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Abstract Scratch assays are used to study how a population of cells re—
colonises a vacant region on a two—dimensional substrate after a cell mono-
layer is scratched. These experiments are used in many applications including
drug design for the treatment of cancer and chronic wounds. To provide in-
sights into the mechanisms that drive scratch assays, solutions of continuum
reaction—diffusion models have been calibrated to data from scratch assays.
These models typically include a logistic source term to describe carrying
capacity-limited proliferation, however the choice of using a logistic source
term is often made without examining whether it is valid. Here we study the
proliferation of PC-3 prostate cancer cells in a scratch assay. All experimen-
tal results for the scratch assay are compared with equivalent results from a
proliferation assay where the cell monolayer is not scratched. Visual inspec-
tion of the time evolution of the cell density away from the location of the
scratch reveals a series of sigmoid curves that could be naively calibrated to
the solution of the logistic growth model. However, careful analysis of the per

capita growth rate as a function of density reveals several key differences be-
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tween the proliferation of cells in scratch and proliferation assays. Our findings
suggest that the logistic growth model is valid for the entire duration of the
proliferation assay. On the other hand, guided by data, we suggest that there
are two phases of proliferation in a scratch assay; at short time we have a
disturbance phase where proliferation is not logistic, and this is followed by a
growth phase where proliferation appears to be logistic. These two phases are
observed across a large number of experiments performed at different initial
cell densities. Overall our study shows that simply calibrating the solution of
a continuum model to a scratch assay might produce misleading parameter
estimates, and this issue can be resolved by making a distinction between the
disturbance and growth phases. Repeating our procedure for other scratch as-
says will provide insight into the roles of the disturbance and growth phases

for different cell lines and scratch assays performed on different substrates.

Keywords Logistic growth; Scratch assay; Cancer; Wound healing; Reaction-

diffusion equation

1 Introduction

Understanding population dynamics is a fundamental question that has wide
relevance to many biological and ecological processes. For example, the rate of
spatial spreading of invasive species through different ecosystems is driven, in
part, by the population dynamics and rates of growth of the invasive species
(Lewis and Kareiva, 1993; Murray, 2002; Waters et al. 2015). Population dy-
namics and population growth are also central to understanding the spread of
infectious diseases. For example, the spread of Wolbachia into wild mosquito
populations is thought to reduce a wide range of diseases, and the spatial
spreading of the mosquito population is partly driven by the population dy-

namics of the mosquito population (Chan and Kim, 2013). Similar ideas also
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apply to the spreading of tumour cells and the progression of cancer, which
is related to the rates of proliferation of invasive cancer cells (Alarcon et al.
2003; Mallet and de Pillis 2006; Ribba et al. 2006). Therefore, improving our
understanding of population dynamics by calibrating mathematical models to
experimental observations of population dynamics is of great interest.

In vitro scratch assays are routinely used to study the ability of cell popula-
tions to re—colonise an initially—vacant region (Liang et al., 2007; Tremel et al.,
2009; Kramer et al., 2013; Treloar and Simpson, 2013). This re—colonisation
occurs as a result of the combination of cell migration and cell proliferation,
and gives rise to moving fronts of cells that re—colonise the vacant region.
Scratch assays provide insights into both cancer spreading and tissue repair
processes (Maini et al., 2004a; Maini et al., 2004b; Kramer et al., 2013). In gen-
eral, performing a scratch assay involves three steps: (i) growing a monolayer
of cells on a two—dimensional substrate; (ii) creating a vacant region in the
monolayer by scratching it with a sharp—tipped instrument; and, (iii) imaging
the re—colonisation of the scratched region (Liang et al., 2007; Kramer et al.,
2013). Another type of in vitro assay, called a proliferation assay, is performed
using the exact same procedure as a scratch assay, except that the monolayer
of cells is not scratched (Jones et al., 2001; Tremel et al., 2009; Simpson et al.,
2013). Cell proliferation assays allow experimentalists to measure the increase
in cell numbers over time due to proliferation (Tremel et al., 2009).

In the applied mathematics literature, scratch assays have been modelled
using continuum reaction—diffusion equations (Sheardown and Cheng, 1996;
Maini et al., 2004a; Maini et al., 2004b; Savla et al., 2004; Cai et al., 2007;
Sengers et al., 2007; Shakeel et al., 2013; Simpson et al., 2007; Johnston et
al., 2015; Jin et al., 2016). In these models, cell migration is represented by
a diffusion term, and carrying—capacity limited proliferation is represented by

a logistic source term. For proliferation assays in which the cell population is
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uniformly distributed and no scratch is made, the continuum reaction—diffusion
equation simplifies to the logistic growth equation (Cai et al., 2007; Johnston
et al., 2015; Simpson et al., 2013), given by

dC(t) o)
@ S MW ( - K) ’ )

where C(t) > 0 is the density of cells, ¢ is time, A > 0 is the proliferation rate,

and K > 0 is the carrying capacity density.

It is interesting to note that a logistic growth term is often used when
modelling scratch assays or proliferation assays (Maini et al., 2004a; Maini et
al., 2004b; Savla et al., 2004; Cai et al., 2007; Sengers et al., 2007; Tremel et
al., 2009; Johnston et al., 2015; Jin et al., 2016), yet the suitability of this
choice is rarely, if ever, tested using experimental data. In fact, several studies
argue that the logistic growth equation does not always match experimental
data (Laird, 1964; Zwietering et al., 1990; West et al., 2001; Sarapata and
de Pillis, 2014). For example, Laird examines in vivo tumour growth data
and shows that the standard logistic model does not match experimental data
(Laird, 1964). Similarly, Sarapata and de Pillis find that the logistic growth
model does not always match experimental tumour growth data (Sarapata
and de Pillis, 2014). West and coworkers investigate the growth patterns of a
wide range of animal models (West et al., 2001). By comparing experimental
data with model predictions, they suggest that the growth is not logistic,
and is beter described by a more general model. In addition, the results from
our previous study, focusing on scratch assays, suggest that when calibrating
solutions of a logistic-type reaction—diffusion equation to experimental data
with varying initial cell density, there appears to be no unique value of \ for

which the logistic growth equation matches the entire data set for all initial
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cell densities (Jin et al., 2016). One way of interpreting this result is that the
cells in the scratch assay do not proliferate logistically.

In the present work, we use a combined experimental and mathematical ap-
proach to investigate whether the proliferation of cells in a scratch assay can be
modelled with the classical logistic equation. Our approach involves perform-
ing a series of proliferation assays to act as a control so that we can examine
whether the process of scratching the monolayer affects the way that cells pro-
liferate. While many experimental studies implicitly assume that scratching
the monolayer does not affect cell proliferation, others suggest the process of
scratching can trigger certain signalling pathways that may have some effects
on the way that cells proliferate (Nikoli¢ et al., 2006; Nishio et al., 2005). To
investigate these questions, we perform a suite of scratch assays and prolifera-
tion assays using the IncuCyte ZOOM™ system (Johnston et al., 2015). For
both types of assays, we use the PC-3 prostate cancer cell line (Kaighn et al.,
1979), and we consider varying the initial seeding condition so that we can
examine the influence of varying the initial cell density.

To quantitatively test the suitability of the logistic growth model, we ex-
tract cell density information from the experimental images and then estimate
the per capita growth rates from the data for both the scratch assays and
the proliferation assays. Our results show that the evolution in cell density in
the proliferation assays appears to be logistic for the entire duration of the
experiment. In contrast, the variation in cell density in the scratch assays is
very different. We observe two phases in the scratch assays: (i) a disturbance
phase at early time, in which the proliferation of cells is not logistic; and, (ii)
a classic logistic growth phase for the remainder of the experiment. These two
phases are observed in all of our experiments, across a wide range of initial
cell densities. The differences how cells proliferate in the scratch assay and the

proliferation assay is surprising because we are making observations well away
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from the location of the scratch. This finding that we have two phases of pro-
liferation in scratch assays is significant because many mathematical studies
implicitly assume that cells in scratch assays proliferate logistically for the en-
tire duration of the experiment (Maini et al., 2004a; Maini et al., 2004b; Savla
et al., 2004; Cai et al., 2007; Sengers et al., 2007; Tremel et al., 2009; Johnston
et al., 2015; Jin et al., 2016). However, our finding is that cells located far
away from the scratch proliferate very differently to cells in the proliferation
assay.

This manuscript is organised in the following way. First, we describe the
experimental methods, including how we process the experimental images to
obtain cell density information. We then outline the logistic growth model and
the least—squares method for calibrating the model to our data. By presenting
information about the evolution of the cell density and the per capita growth
rate, we identify two phases of proliferation in the scratch assays. These phases
are identified by focusing on regions of the scratch assay that are located
well behind the location of the scratch. After calibrating the solution of the
logistic model to the cell density information, our results suggest that the
logistic equation is relevant for the proliferation assays but only for the later
phase in the scratch assays. We conclude this study by discussing some of the

limitations, and we outline some extensions for future work.

2 Methods
2.1 Experimental Methods

We perform scratch assays and proliferation assays using the IncuCyte ZOOM™
live cell imaging system (Essen BioScience, MI USA). All experiments are per-
formed using the PC-3 prostate cancer cell line (Kaighn et al., 1979). These

cells, originally purchased from American Type Culture Collection (Manas-
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sas, VA, USA), are a gift from Lisa Chopin (April, 2016). The cell line is used
according to the National Health and Medical Research Council (NHMRC)
National statement on ethical conduct in human research with ethics approval
for Queensland University of Technology Human Research Ethics Committee
(QUT HREC 59644, Chopin). Cells are propagated in RPMI 1640 medium
(Life Technologies, Australia) with 10% foetal calf serum (Sigma—Aldrich, Aus-
tralia), 100 U/mL penicillin, and 100 pg/mL streptomycin (Life Technologies),
in plastic tissue culture flasks (Corning Life Sciences, Asia Pacific). Cells are
cultured in 5% COz and 95% air in a Panasonic incubator (VWR Interna-
tional) at 37 °C. Cells are regularly screened for Mycoplasma (Nested PCR

using primers from Sigma—Aldrich).

Cell counting is performed using a Neubauer-improved haemocytometer
(ProSciTech, Australia). Cells, grown to approximately 80% confluence, are
removed from the flask using TrypLE™ (Life Technologies) in phosphate
buffered saline (pH 7.4) and resuspended in culture medium ensuring that
they are thoroughly mixed. After resuspension, an aliquot of 10 uL is quickly
removed before the cells start to settle. A 1:1 mixture of cell suspension and
0.4% trypan blue solution (Sigma—Aldrich; a blue stain that is only absorbed
by dead cells) is prepared and 10 uL of the solution is loaded onto the count-
ing chamber of a clean Neubauer—improved haemocytometer. The counting
chamber of a haemocytometer is delineated by grid lines that identify four
chamber areas to be used in cell counting. The volume of the chamber area
is 1x10* mL. Using a microscope, each chamber area is viewed, and the live
cells that are not coloured in blue are counted. The cell density is calculated
by taking the average of the four readings and multiplying it by 10* and the
dilution factor, to obtain the approximate number of cells per mL of the cell

suspension (Louis and Siegel, 2011).
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For the proliferation assays, the cell count is determined and the cells are
seeded at various densities in 96-well ImageLock plates (Essen Bioscience).
Cells are distributed in the wells of the tissue culture plate as uniformly as
possible. We report results for initial seeding densities of approximately 12,000,
16,000 and 20,000 cells per well. After seeding, cells are grown overnight to
allow for attachment and some subsequent growth. The plate is placed into the
IncuCyte ZOOM™ apparatus, and images are recorded every two hours for a
total duration of 48 hours. An example of a set of experimental images from a
proliferation assay is shown in Figure la—c. For each initial seeding condition

we perform 16 identically prepared experimental replicates (n = 16).
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For the scratch assays, the cell count is determined and the cells are seeded
at various densities in 96—well ImageLock plates (Essen Bioscience). Cells are
distributed in the wells of the tissue culture plate as uniformly as possible.
We report results for initial seeding densities of approximately 12,000, 16,000
and 20,000 cells per well. After seeding, cells are grown overnight to allow for
attachment and some subsequent growth. We use a WoundMaker™ (Essen
BioScience) to create uniform scratches in each well of a 96-well ImageLock
plate. To ensure that all cells are removed from the scratched region, a modi-
fication is made to the manufacturer’s protocol, where the scratching motion
is repeated 20 times over a short duration before lifting the WoundMaker ™™,
After creating the scratch, the medium is aspirated and the wells are washed
twice with fresh medium to remove any cells from the scratched area. Follow-
ing the washes, 100 pL fresh medium is added to each well and the plate is
placed into the IncuCyte ZOOM™ apparatus. Images of the collective cell
spreading are recorded every two hours for a total duration of 48 hours. An
example of a set of experimental images taken from a scratch assay is shown
in Figure 1d-f. For each initial seeding condition we perform 16 identically
prepared experiments in different wells of the tissue culture plate (n = 16).
Throughout this work we will refer to these identically prepared experiments

in different wells as different replicates.

2.2 Experimental Image Processing

To obtain cell density information from the experimental images, we count
the number of cells in two identically sized subregions that are well behind
the location of the scratch, as shown in Figure 1g. The positions of the two
subregions are located about 400 pm behind the scratch, and each subregion

has dimensions 1430 pm x 200 pm. Throughout this work, we refer to the
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subregion to the left of the image as subregion 1, and the subregion to the right
of the image as subregion 2. Because the subregions are located well away from
the scratched region, we are able to invoke a simplifying assumption that the
dynamic changes in cell density in these subregions is due to cell proliferation
alone (Supplementary Material) (Johnston et al., 2015). We do not use data
that are directly adjacent to the left or right sides of the images since this
corresponds to the boundary of the field of view. Cells in each subregion are
counted in Photoshop using the ‘Count Tool’ (Adobe Systems Incorporated,
2016). After counting the number of cells in each subregion, we divide the
total number of cells by the total area to give an estimate of the cell density.
We repeat this process for each replicate and calculate the sample mean of the
cell density at two—hour intervals during the first 18 hours of the experiment
where the most rapid temporal changes take place. Then, during the last 30

hours of the experiment, we count cells at six—hour intervals.

One of the assumptions we make when analysing data from the scratch
assay is that the two subregions are sufficiently far away from the edges of
the scratch so that there are no spatial variations in cell density at these
locations for the entire duration of the experiment. This assumption allows
us to attribute any changes in cell density in the subregions to be a result of
cell proliferation (Johnston et al., 2015). Quantitative evidence to support this

assumption is provided in the Supplementary Material document.

2.3 Mathematical Methods

The logistic growth equation, given by Equation (1), has an exact solution

KC(0)
(K—C(0))e M+ C(0)’ (2)

o(t) =
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which is a sigmoid curve that monotonically increases from the initial density
C(0) to K as t — oo. An important feature of the logistic growth model
that we will make use of in this study is that the per capita growth rate,
(1/C)(dC/dt) = A(1 — C/K), decreases linearly with C.

We estimate the two parameters in the logistic growth model, A and K, by
minimising a least—squares measure of the discrepancy between the solution
of the logistic growth equation and the average cell density information in our
subregions that are located far away from the scratched region. The least—

squares error is given by

I
Z Cmodel Cdata( )]2’ (3)
i=1

where ¢ is an index that indicates the number of time points used from the
experimental data sets and [ is the total number of time points used in the cal-
ibration procedure. We calibrate the solution of the logistic growth equation to
the average cell density information using the MATLAB function 1sqcurvefit
(MathWorks, 2016) that is based on the Levenberg-Marquardt algorithm. For
notational simplicity we denote the minimum least—squares error as E, =
E (5\, f(). Each time we use the MATLAB function 1sqcurvefit, we always
check that the least-squares estimates of A and K are independent of the

initial estimate that is required for the iterative algorithm to converge.

3 Results and Discussion
3.1 Quantitative assessment of experiments
3.1.1 Initial cell density

Many previous studies that calibrate solutions of mathematical models to ex-

perimental data from proliferation or scratch assays make use of just one initial
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density of cells (Cai et al., 2007; Tremel et al., 2009; Maini et al., 2004a; Maini
et al., 2004b). To provide a more thorough investigation of the suitability of
various mathematical models, we calibrate mathematical models to a suite of
experimental data where the initial density of cells is intentionally varied (Jin
et al., 2016). To achieve this, our experimental procedure involves placing a
different number of cells into each well of the tissue culture plate. We describe
this as varying the initial seeding condition. In this work we consider three dif-
ferent initial seeding conditions that correspond to placing either: (i) 12,000;
(i) 16,000; or, (iii) 20,000 cells per well. For brevity, we refer to these three

conditions as initial seeding conditions 1, 2 and 3, respectively.

After a particular number of cells are placed into the tissue culture plate,
the cells are incubated overnight to allow them to attach to the plate and begin
to move and proliferate. The experiments are then performed on the following
day. Since the cell density changes overnight, we will refer to the initial density
of cells at the beginning of the experiment on the following day, as the initial
cell density. Intuitively, we expect that the initial cell density in proliferation
assays will be greater than the cell density associated with the initial seeding
condition, because the cells have had a period of time to attach and begin to

proliferate.

Before we examine the temporal evolution of cell density in our experi-
ments, we first examine the variability in the initial cell densities amongst our
various experimental replicates. This is essential, since the process of placing
either 12,000, 16,000 or 20,000 cells in each well of the tissue culture place is,
at best, an approximation. To quantify the variability in the initial cell density,
we count the number of cells in the two subregions, as shown in Figure 1g,
and convert these counts into an estimate of the initial cell density, C'(0). We

repeat this procedure for both the proliferation and scratch assays, giving a
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total of 96 individual estimates of the initial cell density. These 96 estimates

of the initial cell density are reported in Figure 2, revealing three features:

1. In general, those experiments initiated with a higher number of cells per
well lead to a higher initial cell density after the overnight attachment and
proliferation has taken place;

2. Within each initial seeding condition, the variability in initial cell density
for the proliferation assays is very similar to the variability in initial cell
density for the scratch assays; and,

3. There is a large variation in the initial cell density within each initial

seeding condition.

Of these three features, the variation in the initial cell density within each
initial seeding condition is very important. For example, the greatest recorded
initial cell density for initial seeding condition 1 (12,000 cells per well) is greater
than the smallest recorded initial cell density for initial seeding condition 3
(20,000 cells per well). This means that we ought to take great care when
selecting particular experimental replicates from the 96 data sets in Figure 2,
otherwise our results could be misleading when we try to examine how the

results depend on the initial cell density.
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We select three replicates from each initial seeding condition for both the
proliferation and scratch assays so that the initial cell density for the initial
seeding condition 3 is greater than the initial cell density for the initial seeding
condition 2, which is greater than the initial cell density for the initial seeding
condition 1. Furthermore, we select three replicates for both the proliferation
and scratch assays from each initial seeding condition. These choices are made
so that the initial cell density for each type of assay is approximately the same
within each seeding condition. To satisfy these constraints we choose three
replicates from each set of 16 experimental replicates. The selected replicates

are indicated in Figure 2.

3.1.2 Cell density information

Using the previously identified three experimental replicates for each type
of assay and each initial seeding condition (Figure 2), we plot the evolution
of the cell density as a function of time for each experimental replicate, as
shown in Figure 3. We also superimpose, in Figure 3, the evolution of the
average cell density for each type of assay and each initial seeding condition.
We see that the differences in initial density between the proliferation assay
and the scratch assay are minimal. The most obvious trend in the data is
that the cell density in both the proliferation assay and the scratch assay
increases dramatically with time, regardless of the initial condition. It is worth
emphasizing that seeding condition 1 involves a relatively small initial cell
density, whereas seeding conditions 2 and 3 are not particularly small. For
example, the initial cell density for initial seeding condition 3 is approximately
equal to the cell density for initial seeding condition 1 after a period of 24
hours has elapsed. Therefore our experimental design allows us to make a
clear distinction between the effects of small cell density, which would appear

more strongly and for longer in initial seeding condition 1 than initial seeding
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condition 3, and the effects of early time, which would appear equally in all

three initial seeding conditions. We return to this issue later.
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We note that it could be possible to calibrate the solution of Equation (1) to
any of the density curves in Figure 3, and this approach has been widely used
(Cai et al., 2007; Tremel et al., 2009; Simpson et al., 2013; Treloar and Simpson,
2013). However, there is no guarantee that simply fitting the solution of the
logistic equation to this kind of data means that the logistic model describes
the underlying mechanism (Simpson et al., 2014). To provide further insight
into whether the logistic model applies to these data, we re-interpret the data

in terms of the per capita growth rate.

3.2 Per capita growth rate

To estimate the per capita growth rate, (1/C)(dC/dt), we use the cell density
data in Figure 3 to estimate dC/dt using a finite difference approximation.
Our estimate of dC/dt at the first and last time points is obtained using a for-
ward and backward difference approximation, respectively, while our estimates
at all other time points are obtained using an appropriate central difference
approximation (Chapra and Canale, 2010). With these estimates, we plot the
per capita growth rate as a function of the density in Figure 4. Results are
shown for both proliferation and scratch assays, for the three initial densities

considered.
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To interpret our results, it is instructive to recall that the data in Figure
3 show that the cell density, in each type of experiment for all three initial
densities of cells, increases with time. Therefore, when we interpret each plot
showing the per capita growth rate as a function of density in Figure 4, it is
useful to recall how the data in these plots vary with time during the exper-
iment. Data for smaller values of C' in each subfigure in Figure 4 correspond
to the early part of the experiment, and hence small ¢. In contrast, data for
larger values of C' in each subfigure in Figure 4 correspond to the latter part
of the experiment, and hence larger t.

If the logistic growth model is valid, then we expect that the per capita
growth rate will be a linearly decreasing function of the density. In contrast,
other kinds of sigmoid-shaped carrying-capacity limited growth models, are
associated with a a non-linear relationship between the per capita growth rate
and the density. Visual inspection of the per capita growth rate data in Figure

4 reveals several trends:

1. The relationship between the per capita growth rate and the density in
the proliferation assay is very different to the relationship between the per
capita growth rate and the density in the scratch assay;

2. The relationship between the per capita growth rate for each prolifera-
tion assay, at each initial seeding condition, appears to be reasonably well
approximated by a linearly decreasing function of density; and,

3. The relationship between the per capita growth rate for each scratch as-
say is more complicated, with the per capita growth rate increasing with
density when the density is small, and then decreasing with density when

the density is sufficiently large.

These observations suggest that the proliferation of cells in the scratch assay

is very different to the proliferation of cells in a proliferation assay. Because
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we are examining the proliferation of cells that are located well away from the
scratch, this result implies that the process of scratching the monolayer can
induce non-local effects.

Instead of relying on visual interpretation alone, we now attempt to match
the per capita growth rate data and the logistic growth model by fitting a series
of straight lines to the averaged per capita growth rate data using 1sqcurvefit
(MathWorks, 2016). Results in Figure 5 show the least—squares straight line
and the coeflicient of determination for each data set. Results for the prolifer-
ation assay (Figure 5a, ¢ and e) suggest that the putative linear relationship
is reasonable since our straight lines have negative slope and the coefficient of
determination is reasonably high (R? = 0.50—0.87). In contrast, results for the
scratch assay (Figure 5b, d and f) show that the least—squares linear regres-
sion is a poor match to the data with a very low coefficient of determination
(R? = 0.04 — 0.16). Indeed, the least-squares straight lines in Figure 5b and f
are particularly troublesome since they have a positive slope which is biologi-
cally unrealistic, suggesting that the quantity A/K is negative. Therefore, it is
clear that the per capita growth data for the scratch assays does not follow a
linearly decreasing straight line for the entire duration of the experiment, and
the commonly-invoked logistic model does not appear to match these data at

all.
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The fact that we observe two very different trends in the per capita growth
rate data for the scratch assay motivates us to conjecture that the proliferation
of cells in the scratch assay, far away from the location of the scratch, takes
place in two phases. The first phase, which occurs at early time, involves the
per capita growth rate increasing with density. This trend is the opposite of
what we expect if the logistic growth model is valid and not what we observe in
the proliferation assay. The second phase, which occurs at later time, involves
the per capita growth rate decreasing with the density. These two phases
occur consistently across all three initial seeding conditions (Figure 4b, d and
f). A schematic illustration of the differences observed between the per capita
growth rate in the scratch assay and the proliferation assay is given in Figure
6. In this schematic, we refer to the first phase in the scratch assay as the
disturbance phase, and the second phase in the scratch assay as the growth
phase. The per capita growth data in the proliferation assay appear to be
similar to the growth phase of the scratch assay for the entire duration of the

experiment.
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In the schematic (Figure 6), we suggest that the relationship between the
per capita growth rate and the density during the growth phase is a linearly de-
creasing function, which is consistent with the logistic model. To quantitatively
examine whether this assumption is valid for our data set we now construct
a series of least—squares straight lines to our averaged per capita growth rate
data during the growth phase. To examine this question, we need to quanti-
tatively distinguish between the end of the first phase and the beginning of
the second phase. We separate the data in Figure 5b, d and f into two groups,
the disturbance phase for t < 18 hours, and the growth phase for ¢t > 18 18
hours. To examine whether the data in the growth phase appear to be logistic
we determine the least—squares linear relationship using 1sqcurvefit (Math-
Works, 2016) for the data in the growth phase. This least—squares straight
line is superimposed on the averaged data for ¢ > 18 hours in Figure 7b, d
and f. Again, a visual comparison of the match between the linear regression
and the data in the growth phase, and the much higher values of coefficient of
determination (R? = 0.75 —0.91) suggest that the putative linear relationship

is reasonable.
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In summary, we have used the per capita growth rate information in Figure
4 to make a distinction between the disturbance phase and the growth phase in
the scratch assay. These differences are highlighted in the schematic in Figure
6. Furthermore, guided by the observed relationship between the per capita
growth rate and the density in the proliferation assay we assume that the
logistic growth model applies and fit a straight line to the per capita growth
rate data and find that the match between the data and the straight line
appears to be reasonable. Similarly, we assume that the logistic growth model
applies to the growth phase in the scratch assay, for ¢ > 18 hours. Fitting a
straight line to the per capita growth data suggests that the logistic growth
model is reasonable in the growth phase for the scratch assay. Now that we
have used the per capita growth rate data to identify the disturbance and
growth phases in the scratch assay, as well as providing evidence that cells
proliferate logistically in the growth phase, we re—examine the cell density

profiles with a view to estimating A and K.

3.3 The logistic growth model

To calibrate the logistic growth model to our data from the proliferation assay,
we match the solution of Equation (1) to the averaged data in Figure 3a, ¢ and
e over the entire duration of the experiment, 0 < ¢ < 48 hours. To calibrate
the logistic growth model to our data from the scratch assay, accounting for
the differences in the disturbance and growth phases, we match the solution
of Equation (1) to the averaged data in Figure 3b, d and f during the growth
phase only, 18 < t < 48 hours. This provides us with six estimates of A and
K. To demonstrate the quality of the match between the experimental data
and the calibrated logistic model, we superimpose the experimental data and

Equation (2) with A = X\ and K = K, for each initial seeding condition and
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for both assays in Figure 8. These results show that the quality of match
between the solution of the calibrated model and the experimental data is
excellent. Our estimates of A and K are summarised in Tables 1 and 2 for
the proliferation assay and the scratch assay, respectively. In summary, our
estimates of \ vary within the range A = 0.048 —0.067 h—!, and our estimates
of K vary within the range K = 1.6 — 2.5 x 1073 cells/um?. Strictly speaking,
since A and K are supposed to be constants in Equation (1), the fact that
we see only a relatively small variation in our estimates of these parameters
is encouraging. In particular, we also report, in Tables 1 and 2, the sample
standard deviation showing the variability of our estimates. Overall, we find
that the coefficient of variation is approximately 10%, which is relatively small

when dealing with this kind of biological data (Vo et al., 2015).
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Table 1. Estimates of A and K for the proliferation assay using data from

0 <t < 48 hours. All parameter estimates are given to two significant figures.
Results are reported as the sample mean and the uncertainty is quantified in
terms of the sample standard deviation.

Initial seeding condition A (/h) K (cells/um?)
1 0.052 £ 0.004 | 2.0 x 1073 £ 8 x 1073
2 0.059 £ 0.006 | 1.8 x 1073 £ 6 x 107
3 0.067 4 0.009 | 1.6 x 1073 + 2 x 10~°
Average 0.059 £ 0.008 | 1.8 x 1073 £ 2 x 1074

Table 2. Estimates of A and K for the scratch assay using data from
18 <t < 48 hours. All parameter estimates are given to two significant
figures. Results are reported as the sample mean and the uncertainty is
quantified in terms of the sample standard deviation.

Initial seeding condition A (/h) K (cells/um?)
1 0.051 £ 0.009 | 2.1 x 1073 £ 2 x 1073
2 0.059 £ 0.02 | 24 x 1072 £1 x 1073
3 0.048 £ 0.008 | 2.5 x 1073 +2 x 107*
Average 0.053 £ 0.005 | 2.3 x 1073 £ 2 x 1074

We now explore how our estimates of A and K are sensitive to whether
or not we account for the differences in the disturbance and growth phases
in the scratch assay. We repeat the same calibration process as described for
the results in Figure 8, except now we take the standard, naive approach and
calibrate the solution of Equation (1) to the averaged data in Figure 3b, d and f
over the entire duration of the scratch assay, 0 < ¢ < 48 hours. This procedure
provides us with three additional estimates of A and K for the scratch assay,
as summarised in Table 3.

To demonstrate the quality of the match between the experimental data

and the calibrated logistic model, we superimpose the experimental data and
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Equation (2) with A\ = X and K = K, for each initial seeding condition and for
both assays in Figure 9. When we visually compare the quality of the match
between the experimental data in Figure 8 and Figure 9, and the correspond-
ing calibrated solution of the logistic equation, there does not appear to be
any significant difference at all. It is worth noting that the values of F;, in
Figure 9b, d, and f are an order of magnitude greater than the corresponding
values in Figure 8b, d and f. This implies that the match between the logistic
model and the experimental data is improved when we ignore that data during
the disturbance phase. However, at first glance, these differences are visually
indistinguishable when we compare the results in Figure 8 and 9. In contrast,
when we examine the estimates of K and A in Table 3, the importance of
properly accounting for the disturbance phase in the scratch assay becomes
strikingly obvious. For example, taking this latter approach, our estimates
of the carrying capacity vary within the range K = 1.6 x 1073 — 2.8 x 107
cells/ym?, and our estimates of the proliferation rate vary within the range
A =0.019 — 0.067 h—!. We recall that A\ and K are supposed to be constants
in Equation (1), and so the fact that this naive calibration process suggests
that the least—squares estimate of the carrying capacity density varies of many
order of magnitude provides a clear illustration that this standard approach
to calibrating the logistic equation to our experimental data is problematic.
We note that the results of the Levenberg-Marquardt algorithm are robust,
returning the same least-squares estimates of A and K for any positive initial

estimate of K and A in the iterative algorithm (MathWorks, 2016).
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Table 3. Estimates of A and K for the scratch assay using data from

0 <t < 48 hours. All parameter estimates are given to two significant figures.
Results are reported as the sample mean and the uncertainty is quantified in
terms of the sample standard deviation.

Initial seeding condition A (/h) K (cells/um?)
1 0.028 £ 0.001 | 2.8 x 107 £1 x 107
2 0.029 £ 0.005 | 8.7 x 1073 £ 3 x 10°
3 0.019 £ 0.0002 | 1.6 x 107 £ 6 x 106
Average 0.025 + 0.006 | 1.5 x 107 + 1 x 107

Comparing the ranges of estimates for A and K in Tables 2 and 3 shows
that the model calibration procedure is extremely sensitive. For example, our
range of estimates of K when we account for the disturbance phase is smaller
than a factor of two amongst the six estimates. In contrast, when we neglect
the disturbance phase, our estimates of K vary across more than ten orders
of magnitude amongst the six estimates. Similarly, our range of estimates of A
when we account for the disturbance phase is smaller than a factor of 1.5 among
the six estimates. Again, in contrast, when we take a standard approach and
neglect the disturbance phase our estimates of A\ vary by more than a factor

of three amongst the six estimates.

4 Conclusion

In this work we investigate the suitability of the logistic growth model to de-
scribe the proliferation of cells in scratch assays. Scratch assays are routinely
used to study the ability of a population of cells to re—colonise an initially
vacant region on a two—dimensional substrate (Liang et al., 2007; Tremel et
al., 2009; Kramer et al., 2013; Treloar and Simpson, 2013). Most experimen-
tal interpretations of scratch assays are made using relatively straightforward

measurements (Liang et al., 2007). However, to provide additional insights
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into the mechanisms involved in the re—colonisation process, some previous
studies have calibrated the solution of a reaction—diffusion equation to data
from a scratch assay (Sheardown and Cheng, 1996; Maini et al., 2004a; Maini
et al., 2004b; Savla et al., 2004; Cai et al., 2007; Sengers et al., 2007; Sha-
keel et al., 2013; Simpson et al., 2007; Johnston et al., 2015; Jin et al., 2016).
In these reaction—diffusion equations, it is commonly assumed that carrying
capacity—limited proliferation of cells can be described by a logistic growth
model. However, the suitability of this assumption is rarely examined beyond
the process of simply calibrating the solution of the relevant model to match
the experimental data.

To examine the suitability of the logistic growth model, we perform a series
of scratch assays and proliferation assays for three different initial seeding
densities. Cell proliferation assays are prepared in exactly the same way as a
scratch assay, except that the monolayer of cells is not scratched. This allows
us to treat the cell proliferation assays as a control experiment so that we
can examine whether the process of artificially scratching the monolayer of
cells affects the way that cells proliferate, even when those cells are located far
away from the scratch. Instead of examining the dynamics of the cell density
near the scratched region where there will be a net flux of cells into the vacant
region (Jin et al., 2016), we quantify the cell density in two subregions that
are located far behind the location of the scratch, where the cell density is
approximately spatially uniform (Supplementary Material). This means that
the temporal dynamics of the cell density in these subregions is due to cell
proliferation only (Johnston et al., 2015).

We plot the time evolution of cell density, far away from the initially
scratched region, in both the scratch and proliferation assays. To examine
whether our results are sensitive to the initial density of cells, we repeat each

experiment using three different initial cell densities. Plots of the evolution of
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the cell density are given over a total duration of 48 hours, and these plots
appear to correspond to a series of sigmoid curves. At this point it would
be possible to simply calibrate the solution of the logistic growth model to
these data to provide an estimate of the proliferation rate, A, and the carrying
capacity density, K. This is a standard approach that has been used by us
(Johnston et al., 2015) and many others (Cai et al., 2007; Sengers et al., 2007;
Tremel et al., 2009). However, while this standard calibration procedure can
be used to provide estimates of the parameters, this model calibration proce-
dure does not provide any validation that logistic growth is relevant (Simpson
et al., 2014).

Rather than calibrating the logistic growth model to our experimental data,
we attempt to assess the suitability of the logistic growth model by converting
the cell density evolution profiles into plots of the per capita growth rate as a
function of density. We find that the plots of the per capita growth rate as a
function of density reveal several key differences between the scratch and pro-
liferation assays. If the logistic growth model is valid, then we expect to see a
decreasing linear relationship between the per capita growth rate and the cell
density for the entire duration of the experiment. While the plots of the per
capita growth rate as a function of density for the proliferation assays appear
to be consistent with the logistic model, the per capita growth rate data for
the scratch assays are very different. For the scratch assay data, the per capita
growth rate increases with cell density at low density during the early part of
the experiment. This behaviour, which is observed for all three initial densities
of cells in the scratch assays, is the opposite of what we would expect if the
logistic growth model were valid. However, at higher cell densities during the
latter part of the experiment, we observe that the per capita growth rate in
the scratch assays appears to decrease, approximately linearly, with the cell

density. This motivates us to propose that cell proliferation in a scratch assay
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involves two phases: (i) a disturbance phase in which proliferation does not fol-
low the logistic growth model during the early part of the experiment; and, (ii)
a growth phase where proliferation is approximately logistic during the latter
part of the experiment. Guided by our per capita growth rate data, it appears
that the disturbance phase in the scratch assays lasts for approximately 18
hours before the growth phase commences.

To estimate the parameters in the logistic growth model, we calibrate the
solution of the model to our cell proliferation data for the entire duration of
the experiment. This calibration procedure gives estimates of A and K that are
approximately consistent across the three initial conditions. We then calibrate
the solution of the logistic growth model to the data from the growth phase
in the scratch assay. This procedure also gives estimates of A and K that are
consistent across the three initial conditions, as well as being consistent with
the estimates obtained from the cell proliferation assays. In contrast, if we take
a naive approach and simply calibrate the solution of the logistic growth equa-
tion to the scratch assay data for the entire duration of the experiment, our
estimates of A and K vary wildly, despite the fact that the match between the
experimental data and the calibrated solution of the logistic growth equation
looks very good.

The results of our study strongly suggest that care ought to be taken
when applying a logistic growth model, or a reaction-diffusion equation with
a logistic source term, to describe scratch assays. Simply calibrating a math-
ematical model to experimental data might appear to produce an excellent
match between the solution of the model and the experimental data, but this
commonly-used procedure does not guarantee that the model is at all relevant
(Simpson et al., 2014). Our results suggest that cell proliferation is impacted
by the scratching procedure in a scratch assay, and that we require some time

to pass before the disturbance phase ends. This is important because previous
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applications of logistic growth models and reaction-diffusion equations with
logistic source terms have been calibrated to data from scratch assays without
any regard for the disturbance phase (Cai et al., 2007; Tremel et al., 2009; Jin

et al., 2016; Johnston et al., 2015).

It is also relevant to note that for the particular cell line we use, the distur-
bance phase that we identify lasts for approximately 18 hours. This is impor-
tant because many scratch assays are performed for relatively short periods of
time (Liang et al., 2007) and it is possible that standard experimental proto-
cols do not allow for a sufficient amount of time to pass for the disturbance
phase to end. Therefore, we suggest that scratch assays should be maintained
for as long as possible so that sufficient time is allowed for the disturbance

phase to pass.

It is worthwhile to note, and discuss, the fact that some of the features
of our proposed two—phase growth model appear to be similar to the Allee
effect (Allee and Bowen, 1932; Johnston et al., 2017; Lewis and Kareiva, 1993;
Roques et al., 2012; Taylor and Hastings, 2005; Sewalt et al. 2016). Typically,
Allee growth kinetics are normally invoked to describe some kind of low-density
reduction in proliferation, relative to the logistic model (Lewis and Kareiva,
1993 Taylor and Hastings, 2005). The Allee growth model is given by

%Et) = \C(t) (1 - C[((t)> (CX) —~ 1) , (4)

where the parameter A is called the Allee threshold. The key difference be-
tween the Allee growth model (Equation (4)) and the standard logistic model
(Equation (1)), is the inclusion of the third factor on the right hand side of
Equation (4). The incorporation of this factor has several consequences: (i)
the growth rate is negative for C'(t) < A (assuming C(t) < K); (ii) the growth

rate is positive for C(t) > A (assuming C(t) < K); and, (iii) the relationship
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between the per capita growth rate and the density is quadratic. In many
previous implementations of Allee growth models, an argument is made that
the growth rate at small densities is reduced, relative to the logistic model,
because of some kind of biological competition (Johnston et al., 2017; Lewis
and Kareiva, 1993; Taylor and Hastings, 2005), corresponding to A < K.
Therefore, the Allee model is often used to represent reduced growth at small
densities, C'(t) < K. The experimental data we present in Figures 4 and 7 are
inconsistent with the Allee model for two reasons. First, the per capita growth
data in Figure 4 corresponds to a reduced growth rate at early times during
the experiment. This reduction in growth rate is observed across a range of
initial densities, including seeing conditions 2 and 3 which do not involve small
densities, as discussed in Section 3.1.2. Second, the per capita growth data in
Figure 7 varies approximately linearly with density during the growth phase,

whereas the Allee model implies that the relationship is quadratic.

One of the limitations of our study is that we have not identified the pre-
cise mechanism that causes the disturbance phase or the mathematical form of
the disturbance phase. However it seems clear that the process of scratching a
monolayer of cells has some impact on the proliferative behaviour of the cells
away from the scratch, suggesting that either chemical or mechanical distur-
bance is transported throughout the experimental well as consequence of the
scratching action. Regardless of the mechanism at play, our procedure of con-
verting the cell density profiles into plots of the per capita growth rate allows
us to identify the result of this disturbance. Another limitation of our work
is that we deal only with one particular cell line, and it is not obvious how
our estimate of the duration of the disturbance phase will translate to other
cell lines. In this work we study the proliferation mechanism by converting the
density data into per capita growth data and exploring whether the relation-

ship between the per capita growth and density is approximately described
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by a linear function. We acknowledge that more sophisticated statistical tech-
niques could be employed to provide further information (Dennis and Taper,
1994). However, since the main aim of this study is to explore the suitability
of the logistic growth model for describing cell proliferation in a scratch assay,
we do not pursue these more advanced statistical techniques here. Instead, we

suggest that this could be the topic of a future study.

5 Acknowledgements

This work is supported by the Australian Research Council (DP140100249,

FT130100148), and we appreciate the helpful comments from the two referees.

References

1. Adobe Systems Incorporated. 2016. Count objects in an image. Available
http://helpx.adobe.com/photoshop/using/counting-objects-image.html.

2. Alarcén T, Byrne HM, Maini PK. 2003. A cellular automaton model for tumour growth
in inhomogeneous environment. J Theor Biol. 225, 257-274.

3. Allee WC, Bowen ES. 1932. Studies in animal aggregations: mass protection against
colloidal silver among goldfishes. J Exp Zool A Ecol Genet Physiol. 61, 185-207.

4. Cai AQ, Landman KA, Hughes BD. 2007. Multi-scale modeling of a wound—healing cell
migration assay. J Theor Biol. 245, 576-594.

5. Chan MH, Kim PS. 2013. Modelling a Wolbachia invasion using a slow—fast dispersal
reaction—diffusion approach. Bull Math Biol. 75, 1501-1523.

6. Chapra SC, Canale RP. 2010. Numerical methods for engineers. 6th ed. McGraw—Hill,
Boston.

7. Dennis B, Taper ML. 1994. Density dependence in time series observations of natural
populations: estimation and testing. Ecol Monogr. 64, 205-224.

8. Jin W, Shah ET, Penington CJ, McCue SW, Chopin LK, Simpson MJ. 2016. Repro-
ducibility of scratch assays is affected by the initial degree of confluence: Experiments,

modelling and model selection. J Theor Biol. 390, 136-145.


https://doi.org/10.1101/077388

bioRxiv preprint doi: https://doi.org/10.1101/077388; this version posted March 1, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Logistic proliferation of cells in scratch assays is delayed 41

9. Johnston ST, Shah ET, Chopin LK, McElwain DLS, Simpson MJ. 2015. Estimating cell
diffusivity and cell proliferation rate by interpreting IncuCyte ZOOM™ assay data using
the Fisher—-Kolmogorov model. BMC Syst Biol. 9, 38.

10. Johnston ST, Baker RE, McElwain DLS, Simpson MJ. 2017. Co—operation, competition
and crowding: a discrete framework linking Allee kinetics, nonlinear diffusion, shocks and
sharp-fronted travelling waves. Sci Rep. 7, 42134.

11. Jones LJ, Gray M, Yue ST, Haugland RP, Singer VL. 2001. Sensitive determination
of cell number using the CyQUANT® cell proliferation assay. J Immunol Methods. 254,
85-98.

12. Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW. 1979. Establishment and
characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol. 17, 16-23.

13. Kramer N, Walzl A, Unger C, Rosner M, Krupitza G, Hengstschlager M, et al. 2013.
In vitro cell migration and invasion assays. Mutat Res Rev Mutat Res. 752, 10—24.

14. Laird AK. 1964. Dynamics of tumor growth. Brit J Cancer. 18, 490-502.

15. Lewis MA, Kareiva P. 1993. Allee dynamics and the spread of invading organisms. Theor
Pop Biol. 43, 141-158.

16. Liang CC, Park AY, Guan JL. 2007. In vitro scratch assay: a convenient and inexpensive
method for analysis of cell migration in vitro. Nat Protoc. 2, 329-333.

17. Louis KS, Siegel AC. 2011. Cell Viability Analysis Using Trypan Blue: Manual and
Automated Methods. In: Stoddart JM, editor. Mammalian Cell Viability: Methods and
Protocols. Humana Press, Totowa, NJ, pp. 7-12.

18. Maini PK, McElwain DLS, Leavesley DI. 2004. Traveling wave model to interpret a
wound-healing cell migration assay for human peritoneal mesothelial cells. Tissue Eng.
10, 475-482.

19. Maini PK, McElwain DLS, Leavesley D. 2004. Travelling waves in a wound healing
assay. Appl Math Lett. 17, 575-580.

20. Mallet DG, De Pillis LG. 2006. A cellular automata model of tumor—immune system
interactions. J Theor Biol. 239, 334—-350.

21. MathWorks. 2016. Solve nonlinear curve-fitting (data—fitting) problems in least—squares
sense. MathWorks. Available: http://au.mathworks.com/help/optim/ug/lsqcurvefit.html.

22. Murray JD. 2002. Mathematical biology I: An introduction. 3rd Ed. Springer-Verlag,
Heidelberg.

23. Nikoli¢ DL, Boettiger AN, Bar—Sagi D, Carbeck JD, Shvartsman SY. 2006. Role of
boundary conditions in an experimental model of epithelial wound healing. Am J Physiol

Cell Physiol. 291, C68-C75.


https://doi.org/10.1101/077388

bioRxiv preprint doi: https://doi.org/10.1101/077388; this version posted March 1, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

42 Wang Jin et al.

24. Nishio T, Kawaguchi S, Yamamoto M, Iseda T, Kawasaki T, Hase T. 2005. Tenascin—
C regulates proliferation and migration of cultured astrocytes in a scratch wound assay.
Neuroscience. 132, 87-102.

25. Ribba B, Colin T, Schnell S. 2006. A multiscale mathematical model of cancer, and its
use in analyzing irradiation therapies. Theor Biol Med Model. 3, 7.

26. Roques L, Garnier J, Hamel F, Klein EK. 2012. Allee effect promotes diversity in trav-
eling waves of colonization. Proc Natl Acad Sci USA. 109, 8828-8833.

27. Sarapata EA, de Pillis LG. 2014. A comparison and catalog of intrinsic tumor growth
models. Bull Math Biol. 76, 2010-2024.

28. Savla U, Olson LE, Waters CM. 2004. Mathematical modeling of airway epithelial wound
closure during cyclic mechanical strain. J Appl Physiol. 96, 566-574.

29. Sengers BG, Please CP, Oreffo RO. 2007. Experimental characterization and compu-
tational modelling of two—dimensional cell spreading for skeletal regeneration. J R Soc
Interface. 4, 1107-1117.

30. Sewalt L, Harley K, van Heijster P, Balasuriya S. 2016. Influences of Allee effects in the
spreading of malignant tumours. J Theor Biol. 394, 77-92.

31. Shakeel M, Matthews PC, Graham RS, Waters SL. 2013. A continuum model of cell
proliferation and nutrient transport in a perfusion bioreactor. Math Med Biol. 30, 21-44.

32. Sheardown H, Cheng YL. 1996. Mechanisms of corneal epithelial wound healing. Chem
Eng Sci. 51, 4517-4529.

33. Simpson MJ, Landman KA, K Bhaganagarapu. 2007. Coalescence of interacting cell
populations. J Theor Biol. 247, 525—543.

34. Simpson MJ, Binder BJ, Haridas P, Wood BK, Treloar KK, McElwain DLS, et al. 2013.
Experimental and modelling investigation of monolayer development with clustering. Bull
Math Biol. 75, 871-889.

35. Simpson MJ, Sharp JA, Baker RE. 2014. Distinguishing between mean—field, moment
dynamics and stochastic descriptions of birth—death—-movement processes. Physica A. 395,
236-246.

36. Taylor CM, Hastings A. 2005. Allee effects in biological invasions. Ecol Lett. 8, 895-908.

37. Treloar KK, Simpson MJ. 2013. Sensitivity of edge detection methods for quantifying
cell migration assays. PLOS ONE. 8, e67389.

38. Tremel A, Cai A, Tirtaatmadja N, Hughes BD, Stevens GW, Landman KA, et al. 2009.
Cell migration and proliferation during monolayer formation and wound healing. Chem

Eng Sci. 64, 247-253.


https://doi.org/10.1101/077388

bioRxiv preprint doi: https://doi.org/10.1101/077388; this version posted March 1, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Logistic proliferation of cells in scratch assays is delayed 43

39. Vo BN, Drovandi CC, Pettitt AN, Simpson MJ. 2015. Quantifying uncertainty in pa-
rameter estimates for stochastic models of collective cell spreading using approximate
Bayesia ncomputation. Math Biosci. 263, 133—142.

40. Waters EK, Sidhu HS, Sidhu LA, Mercer GN. 2015. Extended Lotka—Volterra equations
incorporating population heterogeneity: Derivation and analysis of the predator—prey case.
Ecol Model. 297, 187-195.

41. West GB, Brown JH, Enquist BJ. 2001. A general model for ontogenetic growth. Nature.
413, 628-631.

42. Zwietering MH, Jongenburger I, Rombouts FM, Van’t Riet K. 1990. Modeling of the

bacterial growth curve. Appl Environ Microbiol. 56, 1875-1881.


https://doi.org/10.1101/077388

	Introduction
	Methods
	Results and Discussion
	Conclusion
	Acknowledgements

