hierarchical fashion, we subsequently discuss
the theoretical background and the practical algorithmic application of VB,
VML, ReML, and ML to the GLM in Sections 2.3 - 2.6. We focus on the
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central aspects and conceptual relationships of the techniques and present all
mathematical derivations as Supplementary Material. In the applied part of
our study (Section 3), we then �rstly evaluate VB, VML, ReML, and ML from
an objective Bayesian viewpoint (Bernardo, 2009) in simulations; and secondly,
apply them to real fMRI data acquired from a single participant under visual
stimulation (Ostwald et al., 2010). We close by discussing the relevance and
relation of our exposition with respect to previous treatments of the topic matter
in Section 4.

In summary, we make the following novel contributions in the current tech-
nical study. Firstly, we provide a comprehensive mathematical documentation
and derivation of the conceptual relationships between VB, VML, ReML, and
ML. Secondly, we derive a collection of explicit algorithms for the application of
these estimation techniques to the GLM with non-spherical linearized covariance
matrix. Finally, we explore the validity of the ensuing algorithms in simulations
and in the application to real experimental fMRI data. We complement our the-
oretical documentation by the practical implementation of the algorithms and
simulations in a collection of Matlab .m �les (MATLAB and Optimization Tool-
box Release 2014b, The MathWorks, Inc., Natick, MA, United States), which
is available from the Open Science Framework (https://osf.io/c4ux7/). On
occasion, we make explicit reference to these functions, which share the stub
vbg_*.m.

Notation and preliminary remarks

A few remarks on our mathematical notation are in order. We formulate VB,
VML, ReML, and ML against the background of probabilistic models (e.g.,
Bishop, 2006; Barber, 2012; Murphy, 2012). By probabilistic models we under-
stand (joint) probability distributions over sets of observed and unobserved ran-
dom variables. Notationally, we do not distinguish between probability distribu-
tions and their associated probability density functions and write, for example,
p(y, θ) for both. Because we are only concerned with parametric probabilis-
tic models of the Gaussian type, we assume throughout the main text that all
probability distributions of real random vectors have densities. We do, however,
distinguish between the conditioning of a probability distribution of a random
variable y on a (commonly unobserved) random variable θ, which we denote by
p(y|θ), and the parameterization of a probability distribution of a random vari-
able y by a (non-random) parameter θ, which we denote by pθ(y). Importantly,
in the former case, θ is conceived of as random variable, while in the latter case,
it is not. Equivalently, if θ∗ denotes a value that the random variable θ may
take on, we set p(y|θ = θ∗)⇔ pθ∗(y).

Otherwise, we use standard applied mathematical notation. For example,
real vectors and matrices are denoted as elements of Rn and Rm×n for n,m ∈ N,
In ∈ Rn×n denotes the n-dimensional identity matrix, | · | denotes a matrix de-
terminant, tr(·) denotes the trace operator, and p.d. denotes a positive-de�nite
matrix. Hf (a) denotes the Hessian matrix of some real-valued function f (x)
evaluated at x = a. We denote the probability density function of a Gaussian
distributed random vector y with expectation parameter µ and covariance pa-
rameter Σ by N(y;µ,Σ). Finally, because of the rather applied character of
this note, we formulate functions primarily by means of the de�nition of the
values they take on and eschew formal de�nitions of their domains and ranges.
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Further notational conventions that apply in the context of the mathematical
derivations provided in the Supplementary Material are provided therein.

2 Theory

2.1 Model of interest

Throughout this study, we are interested in estimating the parameters of the
model

y = Xβ + ε, (1)

where y ∈ Rn denotes the data, X ∈ Rn×p denotes a design matrix of full
column rank p, and β ∈ Rp denotes a parameter vector. We make the following
fundamental assumption about the error term ε ∈ Rn

ε ∼ N(ε; 0, Vλ) with Vλ :=
k∑
i=1

exp(λi)Qi ∈ Rn×n p.d. (2)

In words, we assume that the error term is distributed according to a Gaussian
distribution with expectation parameter 0 ∈ Rn and positive-de�nite covariance
matrix Vλ ∈ Rn×n. Importantly, we do not assume that Vλ is necessarily of the
form σ2In, i.e. we allow for non-sphericity of the error terms. In (2), λ1, . . . , λk,
is a set of covariance component parameters and Q1, . . . , Qk ∈ Rn×n is a set of
covariance basis matrices, which are assumed to be �xed and known. We assume
throughout, that the true, but unknown, values of λ1, . . . , λk are such that Vλ
is positive-de�nite. In line with the common denotation in the neuroimaging
literature, we refer to (1) and (2) as the general linear model (GLM) and its
formulation by means of equations (1) and (2) as its structural form.

Models of the form (1) and (2) are widely used in the analysis of neuroimag-
ing data, and, in fact, throughout the empirical sciences (e.g., Rutherford, 2001;
Draper and Smith, 2014; Gelman et al., 2014). In the neuroimaging commu-
nity, models of the form (1) and (2) are used, for example, in the analysis of
fMRI voxel time-series at the session and participant-level (Monti, 2011; Poline
and Brett, 2012), for the analysis of group e�ects (Mumford and Nichols, 2006,
2009), or in the context of voxel-based morphometry (Ashburner and Friston,
2000; Ashburner, 2009).

In the following, we discuss the application of VB, VML, ReML, and ML to
the general forms of (1) and (2). In our examples, however, we limit ourselves
to the application of the GLM in the analysis of a single voxel's time-series in a
single fMRI recording (run). In this case, y ∈ Rn corresponds to the voxel's MR
values over EPI volume acquisitions and n ∈ N represents the total number of
volumes acquired during the session. The design matrix X ∈ Rn×p commonly
constitutes a constant regressor and the onset stick functions of di�erent ex-
perimental conditions convolved with a haemodynamic response function and a
constant o�set. This renders the parameter entries βj (j ∈ Np) to correspond
to the average session MR signal and condition-speci�c e�ects. Importantly, in
the context of fMRI time-series analyses, the most commonly used form of the
covariance matrix Vλ employs k = 2 covariance component parameters λ1 and
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Figure 1: (A)Example design and covariance basis matrices. The upper panels
depict the design matrix X ∈ R400×2 and the covariance basis matrices Q1 ∈ R400×400

used in the example applications of the current section. The design matrix encodes
the onset functions of two hypothetical experimental conditions which were convolved
with the canonical haemodynamic response function. Events of each condition are
presented approximately every 6 seconds, and n = 400 data points with a TR of 2
seconds are modelled. The covariance basis matrices are speci�ed in eq.(3) and shown
here for n = 400 based on their evaluation using spm_Ce.m. (B) The left panel depicts
a magni�cation of the �rst 20 entries of Q2. The right panel depicts the entries of the
�rst row of Q2 for 12 columns. For τ = 0.2 the entries model exponentially decaying
error correlations. (C) A data realization of the ensuing GLM model with true, but
unknown, values of β = (2,−1)T and λ = (−0.5,−2)T . Note that we do not model a
signal o�set, or equivalently, set the beta parameter for the signal o�set to zero. For
implementational details, please see vbg_1.m.

λ2 and corresponding covariance basis matrices

Q1 := In and Q2 := (Q2)ij := exp

(
−1

τ
|i− j|

)
. (3)

This speci�c form of the error covariance matrix encodes exponentially decaying
correlations between neighbouring data points, and, with τ := 0.2, corresponds
to the widely used approximation to the AR(1) + white noise model in the
analysis of fMRI data (Purdon and Weissko�, 1998; Friston et al., 2002b).

In Figure 1, we visualize the exemplary design matrix and covariance basis
matrix set that will be employed in the example applications throughout the
current section. In the example, we assume two experimental conditions, which
have been presented with an expected inter-trial interval of 6 seconds (stan-
dard deviation 1 second) during an fMRI recording session comprising n = 400
volumes and with a TR of 2 seconds. The design matrix was created using
the micro-time resolution convolution and downsampling approach discussed in
Henson and Friston (2007).
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2.2 Conjugate Bayes and ML under error sphericity

We start by brie�y recalling the fundamental results of conjugate Bayesian and
classical point-estimation for the GLM with spherical error covariance matrix.
In fact, the introduction of ReML (Phillips et al., 2002; Friston et al., 2002a) and
later VB (Friston et al., 2007) to the neuroimaging literature were motivated
amongst other things by the need to account for non-sphericity of the error dis-
tributions in fMRI time-series analysis (Purdon and Weissko�, 1998; Woolrich
et al., 2001). Further, while not a common approach in fMRI, recalling the con-
jugate Bayes scenario helps to contrast the probabilistic model of interest in VB
from its mathematically more tractable, but perhaps less intuitively plausible,
analytical counterpart. Together, the two estimation techniques discussed in
the current section may thus be conceived as forming the respective endpoints
of the continuum of estimation techniques discussed in the remainder.

With spherical covariance matrix, the GLM of eqs. (1) and (2) simpli�es to

y = Xβ + ε, where ε ∼ N(ε; 0, σ2In). (4)

A conjugate Bayesian treatment of the GLM considers the structural form (4)
as a conditional probabilistic statement about the distribution of the observed
random variable y

p(y|β, σ2) = N(y;Xβ, σ2In), (5)

which is referred to as the likelihood and requires the speci�cation of the marginal
distribution p(β, σ2), referred to as the prior. Together, the likelihood and the
prior de�ne the probabilistic model of interest, which takes the form of a joint
distribution over the observed random variable y and the unobserved random
variables β and σ2:

p(y, β, σ2) = p(y|β, σ2)p(β, σ2). (6)

Based on the probabilistic model (6), the two fundamental aims of Bayesian
inference are, �rstly, to determine the conditional parameter distribution given
a value of the observed random variable p(β, σ2|y), often referred to as the
posterior, and secondly, to evaluate the marginal probability p(y) of a value
of the observed random variable, often referred to as marginal likelihood or
model evidence. The latter quantity forms an essential precursor for Bayesian
model comparison, as discussed for example in further detail in Stephan et al.
(2016a). Note that in our treatment of the Bayesian scenario the marginal
and conditional probability distributions of β and σ2 are meant to capture our
uncertainty about the values of these parameters and not distributions of true,
but unknown, parameter values. For the true, but unknown, values of β and
σ2 we postulate, as in the classical point-estimation scenario, that they assume
�xed values, which are never revealed (but can of course be chosen ad libitum
in simulations).

The VB treatment of (6) assumes proper prior distributions for β and σ2. In
this spirit, the closest conjugate Bayesian equivalent is hence the assumption of
proper prior distributions. For the case of the model (6), upon reparameteriza-
tion in terms of a precision parameter λ := 1/σ2, a natural conjugate approach
assumes a non-independent prior distribution of Gaussian-Gamma form,

p(β, λ) = p(β|λ)p(λ) = N(β;µβ ,Σβ)G(λ; aλ, bλ), (7)
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where µβ ∈ Rp,Σβ := λ−1Vβ , aλ, bλ ∈ R are the prior distribution parameters
and Vβ ∈ Rp×p p.d. is the prior beta parameter covariance structure. For the
gamma distribution we use the shape and rate parameterization. Notably, the
Gaussian distribution of β is parameterized conditional on the value of λ in
terms of its covariance Σβ . Under this prior assumption, it can be shown that
the posterior distribution is also of Gaussian-Gamma form,

p(β, λ|y) = N(β;µβ|y,Σβ|y)G(λ; aλ|y, bλ|y), (8)

with posterior parameters

µβ|y = (XTX + V −1β )−1(XT y + V −1β µβ)

Σβ|y = λ−1Vβ|y = λ−1(XTX + V −1β )−1

aλ|y = (2aλ + n)/2

bλ|y = bλ +
1

2
yT y +

1

2
µTβ V

−1
β µβ −

1

2
µTβ|yV

−1
β|yµβ|y.

(9)

Furthermore, in this scenario the marginal likelihood evaluates to a multivariate
non-central T-distribution

p(y) = T (y;µy,Σy, νy) (10)

with expectation, covariance, and degrees of freedom parameters

µy = Xµβ , Σy =
2b

2a+ n− 1
(XVβX

T + In), and νy = 2a+ n− 1, (11)

respectively. For derivations of (8) - (11) see, for example, Lindley and Smith
(1972); Broemeling (1984), and Gelman et al. (2014).

Importantly, in contrast to the VB, VML, ReML, and ML estimation tech-
niques developed in the remainder, the assumption of the prior probabilistic de-
pendency of the e�ect size parameter on the covariance component parameter in
(7) eshews the need for iterative approaches and results in the fully analytical
solutions of eqs. (8) to (11). However, as there is no principled reason be-
yond mathematical convenience that motivates this prior dependency, the fully
conjugate framework seems to be rarely used in the analysis of neuroimaging
data. Moreover, the assumption of an uninformative improper prior distribution
(Frank et al., 1998) is likely more prevalent in the neuromaging community than
the natural conjugate form discussed above. This is due to the implementation
of a closely related procedure in FSL's FLAME software (Woolrich et al., 2004,
2009). However, because VB assumes proper prior distributions, we eschew the
details of this approach herein.

In contrast to the probabilistic model of the Bayesian scenario, the classical
ML approach for the GLM does not conceive of β and σ2 as unobserved ran-
dom variables, but as parameters, for which point-estimates are desired. The
probabilistic model of the classical ML approach for the structural model (4)
thus takes the form

pβ,σ2 (y) = N(y;Xβ, σ2In). (12)

The ML point-estimators for β and σ2 are well-known to evaluate to (e.g.,
Hocking, 2013)

β̂ = (XTX)−1XT y (13)
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and
σ̂2 =

1

n
(y −Xβ̂)T (y −Xβ̂). (14)

Note that (13) also corresponds to the ordinary least-squares estimator. It can
be readily generalized for non-spherical error covariance matrices by a �sand-
wiched� inclusion of the appropriate error covariance matrix, if this is (assumed)
to be known, resulting in the generalized least-squares estimator (e.g., Draper
and Smith, 2014). Further note that (14) is a biased estimator for σ2 and hence
commonly replaced by its restricted maximum likelihood counterpart, which
replaces the factor n−1 by the factor (n− p)−1 (e.g., Foulley, 1993).

Having brie�y reviewed the conjugate Bayesian and classical point estima-
tion techniques for the GLM parameters under the assumption of a spherical
error covariance matrix, we next discuss VB, VML, ReML, and ML for the
scenario laid out in Section 2.1.

2.3 Variational Bayes (VB)

VB is a computational technique that allows for the evaluation of the primary
quantities of interest in the Bayesian paradigm as introduced above: the poste-
rior parameter distribution and the marginal likelihood. For the GLM, VB thus
rests on the same probabilistic model as standard conjugate Bayesian inference:
the structural form of the GLM (cf. equations (1) and (2)) is understood as the
parameter conditional likelihood distribution and both parameters are endowed
with marginal distributions. The probabilistic model of interest in VB thus
takes the form

p(y, β, λ) = p(y|β, λ)p(β, λ) (15)

with likelihood distribution

p(y|β, λ) = N(y;Xβ, Vλ). (16)

Above, we have seen that a conjugate prior distribution can be constructed
which allows for exact inference in models of the form (1) and (2) based on a
conditionally-dependent prior distribution and simple covariance form. In order
to motivate the application of the VB technique to the GLM, we here thus
assume that the marginal distribution p(β, λ) factorizes, i.e., that

p(β, λ) = p(β|λ)p(λ) := p(β)p(λ). (17)

Under this assumption, exact Bayesian inference for the GLM is no longer pos-
sible and approximate Bayesian inference is clearly motivated (Murphy, 2012).

To compute the marginal likelihood and obtain an approximation to the
posterior distribution over parameters p(β, λ|y), VB uses the following decom-
position of the log marginal likelihood into two information theoretic quantities
(Cover and Thomas, 2012), the free energy and a Kullback-Leibler (KL) diver-
gence

ln p(y) = FV B(q(β, λ)) +KL(q(β, λ)||p(β, λ|y)). (18)

We discuss the constituents of the right-hand side of (18) in turn. Firstly, q(β, λ)
denotes the so-called variational distribution, which will constitute the approxi-
mation to the posterior distribution and is of parameterized form, i.e. governed
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by a probability density. We refer to the parameters of the variational distri-
bution as variational parameters. Secondly, the non-negative KL-divergence is
de�ned as the integral

KL(q(β, λ)||p(β, λ|y)) =

∫∫
q(β, λ) ln

(
q(β, λ)

p(β, λ|y)

)
dβ dλ . (19)

Note that, formally, the KL-divergence is a functional, i.e., a function of func-
tions, in this case the probability density functions q(β, λ) and p(β, λ|y), and
returns a scalar number. Intuitively, it measures the dissimilarity between its
two input distributions: the more similar the variational distribution q(β, λ) is
to the posterior distribution p(β, λ|y), the smaller the divergence becomes. It is
of fundamental importance for the VB technique that the KL-divergence is al-
ways positive and zero if, and only if, q(β, λ) and p(β, λ|y) are equal. For a proof
of these properties, see Appendix A in Ostwald et al. (2014). Together with the
log marginal likelihood decomposition (18) the properties of the KL-divergence
equip the free energy with its central properties for the VB technique, as dis-
cussed below. A proof of (18) with ϑ := {β, λ} is provided in Appendix B in
Ostwald et al. (2014).

The free energy itself is de�ned by

FV B(q(β, λ)) =

∫∫
q(β, λ) ln

(
p(y, β, λ)

q(β, λ)

)
dβ dλ . (20)

Due to the non-negativity of the KL-divergence, the free energy is always smaller
than or equal to the log marginal likelihood - the free energy thus forms a lower
bound to the log marginal likelihood. Note that in (20), the data y is assumed
to be �xed, such that the free energy is a function of the variational distribution
only. Because, for a given data observation, the log marginal likelihood ln p(y)
is a �xed quantity, and because increasing the free energy contribution to the
right-hand side of (18) necessarily decreases the KL-divergence between the
variational and the true posterior distribution, maximization of the free energy
with respect to the variational distribution has two consequences: �rstly, it
renders the free energy an increasingly better approximation to the log marginal
likelihood; secondly, it renders the variational approximation an increasingly
better approximation to the posterior distribution.

In summary, VB rests on �nding a variational distribution that is as simi-
lar as possible to the posterior distribution, which is equivalent to maximizing
the free energy with regard to the variational distribution. The maximized free
energy then substitutes for the log marginal likelihood and the corresponding
variational distribution yields an approximation to the posterior parameter dis-
tribution, i.e.,

max
q(β,λ)

FV B(q(β, λ)) ≈ ln p(y) and arg max
q(β,λ)

FV B(q(β, λ)) ≈ p(β, λ|y). (21)

To facilitate the maximization process, the variational distribution is often as-
sumed to factorize over parameter sets, an assumption commonly referred to as
mean-�eld approximation (Friston et al., 2007)

q(β, λ) := q(β)q(λ). (22)
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Of course, if the posterior does not factorize accordingly, i.e., if

p(β, λ|y) 6= p(β|y)p(λ|y), (23)

the mean-�eld approximation limits the exactness of the method.
In applications, maximization of the free energy is commonly achieved by ei-

ther free-form or �xed-form schemes. In brief, free-form maximization schemes
do not assume a speci�c form of the variational distribution, but employ a fun-
damental theorem of variational calculus to maximize the free energy and to
analytically derive the functional form and parameters of the variational dis-
tribution. For more general features of the free-form approach, please see, for
example, Bishop (2006); Chappell et al. (2009) and Ostwald et al. (2014). Fixed-
form maximization schemes, on the other hand, assume a speci�c parametric
form for the variational distribution's probability density function from the out-
set. Under this assumption, the free energy integral (20) can be evaluated (or
at least approximated) analytically and rendered a function of the variational
parameters. This function can in turn be optimized using standard nonlinear
optimization algorithms. In the following section, we apply a �xed-form VB
approach to the current model of interest.

Application to the GLM

To demonstrate the �xed-form VB approach to the GLM of eqs. (1) and (2), we
need to specify the parametric forms of the prior distributions p(β) and p(λ),
as well as the parametric forms of the variational distribution factors q(β) and
q(λ). Here, we assume that all these marginal distributions are Gaussian, and
hence speci�ed in terms of their expectation and covariance parameters:

p(β) = N(β;µβ ,Σβ), where µβ ∈ Rp and Σβ ∈ Rp×p p.d. (24)

p(λ) = N(λ;µλ,Σλ), where µλ ∈ Rk and Σλ ∈ Rk×k p.d. (25)

q(β) = N(β;mβ , Sβ), where mβ ∈ Rp and Sβ ∈ Rp×p p.d. (26)

q(λ) = N(λ;mλ, Sλ), where mλ ∈ Rk and Sλ ∈ Rk×k p.d. (27)

Note that we denote parameters of the prior distributions with Greek and pa-
rameters of the variational distributions with Roman letters. Together with
eqs. (1) to (3), eqs. (24) to (27) specify all distributions necessary to evaluate
the free energy integral and render the free energy a function of the variational
parameters. We document this derivation in Supplementary Material S1.2 and
here limit ourselves to the presentation of the result: under the given assump-
tions about the prior, likelihood, and variational distributions, the variational
free energy is a function of the variational parameters mβ , Sβ ,mλ, and Sλ, and,
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using mild approximations in its analytical derivation, evaluates to

FV B(mβ , Sβ ,mλ, Sλ) =− n

2
ln 2π − 1

2
ln |Vmλ | −

1

2
(y −Xmβ)TV −1

mλ (y −Xmβ)

− 1

2
tr(SβX

TV −1
mλX)− 1

4
tr(Bmλ,Sβ ,mλSλ)

− p

2
ln 2π − 1

2
ln |Σβ |

− 1

2
(mβ − µβ)TΣ−1

β (mβ − µβ)− 1

2
tr(Σ−1

β Sβ)

− k

2
ln 2π − 1

2
ln |Σλ|

− 1

2
(mλ − µλ)TΣ−1

λ (mλ − µλ)− 1

2
tr(Σ−1

λ Sλ)

+
k

2
ln(2πe) +

1

2
ln |Sβ |

+
p

2
ln(2πe) +

1

2
ln |Sλ|

(28)

with

Bmβ ,Sβ ,mλ := Hln |Vλ| (mλ)

+H
tr(V−1

λ
XSβX

T ) (mλ)

+H
(y−Xmβ)T V

−1
λ

(y−Xmβ)
(mλ) .

(29)

In (28), the third term may be viewed as an accuracy term which measures
the deviation of the estimated model prediction from the data, the eighth and
twelfth terms may be viewed as complexity terms, that measure how far the
model can and has to deviate from its prior expectations to account for the
data, and the last four terms can be conceived as maximum entropy terms that
ensure that the posterior parameter uncertainty is as large as possible given the
available data (Jaynes, 2003).

In principle, any numerical routine for the maximization of nonlinear func-
tions could be applied to maximize the free energy function of eq. (28) with
respect to its parameters. Because of the relative simplicity of eq. (28), we
derived explicit update equations by evaluating the VB free energy gradient
with respect to each of the parameters and setting to zero as documented in
Supplementary Material S1.2. This analytical approach yields a set of four up-
date equations and, together with the iterative evaluation of the VB free energy
function (28), results in a VB algorithm for the current model as documented
in Algorithm 1. Here, and in all remaining algorithms, convergence is assessed
in terms of a vanishing of the free energy increase between successive iterations.
This di�erence is evaluated against a convergence criterion δ, which we set to
δ = 10−3 for all reported simulations.

In Figure 2, we visualize the application of the VB algorithm to an example
fMRI time-series realization from the model described in Section 2.1 with true,
but unknown, parameter values β = (2,−1)T and λ = (−0.5,−2)T . We used
imprecise priors for both β and λ by setting

p(β) := N

(
β;

(
0
0

)
,

(
10 0
0 10

))
and p(λ) := N

(
λ;

(
0
0

)
,

(
10 0
0 10

))
. (30)
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Algorithm 1 VB Algorithm (for details, see vbg_est_vb.m)

Input: data y, prior parameters µβ ,Σβ , µλ,Σλ, model components X,Q1, Q2

Output: variational parameters m(i)
β , S

(i)
β ,m

(i)
λ , S

(i)
λ , free energy FV B

(i)

1: Initialization: i := 1, m(i)
β := µβ , S

(i)
β := Σβ , m

(i)
λ := µλ, S

(i)
λ := Σλ,

∆FV B
(i)

:=∞, FV B
(i)

:= FV B
(
m

(i)
β , S

(i)
β ,m

(i)
λ , S

(i)
λ

)
2: while ∆FV B

(i)

> δ do
3: i := i+ 1
4: evaluate B

m
(i−1)
β ,S

(i−1)
β ,m

(i−1)
λ

5: S
(i)
λ :=

(
1
2Bm(i−1)

β ,S
(i−1)
β ,m

(i−1)
λ

+ Σ−1λ

)−1
6: m

(i)
β :=

(
XTV −1mλ

X + Σ−1β

)−1 (
XTV −1mλ

Xy + Σ−1β µβ

)
7: S

(i)
β :=

(
XTV −1mλ

X + Σ−1β

)−1
8: solve ∂

∂mλj
fV B

(
m

(i)
λ

)
= 0 for m(i)

λ

9: evaluate FV B
(i)

= FV B
(
m

(i)
β , S

(i)
β ,m

(i)
λ , S

(i)
λ

)
10: ∆FV B

(i)

:= FV B
(i) − FV B(i−1)

11: end while

Panel A of Figure 2 depicts the prior distribution over β, and the true, but
unknown, value of β as black ×. Panel B depicts the variational distribution
over β after convergence for a VB free energy convergence criterion of δ = 10−3.
Given the imprecise prior distribution, this variational distribution falls close
to the true, but unknown, value. In general, convergence of the algorithm is
achieved within 4 to 6 iterations. Panels C and D depict the prior distribution
over λ and the variational distribution over λ upon convergence, respectively.
As for β, the approximation of the posterior distribution is close to the true,
but unknown, value of λ. Finally, Panels E and F depict the VB free energy
surface as a function of the variational parameters mβ and mλ, respectively.
For the chosen prior distributions, the VB free energy surfaces display clear
global maxima, which the VB algorithm can identify. Note, however, that the
maximum of the VB free energy as a function of mλ is located on an elongated
crest.

2.4 Variational Maximum Likelihood (VML)

Variational Maximum Likelihood (Beal, 2003), also referred to as (variational)
expectation-maximization (Barber, 2012; McLachlan and Krishnan, 2007), can
be considered a semi-Bayesian estimation approach. For a subset of model
parameters, VML determines a Bayesian posterior distribution, while for the
remaining parameters maximum-likelihood point estimates are evaluated. As
discussed below, VML can be derived as a special case of VB under speci�c
assumptions about the posterior distribution of the parameter set for which only
point estimates are desired. If for this parameter set additionally a constant,
improper prior is assumed, variational Bayesian inference directly yields VML
estimates. In its application to the GLM, we here choose to treat β as the
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Figure 2: VB estimation. (A) Prior distribution p(β) with expectation µβ :=
(0, 0)T and covariance Σβ := 10I2. Here, and in all subpanels, the black × marks the
true, but unknown, parameter value. (B) Variational approximation q(c)(β) to the
posterior distribution upon convergence (δ = 10−3). (C) Prior distribution p(λ) with
expectation µλ := (0, 0)T and covariance Σλ = 10I2. (D) Variational approximation
q(c)(λ) to the posterior distribution upon convergence. (E) Variational free energy de-
pendence on mβ . The blue × indicates the prior expectation parameter and the red +
marks the approximated posterior expectation parameter. (F) Variational free energy
dependence on mλ. The blue × indicates the prior expectation parameter and the red
× marks the approximated posterior expectation parameter. For implementational
details, please see vbg_1.m.

parameter for which a posterior distribution is derived, and λ as the parameter
for which a point-estimate is desired.

The current probabilistic model of interest thus takes the form

pλ(y, β) = pλ(y|β)p(β) (31)
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with likelihood distribution

pλ(y|β) = N(y;Xβ, Vλ). (32)

Note that in contrast to the probabilistic model underlying VB estimation, λ
is not treated as a random variable and thus merely parameterizes the joint
distribution of β and y. Similar to VB, VML rests on a decomposition of the
log marginal likelihood

ln pλ(y) =

∫
pλ(y, β) dβ (33)

into a free energy and a KL-divergence term

ln pλ(y) = FVML(q(β), λ) +KL(q(β)||pλ(β|y)). (34)

In contrast to the VB free energy, the VML free energy is de�ned by

FVML(q(β), λ) =

∫
q(β) ln

(
pλ(y, β)

q(β)

)
dβ, (35)

while the KL divergence term takes the form

KL(q(β)||pλ(β|y)) =

∫
q(β) ln

(
q(β)

pλ(β|y)

)
dβ. (36)

In Supplementary Material S2, we show how the VML framework can be de-
rived as a special case of VB by assuming an improper prior for λ and a Dirac
measure δλ∗ for the variational distribution of λ. Importantly, it is the param-
eter value λ∗ of the Dirac measure that corresponds to the parameter λ in the
VML framework.

Application to the GLM

In the application of the VML approach to the GLM of eqs. (1) and (2) we
need to specify the parametric forms of the prior distribution p(β) and the
parametric form of the variational distribution q(β). As above, we assume that
these distributions are Gaussian, i.e.,

p(β) = N(β;µβ ,Σβ), where µβ ∈ Rp and Σβ ∈ Rp×p p.d. (37)

q(β) = N(β;mβ , Sβ), where mβ ∈ Rp and Sβ ∈ Rp×p p.d. (38)

Based on the speci�cations of eqs. (37) and (38), the integral de�nition of the
VML free energy can be analytically evaluated under mild approximations,
which yields the VML free energy function of the variational parameters mβ

and Sβ and the parameter λ

FVML(mβ , Sβ , λ) =− n

2
ln 2π − 1

2
ln |Vλ| −

1

2
(y −Xmβ)TV −1

λ (y −Xmβ)

− 1

2
tr(SβX

TV −1
λ X)

− p

2
ln 2π − 1

2
ln |Σβ |

− 1

2
(mβ − µβ)TΣ−1

β (mβ − µβ)− tr(Σ−1
β Sβ)

+
p

2
ln(2πe) +

1

2
ln |Sβ |.

(39)
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We document the derivation of (39) in Supplementary Material S1.3. In con-
trast to the VB free energy (cf. eq. (28)), the VML free energy for the GLM
is characterized by the absence of terms relating to the prior and posterior un-
certainty about the covariance component parameter λ. To maximize the VML
free energy, we again derived a set of update equations as documented in Sup-
plementary Material S1.3. These update equations give rise to a VML algorithm
for the current model, which we document in Algorithm 2.

Algorithm 2 VML Algorithm (for details, see vbg_est_vml.m)

Input: data y, prior parameters µβ ,Σβ , initial value λ(1), model X,Q1, Q2

Output: variational parameters m(i)
β , S

(i)
β , λ(i), free energy FVML(i)

1: Initialization: i := 1 and m(i)
β := µβ , S

(i)
β := Σβ , ∆FVML(i)

:= ∞, and

FVML(i)

:= FVML
(
m

(i)
β , S

(i)
β , λ(i)

)
.

2: while ∆FVML(i)

> δ do
3: i := i+ 1

4: m
(i)
β :=

(
XTV −1λ X + Σ−1β

)−1 (
XTV −1λ Xy + Σ−1β µβ

)
5: S

(i)
β :=

(
XTV −1λ X + Σ−1β

)−1
6: solve ∂

∂λj
fVML

(
λ(i)
)

= 0 for λ(i)

7: evaluate FVML(i)

:= FVML
(
m

(i)
β , S

(i)
β , λ(i)

)
8: ∆FVML(i)

:= FVML(i) − FVML(i−1)

9: end while

In Figure 3, we visualize the application of the VML algorithm to an example
fMRI time-series realization of the model described in Section 2.1 with true, but
unknown, parameter values β = (2,−1)T and λ = (−0.5,−2)T . As above, we
used an imprecise prior for β by setting

p(β) := N

(
β;

(
0
0

)
,

(
10 0
0 10

))
. (40)

and set the initial covariance component estimate to λ(1) = (0, 0)T . Panel A of
Figure 3 depicts the prior distribution over β and the true, but unknown, value
of β. Panel B depicts the variational distribution over β after convergence with
a VML free energy convergence criterion of δ = 10−3. As in the VB scenario,
given the imprecise prior distribution, this variational distribution falls close to
the true, but unknown, value and convergence is usually achieved within 4 to
6 iterations. Panels C and D depict the VML free energy surface as a function
of the variational parameter mβ and the parameter λ, respectively. For the
chosen prior distributions, the VML free energy surfaces displays a clear global
maximum as a function of mβ , while the maximum location as a function of mλ

is located on an elongated crest.

2.5 Restricted Maximum Likelihood (ReML)

ReML is commonly viewed as a generalization of the maximum likelihood ap-
proach, which in the case of the GLM yields unbiased, rather than biased,
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Figure 3: VML estimation.(A) Prior distribution p(β) with expectation µβ :=
(0, 0)T and covariance Σβ := 10I2. Here, and in all subpanels, the black × marks
the true, but unknown, parameter value. (B) Variational approximation q(c)(β) to
the posterior distribution upon convergence of the algorithm. (C) VML free energy
dependence on mβ . The blue × indicates the prior expectation parameter and the red
+ marks the approximated posterior expectation parameter. (D) VML free energy
dependence on λ. The blue × indicates the parameter value at algorithm initial-
ization and the red + marks the parameter value upon algorithm convergence. For
implementational details, please see vbg_1.m.

covariance component parameter estimates (Harville, 1977; Searle et al., 2009;
Phillips et al., 2002). In this context and using our denotations, the ReML
estimate λ̂ReML is de�ned as the maximizer of the ReML objective function

λ̂ReML := arg max
λ

`ReML(λ), (41)

where

`ReML(λ) := −1

2
ln |Vλ| −

1

2
ln |XTV −1

λ X| − 1

2
(y −Xβ̂GLS)TV −1

λ (y −Xβ̂GLS) (42)

denotes the ReML objective function and

β̂GLS := (XTVλX)−1XTV −1λ y (43)

denotes the generalized least-squares estimator for β. Because β̂GLS depends on
λ in terms of Vλ, maximizing the ReML objective function necessitates iterative
numerical schemes. Traditional derivations of the ReML objective function, such

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 4, 2017. ; https://doi.org/10.1101/077461doi: bioRxiv preprint 

https://doi.org/10.1101/077461
http://creativecommons.org/licenses/by-nc-nd/4.0/


as provided by LaMotte (2007) and Hocking (2013), are based on mixed-e�ects
linear models and the introduction of a contrast matrix A with the property
that ATX = 0 and then consider the likelihood of AT y after cancelling out
the deterministic part of the model. In Supplementary Material S1.4 we show
that, up to an additive constant, the ReML objective function also corresponds
to the VML free energy under the assumption of an improper constant prior
distribution for β, and an exact update of the VML free energy with respect to
the variational distribution of β, i.e., setting q(β) = pλ(β|y). In other words,
for the probabilistic model

pλ(y, β) = pλ(y|β)p(β) with pλ(y|β) = N(y;Xβ, Vλ) and p(β) := 1 (44)

it holds that
FVML(pλ(β|y), λ) = `ReML(λ) + c, (45)

where
c := −n

2
ln 2π +

p

2
ln(2π), (46)

and thus
λ̂ReML = arg max

λ
FVML(pλ(β|y), λ). (47)

ReML estimation of covariance components in the context of the general
linear model can thus be understood as the special case of VB, in which β is
endowed with an improper constant prior distribution, the posterior distribu-
tion over λ is taken to be the Dirac measure δλ∗ , and the point estimate of
λ∗ maximizes the ensuing VML free energy under exact inference of the poste-
rior distribution of β. In this view, the additional term of the ReML objective
function with respect to the ML objective function obtains an intuitive mean-
ing: − 1

2 ln |XTV −1λ X| corresponds to the entropy of the posterior distribution
pλ(β|y) which is maximized by the ReML estimate λ̂ReML. The ReML objec-
tive function thus accounts for the uncertainty that stems from estimating of
the parameter β by assuming that is as large as possible under the constraints
of the data observed.

In line with the discussion of VB and VML, we may de�ne a ReML free
energy, by which we understand the VML free energy function evaluated at
pλ(β|y) for the probabilistic model (44). In Supplementary Material S1.4, we
show that this ReML free energy can be written as

FReML(mβ , Sβ , λ) = −n
2

ln 2π − 1

2
ln |Vλ| −

1

2
(y −Xmβ)TV −1

λ (y −Xmβ)

− 1

2
tr(SβX

TV −1
λ X)

+
p

2
ln(2πe) +

1

2
ln |Sβ |.

(48)

Note that the equivalence of eq. (48) to the constant-augmented ReML objective
function of eq. (45) derives from the fact that under the in�nitely imprecise
prior distribution for β the variational expectation and covariance parameters
evaluate to

mβ = β̂GLS and Sβ = (XTV 1−
λ X)−1, (49)

respectively. With respect to the general VML free energy, the ReML free
energy is characterized by the absence of a term that penalizes the deviation of
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the variational parameter mβ from its prior expectation, because the in�nitely
imprecise prior distribution p(β) provides no constraints on the estimate of β.
To maximize the ReML free energy, we again derived a set of update equations
which we document in Algorithm 3.

Algorithm 3 ReML Algorithm (for details, see vbg_est_reml.m)

Input: data y, initial values m(1)
β , S

(1)
β , λ(1), model X,Q1, Q2

Output: variational parameters m(i)
β , S

(i)
β , λ(i), free energy FReML(i)

1: Initialization: i := 1, ∆FReML(i)

:= ∞, and FReML(i)

:=

FReML
(
m

(i)
β , S

(i)
β , λ(i)

)
.

2: while ∆FReML(i)

> δ do
3: m

(i)
β :=

(
XTV −1λ X

)−1
XTV −1λ y

4: S
(i)
β :=

(
XTV −1λ X

)−1
5: solve ∂

∂λj
fReML

(
λ(i)
)

= 0 for λ(i)

6: evaluate FReML(i)

:= FReML
(
m

(i)
β , S

(i)
β , λ(i)

)
7: ∆FReML(i)

:= FReML(i) − FReML(i−1)

8: end while

In Figure 4, we visualize the application of the ReML algorithm to an exam-
ple fMRI time-series realization of the model described in Section 2.1 with true,
but unknown, parameter values β = (2,−1)T and λ = (−0.5,−2)T . Here, we
chose the β prior distribution parameters as the initial values for the variational
parameters by setting

m
(1)
β :=

(
0
0

)
and S(1)

β :=

(
10 0
0 10

)
, (50)

and as above, set the initial covariance component estimate to λ(1) = (0, 0)T .
Panel A of Figure 4 depicts the converged variational distribution over β

and the true, but unknown, value of β for a ReML free energy convergence
criterion of δ = 10−3. Panels B and C depict the ReML free energy surface as
a function of the variational parameter mβ and λ, respectively. Note that due
to the imprecise prior distributions in the VB and VML scenarios, the resulting
free energy surfaces are almost identical to the ReML free energy surfaces.

2.6 Maximum Likelihood (ML)

Finally, also the ML objective function can be viewed as the special case of the
VB log marginal likelihood decomposition for variational distributions q(β) and
q(λ) both conforming to Dirac measures. Speci�cally, as shown in Supplement
Material S2 the ML estimate

(β̂ML, λ̂ML) := arg max
β,λ

`ML(β, λ) := arg max
β,λ

lnN(y;Xβ, Vλ) (51)

corresponds to the maximizer of the VML free energy for the probabilistic model

pλ(y, β) = pλ(y|β)p(β) with q(β) = δβ∗(β) and p(β) = 1, (52)
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Figure 4: ReML estimation. (A) Variational distribution q(c)(β) after convergence
based on the initial values mβ := (0, 0)T and Sβ := 10I2 (convergence criterion δ =
10−3). Here, and in all subpanels, the black ×marks the true, but unknown, parameter
value. (B) ReML free energy dependence on mβ . Here, and in Panel (C) the blue ×
indicates the parameter value at algorithm initialization and the red + marks the
parameter value upon algorithm convergence. (C) ReML free energy dependence on
λ. For implementational details, please see vbg_1.m.

i.e. a Dirac measure δβ∗ for the variational distribution and an improper and
constant prior density for the parameter β. Formally, we thus have

(β̂ML, λ̂ML) := arg max
β,λ

FVML(δβ∗(β), λ). (53)

To align the discussion of ML with the discussion of VB, VML, and ReML, we
may de�ne the thus evaluated VML free energy as the ML free energy, which is
just the standard log likelihood function of the GLM:

FML(β, λ) = −n
2

ln 2π − 1

2
ln |Vλ| −

1

2
(y −Xβ)TV −1λ (y −Xβ). (54)

Note that the posterior approximation q(β) does not encode any uncertainty
in this case, and thus the additional term corresponding to the entropy of this
distribution in the ReML free energy vanishes for the case of ML. Finally, to
maximize the ML free energy we again derived a set of update equations (Sup-
plementary Material S1.5) which we document in Algorithm 4. In Figure 5, we
visualize the application of this ML algorithm to an example fMRI time-series
realization of the model described in Section 2.1 with true, but unknown, pa-
rameter values β = (2,−1)T and λ = (−0.5,−2)T , initial parameter settings
of β(1) = (0, 0)T and λ(1) = (0, 0)T , and ML free energy convergence criterion
δ = 10−3 . Panel A depicts the ML free energy maximization with respect to
β(i) and Panel B depicts the ML free energy maximization with respect to λ(i).
Note the similarity to the equivalent free energy surfaces in the VB, VML, and
ReML scenarios.

In summary, in this section we have shown how VML, ReML, and ML esti-
mation can be understood as special case of VB estimation. In the application to
the GLM, the hierarchical nature of these estimation techniques yields a nested
set of free energy objective functions, in which gradually terms that quantify un-
certainty about parameter subsets are eliminated (cf. eqs. (28), (39), (48) and
(54)). In turn, the iterative maximization of these objective functions yields a
nested set of numerical algorithms, which assume gradually less complex formats
(Algorithms 1 - 4). As shown by the numerical examples, under imprecise prior
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Algorithm 4 ML Algorithm (for details, see vbg_est_ml.m)

Input: data y, initial values β(1), λ(1), model X,Q1, Q2

Output: parameter estimates β(i), λ(i), free energy FML(i)

1: Initialization: i := 1, ∆FML(i)

:=∞, FML(i)

:= FML(β(i), λ(i)).
2: while ∆FML(i)

> δ do
3: i := i+ 1
4: β(i) :=

(
XTV −1λ X

)−1
XTV −1λ y

5: solve ∂
∂λj

fML
(
λ(i)
)

= 0 for λ(i)

6: FML(i)

:= FML
(
β(i), λ(i)

)
7: ∆FML(i)

:= FML(i) − FML(i−1)

8: end while

Figure 5: ML estimation. (A) ML free energy dependence on β. Here, and in
Panel (B), the black × marks the true, but unknown parameter value, the blue ×
indicates the parameter value at algorithm initialization and the red + marks the
parameter value upon algorithm convergence. (B) ML free energy dependence on λ.
For implementational details, please see vbg_1.m.

distributions, the resulting free energy surfaces and variational (expectation)
parameter estimates are highly consistent across the estimation techniques. Fi-
nally, for all techniques, the relevant parameter estimates converge to the true,
but unknown, parameter values after a few algorithm iterations.

3 Applications

In Section 2 we have discussed the conceptual relationships and the algorith-
mic implementation of VB, VML, ReML, and ML in the context of the GLM
and demonstrated their validity for a single simulated data realization. In the
current section, we are concerned with their performance over a large number
of simulated data realizations (Section 3.1) and their exemplary application to
real experimental data (Section 3.2).

3.1 Simulations

Classical statistical theory has established a variety of criteria for the assess-
ment of an estimator's quality (e.g., Lehmann and Casella, 2006). Commonly,
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these criteria amount to the analytical evaluation of an estimators large sample
behaviour. In the current section we adopt the spirit of this approach in sim-
ulations. To this end, we �rst capitalize on an objective Bayesian standpoint
(Bernardo, 2003) by employing imprecise prior distributions to focus on the es-
timation techniques' ability to recover the true, but unknown, parameters of the
data generating model and the model structure itself. Speci�cally, we investi-
gate the cumulative average and variance of the β and λ parameter estimates
under VB, VML, ReML, and ML and the ability of each technique's (marginal)
likelihood approximation to distinguish between di�erent data generating mod-
els. In a second step, we then demonstrate exemplarily how parameter prior
speci�cations can induce divergences in the relative estimation qualities of the
techniques.

Parameter Recovery

To study each estimation technique's ability to recover true, but unknown,
model parameters, we drew 100 realizations of the example model discussed in
Section 2.1 and focussed our evaluation on the cumulative averages and vari-
ances of the converged (variational) parameter estimates m(c)

β ∈ R2 (VB, VML,

ReML), β(c) ∈ R2 (ML), m(c)
λ ∈ R2 (VB), and λ(c) ∈ R2 (VML, ReML, ML).

The simulations are visualized in Figure 6. Each panel column of Figure 6 de-
picts the results for one of the estimation techniques, and each panel row depicts
the results for one of the four parameter values of interest. Each panel displays
the cumulative average of the respective parameter estimate. Averages relat-
ing to estimates of β are depicted in blue, averages relating to estimates of λ
are depicted in green. In addition to the cumulative average, each panel shows
the cumulative variance of the parameter estimates as shaded area around the
cumulative average line, and the true, but unknown, values β = (2, 1)T and
λ = (−0.5,−2)T as grey line. Overall, parameter recovery as depicted here
is within acceptable bounds and the estimates variances are tolerable. While
there are no systematic di�erences in parameter recovery across the four es-
timation techniques, there are qualitative di�erences in the recovery of e�ect
size and covariance component parameters. For all techniques, the recovery of
the e�ect size parameters is unproblematic and highly reliable. The recovery of
covariance component recovery, however, fails in a signi�cant amount of approx-
imately 15 - 20% of data realizations. In the panels relating to estimates of λ in
Figure 6, these cases have been removed using an automated outlier detection
approach (Grubbs, 1969). In the outlying cases, the algorithms converged to
vastly di�erent values, often deviating from the true, but unknown, values by
an order of magnitude (for a summary of the results without outlier removal,
please refer to Supplementary Material S3). To assess whether this behaviour
was speci�c to our implementation of the algorithms, we also evaluated the de-
facto neuroimaging community standard for covariance component estimation,
the spm_reml.m and spm_reml_sc.m functions of the SPM12 suite in the same
model scenario. We report these simulations as Supplementary Material S4. In
brief, we found a similar covariance component (mis)estimation behaviour as in
our implementation.

Further research revealed that the relative unreliability of algorithmic co-
variance component estimation is a well-known phenomenon in the statistical
literature (e.g., Groeneveld and Kovac, 1990; Boichard et al., 1992; Groeneveld,
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Figure 6: Parameter recovery. The panels along the �gure's columns depict the
cumulative averages (blue/green lines), cumulative variances (blue/green shaded ar-
eas), and true, but unknown, parameter values (grey lines) for VB, VML, ReML, and
ML estimation. Parameter estimates relating to the e�ect sizes β are visualized in
blue, parameter estimates relating to the covariance components λ are visualized in
green. The panels along the �gure's rows depict the parameter recovery performance
for the subcomponents of the e�ect size parameters (row 1 and 2) and covariance com-
ponent parameters (row 3 and 4), respectively. The covariance component parameter
estimates are corrected for outliers as discussed in the main text. For implementational
details, please see vbg_2.m.
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1994; Foulley and van Dyk, 2000). We see at least two possible explanations
in the current case. Firstly, we did not systematically explore the behaviour
of the algorithmic implementation for di�erent initial values. It is likely, that
the number of estimation outliers can be reduced by optimizing, for each data
realization, the algorithm's starting conditions. However, also in this case, an
automated outlier detection approach would be necessary to optimize the respec-
tive initial values. Secondly, we noticed already in the demonstrative examples
in Section 2, that the free energy surface with respect to the covariance compo-
nents is not as well-behaved as for the e�ect sizes. Speci�cally, the maximum
is located on an elongated crest of the function, which is relatively �at (see e.g.
panel B of Figure 5) and hence impedes the straight-forward identi�cation of
the maximizing parameter value (see also Figure 4 of (Groeneveld and Kovac,
1990) for a very similar covariance component estimation objective function sur-
face). In the Discussion section, we suggest a number of potential remedies for
the observed outlier proneness of the covariance component estimation aspect
of the VB, VML, ReML, and ML estimation techniques.

Model Recovery

Having established overall reasonable parameter recovery properties for our
implementation of the VB, VML, ReML, and ML estimation techniques, we
next investigated the ability of the respective techniques' (marginal) log likeli-
hood approximations to recover true, but unknown, model structures. We here
focussed on the comparison of two data generating models that di�er in the
design matrix structure and have identical error covariance structures. Model
MG1 corresponds to the �rst column of the example design matrix of Figure 1
and thus is parameterized by a single e�ect size parameter. Model MG2 cor-
responds to the model used in all previous applications comprising two design
matrix columns. To assess the model recovery properties of the di�erent estima-
tion techniques, we generated 100 data realizations based on each of these two
models with true, but unknown, e�ect size parameter values of β1 = 2 (MG1
and MG2) and β2 = −1 (MG2 only), and covariance component parameters
λ = (−0.5,−2)T (MG1 and MG2), as in the previous simulations. We then
analysed each model's data realizations with data analysis models that corre-
sponded to only the single data-generating design matrix regressor (MA1) or
both regressors (MA2) for each of the four estimation techniques.

The results of this simulation are visualized in Figure 7. For each esti-
mation technique (panels), the average free energies, after exclusion of outlier
estimates for the covariance component parameters, are visualized as bars. The
data-generating models MG1 and MG2 are grouped on the x-axis and the data-
analysis models are grouped by bar color (MA1 green, MA2 yellow). As evident
from Figure 7, the correct analysis model obtained the higher free energy, i.e.
log model evidence approximation, for both data-generating models across all
estimation techniques. This di�erence was more pronounced when analysing
data generated by model MG2 than when analysing data generated by model
MG1. In this case, the observed data pattern is clearly better described by
MA2. In the case of the data-generating model MG1, data analysis model MA2
can naturally account for the observed data by estimating the second e�ect size
parameter to be approximately zero. Nevertheless, this additional model �exi-
bility is penalized correctly by all algorithms, such that the more parsimonious
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Figure 7: Model recovery. Each panel depicts the average free energies of the
indicated estimation technique over 100 data realizations. Two data generating models
(MG1 and MG2, panel x-axis) were used and analysed in a cross-over design with two
data analysis models (MA1 and MA2, bar color). MG1 and MA1 comprise the same
single column design matrix, and MG2 and MA2 comprise the same two column design
matrix. Models MG1 and MA1 are nested in MG2 and MA2. Across all estimation
techniques, the correct data generating model is identi�ed as indexed by the respective
higher free energy log model evidence approximation. For implementational details,
please see vbg_3.m.

data analysis model MA1 assumes the higher log model evidence approxima-
tion also in this case. We can thus conclude that model recovery is achieved
satisfactorily by all estimation techniques. A more detailed decomposition of
the average free energies into the respective free energy's sum terms is provided
in Supplementary Material S5.

Estimation quality divergences

Thus far, we have concentrated on the nested character of VML, ReML,
and ML in VB and demonstrated that for the current model application the
maximum-a-posteriori (MAP) estimates of VB and VML and the point esti-
mates of ReML and ML are able to recover true, but unknown, parameter
values. Naturally, the four estimation techniques di�er in the information they
provide upon estimation: VB estimates quantify posterior uncertainty about
both e�ect size and covariance component parameters, VML estimates quan-
tify posterior uncertainty about e�ect size parameters only, and ReML and ML
do not quantify posterior uncertainty about either parameter class. Beyond
these conceptual divergences, an interesting question concerns the qualitative
and quantitative di�erences in estimation that result from the estimation tech-
niques' speci�c characteristics. In general, while the properties of ML estimates
are fairly well understood from a classical frequentist perspective, the same
cannot be said for the other techniques (e.g. Blei et al., 2016). We return to
this point in the Discussion section. In the current section, we demonstrate
divergences in the quality of parameter estimation that emerge in high noise
scenarios, which are able to uncover prior distribution induced regularization
e�ects. We demonstrate this for both e�ect size (Figure 8A) and covariance
component parameters (Figure 8B) in the example model described in Section
2.1.

The panels in Figure 8A depict simulation estimates of the the root-mean-
square-error (RMSE) E(||βMAX−β||2) (uppermost panel) and biases of the e�ect
size parameter entries E(βMAX1 − β1) and E(βMAX2 − β2) (middle and lowermost
panel, respectively) over a range of values of the �rst covariance component pa-
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VB VML ReML ML

m
(1)
β S

(1)
β m

(1)
λ S

(1)
λ m

(1)
β S

(1)
β λ(1) β(1) λ(1) β(1) λ(1)

8A
(

1
0

) (
0.01 0

0 10

) (
−1
−1

) (
10 0
0 10

) (
1
0

) (
0.01 0

0 10

) (
−1
−1

) (
1
0

) (
−1
−1

) (
1
0

) (
−1
−1

)
8B

(
0
0

) (
10 0
0 10

) (
−1
−1

) (
10 0
0 10

) (
0
0

) (
10 0
0 10

) (
−1
−1

) (
0
0

) (
−1
−1

) (
0
0

) (
−1
−1

)

Table 1: Parameter initialization for the simulations reported in Figure 8A and 8B
design.

rameter λ1. Here, βMAX = (βMAX1 , βMAX2 )T denotes the MAP estimates resulting
under the VB and VML techniques, and the maximum (restricted) likelihood es-
timates resulting under ReML and ML, β denotes the true, but unknown, e�ect
size parameter, E(·) denotes the expectation parameter, Ê(·) the estimation of
an expectation by means of an average, and || · ||2 denotes the Euclidean norm
of a vector. The results for the di�erent estimation techniques are color- and
linewidth-coded and were obtained under the following simulation: the true, but
unknown, e�ect size parameter values were set to β = (1, 1)T and the true, but
unknown, parameter value of the second covariance component parameter was
constant at λ2 = −2. Varying the true, but unknown, value λ1 on the interval
[6, 12] thus increased the contribution of independent and identically distributed
noise to the data. For each estimation technique, the respective e�ect size esti-
mates were initialized as speci�ed in Table 1. In brief, the estimates for β1 were
initialized to the true, but unknown, value and β2 to zero. Crucially, VB and
VML allow for the speci�cation of prior distributions over β. Here, we used a
precise prior covariance of Σβ1

= 10−2 and an imprecise variance of Σβ2
= 101.

Note that these algorithm parameters do not exist in ReML and ML. For each
setting of λ1, 100 realizations of the model were obtained, subjected to all four
estimation techniques, and the RMSE and biases estimated by averaging over
realizations. The following pattern of results emerges: in terms of the RMSE
(upper panel), VB and VML exhibit a more stable estimation of β, with a lower
deviation from zero compared to the trend of ReML and ML estimates, at higher
noise levels. In more detail, this pattern results from the following e�ects on
the individual β1 and β2 estimates: �rst, for VB and VML, the estimates β1
exhibit virtually no biases, because their precise prior distribution �xes them at
the true, but unknown value, (middle panel). For β2 this regularization of β1
results in more stable estimates as compared to ReML and ML, but for higher
levels of noise also results in a downward bias (lowermost panel). Taken to-
gether, this simulation demonstrates, how, in the case of prior knowledge about
the e�ect size parameters, the endowment of their estimates with precise priors
in VB and VML can stabilize the overall e�ect size estimation and yield better
estimates compared to ReML and ML.

In a second simulation, visualized in Figure 8B, we investigated the inter-
action between prior regularization and estimation quality for the covariance
component parameters. As in Figure 8A, the uppermost panel depicts the es-
timated RMSE for the λ parameters, and the middle and lowermost panels the
biases of each component parameter. As in the previous simulation, the true,
but unknown, e�ect size parameter values were set to β = (1, 1) and λ2 = −2
and λ1 was varied on the interval [−1, 1]. The initial parameters for each esti-
mation technique are documented in Table 1. In brief, all e�ect size parameter
estimates (expectations) were initialized to zero, and isotropic, imprecise prior
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covariance matrices were employed for VB and VML. The only estimation tech-
nique that endows λ estimates with a prior distribution is VB. Here, we employ
the imprecise prior covariance Σλ := 101I2, which is, however, �precise enough�
to exert some stabilization e�ects: as shown in the uppermost panel of Figure
8B, only the RMSE of the VB technique remains largely constant over the inves-
tigated space of λ1 values, while for all other estimation techniques the RMSE
increases linearly. Two things are noteworthy here. First, at the level of the β
estimates all techniques perform equally well in a bias-free manner (data not
shown). Second, the λ1 parameter space investigated includes a region (around
0.5) for which also the VB estimation quality declines, but recovers thereafter,
suggesting an interaction between the structural model properties and the pa-
rameter regime. For the individual entries of λ, the decline in estimation quality
in VML, ReML, and ML is not uniform: for λ1, the estimation quality remains
largely constant up to the critical region around 0.5, whereas the estimation
quality of λ2 deteriorates with increasing values of λ1 and recovers brie�y in the
critical region around 0.5. Note that for both simulations of Figure 8 we did
not attempt to remove potential estimation outliers, because their de�nition in
high noise scenarios is virtually impossible. It is thus likely, that the conver-
gence failures observed in the �rst set of simulations contribute to the observed
estimation errors. However, because these failures also a�ict the VB and VML
techniques which displayed improved estimation behaviour in the simulations
reported in Figure 8, it is likely that the observed pattern of results is indicative
of qualitative estimation divergences.

In summary, in the reported simulations we tried to evaluate our implemen-
tation of VB, VML, ReML, and ML estimation techniques for a typical neu-
roimaging data analysis example. In our �rst simulation set, we observed gen-
erally satisfactory parameter recovery for imprecise priors, with the exception
of covariance component parameter recovery on a subset of data realizations.
In our second simulation, we additionally observed satisfactory model recovery.
In our last set of simulations, we probed for estimation quality divergences be-
tween the techniques and could show how regularizing prior distributions of the
advanced estimation techniques VB and VML can aid to stabilize e�ect size
and covariance component parameter estimation. Naturally, the reported sim-
ulations are conditional on our chosen model structure, the true, but unknown,
parameter values, and the algorithm initial conditions (prior distributions), and
hence not easily generalizable.

3.2 Application to real data

Having validated the VB, VML, ReML, and ML implementation in simulations,
we were interested in their application to real experimental data with the main
aim of demonstrating the possible parameter inferences that can (and cannot)
be made with each technique. To this end, we applied VB, VML, ReML, and
ML to a single participant fMRI data set acquired under visual checkerboard
stimulation as originally reported in (Ostwald et al., 2010). In brief, the partici-
pant was presented with a single reversing left hemi-�eld checkerboard stimulus
for 1 second every 16.5 to 21 seconds. These relatively long inter-stimulus in-
tervals were motivated by the fact that the data was acquired as part of an
EEG-fMRI study that investigated trial-by-trial correlations between EEG and
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Figure 8: Estimation quality divergences. Each panel depicts the estimated
RMSE and estimation bias for all four estimation techniques over a range of noise
levels parameterized by λ1. The estimation techniques are color and linewidth coded.
Panel A visualizes a simulation with focus on the e�ect size parameter estimates β,
Panel B visualizes a simulation with focus on the covariance component parameters
λ. For a detailed description of the simulation, please refer to the main text and for
implementational details, please see vbg_4.m. Note that for Panel A, the results of
VB and VML and the results of ReML and ML coincide, and for Panel B the results
of ReML and VML coincide.
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fMRI evoked responses. Stimuli were presented at two contrast levels and there
were 17 stimulus presentations per contrast level. 441 volumes of T2*-weighted
functional data were acquired from 20 slices with 2.5 x 2.5 x 3 mm resolution
and a TR of 1.5 seconds. The slices were oriented parallel to the AC-PC axis
and positioned to cover the entire visual cortex. Data preprocessing using SPM5
included anatomical realignment to correct for motion artefacts, slice scan time
correction, re-interpolation to 2 x 2 x 2 mm voxels, anatomical normalization,
and spatial smoothing with a 5 mm FWHM Gaussian kernel. For full method-
ological details, please see (Ostwald et al., 2010).

To demonstrate the application of VB, VML, ReML, and ML to this data
set, we used the SPM12 facilities to create a three-column design matrix for the
mass-univariate analysis of voxel time-course data. This design matrix included
HRF-convolved stimulus onset functions for both stimulus contrast levels and
a constant o�set. The design matrix is visualized in panel C of Figure 10.
We then selected one slice of the preprocessed fMRI data (MNI plane z = 2)
and used our implementation of the four estimation techniques to estimate the
corresponding three e�ect size parameters β ∈ R3 and the covariance component
parameters λ ∈ R2 of the two covariance basis matrices introduced in Section 2.1
for each voxel. We focus our evaluation on the resulting variational parameter
estimates of the e�ect size parameter β1, corresponding to the high stimulus
contrast, and the �rst covariance component parameter λ1, corresponding to the
isotropic error component. In line with the common practice in neuroimaging
data analysis, no outlier removal was performed for the latter parameter. The
results are visualized in Figures 9 and 10.

Figure 9 visualizes the parameter estimates relating to the e�ect size pa-
rameter β1. The subpanels of Figure 10A depict the resulting two-dimensional
map of converged variational parameter estimates, which di�ers only minimally
between the four estimation techniques as indicated on the left of each panel.
The variational parameter estimates are highest in the area of the right primary
visual cortex, and lowest in the area of the cisterna ambiens/lower lateral ventri-
cles. Panel B depicts the associated variational covariance parameter S(c)

β1
, i.e.,

the �rst diagonal entry of the of the variational covariance matrix S(c)
β ∈ R3×3.

Here, the highest uncertainty is observed for ventricular locations and the right
medial cerebral artery. Overall, the uncertainty estimates are marginally more
pronounced for the VB and VML techniques compared to the ReML estimates.
Note that the ML technique does not quantify the uncertainty of the GLM ef-
fect size parameters. Based on the variational parameters m(c)

β1
and S(c)

β1
, Panel

C depicts the probability that the true, but unknown, e�ect size parameter is
larger than η = 4, i.e.

p(β1 > η) = 1−Ncdf (η;mβ1
, Sβ1

), (55)

where Ncdf denotes the univariate Gaussian cumulative density function. Here,
the stimulus-contralateral right hemispheric primary visual cortex displays the
highest values and the di�erences between VB, VML, and ReML are marginal.
For comparison, we depict the result of a classical GLM analysis with contrast
vector c = (1, 0, 0)T at an uncorrected cluster-de�ning threshold of p < 0.001
and voxel number threshold of k = 0 overlaid on the canonical single partic-
ipant T1 image in 9D. This analysis also identi�es the right lateral primary
visual cortex as area of strongest activation - but in contrast to the VB, VML,
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Figure 9: E�ect size estimation. The �gure panels depict the e�ect size parameter
β1 estimation results of the VB, VML, ReML, and ML algorithm application to the
analysis of a single-participant single-run fMRI data set. This e�ect size parameter
captures the e�ect of high contrast left visual hemi�eld checkerboard stimuli as encoded
by the �rst column of the design matrix shown in panel C of Figure 9. The �rst column
(panel A) displays the converged expectation parameter estimates, the second column
(panel B) the associated variance estimates, and the third column (C) the posterior
probability for the true, but unknown, e�ect size parameter to assume values larger
than 4. For visual comparison, panel D depicts the result of a standard GLM data
analysis of the same data set using SPM12. For implementational details, please see
vbg_5.m.
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Figure 10: Covariance component parameter estimation. The �gure panels
depict the covariance component parameter λ1 estimation results of the VB, VML,
ReML, and ML algorithm application to the analysis of a single-participant single-run
fMRI data set. This covariance component parameter captures the e�ect of indepen-
dently distributed errors. The �rst column (panel A) displays the converged (expec-
tation) parameter estimates. The second column (panel B) displays the associated
variance estimate and posterior probability for λ1 > 2, which is only quanti�able un-
der the VB estimation technique. Panel C depicts the GLM design matrix that was
used for the fMRI data analysis presented in Figures 8 and 9 (HC: high contrast stim-
uli regressor, LC: low contrast stimuli regressor, BL: baseline o�set regressor). For
implementational details, please see vbg_5.m.
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and ReML results does not provide a visual account of the uncertainty associ-
ated with the parameter estimates and ensuing T-statistics. In summary, the
VB, VML, and ReML-based quanti�cation of e�ect sizes and their associated
uncertainty revealed biologically meaningful results.

Figure 10 visualizes the variational expectation parameters relating to the
e�ect size parameter λ1. Here, the subpanels of Figure 10A visualize the vari-
ational (expectation) parameters across the four estimation techniques. High
values for this covariance component are observed in the areas covering cere-
brospinal �uid (cisterna ambiens, lateral and third ventricles), lateral frontal
areas, and the big arteries and veins. Notably, also in right primary visual
cortex, the covariance component estimate is relatively large, indicating that
the design matrix does not capture all stimulus-induced variability. The only
estimation technique that also quanti�es the uncertainty about the covariance
component parameters is VB. The results of this quanti�cation are visualized
in 10B. The �rst subpanel visualizes the variational covariance parameter S(c)

λ1
,

i.e., the �rst diagonal entry of the variational covariance matrix S(c)
λ ∈ R2×2.

The second subpanel visualizes the probability that the true, but unknown,
covariance component parameter λ is larger than η = 2, i.e.

p(λ1 > η) = 1−Ncdf (η;mλ1
, Sλ1

), (56)

which, due to the relatively low uncertainty estimates Sλ1
shows high similarity

with the variational expectation parameter map. In summary, our exemplary
application of VB, VML, ReML, and ML to real experimental data revealed
biologically sensible results for both e�ect size and covariance component pa-
rameter estimates.

4 Discussion

In this technical study, we have reviewed the mathematical foundations of
four major parametric statistical parameter estimation techniques that are rou-
tinely employed in the analysis of neuroimaging data. We have detailed, how
VML (expectation-maximization), ReML, and ML parameter estimation can be
viewed as special cases of the VB paradigm. We summarize these relationships
and the non-technical application scenarios in which each technique corresponds
to the method of choice in Figure 11. Further, we have provided a detailed doc-
umentation of the application of these four estimation techniques to the GLM
with non-spherical, linearly decomposable error covariance, a fundamental mod-
elling scenario in the analysis of fMRI data. Finally, we validated the ensuing
iterative algorithms with respect to both simulated and real experimental fMRI
data. In the following, we relate our exposition to previous treatments of similar
topic matter, discuss potential future work on the qualitative properties of VB
parameter estimation techniques, and �nally comment on the general relevance
of the current study.

The relationships between VB, VML, ReML, and ML have been previously
pointed out in Friston et al. (2002a) and Friston et al. (2007). In contrast to
the current study, however, Friston et al. (2002a) and Friston et al. (2007) focus
on high-level general results and provide virtually no derivations. Moreover,
when introducing VB in Friston et al. (2007), the GLM with non-spherical,
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linearly decomposable error covariance is treated as one of a number of model
applications and is not studied in detail across all estimation techniques. From
this perspective, the current study can be understood as making many of the
implicit results in Friston et al. (2002a) and Friston et al. (2007) explicit and
�lling in many of the detailed connections and consequences, which are implied
by Friston et al. (2002a) and Friston et al. (2007). The relationship between
VB and VML has been noted already from outset of the development of the VB
paradigm (Beal, 2003; Beal and Ghamarani, 2003). In fact, VB was originally
motivated as a generalization of the EM algorithm (Neal and Hinton, 1998; At-
tias, 2000). However, these treatments do not provide an explicit derivation of
VML from VB based on the Dirac measure and do not make the connection to
ReML. Furthermore, these studies do not focus on the GLM and its application
in the analysis of fMRI data. Finally, a number of treatises have considered the
application of VB to linear regression models (e.g., Bishop, 2006; Murphy, 2012;
Tzikas et al., 2008). However, these works do not consider non-spherical linearly
decomposable error covariance matrices and also do not make the connection to
classical statistical estimation using ReML for functional neuroimaging. Taken
together, the current study complements the existing literature with its em-
phasis on the mathematical traceability of the relationship between VB, VML,
ReML, and ML, its focus on the GLM application, and its motivation from a
functional neuroimaging background.

Figure 11: VB, VML, ReML, and ML relationships and application sce-

narios. N/A denotes non-applicable.

Estimator quality

Model estimation techniques yield estimators. Estimators are functions of
observed data that return estimates of true, but unknown, model parameters,
be it the point-estimates of classical frequentist statistics or the posterior distri-
butions of the Bayesian paradigm (e.g., Wasserman, 2010). An important issue
in the development of estimation techniques is hence the quality of estimators to
recover true, but unknown, model parameters and model structure. While this
issue re-appears in the functional neuroimaging literature in various guises every
couple of years (e.g., Vul et al., 2009a; Eklund et al., 2016a), often accompanied
by some �urry in the �eld (e.g., Nichols and Poline, 2009; Vul et al., 2009b; Ab-
bott, 2009; Eklund et al., 2016b; Miller, 2016), it is perhaps true to state that
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the systematic study of estimator properties for functional neuroimaging data
models is not the most matured research �eld. From an analytical perspective,
this is likely due to the relative complexity of functional neuroimaging data
models as compared to the fundamental scenarios that are studied in mathe-
matical statistics (e.g., Shao, 2003). In the current study, we used simulations
to study both parameter and model recovery, and while obtaining overall satis-
�able results, we found that the estimation of covariance component parameters
can be de�cient for a subset of data realizations. As pointed out in Section 3,
this �nding is not an unfamiliar result in the statistical literature (e.g., Groen-
eveld and Kovac, 1990; Boichard et al., 1992; Groeneveld, 1994; Harville, 1977).
We see two potential avenues for improving on this issue in future research.
Firstly, there exist a variety of covariance component estimation algorithm vari-
ants in the literature (e.g., Gilmour et al., 1995; Witkovsk�y, 1996; Thompson
and Mäntysaari, 1999; Foulley and van Dyk, 2000; Misztal, 2008) and research
could be devoted to applying insights from this literature in the neuroimaging
context. Secondly, as the de�cient estimation primarily concerns the covariance
component parameter that scales the AR(1) + WN model covariance basis ma-
trix, it remains to be seen, whether the inclusion of a variety of physiological
regressors in the deterministic aspect of the GLM will eventually supersede the
need for covariance component parameter estimation in the analysis of �rst-
level fMRI data altogether (e.g., Glover et al., 2000; Lund et al., 2006). Finally,
we presented the application of VB, VML, ReML, and ML in the context of
fMRI time-series analysis. As pointed out in Section 1, the very same statistical
estimation techniques are of eminent importance for a wide range of other func-
tional neuroimaging data models. Moreover, together with the GLM, they also
form a fundamental building block of model-based behavioural data analyses
as recently proposed in the context of �computational psychiatry� (e.g., Mon-
tague et al., 2012; Stephan et al., 2016a,b,c; Schwartenbeck and Friston, 2016)
and recent developments in the analysis of �big data� (e.g., Allenby et al., 2014;
Ghahramani, 2015).

On a more general level, the relative merits of the parameter estimation tech-
niques discussed herein form an important �eld for future research. Ideally, the
statistical properties of estimators resulting from variational approaches were
understood for the model of interest, and known properties of their specialized
cases, such as the bias-free covariance component parameter estimation under
ReML with respect to ML, would be deducible from these. However, as pointed
out by Blei et al. (2016), the statistical properties of variational approaches are
not yet well understood. Nevertheless, there exists a few results on the statis-
tical properties of variational approaches, typically in terms of the variational
expectations upon convergence and for fairly speci�c model classes. Of relevance
for the model class considered herein is the recent work by You et al. (2014),
who could show the consistency of the variational expectation in the frequen-
tist sense, albeit for spherical covariance matrices and a gamma distribution for
the covariance component parameter. For a broader model class with posterior
support in real space (including the current model class of interest), Westling
(2017) have worked towards establishing the consistency and asymptotic nor-
mality of variational expectation estimates. Finally, a number of authors have
addressed consistency and asymptotic properties in selected model classes, such
as Poisson-mixed e�ect models, stochastic block models, and Gaussian mixture
models (Hall et al., 2011; Celisse et al., 2012; Bickel et al., 2013; Wang et al.,
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2006).
In summary, understanding the qualitative statistical properties of varia-

tional Bayesian estimators and their relative merits with respect to more spe-
cialized approaches forms a burgeoning �eld of research. New impetus in this
direction may also arise from recent attempts to understand the properties of
deep learning algorithms from a probabilistic variational perspective (Gal and
Ghahramani, 2017).

Conclusion

To conclude, we believe that the mathematization and validation of model
estimation techniques employed in the neuroimaging �eld is an important en-
deavour as the �eld matures. With the current work, we attempted to provide
a small step in this direction. We further hope to be able to contribute to a
better understanding of the statistical properties of the parameter estimation
techniques for neuroimaging-relevant model classes in our future work.
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S1 Free energy algorithm derivations

In this section, we evaluate the VB, VML, ReML, and ML free energies for
the GLM and derive update equations for their maximization. The notation
follows the applied approach used in the main text. We commence with some
remarks on additional notation and matrix di�erentation.

S1.1 Preliminaries

Expectations

To ease the notation, we will often write the expectation of a function f of ran-
dom variable x under the probability distribution p(x) using the expectation
operator

〈f(x)〉p(x) =

∫
f(x)p(x) dx (S1.1)

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 4, 2017. ; https://doi.org/10.1101/077461doi: bioRxiv preprint 

https://doi.org/10.1101/077461
http://creativecommons.org/licenses/by-nc-nd/4.0/


Furthermore, on numerous occasions, we require the following property of
expectations of multivariate random variables x ∈ Rd under normal distribu-
tions: for x,m, µ ∈ Rd,Σ ∈ Rd×d p.d. and A ∈ Rd×d it holds that

〈(x−m)TA(x−m)〉N(x;µ,Σ) = (µ−m)TA(µ−m) + tr(AΣ) (S1.2)

(see e.g. Petersen and Pedersen (2012), eq. (380)).

Gradient and Hessian

The gradient and Hessian of a real-valued function

f : Rn → R, x 7→ f(x) (S1.3)

evaluated at a point a ∈ Rn will be denoted by

∇f(a) :=

(
∂

∂x1
f(a), ...,

∂

∂xn
f(a)

)T
∈ Rn (S1.4)

and

Hf (a) :=


∂2

∂x21
f(a) · · · ∂2

∂x1∂xn
f(a)

...
. . .

...
∂2

∂xn∂x1
f(a) · · · ∂2

∂x2n
f(a)

 ∈ Rn×n. (S1.5)

When it eases the notation, we also occasionally denote the partial derivative
of f with respect to xi evaluated at a ∈ Rn by ∂

∂xi
f |x=a.

Matrix di�erentiation

The following matrix di�erentiation rules are used in the subsequent deriva-
tions (Petersen and Pedersen, 2012). For a matrix A depending on a scalar
parameter x, we have

∂ |A|
∂x

= |A| tr
(
A−1 ∂A

∂x

)
(S1.6)

∂ ln |A|
∂x

= tr

(
A−1 ∂A

∂x

)
(S1.7)

∂A−1

∂x
= −A−1 ∂A

∂x
A−1 (S1.8)

∂ tr (A)

∂x
= tr

(
∂A

∂x

)
. (S1.9)

For a matrix A depending on a two-dimensional vector x = (x1, x2), the
second-order partial derivatives of its inverse are

∂2A−1

∂x21
= 2A−1 ∂A

∂x1
A−1 ∂A

∂x1
A−1 −A−1 ∂

2A

∂x21
A−1 (S1.10)

∂2A−1

∂x22
= 2A−1 ∂A

∂x2
A−1 ∂A

∂x2
A−1 −A−1 ∂

2A

∂x22
A−1 (S1.11)

and
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∂2A−1

∂x1∂x2
=

∂2A−1

∂x2∂x1
= A−1 ∂A

∂x1
A−1 ∂A

∂x2
A−1 +A−1 ∂A

∂x2
A−2 ∂A

∂x1
A−1

−A−1 ∂2A

∂x1∂x2
A−1 (S1.12)

assuming that A has continuous second derivatives, such that the symmetry of
second-order derivatives (Schwarz's theorem) holds. For the update equations
of the matrix parameters Sβ and Sλ, we also need to compute derivatives
regarding matrices. We have

∂ ln (|A|)
∂A

= A−1 (S1.13)

and for matrices A and B of matching dimensions

∂ tr (AB)

∂A
= BT . (S1.14)

S1.2 Variational Bayes

Evaluation of the VB free energy

To evaluate the VB free energy, we �rst rewrite it from its de�nition in eq.
(20) in the main text as follows

FV B(q(β)q(λ)) = 〈ln
(
p(y, β, λ)

q(β)q(λ)

)
〉q(β)q(λ)

= 〈ln p(y|β, λ)〉q(β)q(λ) + 〈ln p(β)〉q(β) + 〈ln p(λ)〉q(λ)
− 〈q(β)〉q(β) − 〈q(λ)〉q(λ).

(S1.15)

Using (S1.2), the second and third term on the right-hand side of (S1.15) can
be evaluated exactly, yielding

〈ln p(β)〉q(β) = −p
2

ln 2π − 1

2
ln |Σβ | −

1

2
(mβ − µβ)TΣ−1

β (mβ − µβ)− 1

2
tr(Σ−1

β Sβ)

(S1.16)
and

〈ln p(λ)〉q(λ) = −k
2

ln 2π − 1

2
ln |Σλ| −

1

2
(mλ − µλ)TΣ−1

λ (mλ − µλ)− 1

2
tr(Σ−1

λ Sλ).

(S1.17)

corresponding to terms 6 - 13 of eq. (28) in the main text. The fourth and
the �fth term on the right-hand side of (S1.15) correspond to the entropies
of the variational distributions, which given their Gaussian form are given as
function of their respective covariance matrices (e.g., Bishop, 2006)

H(q(β)) = −〈ln q(β)〉q(β) =
p

2
ln(2πe) +

1

2
ln |Sβ |, (S1.18)

H(q(λ)) = −〈ln q(λ)〉q(λ) =
k

2
ln(2πe) +

1

2
ln |Sλ|. (S1.19)

Eqs. (S1.18) and (S1.19) correspond to terms 14 to 16 of eq. (28) in the main
text.

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 4, 2017. ; https://doi.org/10.1101/077461doi: bioRxiv preprint 

https://doi.org/10.1101/077461
http://creativecommons.org/licenses/by-nc-nd/4.0/


Finally, we consider the �rst term of (S1.15). Based on the de�nition
of p(y|β, λ), the expectation with respect to q(β) can be evaluated exactly,
yielding

〈ln p(y|β, λ)〉q(β)q(λ) =− n

2
ln 2π − 1

2
〈ln |Vλ|〉q(λ)

− 1

2
〈(y −Xmβ)TV −1

λ (y −Xmβ)〉q(λ)

− 1

2
〈tr(V −1

λ XSβX
T )〉q(λ).

(S1.20)

To make it possible to evaluate the remaining expectations, we use a second
order Taylor approximation. Let

f : Rk → R, λ 7→ f(λ) (S1.21)

denote a real-valued function of λ. Then

f(λ) ≈ f(mλ) + (λ−mλ)T∇f(mλ) +
1

2
(λ−mλ)THf (mλ)(λ−mλ) (S1.22)

in the vicinity of mλ. If q (λ) is su�ciently narrow, that is, if most of its mass
is concentrated close to mλ, we can thus approximate

〈f(λ)〉q(λ) ≈ f(mλ) + 〈(λ−mλ)T∇f(mλ)〉q(λ) +
1

2
〈(λ−mλ)THf (mλ)(λ−mλ)〉q(λ)

= f(mλ) +
1

2
tr (Hf (mλ)Sλ) . (S1.23)

This approximation needs to be applied to all expectations in equation
(S1.20). Thus, using the linearity of the trace to subsume all Hessian matrices
into

Bmβ ,Sβ ,mλ = Hln |Vλ|(mλ) +H(y−Xmβ)TV −1
λ (y−Xmβ)(mλ)

+Htr(V −1
λ XSβXT )(mλ) ,

(S1.24)

thereby pooling the second-order terms, we arrive at terms 1 - 5 of equation
(28) in the main text, and the derivation is complete.

Evaluation of Bmβ ,Sβ ,mλ

To estimate the VB free energy in practice, the Hessian matrices on the
right-hand side of (S1.24) have to be evaluated. For the linear form of the
error covariance matrix

Vλ := exp(λ1)In + exp(λ2)Q2 (S1.25)

the three Hessian matrices of (S1.24) can be evaluated analytically:

• Hln |Vλ|

Using (S1.7), the �rst order partial derivatives are given by

∂ ln |Vλ|
∂λ1

= exp (λ1) tr
(
V −1
λ

)
(S1.26)
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and
∂ ln |Vλ|
∂λ2

= exp (λ2) tr
(
V −1
λ Q2

)
. (S1.27)

Exploiting the linearity of the trace operator (S1.9) and using (S1.8) for the
derivative of the inverse yields the second order partial derivatives:

∂2 ln |Vλ|
∂λ2

1

= exp (λ1) tr
(
V −1
λ

)
− exp (2λ1) tr

(
V −2
λ

)
= exp (λ1) tr

(
V −1
λ

)
−
(
exp (λ1) tr

(
V −2
λ Vλ

)
− exp (λ1 + λ2) tr

(
V −2
λ Q2

))
= exp (λ1 + λ2) tr

(
V −2
λ Q2

)
,

(S1.28)

∂2 ln |Vλ|
∂λ2

2

= exp (λ2) tr
(
V −1
λ Q2

)
− exp (2λ2) tr

(
V −1
λ Q2V

−1
λ Q2

)
= exp (λ2) tr

(
V −1
λ Q2

)
−
(
exp (λ2) tr

(
V −1
λ VλV

−1
λ Q2

)
− exp (λ1 + λ2) tr

(
V −2
λ Q2

))
= exp (λ1 + λ2) tr

(
V −2
λ Q2

)
,

(S1.29)

and
∂2 ln |Vλ|
∂λ1∂λ2

=
∂2 ln |Vλ|
∂λ2∂λ1

= − exp (λ1 + λ2) tr
(
V −2
λ Q2

)
, (S1.30)

where in the last equation we used that the trace is invariant under cyclic
permutations, e.g. tr (ABC) = tr (CAB) = tr (BCA).

• H(y−Xmβ)TV −1
λ (y−Xmβ)

The Hessian matrix of (y−Xmβ)TV −1
λ (y−Xmβ) only depends on the second

order partial derivatives of the inverse of Vλ

∂2

∂λi∂λj

(
(y −Xmβ)TV −1

λ (y −Xmβ)
)

= (y −Xmβ)T
∂2V −1

λ

∂λi∂λj
(y −Xmβ) (S1.31)

for i, j ∈ {1, 2}. Applying (S1.10) to (S1.12) yields

∂2V −1
λ

∂λ2
1

= exp (λ1)V −2
λ − 2 exp (2λ1)V −3

λ , (S1.32)

∂2V −1
λ

∂λ2
2

= exp (λ2)V −1
λ Q2V

−1
λ − 2 exp (2λ2)V −1

λ Q2V
−1
λ Q2V

−1
λ , (S1.33)

and

∂2V −1
λ

∂x1∂x2
=

∂2A−1

∂x2∂x1
= − exp (λ1 + λ2)

(
V −2
λ Q2V

−1
λ + V −1

λ Q2V
−2
λ

)
. (S1.34)

• Htr(V −1
λ XSβXT )

Due to the linearity of the trace operator, we have

∂2 tr
(
V −1
λ XSβX

T
)

∂λi∂λj
= tr

(
∂2V −1

λ

∂λi∂λj
XSβX

T

)
(S1.35)
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for i, j ∈ {1, 2}. Thus we only have to use (S1.32) to (S1.34).

Notably, the evaluation of these Hessian matrices will necessitate the in-
version of Vλ on every iteration of the optimization algorithm. This inversion
can be performed e�ciently using the diagonalized form of Q2. As Q2 is a
real, symmetric matrix by design, there exists a diagonalized form given by
QD2 = PTQ2P , where P is a unitary transformation matrix (PT = P−1). The
entries li, i ∈ {1, . . . , n} of QD2 are the eigenvalues of Q2. We thus have

V −1
λ = (exp (λ1) In + exp (λ2)Q2)

−1

=
(
exp (λ1)PInP

T + exp (λ2)PQD2 P
T
)−1

=
(
P
(
exp (λ1) In + exp (λ2)QD2

)
PT
)−1

= P
(
exp (λ1) In + exp (λ2)QD2

)−1
PT .

(S1.36)

As exp (λ1) In+exp (λ2)QD2 is a diagonal matrix, its inverse is easily evaluated,
and the diagonalizing matrix P only needs to be computed once for any given
Q2.

The VB free energy update equations

In this section, we consider the iterative maximization of the VB free energy
function with respect to its vector and matrix parameters mβ , Sβ ,mλ and Sλ.
In each case, we identify the relevant subpart of the VB free energy function
depending on the respective parameter, evaluate its gradient with respect to
the parameter in question, set the gradient to zero, and, if possible, solve the
ensuing equation for a parameter update equation. To emphasize the iterative
character of this endeavour, we use the superscript (i) to denote the values of
parameters at a given algorithm iteration.

We consider the update with respect to Sλ �rst. The relevant subpart of

FV B
(
m

(i)
β , S

(i)
β ,m

(i)
λ , S

(i)
λ

)
depending on Sλ is given by

fV B(Sλ) = −1

4
tr
(
B
m

(i)
β ,S

(i)
β ,m

(i)
λ

Sλ

)
− 1

2
tr(Σ−1

λ Sλ) +
1

2
ln |Sλ|. (S1.37)

Using the identities (S1.13), (S1.14), and considering that B
m

(i)
β ,S

(i)
β ,m

(i)
λ

and

Σ−1
λ are symmetric, evaluation of the gradient of fV B results in

∇fV B(Sλ) = −1

4
B
m

(i)
β ,S

(i)
β ,m

(i)
λ

− 1

2
Σ−1
λ +

1

2
S−1
λ . (S1.38)

Setting the gradient to zero and solving for the parameter update S
(i+1)
λ then

yields

S
(i+1)
λ :=

(
1

2
B
m

(i)
β ,S

(i)
β ,m

(i)
λ

+ Σ−1
λ

)−1

. (S1.39)

Note that with the linearity properties of the trace operator, this update
equation implies as a result, that the sum of the two trace terms involving
Sλ in the VB free energy (equation (28) of the main text) evaluates to −k2
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and the term B
m

(i)
β ,S

(i)
β ,m

(i)
λ

does not need to be considered when deriving the

update equations for mβ , Sβ , and mλ.

Next, the relevant subpart of FV B
(
m

(i)
β , S

(i)
β ,m

(i)
λ , S

(i+1)
λ

)
depending on

mβ is given by

fV B(mβ) = −1

2
(y −Xmβ)TV −1

mλ
(y −Xmβ)− 1

2
(mβ − µβ)TS−1

β (mβ − µβ),

(S1.40)
where we omitted iteration superscripts for visual clarity. With (S1.2), the
gradient of fV B(mβ) is given by

∇fV B(mβ) = (y −Xmβ)TV −1
mλ
X − (mβ − µβ)TΣ−1

β

= yTV −1
mλ
X −mT

βX
TV −1

mλ
X −mT

βΣ−1
β + µTβΣ−1

β

(S1.41)

Setting the gradient to zero then yields the update equation

m
(i+1)
β :=

(
XTV −1

mλ
X + Σ−1

β

)−1 (
XTV −1

mλ
y + Σ−1

β µβ

)
(S1.42)

Analogously, the relevant subpart of FV B
(
m

(i+1)
β , S

(i)
β ,m

(i)
λ , S

(i+1)
λ

)
de-

pending on Sβ is given by

fV B(Sβ) = −1

2
tr
(
XTV −1

mλ
XSβ

)
− 1

2
tr(Σ−1

β Sβ) +
1

2
ln |Sβ | (S1.43)

with gradient

∇fV B(Sβ) = −1

2
XTV −1

mλ
X − 1

2
Σ−1
β +

1

2
S−1
β (S1.44)

and the resulting update equation

S
(i+1)
β :=

(
XTV −1

mλ
X + Σ−1

β

)−1

. (S1.45)

Note that the update equations (S1.42) and (S1.45) conform to the well-
known closed-form expressions for Bayesian inference in the conjugate Gaus-
sian model (cf. eq. (9) of the main text), with the di�erence of the parametric

dependence of the error covariance matrix on m
(i)
λ .

Finally, the relevant subpart of FV B
(
m

(i+1)
β , S

(i+1)
β ,m

(i)
λ , S

(i+1)
λ

)
depend-

ing on mλ is given by, again omitting iteration superscripts for visual clarity,

fV B(mλ) = −1

2
ln |Vmλ | −

1

2
(y −Xmβ)TV −1

mλ (y −Xmβ)

− 1

2
tr(XTV −1

mλXSβ)− 1

2
(mλ − µλ)TΣ−1

λ (mλ − µλ).

(S1.46)

Evaluation of entries ∂
∂mλj

fV B(mλ) of the gradient ∇fV B(mλ) yields

∂

∂mλj

fV B(mλ) =− 1

2
tr

(
V −1
mλ

(
∂Vmλ
∂mλj

))
− 1

2
(y −Xmβ)T

(
∂V −1

mλ

∂mλj

)
(y −Xmβ)

− 1

2
tr

((
∂V −1

mλ

∂mλj

)
XSβX

T

)
−
(

(mλ − µλ)TΣ−1
λ

)
j
.

(S1.47)
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The evaluation of these entries for the two-component linear error covariance
(S1.25) then yields

∂

∂mλ1

fV B(mλ) = −1

2
exp(mλ1)

(
tr(V −1

mλ )− (y −Xmβ)TV −2
mλ (y −Xmβ)

− tr
(
V −1
mλXSβX

TV −1
mλ

))
− 1

2

(
(mλ − µλ)Σ−1

λ

)
1
,

(S1.48)

and

∂

∂mλ2

fV B(mλ) = −1

2
exp(mλ2)

(
tr
(
V −1
mλQ2

)
− (y −Xmβ)TV −1

mλQ2V
−1
mλ (y −Xmβ)

− tr
(
Q2V

−1
mλXSβX

TV −1
mλ

))
− 1

2

(
(mλ − µλ)Σ−1

λ

)
2
.

(S1.49)

Lastly, to determine the value m
(i+1)
λ for which

∂

∂mλj

fV B
(
m

(i+1)
λ

)
= 0 (S1.50)

for j = 1, 2, we employ the routine fsolve.m provided by Matlab (MATLAB
and Optimization Toolbox Release 2014b, The MathWorks, Inc., Natick, Mas-
sachusetts, United States). This function implements a trust-region dogleg
algorithm for the minimization of nonlinear real-valued functions of multiple
variables (Coleman and Li, 1996; Nocedal and Wright, 2006).

S1.3 Variational maximum likelihood

Evaluation of the VML free energy

The VML free energy is de�ned as

FVML(q(β), λ) =〈ln
(
pλ(y, β)

q(β)

)
〉q(β)

= 〈ln pλ(y|β)〉q(β) + 〈ln p(β)〉q(β) − 〈ln q(β)〉q(β).

(S1.51)

The latter two terms on the right-hand side of (S1.51) have been evaluated in
Section S1.2. The �rst term can be evaluated using (S1.2), yielding

〈ln pλ(y|β)〉q(β) = −n
2

ln 2π − 1

2
ln |Vλ| −

1

2
(y −Xmβ)TV −1

λ (y −Xmβ)

− 1

2
tr(XTV −1

λ XSβ),

(S1.52)

which completes the derivation of the VML free energy as eq. (39) of the main
text.

The VML free energy update equations

To identify the update equations for the maximization of the VML free energy,
we proceed as in Section S1.2. Because the main di�erence between the VB
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and VML framework is the parameterization of the error covariance matrix Vλ
in terms of λ rather than mλ and the vanishing of terms relating to the prior
and variational distributions of λ, we can keep the discussion very concise.

The relevant subpart of FVML(m
(i)
β , S

(i)
β , λ(i)) depending on mβ is given

by

fVML(mβ) = −1

2
(y−Xmβ)TV −1

λ (y−Xmβ)− 1

2
(mβ−µβ)TS−1

β (mβ−µβ), (S1.53)

with gradient

∇fVML(mβ) = yTV −1
λ X −mT

βX
TV −1

λ X −mT
βΣ−1

β + µTβΣ−1
β (S1.54)

and ensuing update equation

m
(i+1)
β :=

(
XTV −1

λ X + Σ−1
β

)−1 (
XTV −1

λ Xy + Σ−1
β µβ

)
. (S1.55)

Likewise, the relevant subpart of FVML(m
(i+1)
β , S

(i)
β , λ(i)) depending on Sβ is

given by

fVML(Sβ) = −1

2
tr
(
V −1
λ XSβX

T
)
− 1

2
tr(Σ−1

β Sβ) +
1

2
ln |Sβ | (S1.56)

with gradient

∇fVML(Sβ) = −1

2
XTV −1

λ X − 1

2
Σ−1
β +

1

2
S−1
β (S1.57)

and the resulting update equation

S
(i+1)
β :=

(
XTV −1

λ X + Σ−1
β

)−1

. (S1.58)

Finally, the relevant subpart of FVML
(
m

(i+1)
β , S

(i+1)
β , λ(i)

)
depending on

λ is given by

fVML(λ) = −1

2
ln |Vλ| −

1

2
(y −Xmβ)TV −1

λ (y −Xmβ)− 1

2
tr
(
V −1
λ XSβX

T
)
.

(S1.59)

Here, in analogy to eqs. (S1.48) and (S1.49), the entries of ∇fVML(λ) for the
case of the two-component error covariance matrix of interest (eq. (S1.25))
evaluate to

∂

∂λ1
fVML(λ) = −1

2
exp(λ1)

(
tr(V −1

λ )− (y −Xmβ)TV −2
λ (y −Xmβ)

)
+

1

2
exp(λ1) tr

(
V −2
λ XSβX

T
)
.

(S1.60)

and

∂

∂λ2
fVML(λ) = −1

2
exp(λ2)

(
tr(V −1

λ Q2)− (y −Xmβ)TV −1
λ Q2V

−1
λ (y −Xmβ)

)
+

1

2
exp(λ2) tr

(
V −1
λ Q2V

−1
λ XSβX

T
)

(S1.61)
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S1.4 Restricted maximum likelihood

The ReML objective function as VML free energy

We �rst show that for the probabilistic model

pλ(y, β) = pλ(y|β)p(β) with pλ(y|β) = N(y;Xβ, Vλ) and p(β) := 1 (S1.62)

it holds that the VML free energy with variational distribution

q(β) := pλ(β|y) (S1.63)

evaluates to the ReML objective function

`ReML(λ) := −1

2
ln |Vλ| −

1

2
ln |XTV −1

λ X| − 1

2
(y −Xβ̂GLS)TV −1

λ (y −Xβ̂GLS)

(S1.64)

up to an additive constant, i.e.

FVML(pλ(β|y), λ) = `ReML(λ) + c (S1.65)

with
c := −n

2
ln(2π) +

p

2
ln(2π) (S1.66)

To this end, we �rst note that for the probabilistic model (S1.62) and with
the de�nition of the GLS estimator

β̂GLS :=
(
XTV −1

λ X
)−1

XTV −1
λ y (S1.67)

it holds that

pλ(β|y) = N(β;mβ , Sβ) = N
(
β; β̂GLS ,

(
XTV −1

λ X
)−1
)
. (S1.68)

In brief, (S1.68) follows as a limiting case of the conditional properties of
Gaussian distributions for the case of zero prior precision, i.e. the case of
an improper prior p(β) = 1 (see e.g. Murphy (2012) for a more detailed
discussion).

Evaluation of the VML free energy in the current scenario then yields

FVML(pλ(β|y), λ) =
〈

ln

(
pλ(y, β)

pλ(β|y)

)〉
pλ(β|y)

= 〈ln (pλ(y|β)p(β))〉pλ(β|y) − 〈ln pλ(β|y)〉pλ(β|y)

= 〈ln pλ(y|β)〉pλ(β|y) − 〈ln pλ(β|y)〉pλ(β|y).

(S1.69)
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Evaluation of the �rst term on the right-hand side (S1.69) yields

〈ln pλ(y|β)〉pλ(β|y) =− n

2
ln 2π − 1

2
ln |Vλ| −

1

2
〈(y −Xβ)TV −1

λ (y −Xβ)〉p(λ)(β|y)

=− n

2
ln 2π − 1

2
ln |Vλ| −

1

2
(y −Xβ̂GLS)TV −1

λ (y −Xβ̂GLS)

− 1

2
tr
(
V −1
λ X(XTV −1

λ X)−1XT
)

=− n

2
ln 2π − 1

2
ln |Vλ| −

1

2
(y −Xβ̂GLS)TV −1

λ (y −Xβ̂GLS)

− 1

2
tr
(
XTV −1

λ X(XTV −1
λ X)−1

)
=− n

2
ln 2π − 1

2
ln |Vλ| −

1

2
(y −Xβ̂GLS)TV −1

λ (y −Xβ̂GLS)

− p

2
,

(S1.70)

where the second equality follows with (S1.2). The third equality uses the
invariance of the trace under cyclic permutations. The second term on the
right hand of (S1.69) corresponds to the entropy of the distribution pλ(β|y)
and thus evaluates to

H(pλ(β|y)) = −〈pλ(β|y)〉pλ(β|y) =
p

2
ln(2πe) + ln |Sβ | =

p

2
ln(2πe)− 1

2
ln |XTV −1

λ X|
(S1.71)

We thus have shown that

FVML(pλ(β|y), λ) = `ReML(λ)− n

2
ln 2π +

p

2
ln(2πe)− p

2
, (S1.72)

which concludes the derivation.

Evaluation of the ReML free energy function

To align the discussion of ReML with the previous discussions of VB and
VML, we next de�ne the ReML free energy function as the VML free energy
evaluated for the probabilistic model (S1.62) at the exact posterior distribution
pλ(β|y), i.e.,

FReML(mβ , Sβ , λ) := FVML(pλ(β|y), λ) = `ReML(λ) + c. (S1.73)

By noting that with (S1.68) the variational parameters are given by

mβ = β̂GLS and Sβ = (XTV −1
λ X)−1, (S1.74)
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we can then rewrite the ReML free energy as in the main text:

FReML(mβ , Sβ , λ) = −1

2
ln |Vλ| −

1

2
ln |XTV −1

λ X|

− 1

2
(y −Xβ̂GLS)TV −1

λ (y −Xβ̂GLS)

− n

2
ln 2π +

p

2
ln(2πe)− p

2

= −1

2
ln |Vλ|+

1

2
ln |(XTV −1

λ X)−1|

− 1

2
(y −Xmβ)TV −1

λ (y −Xmβ)

− n

2
ln 2π +

p

2
ln(2πe)− 1

2
tr
(

(XTV −1
λ X)(XTV −1

λ X)−1
)

= −1

2
ln |Vλ|+

1

2
ln |Sβ |

− 1

2
(y −Xmβ)TV −1

λ (y −Xmβ)

− n

2
ln 2π +

p

2
ln(2πe)− 1

2
tr(SβX

TV −1
λ X)

= −n
2

ln 2π − 1

2
ln |Vλ| −

1

2
(y −Xmβ)TV −1

λ (y −Xmβ)

− 1

2
tr(SβX

TV −1
λ X)

+
p

2
ln(2πe) +

1

2
ln |Sβ |.

(S1.75)

The ReML free energy update equations

Finally, we derive the update equations for the parametersmβ , Sβ , and λ of the
ReML free energy. Note that because the ReML objective function is identical
to the ReML free energy up to an additive constant which is independent of
these parameters, the resulting iterative algorithm also maximizes the ReML
objective function.

The relevant subpart of FReML(m
(i)
β , S

(i)
β , λ(i)) that depends onmβ is given

by, omitting iteration superscripts for ease of notation,

fReML(mβ) = −1

2
(y −Xmβ)TV −1

λ (y −Xmβ). (S1.76)

with gradient

∇fReML(mβ) = yTV −1
λ X −mT

βX
TV −1

λ X (S1.77)

and ensuing update equation

m
(i+1)
β := (XTV −1

λ X)−1XTV −1
λ y. (S1.78)

Unsurprisingly, this is the GLS estimator. Further, the relevant subpart of

FReML(m
(i+1)
β , S

(i)
β , λ(i)) depending on Sβ is given by, again omitting iteration

superscripts for ease of notation,

fReML(Sβ) = −1

2
tr(SβX

TV −1
λ X) +

1

2
ln |Sβ | (S1.79)
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with gradient

∇fReML(Sβ) = −1

2
XTV −1

λ X +
1

2
S−1
β (S1.80)

and ensuing update equation

S
(i+1)
β := (XTV −1

λ X)−1. (S1.81)

Finally, because the subpart of FReML depending on λ is identical to the
subpart of FVML depending on λ, the update procedure for FReML with
respect to λ is identical to that of FVML.

S1.5 Maximum likelihood

The ML free energy update equations

For the GLM, we have by de�nition

FML(β, λ) = −n
2

ln(2π)− 1

2
ln |Vλ| −

1

2
(y −Xβ)TV −1

λ (y −Xβ) (S1.82)

To derive parameter update equations, we consider the dependency of FML

on β(i) and λ(i) in turn. The relevant subpart of FML(β(i), λ(i)) that depends
on β is then given by, omitting iteration superscripts for ease of notation,

fML(β) = −1

2
(y −Xβ)TV −1

λ (y −Xβ) (S1.83)

with gradient
∇fML(β) = yTV −1

λ X − βTXTV −1
λ X (S1.84)

and ensuing update equation

β(i+1) := (XTV −1
λ X)−1XTV −1

λ y, (S1.85)

corresponding to the GLS estimator as in the case of ReML. The relevant
subpart of FML(β(i+1), λ(i)) that depends on λ di�ers from the VML and
ReML scenarios and is given by, again omitting iteration superscripts for ease
of notation,

fML(λ) = −1

2
ln |Vλ| −

1

2
(y −Xβ)TV −1

λ (y −Xβ) (S1.86)

Here, in analogy to eqs. (S1.47), (S1.48), and (S1.49), the entries of
∇fML(λ) for the case of the two-component error covariance matrix of in-
terest evaluate to

∂

∂λ1
fML(λ) = −1

2
exp(λ1)

(
tr(V −1

λ )− (y −Xβ)TV −2
λ (y −Xβ)

)
(S1.87)

and

∂

∂λ2
fV B(λ) = −1

2
exp(λ2)

(
tr(V −1

λ Q2)− (y −Xβ)TV −1
λ Q2V

−1
λ (y −Xβ)

)
(S1.88)

As they correspond to a disregard of prior information and posterior un-
certainty about β, equations (S1.85), (S1.87) and (S1.88) can also be at-
tained from the VML update equations (S1.55), (S1.60) and (S1.61) by setting
Σ−1
β = Sβ = 0.
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S2 Foundations of variational Bayes

In this section we formulate a probability-theoretic model of the probabilistic
model considered in the main text in order to derive the VML and ML sce-
narios as special cases of VB. By �probability-theoretic� we mean a measure
theory-based approach to probabilistic concepts, as prevalent in contempo-
rary mathematics (e.g. Billingsley, 2012; Shao, 2003; Fristedt and Gray, 1997).
This approach is rather uncommon in the neuroimaging and machine learning
literature, where many application-oriented developments on VB have taken
place (Blei et al., 2016). In the current context, it is necessitated by the fact
that �point probability masses� cannot be represented by probability density
functions. This implies that to derive VML and ML under VB requires a
careful di�erentiation between those random variables whose distribution can
and cannot be represented by probability density functions. This is a�orded
by the measure theory-based approach. We assume that the reader is fa-
miliar with the measure-theoretic viewpoint of probability theory, including
Lebesgue integration. To establish notation and prepare some aspects of the
discussion to follow, we provide a brief summary of key elements in Section
S2.1. In Section S2.2 we then review a selection of entropy formulations which
will be required for the formulation of VB and VML in probability-theoretic
terms. Finally, in Section S2.3 we formulate the VB, VML, and ML scenarios
is probability-theoretic terms and discuss their mutual relationships.

S2.1 Preliminaries

Measurable, measure, and probability spaces

Our formulation rests on the concepts of measurable, measure, and probability
spaces. A measurable space is a pair (Ω,F), where Ω denotes a set and F
denotes a σ-�eld on Ω. An important measurable space in the following will be
(Rd,Bd), where Bd denotes the d-dimensional Borel σ-�eld on Rd. A measure
space is a triple (Ω,F , µ), where µ denotes a measure, i.e. a mapping µ : F →
[0,∞] with properties

(M1) µ(∅) = 0, and

(M2) for every pairwise disjoint sequence {Ai}i∈N with Ai ∈ F , i ∈ N it holds
that µ (∪∞i=1Ai) =

∑∞
i=1 µ(Ai).

An important measure space in the following will be (Rd,Bd, µdl ), where Bd
denotes the d-dimensional Borel σ-�eld and µdl denotes the d-dimensional
Lebesgue measure

µdl : Bd → [0,∞],×di=1[ai, bi[7→ µdl
(
×di=1[ai, bi[

)
:=

d∏
i=1

(bi − ai). (S2.1)

Please note that we do not use the more conventional notation λd for the
Lebesgue measure to avoid confusion with the covariance component param-
eter vector λ. Similarly, a probability space is a triple (Ω,F , P ), where P
denotes a probability measure, i.e. a mapping P : F → [0, 1], with properties
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(P1) P (∅) = 0, P (Ω) = 1, and

(P2) for every pairwise disjoint sequence {Ai}i∈N with Ai ∈ F , i ∈ N it holds
that P (∪∞i=1Ai) =

∑∞
i=1 P (Ai).

An important probability space in the following will be (Rd,Bd, δx), where δx
denotes the Dirac measure, de�ned as

δx : Bd → [0, 1], B 7→ δx(B) :=

{
1 if x ∈ B
0 if x /∈ B

. (S2.2)

Of key importance in the derivations to follow is the fact that the Lebesgue
integral of a measurable function f : Rd → Rd with respect to the Dirac
measure δx is readily evaluated as (e.g. Lieb and Loss, 2001)∫

f dδx = f(x). (S2.3)

Random variables and distributions

Let (Ω,F , P ) and (Γ,S) denote a probability space and a measurable space,
respectively. A random variable is a function

X : (Ω,F , P )→ (Γ,S), (S2.4)

which is measurable, i.e. for which

X−1(S) := {ω ∈ Ω|X(ω) ∈ S} ∈ F for all S ∈ S. (S2.5)

A random variable induces a probability measure

PX : S → [0, 1], S 7→ PX(S) := P ({ω ∈ Ω|X(ω) ∈ S}), (S2.6)

on S. The probability measure PX is referred to as the distribution of the
random variable X and renders (Γ,S, PX) a probability space (e.g. Fristedt
and Gray, 1997, Chapter 2).

Probability density functions

For a measure space (Ω,F , µ) any quasiintegrable function f : Ω → R≥0 is
a density function and de�nes a measure ν on F by means of its Lebesgue
integral for A ∈ F , i.e.

ν : F → [0,∞], A 7→ ν(A) :=

∫
A

f dµ. (S2.7)

We say that �ν is a measure with density function f with respect to the
measure µ� and write ν = fµ for short. Recall that a F-measurable function
g : Ω → R̄ is integrable with respect to ν, if the function product g · f is
integrable with respect to µ, and that in this case∫

Ω

g dν =

∫
Ω

g · f dµ (S2.8)
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(e.g. Billingsley, 2012, Theorem 16.11). As noted above, we will be primarily
concerned with the measure space (Rd,Bd, µdl ), where µdl denotes the Lebesgue
measure on Rd. In this case, if the Lebesgue integral of f with respect to µdl
equals 1, f is referred to as probability density function. Furthermore, in this
case we have for ν = fµdl∫

g dν =

∫
g · f dµdl =

∫
g(x)f(x) dx. (S2.9)

Crucially, this implies that one can evaluate Lebesgue integrals using Riemann
integration as done throughout Section S1 (right-hand side of (S2.9), for details
see e.g. Schmidt (2011), Chapter 9).

We further require the notion of conditional probability density functions.
For a random variable (X,Y ) on a product measure space (Ω,F , µ) := (Ωx ×
Ωy,Fx ×Fy, µx × µy) with joint probability density function fX,Y : Ω→ R>0

with respect to µ, the conditional probability density function of X given
Y = y is de�ned as

fX|Y : Ω→ R>0, (x, y) 7→ fX|Y (x, y) := fX,Y (x, y)/fY (y) (S2.10)

where

fY : Ω2 → R>0, y 7→ fY (y) :=

∫
fX,Y (x, y) dµx (S2.11)

is the marginal probability density function of Y with respect to µy (e.g. Shao,
2003, Chapter 1.4).

Discrete, continuous, and mixed random vectors

Because we are considering multivariate random entities in the application
of VB, VML, and ML to the GLM, we also require the notion of random
vectors as the multivariate extension of random variables. More speci�cally,
we require the concepts of discrete, continuous and mixed random vectors,
which we introduce in the following.

Let (Ω,F , P ) be a probability space. A d-dimensional discrete random
vector is a function

X : Ω→ Rd, ω 7→ X(ω) := (X1(ω), ..., Xd(ω))T (S2.12)

whose range space or alphabet (Gray, 2011; Cover and Thomas, 2012)

X := {xi}ni=1 := X(Ω) ⊂ Rd (S2.13)

is �nite. A discrete random vector has an associated probability mass function
pX given by

pX : Rd → [0, 1], pX(x) :=

{
P (X = x), if x ∈ X
0, if x /∈ X

, (S2.14)

with the notational convention

P (X = x) := P ({X = x}) = P ({ω ∈ Ω|X(ω) = x}). (S2.15)
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A special discrete random vector required in the following is a constant
random vector, which for a �xed x∗ ∈ Rd we write as

X∗ : Ω→ Rd, ω 7→ X∗(ω) := x∗. (S2.16)

In this case the alphabet X ∗ = {x∗} of X∗ comprises a single element, the
associated probability mass of which is given by

pX∗(x∗) = P ({ω ∈ Ω|X∗(ω) = x∗)}) = P (Ω) = 1. (S2.17)

Analogously to a random variable, a random vector X : Ω → Rd induces
a probability measure PX on the measurable space (Rd,Bd). Notably, the
induced probability measures of a constant random vector is the Dirac measure
(e.g. Bauer, 1991, p. 25), i.e. with (S2.2) and (S2.16)

PX∗ = δx∗ . (S2.18)

A d-dimensional continuous random vector is a function Y of the form
(S2.12) whose induced probability measure PY on (Rd,Bd) is absolutely con-
tinuous with respect to Lebesgue measure and can thus be represented by a
probability density function fY : Rd → R≥0.

Finally, we construct the concept of a mixed random vector as follows.
Set d := d1 + d2 (d1, d2 ∈ N), let (Ω,F) be a measurable space, and let
X : Ω→ Rd1 be a discrete random vector, which induces a distribution PX on
P(X ). Let PY |X be a Markov kernel from (X ,P(X )) to (Rd2 ,Bd2), i.e. PY |X
is a mapping

PY |X : X × Bd2 → R (S2.19)

with the properties

• PY |X(x, ·) : Bd2 → [0, 1] is a probability measure on Bd2 for every x ∈ X ,

• PY |X(·, B) : X → R is P(X )-measurable for every B ∈ Bd2 .

Then PX,Y = PXPY |X is a probability measure on (Ω × Rd2 ,F ⊗ Bd2) (e.g.
Shao, 2003, 1.4.3). Assume in addition that

PY |X=x := PY |X(x, ·) = fY |X=xµ
d2
l , (S2.20)

i.e.

PY |X=x(B) =

∫
B

fY |X=x(y) dy (S2.21)

for probability density functions fY |X=x with x ∈ X . Let Y denote the identity

mapping on Rd2 and de�ne Z := (X,Y ). Then Z is a d-dimensional random
vector on (Ω×Rd2 ,F⊗Bd2) with marginal distributions having the properties

PX(A) = PX,Y (A× Rd2) =

∫
A

PY |X(x,Rd2) dPX =
∑
x∈A

pX(x) (S2.22)

for all A ∈ P(X ) and

PY (B) =
∑
x∈X

pX(x)

∫
B
fY |X=x(y) dy =

∫
B

∑
x∈X

pX(x)fY |X=x(y) dy =:

∫
B
fY (y) dy

(S2.23)
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for all B ∈ Bd2 . In other words, X is (by de�nition) a discrete d1-dimensional
random vector (which we call the discrete component of Z) and Y is (by
construction) a continuous d2-dimensional random vector (which we call the
continuous component of Z). We call Z a d-dimensional mixed random vector.

Note that if we set PY |X(x, ·) := PY for every x ∈ X with a probabil-

ity measure PY on Bd2 , then PX,Y = PXPY is a product measure and the
random vectors X and Y are independent. Vice versa, assuming indepen-
dent d1- and d2-dimensional random vectors X and Y , respectively, we can
use the construction above to construct a d-dimensional mixed random vector
with discrete and continuous components whose marginal distributions are
independent.

S2.2 Entropies of distributions of random vectors

Entropy of the distributions of a discrete random vector

Following (Gray, 2011, Chapter 3), we de�ne the entropy of the distribution
PX of a discrete random vector X with alphabet X as

H(PX) := −
∑
x∈X

pX(x) ln pX(x) (S2.24)

with the convention 0 ln 0 := 0. For later reference we note that the the
entropy of the distribution of a constant random vector of the form (S2.16)
is zero, because in this case the de�ning sum (S2.24) comprises a single term
which evaluates to zero:

H(PX∗) = −pX∗(x∗) ln pX∗(x∗) = −1 ln 1 = 0. (S2.25)

Entropy of the distribution of a continuous random vector

We de�ne the entropy of the distribution PY of a continuous random vector
Y as its di�erential entropy (e.g. Cover and Thomas, 2012, Chapter 8), i.e.
we set

h(PY ) := −
∫
Rd
fY (y) ln fY (y) dy. (S2.26)

Entropy of the distribution of a mixed random vector

Finally, following (Nair et al., 2006), we de�ne the entropy of the distribution
PZ of a mixed random vector Z = (X,Y ) with the property∫

Rd2
|fY |X=x(y) ln fY |X=x(y)|dy <∞ (S2.27)

for all x ∈ X by

H(PZ) := −
∑
x∈X

∫
Rd2

pX(x)fY |X=x(y) ln
(
pX(x)fY |X=x(y)

)
dy (S2.28)
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Note that we can rewrite this de�nition as

H(PZ) = −
∑
x∈X

pX(x) ln pX(x)−
∑
x∈X

pX(x)

∫
Rd2

fY |X=x(y) ln(fY |X=x(y)) dy.

(S2.29)
H(PZ) thus comprises the sum of the entropy of the marginal distribution
of the discrete component of Z and a convex combination of the di�erential
entropies of the conditional distributions of the continuous components.

In particular, for the case of independent discrete and continuous compo-
nents, i.e. fY |X=x := fY , we obtain

H(PZ) = H(PX) + h(PY ). (S2.30)

More generally, if the components X and Y are independent, and Y may be
either continuous or discrete (rendering Z a discrete random vector), we write

H(PZ) = H(PX) + H(PY ), (S2.31)

where H denotes the entropy of the continuous or discrete component Y .

S2.3 Probability-theoretic variational Bayes

Based on the concepts reviewed in Sections S2.1 and S2.2, we are now in the
position to formulate the VB, VML, and ML scenarios discussed in the main
text in probability-theoretic terms and to delineate their relationship. We pro-
ceed as follows. First, we reformulate the free energy functions FV B , FVML

and FML introduced in the main text in probability-theoretic terms. To dis-
tinguish these functions from their counterparts in the main text, they will be
denoted by FV B ,FVML, and FML, respectively. Note that in general, the free
energy functions depend on both the realizations of the observed data random
variables as well as the distributions (or values in the VML and ML case) of
the unobserved parameter random variables (or non-random variables in the
VML and ML case). However, in analogy to classical likelihood functions (e.g.
Shao, 2003, Chapter 4.4), we conceive of the free energy functions as functions
of entities related to the parameter (random) variables only. Intuitively, this
corresponds to assumption of a given and �xed data observation - the com-
mon scenario in experimental applications of the approaches. Second, upon
reformulating the VB, VML, and ML scenarios in probability-theoretic terms,
we relate these new formulations to the de�nitions of the variational free en-
ergies in the main text and show their consistency. Finally, we conclude with
a theorem on the relationshiop between VB, VML, and ML.

Variational Bayes

To express the VB scenario of the main text in probability-theoretic terms,
we set d1 := n+ p+ k (n, p, k ∈ N), consider a probability space (Ω,F , P ) and
the measurable space (Rd1 ,Bd1) and de�ne the continuous random vector

(Y,B,L) : Ω→ Rd1 , ω 7→ (Y,B,L)(ω), (S2.32)
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which induces a probability measure PY,B,L on Bd1 . We thus obtain the prob-
ability space (Rd1 ,Bd1 , PY,B,L). Because (Y,B,L) is a continuous random
vector, PY,B,L can be represented by a probability density function

fY,B,L : Rd1 → R>0, (y, β, λ) 7→ fY,B,L(y, β, λ) (S2.33)

with respect to Lebesgue measure µd1l on Bd1 . Note that fY,B,L is denoted by
p(y, β, λ) in the main text.

To de�ne the variational Bayes free energy function FV B , we �rst consider
a random vector

(B̃, L̃) : Ω→ Rp+k, ω 7→ (B̃, L̃)(ω) (S2.34)

whose components are the independent random vectors B̃ : Ω → Rp and L̃ :
Ω→ Rk. This implies that the induced distribution Q(B̃,L̃) on the measurable

space (Rp+k,Bp+k) of (B̃, L̃) factorizes, i.e.

Q(B̃,L̃) = QB̃ ⊗QL̃ (S2.35)

where QB̃ and QL̃ denote the marginal distribution on Bp and Bk induced by

B̃ and L̃, respectively (e.g. Fristedt and Gray, 1997, Chapter 9). We hence
write QB̃⊗L̃ for Q(B̃,L̃). Let QB̃⊗L̃ denote the set of all such distributions.

For a �xed y ∈ Rn we then de�ne

FV B : QB̃⊗L̃ → R, Q(B̃⊗L̃) 7→ FV B(QB̃⊗L̃) :=

∫
ln fY,B,L(y, ·, ·) dQB̃⊗L̃ + H(QB̃⊗L̃).

(S2.36)

Here the symbol H denotes the entropy of the distribution QB̃⊗L̃, the evalu-

ation of which depends on the type of random vectors B̃ and L̃, as discussed
in Section S2.2.

Variational maximum likelihood

In analogy to the above, we set d2 := n+ p (n, p ∈ N), consider a probability
space (Ω,F , P ) and the measurable space (Rd2 ,Bd2), and de�ne the continuous
random vector

(Y,B) : Ω→ Rd2 , ω 7→ (Y,B)(ω), (S2.37)

which induces the probability measure PY,B on Bd2 . We thus obtain the
probability space (Rd2 ,Bd2 , PY,B). As in the main text, we assume that PY,B
is represented by a parameter-dependent probability density function

fλY,B : Rd2 → R>0, (y, β) 7→ fλY,B(y, β) (S2.38)

with respect to Lebesgue measure on Bd2 . Note that fλY,B is denoted by
pλ(y, β) in the main text.

To de�ne the variational maximum likelihood free energy function FVML,
we �rst consider a random vector B̃

B̃ : Ω→ Rp, ω 7→ B̃(ω), (S2.39)

which induces a probability measure QB̃ on the measurable space (Rp,Bp).
Let QB̃ denote the set of all such induced probability measures. For a �xed
y ∈ Rn we then de�ne
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FVML : QB̃×Rk → R, (QB̃ , λ) 7→ FVML(QB̃ , λ) :=

∫
ln fλY,B(y, ·)dQB̃+H(QB̃), (S2.40)

where as above the symbol H denotes the entropy of the distribution QB̃ , the

evaluation of which depends on the type of random vector B̃ as discussed in
Section S2.2.

Maximum likelihood

Finally, to express the maximum likelihood scenario in probability-theoretic
terms, we consider a probability space (Ω,F , P ), the measurable space (Rn,Bn)
and de�ne the continuous random vector

Y : Ω→ Rn, ω 7→ Y (ω), (S2.41)

which induces the probability measure PY on Bn and hence the probability
space (Rn,Bn, PY ). As in the main text, we assume that PY is represented
by a parameter-dependent probability density function

fβ,λY : Rn → R>0, y 7→ fβ,λY (y) (S2.42)

with respect to Lebesgue measure on Bn. Note that fβ,λY is denoted by pβ,λ(y)
in the main text. We de�ne the maximum likelihood free energy function FML

as the standard log-likelihood function of the maximum likelihood scenario,
i.e. for �xed y ∈ Rn, we set

FML : Rp × Rk → R, (β, λ) 7→ FML(β, λ) := ln fβ,λY (y). (S2.43)

Note that we have FML = FML by de�nition.

This concludes the probability-theoretic formulations of the VB, VML, and
ML, scenarios. We next show the consistency of the free energy functions de-
�ned in this section with the de�nitions of the free energy functions considered
in the main text in form of the following lemma:

Lemma (Consistency of free energy function de�nitions).

The de�nitions of the variational free energy functions FV B and FV B, as well
as FVML and FVML are consistent. More speci�cally,

(L1) if in the de�nition of the variational Bayes free energy FV B(S2.36) B̃
and L̃ are continuous random vectors represented by probability density
functions qB̃ and qL̃ with respect to Lebesgue measures µpl and µkl , re-
spectively, then the de�nitions of FV B and FV B are equivalent, and

(L2) if in the de�nition of variational maximum likelihood free energy FVML

(S2.40) B̃ is a continuous random vector represented by a probability
density function qB̃ with respect to Lebesgue measure, then the de�nitions
of FVML and FVML are equivalent.

Proof of (L1).

Consider the de�nitions

FV B(QB̃⊗L̃) :=

∫
ln fY,B,L(y, ·, ·) dQB̃⊗L̃ + H(QB̃⊗L̃) (S2.44)
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and, under the mean-�eld approximation,

FV B(q(β)q(λ)) =

∫∫
q(β)q(λ) ln

(
p(y, β, λ)

q(β)q(λ)

)
dβdλ (S2.45)

Note that the integral in (S2.44) denotes a Lebesgue integral with respect to the
probability measure QB̃⊗L̃, while the integral in (S2.45) denotes a (double) Riemann

integral. If B̃ and L̃ are continuous random vectors with associated probability
density functions qB̃ and qL̃, then with (S2.9) and the notational conventions of the
main text, we have∫

ln fY,B,L(y, ·, ·) dQB̃⊗L̃ =

∫∫
qB̃(β)qL̃(λ) ln fY,B,L(y, β, λ) dµpl (β)dµkl (λ)

=

∫∫
qB̃(β)qL̃(λ) ln fY,B,L(y, β, λ) dβdλ.

(S2.46)

Further, because (B̃, L̃) is a continuous random vector, (S2.26) applies for the en-
tropy of QB̃⊗L̃, and thus

H(QB̃⊗L̃) = h(QB̃⊗L̃) = −
∫∫

qB̃(β)qL̃(λ) ln(qB̃(β)qL̃(λ)) dβdλ. (S2.47)

Hence, (L1) follows with the linearity of the (Riemann) integral and omission of the
subscripts B̃ and L̃ in the denotation of the probability density functions qB̃ and qL̃.

�

Proof of (L2).

Consider the de�nitions

FVML(QB̃ , λ) =

∫
ln fλY,B(y, ·)dQB̃ + H(QB̃) (S2.48)

and

FVML(q(β), λ) =

∫
q(β) ln

(
pλ(y, β)

q(β)

)
dβ. (S2.49)

Note that the integral in (S2.48) denotes a Lebesgue integral with respect to the
probability measure QB̃ , while the integral in (S2.49) denotes a Riemann integral.
If B̃ is a continuous random vector with associated density function qB̃ with respect
to Lebesgue measure, then with (S2.9) and the notational conventions of the main
text, we have ∫

ln fλY,B(y, ·)dQB̃ =

∫
qB̃(β) ln fλY,B(y, β) dµpl (β)

=

∫
qB̃(β) ln pλ(y, β) dβ.

(S2.50)

Further, because B̃ is a continuous random vector, (S2.26) applies for the entropy
of QB̃ , and thus

H(QB̃) = h(QB̃) = −
∫
qB̃(β) ln qB̃(β) dβ. (S2.51)

Hence, (L2) follows with the linearity of the (Riemann) integral and omission of the
subscript B̃ in the denotation of the probability density function qB̃ .

�

Finally, we provide the key result of this section:
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Theorem (Relationship of VB, VML, and ML).Variational maximum
likelihood and maximum likelihood are special cases of variational Bayes. More
speci�cally:

(T1) For a constant marginal density fL(λ) := 1 and the constant random
vector

L̃∗ : Ω→ Rk, ω 7→ L̃∗(ω) := λ∗ (S2.52)

it holds that
FV B(QB̃⊗L̃∗) = FVML(QB̃ , λ). (S2.53)

(T2) For a constant marginal density fB(β) := 1 and the constant random
vector

B̃∗ : Ω→ Rp, ω 7→ B̃∗(ω) := β∗ (S2.54)

it holds that
FVML(QB̃∗ , λ) = FML(β∗, λ). (S2.55)

Proof of (T1)

We �rst note that because B̃ and L̃∗ are independent random vectors and because
L̃∗ is a constant random vector, we have with (S2.30), (S2.31), and (S2.25)

H(QB̃⊗L̃∗) = H(QB̃) +H(QL̃∗) = H(QB̃). (S2.56)

Second, with (S2.18) we have QL̃∗ = δλ∗ . Hence, with Fubini's theorem,∫
ln fY,B,L dQB̃⊗L̃∗ =

∫ (∫
ln fY,B,L(y, β, λ) dδλ∗

)
dQB̃

=

∫
ln fY,B,L(y, β, λ∗)dQB̃

=

∫
ln fY,B|L(y, β|λ∗)fL(λ∗)dQB̃

=

∫
ln fY,B|L(y, β|λ∗)dQB̃ ,

(S2.57)

where the last equality follows with fL(λ∗) = 1. Notationally identifying the prob-
ability density function

fY,B|L(·, ·|λ∗) : Rn+p → R>0, (y, β) 7→ fY,B|L(y, β|λ∗) (S2.58)

with the probability density function fλ
∗

Y,B and omission of the asterisk superscript
then completes the proof.

�

Proof of (T2)

We �rst note that because B̃∗ is a constant random vector, we have with (S2.25)
H(QB̃∗) = 0. Second, with (S2.18) we have QB̃∗ = δβ∗ . Hence,∫

ln fλY,B(y, ·) dQB̃∗ =

∫
ln fλY,B(y, ·) dδβ∗

= ln fλY,B(y, β∗)

= ln fλY |B(y|β∗)

(S2.59)
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Figure S1: The panels along the �gure's columns depict the cumulative averages
(blue/green lines), cumulative variances (blue/green shaded areas), and true, but
unknown, parameter values (grey lines) for VB, VML, ReML, and ML estimation.
Parameter estimates relating to the e�ect sizes β are visualized in blue, parameter
estimates relating to the covariance components λ are visualized in green. The
panels along the �gure's rows depict the parameter recovery performance for the
subcomponents of the e�ect size parameters (row 1 and 2) and covariance component
parameters (row 3 and 4), respectively. As opposed to the data shown in the main
text, the covariance component parameter estimates are not corrected for outliers.
For implementational details, please see vbg_2.m.

where the latter equality follows with fB(β∗) = 1. Notationally identifying the
probability density function

fλY |B(·|β∗) : Rn → R≥0, y 7→ fλY |B(y|β∗) (S2.60)

with the probability density function fβ
∗,λ

Y and omission of the asterisk superscript
then completes the proof.

�

S3 Cumulative averages without outlier removal

In Section 3.1 of the main text, we present a parameter recovery simulation
for which we removed 15-20 % of outliers in the estimation of the covariance
component parameters. The same results without outlier removal are depicted
in Figure S1. As evident from the Figure, outliers a�ect all four estimation
techniques, but primarily one of the covariance components. Retaining the
outliers results in negative estimation bias estimates and an increase of the
estimation variance estimate.
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Figure S2: Parameter recovery for SPM12-based covariance component parameter
estimation. The panels along the �gure's columns depict the cumulative averages
(gree line), cumulative variances (green shaded area), and true, but unknown, pa-
rameter values (grey) for the �rst and second covariance component parameters λ1

and λ2, respectively. The panels along the �gure's rows depict these quantities for
the two implementations of covariance component parameter estimation in SPM12
as indicated on the right, and without and with a correction for outliers as indicated.
For implementational details, please see vbg_2.m.

S4 SPM12 ReML estimation

In the parameter recovery assessment of our VB, VML, ReML, and ML im-
plementation, we found that the covariance component parameter estimation
fails in a signi�cant number of cases. To investigate whether this behaviour is
speci�c to our implementation, we performed the same analyses using the co-
variance component parameter estimation functions spm_reml_sc.m (Version
4805) and spm_reml.m (Version 5223) of the SPM12 distribution. These func-
tions perform a Fisher scoring ascent on the ReML objective function to iden-
tify maximum-a-posteriori covariance component parameter estimates, prob-
ably documented best in (Friston et al., 2002). The function spm_reml_sc.m
uses weakly informative log normal priors to ensure the positivity of the covari-
ance component parameter estimates, while the spm_reml.m function, which
is called by SPM12 central spm_spm.m function, does not.

We visualize the results in Figure S2. The panel columns of this �gure
refer to the two covariance component parameter estimates and the panel
rows refer to the di�erent SPM12 functions. In the �rst row, we visualize
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the cumulative average and variances of the respective parameter estimates
based on the spm_reml_sc.m function without the removal of outliers. The
performance for λ1 is acceptable, but for the estimation of λ2 outliers from
approximately the 10th simulation on bias the cumulative average signi�cantly
away from the true, but unknown, parameter value and strongly amplify the
cumulative variance. This is similar to the behaviour we detected in our im-
plementation which led us to remove these outliers automatically (Grubbs,
1969). The second row of Figure S2 depicts the parameter recovery perfor-
mance for spm_reml_sc.m after removal of appoximately 15% of outliers.
This results in similar performance as in our implementation. Finally, the
last row of Figure SS2 depicts the parameter recovery performance for the
spm_reml.m function. Because spm_reml.m can return negative covariance
components and because the SPM12 procedures assume a covariance structure
of the form Vλ =

∑k
i=1 λiQi and not of the form Vλ =

∑k
i=1 exp(λi)Qi as in

our implementation, the necessary log transformation of the returned param-
eter estimates here can result in unde�ned results. In the data shown, these
unde�ned results have been removed, again rendering the resulting cumulative
averages and variances within reasonable bounds of the true, but unknown,
parameter values.

In summary, we conclude that the numerical optimization problems that
we encountered for the estimation of covariance components based on our
implementation of the VB, VML, ReML, and ML estimation techniques are
not an uncommon phenomenon in the analysis of neuroimaging data.

S5 Model recovery free energy contributions

To understand the observed pattern of average free energies in Figure 7 in
further detail, we tabulated the sum terms of each free energy function (Ta-
ble S1) and visualize the average term contributions to the overall average
free energy in Figure S3. We omit from visualization the �rst term, which is
identical for all free energy functions and evaluates to T1 = −367.58. Of the
remaining terms, the largest contributions are provided by T3 and T2, re�ect-
ing the residual sum of squares and the log determinant of the estimated data
covariance matrix, respectively (Figure S3A). The remaining terms T4 - T17,
as far as they exist for each free energy function, make smaller contributions
(Figure S3B). Notably, the residual sum of squares is virtually identical over
all pairings of data generating and data analysis model. This re�ects the fact
that the two-regressor model MA2 can readily capture the data pattern of the
single-regressor model MG1 by estimating β2 to be approximately zero. The
average free energy di�erences for the two data analysis models in case of MG2
thus appear to be primarily accounted for by the di�erent contributions of T2.
It is likely that these di�erences result from the erroneous allocation of data
variance under model MG2 to the covariance components of model MA1. The
more subtle di�erences between the average free energies for MA1 and MA2
in the case of MG1 on the other hand, seem to arise from two factors: �rstly,
a slight overestimation of the covariance component parameters of MA2 in
case of MG1, leading to a persistence of the lower average free energy values
in the case of ML estimation, and secondly, from additional contributions of
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T FV B FVML FReML FML

1 −n2 ln 2π −n2 ln 2π −n2 ln 2π −n2 ln 2π

2 − 1
2 ln |Vmλ | −1

2 ln |Vλ| − 1
2 ln |Vλ| − 1

2 ln |Vλ|
3 − 1

2 (y −Xmβ)TV −1
mλ

(y −Xmβ) − 1
2 (y −Xmβ)TV −1

λ (y −Xmβ) − 1
2 (y −Xmβ)TV −1

λ (y −Xmβ) − 1
2 (y −Xβ)TV −1

λ (y −Xβ)

4 − 1
2 tr(SβX

TV −1
mλ
X) − 1

2 tr(SβX
TV −1

λ X) − 1
2 tr(SβX

TV −1
λ X)

5 − 1
4 tr(Bmλ,Sβ ,mλSλ)

6 −p2 ln 2π −p2 ln 2π

7 − 1
2 ln |Σβ | − 1

2 ln |Σβ |
8 − 1

2 (mβ − µβ)TΣ−1
β (mβ − µβ) − 1

2 (mβ − µβ)TΣ−1
β (mβ − µβ)

9 − 1
2 tr(Σ−1

β Sβ) − tr(Σ−1
β Sβ)

10 −k2 ln 2π

11 − 1
2 ln |Σλ|

12 − 1
2 (mλ − µλ)TΣ−1

λ (mλ − µλ)

13 − 1
2 tr(Σ−1

λ Sλ)

14 +p
2 ln(2πe) +p

2 ln(2πe) +p
2 ln(2πe)

15 + 1
2 ln |Sβ | + 1

2 ln |Sβ | + 1
2 ln |Sβ |

16 +k
2 ln(2πe)

17 + 1
2 ln |Sλ|

Table S1: Free energy sum terms. Note that T1 is identical over all free
energy functions, T2 is the negative log determinant of the estimated data covariance
matrix, and T3 corresponds to the residual sum of squares. The remaining terms, if
they exist relate to the prior and posterior uncertainties over model parameters and
are commonly referred to as �model complexity� terms.

.

T4 - T16 for VB, VML, and ReML, as evident from the more negative sums
(Σ) of these terms. In summary, for the current data generating and data
analysis model comparison, both covariance component overestimation and
the free energy model complexity terms T4 - 16 appear to contribute to the
identi�ability of the true, but unknown, model structure.
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Figure S3: Average free energy term contributions. The �gure depicts a
decomposition of the average free energy values depicted in the main text Figure 7
according to the terms tabulated in Table S1. Panel A displays the largest contri-
butions, a�orded by terms T2 and T3, Panel B displays the remaining term contri-
butions, and the sum (Σ) of these remaining distributions. Note the di�erence in
scale between Panels A and B. Panel rows refer to the four estimation techniques.
In each subpanel, the left two bar groups refer to data generated by MG1 analyzed
with data analysis models MA1 and MA2, and the right two bar groups refer to
data generated by MG2 analyzed with MA1 and MA2. For visual comparison, thin
grey lines corresponding to the values obtained under the MG1/MA1 combination
are included. For implementational details, please see vbg_3.m.
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