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Abstract

A major function of central nervous systems is to discriminate different categories or

types of sensory input. Neuronal networks accomplish such tasks by learning different sen-

sory maps at several stages of neural hierarchy, such that different neurons fire selectively to

reflect different internal or external patterns and states. The exact mechanisms of such map

formation processes in the brain are not totally understood. Here we study the mechanism

by which a simple recurrent/reentrant neuronal network accomplish group selection and

discrimination to different inputs in order to generate sensory maps. We describe the con-

ditions and mechanism of transition from a rhythmic epileptic state (in which all neurons

fire synchronized and indiscriminately to any input) to a winner-take-all state in which only

a subset of neurons fire for a specific input. We prove an analytic condition under which a

stable bump solution and a soft winner-take-all state can emerge from the local recurrent

excitation-inhibition interactions in a three-layer spiking network with distinct excitatory

and inhibitory populations, and demonstrate the importance of surround inhibitory connec-

tion topology on the stability of dynamic patterns in spiking neural network.
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1 Introduction

Facing with vast amount of multi-sensory information, Central Nervous System (CNS)

seems to process only a small subset of those inputs at any given time, no matter whether

they come from external or internal sources. How brain selectively processes such large

number of inputs and maintains a unified perception remains a mystery. At the level of

neuronal networks, a network in which all neurons respond the same to all stimuli would

convey no information about the stimulus. In order to be useful, neurons must come to

respond differentially to variety of incoming signals. Many neural models and theories

have been proposed to account for such ability. Winner-Take-All (WTA) network is one of

such proposed mechanisms for developing feature selectivity through competition in simple

recurrent networks, and it has received much attention on both theoretical and experimental

grounds. The primary theoretical justification is the ability of such networks to explain how

the maps, which are ubiquitous in the cerebral cortex, can arise (Kohonen, 1982; Goodhill,

2007). WTA networks can also explain how a network can come to make useful distinctions

between its inputs. WTA networks coupled with synaptic learning rules and homoestatic

plasticity can explain how this takes place in a self-organized fashion from an initially

undifferentiated state. Finally, WTA models are often employed at the behavioral level

in theoretical models of higher-level cognitive phenomenon such as action-selection and

attention (Itti & Koch, 2001; Walther & Koch, 2006).

Another mechanism proposed for feature selectivity is the phenomenon of spatially

localized bumps in neuronal networks (Somers, Nelson, & Sur, 1995; Laing & Chow,

2001). If we view multiple neurons within a bump as mulitiple-winners of excitatory and

inhibitory competition, bump activity in spiking networks can be treated as a soft WTA or

k-Winner-Take-All phenomenon (see Maass, 2000 for their definition). In this paper we use
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Winner-Take-All (WTA) and “bump activity” inter-changeably to describe the same stable

group activity that arises from inter-connected excitatory-inhibitory neuronal networks. On

a more general level, both bump activity and WTA phenomenon can be viewed as a type of

pattern formation process in networks of excitatory and inhibitory neurons (for example,

patterns of stable grid in Wilson & Cowan, 1973 and Ermentrout & Cowan, 1979), and an

example of activity dependent neuronal group selection process (Edelman, 1987).

Population rate-based WTA models have been extensively studied and are well un-

derstood (Dayan & Abbott, 2001). But, the connections between rate models to the real

biological neural systems are not direct, because they are different from the real nervous

systems whose neurons are spiking. So it is necessary to study the networks of spiking neu-

rons, such that the biological interpretation of spike models can be more directly linked to

real nervous systems. Modeling and understanding spiking networks is not simple because

spiking neurons are highly nonlinear and their action potentials are discrete. As a result, it

is always more difficult to obtain analytical solutions for spiking firing properties than rate

models.

Analysis has shown conductance-based spiking models can be approximated by sim-

ple rate models under certain conditions (such as in an asynchronous state in Shriki et al.

Neural Computation, 2003). This approach has been applied to the study of hyper-column

in a spiking model of visual cortex (Shriki et al., 2003). The orientation selectivity in

their study, is modeled as the appearance of a unimodal “bump”-like spiking activity in a

ring-connected spiking network, similar to an earlier study (Laing & Chow, 2001). Both

approaches applied approximations from the rate models and used Fourier analysis to cal-

culate the conditions for the appearances of bump activity. Recent work specifically studied

recurrent spiking WTA networks, which are closer to real biological systems than previous

rate models (Ref. Rutishauser & Douglas, 2009, 2011). Even though these newer network
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models can receive spike input and generate spike output, their network structures are still

very simplified. For example, excitatory and inhibitory neurons are modeled into one sin-

gle population (Laing & Chow, 2001), and inhibitory population are reduced into one unit

(Rutishauser & Douglas, 2011), or removed altogether and modeled as direct inhibitory

connections among excitatory neurons (Oster, Douglas, & Liu, 2009).

In a recent report we presented a robust and more biologically-realistic WTA network

structure with distinct excitatory and inhibitory populations with arbitrary number of units

(Chen, McKinstry, & Edelman, 2013). Each neuron type has very detailed biological pa-

rameters to model different neuronal transmitters and receptor types similar to previous

work (Izhikevich & Edelman, 2008). We showed that surround inhibition and longer time

constants from NMDA and GABAb conductances are sufficient to achieve stable “bump”

spiking activity in a selected winner neuronal group while all the other neurons are inhib-

ited and quiet. However, detailed biological properties, such as STSP (short-term synaptic

plasticity), NMDA voltage gating etc., prevented a formal analytical analysis of the whole

model. Also, it is not clear any of those biological details or a specific type of synaptic

connections are crucial for the emergence of bump activity.

To identify the most important mechanistic factors for the spiking WTA networks, here

we study a simplified spiking network after some biological details are removed. For exam-

ple, based upon what we have noticed previously, turning off STSP, NMDA voltage-gating

and excitatory-to-excitatory connections does not change the overall properties of WTA

phenomenon. On the other hand, we preserve some important biological features such as

the four different synaptic connections and conductance types (AMPA, NMDA, GABAa,

GABAb), because we found that these four individual conductance types contribute to

different aspects of the “bump” stability. By examining functions of these individual con-

ductances and the topologies of excitatory-inhibitory connectivity, we provide a detailed
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analysis of the conditions on which a stable bump activity can emerge from this reentrant

spiking network. Our analysis thus provide a mechanistic analysis on how a neuronal group

selection process can occur in an activity dependent manner in neural systems.

2 Analysis of the Dynamic Firing Patterns in a Basic Neu-
ronal Spiking Network

2.1 Network structure

Here we analyze a basic 3-layer spiking neuronal network with different neuron types with

realistic biological parameters. The first layer of excitatory neurons (IN – input cells) takes

input signals (e.g., arbitrary analog patterns) and translates them into spiking activity. The

input signal we considere here in this paper is a type of unstructured random currents evenly

distributed within a certain range and injected into the 100 input neurons (IN). IN cells are

randomly connected to the next excitatory layer (E) with initial weights evenly distributed

between 0 and a maximal value. The random input currents and random connections to the

excitatory layer we analyzed here provide a baseline condition in which we test how the re-

current/reentrant connectivity between excitatory and inhibitory neurons by themselves can

accomplish winner-take-all competition to random but unstructured input patterns (without

obvious firing-rate differences among input neurons) and without synaptic modifications.

The successful WTA network structure then can be trained to discriminate more complex

and structured patterns through spike-timing dependent learning rules such as STDP. Such

learning process will modify the synapses between these two excitatory types so that a

selected E and I neurons (the WTA group) will respond to preferred input patterns more

quickly for practical applications, which we have demonstrated in a previous report (Chen,

McKinstry, & Edelman, 2013).
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Figure 1: Structure of the basic 3-layer spiking network and a schematic plot of the “sur-
round inhibition” connectivity that supports winner-take-all phenomenon. IN – thalamo-
cortical input neurons, E – Excitatory pyramidal neurons, I – Inhibitory neurons. We chose
100 input (IN) cells, 400 E cells and 400 I cells for total of 900 neurons in the analy-
sis model presented here. Input layer to excitatory layer (IN to E) are all-to-all random
connected, excitatory to inhibitory layers are narrow and were simplified into one-to-one
connection in our analysis. Inhibitory connections are surround type, that is, I cells do not
inhibit its nearest neighboring I and E cells, but only distant surrounding neurons. This
connectivity is implemented as two cosine peaks with a flat gap (zero value connectivity)
in between. We call this specific network connectivity as surround inhibition type for the
one dimensional case and it is a simplified version of the two-dimensional Central-Annual-
Surround (CAS) type of topology we described before (Chen, McKinstry, & Edelman,
2013) .
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We also implemented the above network using adaptive exponential spiking models

and obtained similar results. For simplicity the analysis below uses the Izhikevich model

(Izhikevich & Edelman, 2008), and excitatory (E) and inhibitory (I) neurons use the same

parameters in the following equation:

Cv̇ = k(v − vr)(v − vt)− u− Isyn (1a)

u̇ = a{b(v − vr)− u} (1b)

Parameters in these equations are the same as explained before (Izhikevich & Edelman,

2008). That is, v is the membrane voltage in millivolts (mV ), C is the membrane capaci-

tance, vr is the neuron’s resting potential, vt refers to its threshold potential, u represents the

recovery variable defined as the difference of all inward and outward voltage-gate currents.

Isyn is the synaptic current (in pA) originated from spike input from other neurons. a and b

are different constants. When the membrane voltage reaches a threshold, i.e., v > vpeak, the

model is said to generate a spike, and two variables in Eq.1a and Eq.1b are reset according

to v ← c and u← u+ d while c and d are parameters for different cell type.

We use a simplified synaptic current form with four basic conductances from AMPA,

NMDA, GABAA and GABAB channels. For simplification, voltage-gating of NMDA

channel is reduced to a constant factor. This is done through calculating an average number

for the voltage-gating term for the NMDA conductance (i.e., [(v + 80)/60]2/[1 + ((v +

80)/60)2] on Page 11 of the Supplementary Information in Izhikevich & Edelman (2008))

for the normal range of voltages: v = [−60, 60]), and the result is equivalent to a voltage-

independent NMDA channel with smaller gain factor than AMPA channels (see Appendix

for the individual conductance gain factors we used). So synaptic current Isyn is composed

of four different current types originated from those four conductances multiplied with the
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voltage differences between their individual reversal potentials:

Isyn = gAMPA(v − 0) + gNMDA(v − 0) + gGABAA(v + 70) + gGABAB(v + 90). (2)

Shown in the above equation, reversal potentials of AMPA and NMDA channels are

0 and reversal potentials for GABAA and GABAB channels are −70mV and −90mV

respectively.

As described before, each conductance has exponential decay with different time con-

stants in millisecond (ms):

ġ = −g/τ, (3)

while τ= 5, 150, 6, and 150 for the AMPA, NMDA, GABAA and GABAB channels

respectively.

To simplify the analysis, there are equal numbers (400 in all the subsequent analysis)

of excitatory (E) and inhibitory (I) neurons in our basic network model in Figure 1, al-

though their numbers can be in any ratio. We also explored different types of connection

topologies in the connections from excitatory to inhibitory neurons (E to I), the reentrant

inhibition from basket cells to pyramidal neurons (I to E) and the inhibitory connections

within basket cells themselves (I to I). In our study, Inhibitory to Excitatory and Inhibitory

to Inhibitory connections are kept the same topological type and total weights are kept

equal. Throughout the simulation the total connection weights to each neuron are nor-

malized to be a constant for each connection type. The total weights for each connection

type (E to I and I to E) are two parameters we explored systematically. As a first step,

we firstly only consider one type of inhibitory conductance (GABAA) to obtain analytical

solutions for the conditions of Winner-Take-All state. GABAB conductances are added

after an analytical solution is found, a comparison of the transition plots can be found in

the Appendix.
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To classify different types of spike dynamics for the surround inhibition network in

Figure 1, for each neuron, we record the number of spikes between 2 and 3 seconds after

the simulation had reached steady state without synaptic plasticity (STDP off). We then

characterize the behavior of the network by the maximum number of spikes generated by

any excitatory neuron. Figure 2 (e) plots this maximal firing rate for every combination of

the E to I weights versus the I to E weights. The analysis is repeated and plotted in figure

2(f) for the inhibitory population.

Figure 2 shows different types of dynamic firing patterns in the 2-dimensional param-

eter space. When only one type of connection weight (excitatory or inhibitory) is high

but the other weight is low, either excitatory or inhibitory neurons are in a quasi-random

/ rhythmic state in which one group of neurons fires in high Gamma frequency range (>

40Hz, see Figure 2 (a) and (g)). When both connection weights are relatively high (see

Fig.2(c)), both excitatory and inhibitory neurons have high maximal firing rates where ex-

citatory neurons have a maximal firing rate larger than 35Hz and inhibitory neurons have

a maximal firing rate of larger than 100Hz. If we look at the corresponding spike raster

plot in Fig2 (c), only a subset of excitatory and inhibitory neurons maintain such high fir-

ing rates while majority of other neurons are silent. We call this Winner-Take-All (WTA)

state in which only a small subset of neuronal groups persistently fire high frequency and

keep the rest of neurons from firing using surround inhibition. The region of the parameter

space with such WTA states is delineated by the right curve in Fig.2(d) where the maximal

firing rate of excitatory neurons increased to greater than 35Hz from lower firing rates in

the middle region (from the blue area in Fig. 2(e) transition to the red area on the top right),

and roughly corresponds to a similar increase of maximal firing rate to above 100Hz for

inhibitory neurons in Fig.2 (f).

Subplots (a), (b), (h) and (i) in Fig. 2 all belong to an intermediate region in the param-
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Figure 2: Classification of different dynamic spiking patterns in the surround inhibition
network we defined in Figure 1 and the phase diagram for the transition between different
firing states.(a) to (c) and (g) to (i) are raster plots which show all spikes within a half
second interval for each neuron in the network. (e) and (f) are maximal firing rates of
excitatory and inhibitory neurons in the 2-d parameter space (total excitatory weight in
y-axis and total inhibitory weight in the x-axis). Red points in (d) are transition curves
constructed from (e) where maximal firing rate of excitatory neurons changed from below
to above 40Hz. (a) to (c) and (g) to (i) are example spiking patterns under their specific
parameter combinations which are marked on the 2-d plot in (d). Subplot (c) represents a
winner-take-all (WTA) state where only a small group of excitatory and its corresponding
inhibitory neurons fire persistently while others are silent. Black curves on the middle row
– (d), (e) and (f) are the same analytic transition condition for the WTA region based upon
the analysis described in the Appendix (Eq. (19)). Basically it is a curve where SE · SI
equals to a constant defined by Eq. (19), and it delineates the Winner-Take-All region (i.e.,
max firing rate large than 40Hz for only a selected group of excitatory neurons) in the
parameter space very well for both the excitatory and inhibitory neurons.
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eter space in Fig.2(d) between two curves where maximal firing rates for both excitatory

and inhibitory neurons are relatively low. Within this parameter range, excitatory and in-

hibitory neurons are either quasi-synchronized (Fig.2(a)) or precisely synchronized and

firing rhythmically (Fig.2(h)), or exhibit moving bump activity (Fig.2(i)) or as combina-

tions of rhythmic and moving bump activity. In all these cases, single excitatory neuron

cannot maintain a stable high gamma frequency spiking activity unless connection weights

are changed, moving to the WTA region on the top-right of the second curve in Fig.2(d).

Fig. 2(d) thus provides a phase diagram for the neuronal network defined in Fig.1.

Notice that this maximal firing rate is not the neuron’s instantaneous firing rate, but is

the total number of spikes within a 1 second window. This definition is useful to discrimi-

nate a stable high firing rate neuron versus a neuron firing a short burst less than 1 second

and then becoming quiet (especially for stable vs. traveling activity, see Figure 2(c) vs. (i)).

Figure 3 summarizes patterns of spike dynamics with different connection topologies.

Compared to the surround inhibition type analyzed above, all the other connection types do

not support a Winner-Take-All state manifested as stable bump activity shown in Fig.2(c).

This is because under those connection types, excitatory and inhibitory neurons cannot

maintain high maximal firing rates when both excitatory and inhibitory weights are high

and did not have a red area on the upper-right region shown in Fig.2 (e) and (f). The most

common firing patterns for those connection types are quasi-rhythmic firings in the 10 to

20 Hz range for excitatory neurons resembling an epileptic state while some short burst

of unstable bump activity in inhibitory neurons. Our results suggest that, among different

types of connectivity topologies we analyzed, only surround inhibition can generate a stable

bump spiking activity and maintain a WTA state.
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All-to-All Random Connectivity 

Narrow excitation / Wide inhibition 

Surround excitation / Gaussian inhibition 

Figure 3: Spiking dynamics under different connection types other than the surround in-
hibition type defined in Figure 1. Each row represents a connectivity type and the middle
and right columns are maximal firing rate of excitatory and inhibitory neurons under spe-
cific connectivity. These plots were calculated the same way as Figure 2(e) and (f). Notice
that all three connectivity types here do not support a winner-take-all (WTA) region in the
parameter space (no red region in the upper-right corner). It exists in Figure 2 (e) and (f) as
a red region representing a high individual maximal firing rate state when both excitatory
and inhibitory weights are relatively high, but it is always absent here on the top right of
the 2-d parameter space.
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3 Mechanism of Winner-Take-All neuronal group selec-
tion and emergence of bump activity

Our above analysis suggests that surround inhibitory topology supports emergence of bump

activity. To explore the mechanism of WTA and which neuronal properties are essential for

such behavior, we applied the same analysis as in Fig. 2 to neuronal network in Fig.1

when Short-Term-Synaptic-Plasticity (STSP) or NMDA voltage-gating is on, or change

excitatory and inhibitory neurons’ parameters to different type. In all cases, a similar WTA

region was found for every conditions, even though the transition curves that delineate the

emergence of stable bump activity are shifted to different positions in the parameter space.

We also analyzed the same neuronal network with a different set of individual spiking

models, i.e., the adaptive exponential models and found the similar WTA region as long as

the topology of the inhibitory connections are surround type. These analyses suggest that

detailed neuronal properties such as exact models of the spiking neuron, STSP or NMDA

gating etc., are likely not fundamental for the existence of stable bump activity, but the type

of connectivity topology (i.e., surround inhibition) is more important for such behavior.

Both the Izhikevich neural model and the adaptive exponential model we used are con-

ductance based with models of inhibitory and excitatory currents of different time scales.

So we suspect that different time constants of NMDA, AMPA, GABAa and GABAb chan-

nel conductance might play some role for the emergence of bump activity. To demonstrate

this, Figure 4 shows the time evolutions of AMPA, NMDA and GABAa currents along with

the spiking activity in the simplified network in Figure 1 starting from a zero conductance

initial condition. It demonstrates the detailed transition from a rhythmic synchronized fir-

ing state into a stable bump activity. Looking at detailed dynamic changes of the individual

excitatory and inhibitory currents should shed light on how the transition is occurred.
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(a) (b) (c) 

(d) (e) (f) 

(g) 

Figure 4: Transition from a synchronized rhythmic firing state to a winner-take-all bump
spiking activity (g). In this simplified surround inhibition network, short-term synaptic
plasticity (STSP) and NMDA gating effects are removed, GABAb conductance is set to
be zero and individual excitatory and inhibitory spiking models are changed to have the
same biological parameter set. First row shows the 1-second spatial-temporal evolutions of
individual conductance for AMPA – (a), NMDA – (b) and GABAa (c). Second row show
the averaged conductance over time for excitatory and inhibitory cells separately. Notice
that bump activity in AMPA and NMDA conductance appear in inhibitory neurons first
(see (a) and (b)), while both conductances are spatially uniform even after spiking bump
activity emerged after about 400 msec. The fact that spatial uniformity is destroyed in
GABAa conductance first in (c) suggests that inhibitory neurons might show transition into
winner-take-all state early and then bias the transition in excitatory cells.
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From Figure 4 we can see, differences in time constants will determine how fast a

specific channel conductance returns back to zero after a burst of spiking activity. For ex-

citatory neurons specifically, because of its short time constants (6 msec.), AMPA current

fluctuates around a similar level with large variances. NMDA currents, on the other hand,

are accumulating to higher levels because of longer time constant (150 msec.) even though

both currents are generated by the same spiking input from the input neurons. Similar

phenomenon can be seen for inhibitory neurons. When those neurons fire rhythmically be-

fore about 300 millisecond, AMPA conductance jumps to high level (from 7 to 9 nS) after

each spike then drops down to zero very fast (red curve in Fig.4(d)), while NMDA conduc-

tance only drops a small amount each cycle and overall level still increases to much higher

value (red curve in Fig. 4(e)). Initially inhibitory neurons fire after excitatory neurons in

each rhythmic cycle and they synchronize to each other with a time delay. If excitatory

to inhibitory weights (E to I) are larger than a certain value, such that NMDA currents for

inhibitory neurons increase faster than excitatory neurons (Fig. 4(e)), the delay between

inhibitory and excitatory neurons diminishes and GABAa currents become effective within

the same cycle to inhibit other neurons. As a result some inhibitory and excitatory neurons

stop firing in the rhythmic cycle, eventually lead to a winner group that persistently fires

and shuts off their surrounding neighbors. Notice that in the simplified model in Figure 4,

GABAb (with longer time constant of 150 ms.) currents are omitted and set to zero, which

lead to a moving bump activity for this specific parameter set. If GABAb conductance is

restored to the original level as in the full model, bump activity becomes stable. It implies

that time constant of GABAa and GABAb channel conductance is related to the stability

of the bump activity,

As a summary, we think the combinations of long and short time constants from ex-

citatory and inhibitory conductance plus the surround inhibitory connectivity support a
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mechanism for emergence of bump activity and winner-take-all phenomenon in this ba-

sic spiking neuronal network. This neuronal group selection mechanism provides a basis

for modeling learning and map-formation process for sensory motor integration and other

higher cognitive processes.

4 Analytical Analysis of the Transition Curve for WTA
phenomenon

4.1 Differentiation in Inhibitory Conductances Lead to Spiking Activ-
ity Differentiation and Neuronal Group Selection

To identify the mechanism about the emergence of bump activity in spiking network, based

upon the transition plots shown in Figure 4, we look at voltages, conductances of all 400

excitatory neurons at one specific time point (t=980 msec. in Figure 4). Figure 5 shows

AMPA, NMDA, GABAa conductances long with voltages for all those excitatory neurons

at this specific time point. From the network structure defined in Figure 1, we know that

the excitatory conductances (AMPA and NMDA) are determined by excitatory synapses

from the input layer (because we omitted self-excitation), where inhibitory conductances

(GABAa and GABAb) are only determined (triggered) by spikes from inhibitory neurons

onto those excitatory neurons. Because of the uniform random connection from input layer,

AMPA and NMDA conductances are around the same level and undifferentiated for all

excitatory neurons. From Figure 5, voltages are above threshold and neurons fire only at

locations where GABAa conductances below a certain value. So in order for a bump to

emerge and a subgroup of neurons selected to be active, GABAa or GABAb conductances

have to be differentiated, i.e., they have to be small for some neurons and remain high for

all other neurons. We suspect this condition can only be met by surround type of inhibitory

connectivity. It is obvious that lowest GABA conductances lead to highest firing rate for
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Figure 5: AMPA,NMDA,GABAA conductances and voltages for all excitatory neurons
(cell index 101 to 500 in Fig. 1) at one specific time point (t=980 msec. in Figure 4).
AMPA and NMDA conductances are basically flat across all excitatory neurons here, while
GABAA conductances are close to 0 for neurons around number 101 and 500, and reach
high values else where. Pink dashed lines are analytic GABA conductances from Eq. (10)
in the Appendix and derived from surround inhibition topology, and is a good match for
the actual numerical simulation. Notice that excitatory neurons fire spikes and have above
threshold voltage values (blue lines) only within neighborhood of neurons having GABAA
conductances close to 0 and below a certain value.
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excitatory neurons. Since we have local feedforward excitation to inhibitory neurons in

our network, the bump area in inhibitory neurons with highest firing rate should also have

lowest inhibitory conductances. This difference in GABA conductances is true for both

excitatory and inhibitory neurons because GABA conductances are determined by the same

inhibitory spikes. This suggests that in order for the bump to emerge, local inhibition to

the nearest neighbors should be lower than inhibition to neurons outside of bump. Notice

the three other inhibition topology in Figure 3 all have peak (or flat) inhibition locally, so

even if a neuronal group emerge with firing highest firing rate, the strong local inhibition

will force their firing rate to decrease, and let the other sub-threshold neurons to fire. So

this is likely the reason why we did not obtain stable bump activity using those inhibition

connectivities. On the other hand, surround inhibition type defined in Figure 1 might be the

most simple form of inhibition topology that could let a bump emerge and stabilize. Below

analysis will further prove this point.

Comparing with models using negative weights to represent inhibitory connections, a

major difference in our more biologically realistic spiking models is that synaptic weights

and excitatory/inhibitory conductances are all positive. From Eq. (2) we can see, it is only

because of the differences in reversal potentials between excitatory and inhibitory channels,

the current generated by excitatory and inhibitory conductances could have different signs

(excitatory current coming into the neuron and inhibitory current coming out of neuron). In

order for a neuron to fire, synaptic current has to be below a threshold Isyn < −Ith where

Ith is about 100pA (Isyn has to be negative for a neuron to fire because it was defined as an

outward current in Eq (1a)). Firing threshold Ith can be found from calculating F-I curve for

the specific spiking neuron model we used. Figure 9 (in the Appendix) plots the firing rates

versus amount of injected current (equivalent to −Isyn) for the Izhikevich neuron model

result from numerical simulations. It shows that neurons start to fire when absolute value
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of the injected current is above 100pA and then increase their firing rate approximately

linearly until above 100Hz. we can use this information to simplify the spiking activity

into a rate model. As indicated on the last paragraph, AMPA and NMDA conductances are

approximately uniform for excitatory neurons and they can not contribute to the differences

in firing rates, so in order for the excitatory population to fire differentially, the difference

between highest and lowest GABA conductances for individual neurons has to be larger

than a certain value. This value can be estimated using Eq (2). If min(gGABAA) is 0, for a

resting potential of vr = −60mV ,GABAA conductance has to be larger than the following

value so injected synaptic current −Isyn will be below the firing threshold Ith:

gGABAA > (−Ith + 60 ∗ (gAMPA,E + gNMDA,E))/10. (4)

In Figure 5, gAMPA,E+gNMDA,E for excitatory neurons is around 4nS (Appendix will show

how this value can be estimated analytically), so gGABAA has to be larger than 14nS to keep

sub-threshold neurons from firing. This number is consistent with the result plotted on

Figure 5 and Figure 4 that neurons fire and form a bump area where GABA conductances

are below 14nS and areas with GABA conductance larger than 14nS are completely quiet.

If we consider both the GABAA and GABAB conductances based upon Eq. (2) and

using the same idea as above, conditions for inhibitory conductances will be the following

for the winner-take-all state:

10 · gGABAA + 30 · gGABAB > (−Ith + 60 ∗ (gAMPA,E + gNMDA,E)). (5)

Eq. (4) and Eq. (5) can be used further to identify the exact condition for the WTA

state and to locate the transition curve in Figure 2. Using two cosine bumps as surround

inhibitory connection weights, Appendix gives the analytic form of GABA distribution for

a bump solution for neurons connected one dimensionally and uses it to obtain analytic
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conditions for the WTA state in the parameter space (see Eq. (19) and Eq. (20)). Such

analytic conditions are expressed as formulas combining single neuron property and the

conductance parameters (such as time constants, gain factors for different inhibitory and

excitatory conductances). Based upon these formulas we can locate the Winner-Take-All

and bump activity in the parameter space fairly precisely (see black curves in Fig. 2 and

the white curve in Fig. 10 in the Appendix), thus provide a mechanistic explanation for

the emergence of winner-take-all state and stationary bump activity in this 3-layer spiking

network we analyzed here.

4.2 Origin of Traveling Wave and Instability of Bump Activity – driven
by AMPA conductances

Parameters in Figure 4 are located very near the transition curve in the parameter space

(see Figure 2), so the bump is not spatially stable and moves across different neurons.

To identify the origin of such instability, we selectively set AMPA gain of excitatory or

inhibitory neurons to 0 in order to see their effects on the bump stability. This is equivalent

to selectively block AMPA conductances in either excitatory or inhibitory neurons in real

biological neural systems. We found that if AMPA conductances in inhibitory neurons

are set to 0 but not in excitatory neurons, bumps become more or less stable. On the

other hand, when AMPA conductances are blocked and set to 0 in excitatory neurons but

not in inhibitory neurons, we can have a moving bump with a constant spatial speed (see

Figure 6). In fact, we can estimate the moving speed of bumps based upon the parameters

we defined in Figure 2. So we believe the source of the bump instability is from the AMPA

conductances in inhibitory neurons.
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Figure 6: Stability of the bump activity is determined by AMPA conductances. Figures
above show that spiking bump activity moves with a constant speed when AMPA conduc-
tances in excitatory neurons are blocked and set to 0 (Top left). The speed of the traveling
“bump”, proportional to the length of firing interval for each neuron (L) and the period of
the traveling wave (T), seems relate to the frequency of the inhibitory neurons (hence their
AMPA conductances) and the delay time for the NMDA conductances when they reach
maximal firing rate. When AMPA conductances are set to 0 in inhibitory neurons, bump
activity stops moving and T →∞.
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5 Conclusion and Discussion

In this paper we derive global properties of spiking neuronal networks related to bump ac-

tivity and Winner-Take-All state mainly through analysis of the dynamics of excitatory and

inhibitory conductances. To achieve the analysis of collective behavior, individual spiking

properties are approximated by its firing rate property such as the conductance/firing rate

curve (Fig. (9) or F-I curves. In this regard, detailed properties of individual spiking model

might not be crucial for global activity such as the emergence of bump and WTA state. For

example, if we use different parameter sets for excitatory and inhibitory neurons such as

change the inhibitory neurons to be basket cell type, we can still found the WTA region in

the parameter space in Figure 2(d), but the exact location of the transition curve is shifted

to a different place because basket neurons have different conductance/firing rate curve and

different Ith, gth, k values in Eq. (19). This could explain the transition curve in our full

model with more detailed biological properties has the same functional form, but also in

different location in the parameter space because it included more detailed single neuronal

spiking properties such as NMDA voltage gating and STSP etc. In fact, we used adaptive

exponential spiking model to substitute the Izhikevich neuron models and obtained similar

phase plot and transition curve for the bump activity and the WTA state.

We suggest that all conductance-based spiking models with distinct excitatory and in-

hibitory populations could have the similar collective Winner-Take-All behavior as ana-

lyzed here. Detailed spiking model properties such as F-I curve and firing threshold (Ith

and gth) would determine the exact location of the transition curve in Figure 2. Global

connectivity topology and different time constants (dynamics) of excitatory and inhibitory

conductances are likely to be the determinant of system-wide spiking activity patterns.
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5.1 Importance of the Inhibitory Topology

The most important feature of our winner-take-all network is its surround inhibition topol-

ogy. We chose two sine function peaks as surround inhibitory connection weights is just

because of its mathematical convenience, since convolutions of sine/cosine functions are

much easier to solve than other types of functions. In fact, we actually used Gaussian peaks

or torus (for two-dimensional neuronal arrays) in our previous model (Chen et al. 2013)

and obtained similar stable WTA results. We believe using other type of function for in-

hibitory connection would also work, as long as there is a low inhibitory weight locally.

Comparing four different connection topologies from Fig. 2 and Fig. 3, the reason why

only surround-inhibition supports stable bump activities is because its maximal inhibitory

connection weight is not to the nearest neighbors, but to slightly distant neurons. This gap

of zero inhibitory weight could be very small (e.g., w down to 0 and equivalent to a no-self-

inhibition case), and we could still find solutions for stable bump or bumps (see Fig. (7)

and Fig. (8) ). So as long as there is a local valley of inhibitory weight, stationary bumps

could emerge because only decreasing inhibition could allow a bump to sustain.

Mechanistically it appears that the most important requirement for a bump solution

is the stable differentiation in inhibitory (GABAA or GABAB) conductance distributions

across the neuronal population. That is, for some neuronal groups, GABA conductances

should be low to allow bumps to emerge and for the other neurons, they need to be high

enough to keep the rest of neuronal population from firing spikes. As long as this condition

is met, more detailed biological properties such as local self-excitation, short-term synap-

tic plasticity (STSP), voltage-gating of NMDA channels etc. can be added to the model

without destroying the overall bump stability.
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5.2 Why Traditional Center-Surround Topology might not Lead to
Stable Bumps in Models with Distinct Excitatory and Inhibitory
Populations

Previous rate-based population models (Dayan & Abbot, 2001) had most often used center-

surround type of connection topology as shown in the middle row of Figure 3 (Narrow

excitation / Wide inhibition), similarly many spiking models with excitatory / inhibitory

conductances on the same units used the same topology (Laing & Chow, 2001). By virtue

of the direct mathematical operations, narrow excitation and wide inhibition can lead to a

“Mexican Hat” type of effective connectivity which supports winner-take-all in previous

firing rate models. As we see from the analysis above, in biologically more realistic spik-

ing models with distinct excitatory and inhibitory neuronal populations, multiple types of

conductances cannot cancel each other easily because they are generated by precise spike

timing and have different time constants. The “classical” center-surround topology can not

guarantee a stable “Mexican Hat” type of net connectivity because of sensitive spike tim-

ing differences between different neurons. In fact, as shown in Figure 4, the emergence of

winner-take-all in spiking networks is a direct result of precise spike-timing - the coincide

of excitatory and inhibitory population firing spikes lead to a sub-population of inhibitory

neurons fire earlier than the rest of populations which then let them suppress and shut

off the other neurons in the network (see Figure 4g). This is the reason that we believe a

surround-type of inhibitory topology is essential for a stable spiking WTA network because

it can support the emergence of a winner-group without shutting themselves off too early.

In summary, WTA network analyzed here demonstrates how variability and random-

ness in spiking time of individual neurons can lead to global pattern changes and phase

transition in collective neuronal groups. Analytic solutions for the phase transition curve

provided in this paper will help to increase our understanding of the different functional
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roles of excitatory and inhibitory neural connections on the emergence and stability of fir-

ing patterns in the brain.
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6 Appendix

In this Appendix we present some detailed mathematical analyses of the surround inhibi-

tion network we defined in Figure 1, including an analytic approximation of the excitatory

and inhibitory conductance distribution within the network, especially the GABA conduc-

tances. Based upon those results, we can identify the function (shape) and the exact location

of the transition curve we found in Figure 2(d) which delineates the emergence of the stable

bump activity and WTA state within the parameter space.

In the main text we suggest that surround inhibitory connectivity can support the emer-

gence of bump activity. This is because this type of inhibitory topology can result in a

non-uniform GABA distributions with stable and separated peak and valley in inhibitory

conductances, and the difference in GABA peak and valley has to be larger than a cer-

tain value to selectively activate some groups of neuron (winning bump) while keeping the

rest of neurons from firing (see Eq. (4)). Here we derive the exact functional form of the

GABA conductance distribution based upon one specific surround inhibitory topology we

used. From the functional forms we can identify what parameter combinations will satisfy

Eq. (4), thus locate the transition curve in the parameter space.

Because we have wrap-around connections between neuronal populations, we use a

continuous angular coordinate (from −π to π) to represent the spatial location of the ex-

citatory and inhibitory neurons. This continuous coordinate can be viewed as the limit of

infinite number of neurons. In the case of limited number of neurons (400 in each type in

our examples here) as depicted in Figure 2, excitatory neurons number 101 to 500 can be

viewed as located evenly from −π to π in this angular coordinate, same as the inhibitory

neurons number 501 to 900.

From Eq. (3), we know that all conductances have exponential decay with their specific
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time constants. The final conductance distributions over time, however, are the result of self

decay plus the convolution of the synaptic weight function and the input spikes multiplied

by a gain-factor G:

∂g(φ, t)

∂t
= −g(φ, t)/τ +G · f(φ) ∗ s(φ, t), (6)

where g(φ, t) is a specific conductance at time t for neuron at location φ, and s(φ, t) are

incoming spikes to this individual neuron represented by delta function, and G is a gain-

factor equal to the amount of a specific conductance generated by one spike. If we consider

excitatory conductances for excitatory neurons, because each excitatory neuron receives

uniformly random input from all neurons from the input layer (see Figure 1), fIN(φ) ∗

s(φ, t) can be approximated by a constant, i.e., fIN(φ) ∗ s(φ, t) ≈ rINSIN , where rIN is

the average firing rate of neurons in the input layer and SIN is a pre-specified total synaptic

weight from the input layer onto each excitatory neuron. Under this condition, Eq. (6) can

be solved to identify the average excitatory conductances for excitatory neurons:

gAMPA,E(t) = (gAMPA,E(0)− rINSINGAMPAτA)τAe
−t/τA + rINSINGAMDAτA,

gNMDA,E(t) = (gNMDA,E(0)− rINSINGNMDAτN)τNe
−t/τN + rINSINGNMDAτN ,

(7)

where τA = 5ms. and τN = 150ms. are time constants for AMPA and NMDA conduc-

tances respectively, and GAMPA and GNMDA are gain-factors representing the amount of

AMPA and NMDA conductances generated by one spike. gAMPA,E and gNMDA,E are no

longer functions of φ (neuron location or indices) because excitatory neurons receive uni-

formly random weights from input layer thus their excitatory conductances are spatially

uniform and undifferentiated (see Figure 4(a) and (b) for neuron number 101 to 500).

Comparing green curves in Figure 4(d) and (e), Eqs. (7) fit the time changes of average

excitatory AMPA and NMDA conductances very well for the initial conditions we used

(gAMPA,E(0) = gNMDA,E(0) = 0). Their steady-state values can be approximated by the
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last two terms in Eqs. (7), i.e.:

gAMPA,E + gNMDA,E = rINSIN(GAMPAτA +GNMDAτN). (8)

The total synaptic weight from input layer to each excitatory neuron we used is 100nS

(SIN ),GAMPA is 0.15nS/spike andGNMDA is 1/10 of that, for an average input frequency

of about 14Hz (rIN ), we can derive that the steady-state AMPA conductance is at 1nS and

NMDA conductance is 3 times of that at 3nS. These values fit perfectly with the numerical

results on Figure 5.

Next we derive the functional form for the inhibitory GABA conductances. The exact

inhibitory connection topology we used has two cosine/sine connection weights with a

gap in between (see top schema in Figure 6). This gap (size of 2w) is a parameter that

can be adjusted and reflect a local region in which the originating neuron that sending out

inhibitory synapses (located at 0 coordinate) does not inhibit. The neuron at location 0

sends inhibitory weights to the rest of neurons following the below function:

fI(φ) =


sin(φ−w

π−wπ) φ > w

0 −w < φ < w

sin(φ+w
π−wπ) φ 6 −w

(9)

For a bump solution, we assume inhibitory neurons will fire within the gap region be-

tween −w and w with a firing rate of rI . This approximation is based upon the observation

in Figure 5 that action potentials only occur when GABA conductances are below cer-

tain value and such condition could most likely to be satisfied within the region where

the inhibitory weight is zero. Using firing rate approximation, GABA distribution is the

convolution of the spikes between −w to w with function fI(φ):

gGABA(φ) = GGABA · f(φ) ∗ s(φ, t) = SIGGABAτGABA

∫ w

−w
rIfI(θ − φ) dθ, (10)

where SI is the total synaptic inhibitory weight received by each neuron (excitatory or

inhibitory) and is a parameter we pre-specify, GGABA is the gain factor specify the amount
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−w−π w π0

0−π

GABAA Conductances
across all neurons

Inhibitory Connection Weight
from one neuron

Figure 7: Definition for one dimensional cosine surround inhibition topology (top) based
on the function fI(φ) in the Appendix. It was constructed as two sine peaks with a gap 2w
in between. Bottom curve is the GABAA distribution across all neurons resulting from the
surround inhibitory connectivities when the gap size parameter w = π/3 (see Figure 8). It
is the result of the convolution of cosine surround function on the top with a spiking activity
firing within the gap with a constant rate.
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of GABA conductance generated by one spike, and τGABA is the time constant and is

6msec. for GABAA and 150msec. for GABAB conductances respectively. These three

terms are simplified to a constant in the following equations (set C = rISIGGABAτGABA).

Convolution in Eq. (10) can be written down analytically and the resultant gGABA(φ) is

a piece-wise function of φ. Below is the functional form of gGABA(φ) when w ≤ π/3 for

φ = 0 to π (gGABA(φ) is symmetric with respect to φ = 0 so when φ = −π to 0 it is the

mirror image of the following function):

gGABA(φ) =


π−w
π

(1− cos φπ
π−w ) · C for 0 6 φ 6 2w

π−w
π

(cosφ−2w
π−w π − cos

φπ
π−w ) · C for 2w < φ 6 π − w

π−w
π

(2− cosφ+w−π
π−w π + cosφ−2w

π−w π) · C for π − w < φ 6 π

(11)

Analytic form of gGABA(φ) is plotted in Figure 7 as a surface plot for gap parameter w

from 0 to π/3. We assumed the spiking bump activity occurs within a gap region centerred

at φ = 0, as a result of surround inhibition, Figure 7 shows that neurons around that gap

region around φ = 0 will have low GABA conductances which will allow the bump to

emerge and potentially being stable. As described in the main text, other forms of inhibitory

connectivity will not generate a local valley in the inhibitory conductances, thus destabilize

any bump activity when it occurs. Figure 7 also shows that when the gap size 2w is small

(e.g., w < π/6), neurons located at π and−π ( they are equivalent because of wrap-around)

will also have close to zero GABA inhibitory conductances. This suggests that a second

bump could emerge and two bumps could coexist with half of the network size apart. Such

phenomenon does occur in our simulations when using small gap size. In fact, in the

two-dimensional neuronal array models, surround inhibitory topology is implemented as

a taurus (we called it as Center-Annular-Surround (CAS) connectivity previously), two

bumps normally emerge together with a distance apart. Figure 7 could potentially explain

such fact because a second bump could emerge at half of the cycle (network size) apart

because that is where inhibitory conductances could have another lowest value close to 0.
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Figure 8: Normalized GABA conductance distribution function from Eq. (10) for gap size
parameter w = 0 to π/3. The unit of the z-axis is normalized such that for every value
of w, the sum of GABA conductance function from −π to π is normalized to 1. In actual
numerical simulations this total sum of GABA conductance is a parameter (SI) on the x-
axis in the transition curve on Figure 2 (d) to (f), and was scaled from 0 to 300 nS in our
parameter scan for the transition curve.
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As indicated in Eq. (4), in order for a bump to emerge, peak of the GABA conductances

has to be larger than a certain value. This peak value can be found through Eq. (9). Firstly,

we need to estimate the inhibitory firing rate within the bump area (rI in Eq. (8)). Inhibitory

firing rate rI is determined by the currant input from the excitatory neurons (see Fig. 1),

which in turn can be estimated by its excitatory NMDA conductance values. This is can be

seen from Fig. 4(b), because of its longer time constant, NMDA conductances within the

bump area continue increasing to a steady-state value after the bump is emerged. Because

AMPA conductances have short time constant and decay back close to zero very fast after

each spike from excitatory neurons, the steady-state values of the NMDA conductances for

the inhibitory neurons will determine their firing rate. To estimate the inhibitory NMDA

value, we assume firing rate of excitatory neurons within the bump area is rE and it is

related to excitatory AMPA and NMDA conductances through the conductance/firing rate

curve (similar to the f/I curve): rE = ffgcurve(gAMPA,E + gNMDA,E). Fig. (9) summarizes

the conductance/firing rate curve for the excitatory and inhibitory neurons we used in the

network model analyzed here. From the figure we can see that above a certain conductance

value, neuron’s firing rate roughly increases linearly with the increasing (excitatory) con-

ductances for frequencies below 100Hz. This linear approximation can be used to estimate

the firing frequency (such as rE here) for a given AMPA and/or NMDA conductances.

From Eq. 6 we know the steady-state values of excitatory AMPA and NMDA conduc-

tances: gAMPA,E+gNMDA,E = rINSINGAMPAτA+rINSINGNMDAτN . Based upon linear

approximation of the firing frequency-conductances relations, excitatory firing rate will be

proportional to the connection weights from the input layer:

rE = k(gAMPA,E + gNMDA,E − gth) ∝ rINSIN(GAMPAτA +GNMDAτN). (12)

The most important message from the above equation is that firing rate of excitatory neu-
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rons in our network is not affected by the feedforward excitatory weight to inhibitory neu-

rons (SE) nor the strength of the inhibitory weight (SI). This equation can explain the fact

that excitatory firing rate in the WTA region within the SE versus SI parameter space in

Figure 2(e) is mostly constant because we kept firing rate from the input layer and their

connection weight the same while changing SE and SI systematically.

Since we have one-to-one feedforward connection from excitatory to inhibitory neu-

rons, inhibitory NMDA conductances reach steady-state when the decay of NMDA con-

ductances within an average period of input excitatory neuron (1/rE) is maintained by (and

equal to) the amount of NMDA conductances generated by one excitatory spike, so suppose

the peak value of inhibitory NMDA conductance is x, then:

x(1− e−
1

τNrE ) = SEGNMDA, (13)

where SE is the total feedforward excitatory connection weight to each inhibitory neuron,

GN is its associated NMDA gain factor representing the amount of NMDA conductance

generated by one excitatory spike. The steady-state inhibitory NMDA conductances can be

approximated by the decayed value of x:

gNMDA,I ≈ xe
− 1
τNrE =

SEGNMDAe
− 1
τNrE

1− e−
1

τNrE

. (14)

The inhibitory firing rate rI then can be approximated by the neuron’s frequency-conductance

curve relationship again:

rI ≈ ffgcurve(gNMDA,I + gAMPA,I). (15)

Based up Eq. (12), excitatory firing rate rE is only related to firing rate of the input neurons,

if we approximate the frequency-conductance curve by a linear relationship as shown in

Fig. (9), and the steady-state value of AMPA conductances gAMPA,I aprroximately cancel
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out the firing threshold gth, combining Eq. (12) and (13), inhibitory firing rate can be found

to be proportional to the feedforward excitatory connection weight SE:

rI ≈ k(gNMDA,I + gAMPA,I − gth) ≈ k(SEGNMDA) ∝ SEGNMDA. (16)

Above relation is confirmed by the observation in Fig. 2(f) that within the WTA parame-

ter region, firing rate of inhibitory neurons increases as values of feedforward excitatory

weight (SE in the vertical axis) increases, while excitatory firing rate of WTA region (rE)

in Fig. 2(e) remains close to a constant as indicated in Eq. (10).

Now using Eq. (9) we can estimate the maximal value of GABA conductances from the

surround inhibition topology. If this maximal GABA value satisfy the condition on Eq. (4),

then we can identify the locations of WTA region in the SE versus SI parameter space. For

the gap size parameter we used (w = π/3), maximal GABA value can be approximated as

the value of the function gGABA(φ) when φ = ±π (see bottom trace in Fig. 8):

gmaxGABA = gGABA(φ)|w=π/3φ=±π =
4

3
· rISIGGABAτGABA ≈

4

3
· kSEGNMDASIGGABAτGABA.

(17)

Combining results from the above equation and that from Eq. (4) which gives the

threshold of peak GABA conductance value for a WTA bump to emerge, we now find

the conditions for the parameters for the WTA region:

SE · SI >
(−Ith + 60 · (gAMPA,E + gNMDA,E))

kGNMDAGGABAτGABA · 40/3
. (18)

Most parameters on the right side of the above equation, i.e., Ith – firing threshold for

input current, gain factors of NMDA and GABA conductances – (GNMDA, GGABA) and

the slope for the conductance/firing rate curve (k), are all constants which can be derived

or estimated from spike neuron model defined in Eq.(1). As we described before, AMPA

and NMDA conductances for the excitatory neurons are only determined by the firing rate
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Figure 9: Firing rate versus (excitatory) conductance for the excitatory and inhibitory spik-
ing neuron models we used in this paper. Above a certain threshold (gth), firing frequency
roughly increases linearly with the increasing conductances, especially for the frequencies
below 100Hz. Above that frequency, several plateaus appear and deviate from a simple
linear relationship. Since neurons in our model mostly fire below 100Hz, which is the
most biologically relevant frequency range, we can approximate this conductance/firing
rate curve with a linear relation, r = k(g − gth) where r is a neuron’s firing rate, k is
the slope, gth is the threshold for firing. Such linear relation can be used in our analytical
analysis to derive the transition curve for the Winner-Take-All state (see main text in the
Appendix).

38

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 26, 2016. ; https://doi.org/10.1101/077396doi: bioRxiv preprint 

https://doi.org/10.1101/077396


and the connection weight of the input neurons (see Eq. (8)). Using the relation in Eq. (8),

the above transition condition can be expressed as the combination of the individual spiking

neuron parameters and some information from the input layer:

SE · SI >
(−Ith + 60 · rINSIN(GAMPAτA +GNMDAτN))

kGNMDAGGABAτGABA · 40/3
. (19)

Eq. (19) thus reveals the analytic condition for the Winner-Take-All region in the pa-

rameter space, that is, multiplication of SE (feedforward excitatory connection weight) and

SI (total sum of inhibitory connection weight) has to be larger than a constant value de-

termined by individual neuron parameters and the input firing rate and connection weight.

This equation suggests that the transition curve in the parameter space is an inverse func-

tion and gives the analytical explanations for the numerical results shown in the middle row

of Fig.2. Based upon the specific parameters we used in out numerical simulation, rIN ≈

14Hz, SIN=100nS, GAMPA = 0.15nS/spike,GNMDA = 0.015nS/spike,GGABAA =

0.15nS/spike, τGABAA = 6msec., and the individual neuron parameters we estimated –

Ith = 100pA and k ≈ 37Hz/nS, we plotted the analytic condition for the WTA region

using black curves in the middle row of the Fig. 2 (– (d), (e), (f)). As we can see, our

analytic solution fits the numerical results very well and clearly locates the winner-take-all

region in the parameter space.

Above Eq. (19) is obtained under the condition of considering only one GABA con-

ductance (i.e., GABAA). If we include both GABAA and GABAB conductances such as

defined in Eq. (2), we can derive the conditions for the WTA state including all four type

of conductances using relations in Eq. (5):

SE · SI >
(−Ith + 60 · rINSIN(GAMPAτA +GNMDAτN))

kGNMDA(10 ·GGABAAτGABAA + 30 ·GGABABτGABAB) · 4/3
. (20)

By adding GABAB conductances and increasing the denominator in the above equa-

tion we can see that the transition curve defined by Eq. (20) will be shifted towards bottom-
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left in the SE versus SI parameter space and the winner-take-all region will be increased.

This is indeed the case. Fig. (10)(a) show the maximal firing rate of excitatory neurons

and the WTA region when both GABAA and GABAB conductances are included in our

model. White dashed line is based upon condition specified in Eq. (20). Compared with

Fig 2(d), we can see the WTA region has greatly increased and the transition curve has

been shifted closer to the origin, so much that the WTA region on the bottom-right side has

been merged with the previous separated and disconnected high-firing region. However,

an interesting observation is that there are three or more blue regions (low firing rate) be-

yond the white transition curve calculated based upon Eq. (20). Closer inspection reveals

that these are actually stable epileptic states (synchronized rhythmic firing between excita-

tory and inhibitory neurons) which are previously outside of the WTA region in Fig 2(d).

More interestingly, three different regions correspond to different ratios of firing rates be-

tween excitatory and inhibitory neurons (i.e., 1:1 rhythmic in Fig. (10)(b), 1:2 rhythmic in

Fig. (10)(c) and 1:3 rhythmic in Fig. (10)(d) respectively). In fact, if we scan the parameter

space in higher resolutions, we might locate (blue) regions with higher frequency ratios

(e.g., 1:4). We believe what we observed here is the “Arnold Tongue” region (Coombes &

Bressloff, 1999) for this spiking network.
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Figure 10: Arnold tongue and the increased Winner-Take-All region in the parameter space
with both GABAA and GABAB conductances.
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